Student Wiki on methodology

This Wiki is intended to collectively make the point on methodologies employed in research papers we analyze during the course. "Writers" are students who wish to contribute to a specific subject. Before contributing, please add your name in the "Writers group choice". When initiating a contribution, please indicate your name in brackets.


PLEASE:  DO NOT change the INDEX page !!!
This page contains the links to the nine official subjects, which are the same in the Choice.

To contribute, go to the correct page by clicking on the description here in the index, then click EDIT and contribute. At the end, please save.

 IMPORTANT !!!

Please do not make extensive cut-and-paste: it s useless, anybody can go to the source you use and read it.  Read the texts, digest, and make a short résumé. If you wih you can include link(s) to the source(s).

Other contributors can revise, add, erase, modify...   Please do not repeat the same text as well. 


Transcriptome: special techniques, RNA-Seq, GRO-Seq, CAGE, others.

Viewing page version #12
(Restore this version) 

Modified: 30 March 2020, 8:29 PM   User: Fabiola Campestre  → 

Back to index

RNA-seq

Transcriptome Analysis is the study of the transcriptome, of the complete set of RNA transcripts that are produced by the genome, under specific circumstances or in a specific cell, using high-throughput methods.

Transcriptome analysis by next-generation (RNA-seq) sequencing allows investigation of a transcriptome at unsurpassed resolution, detecting both coding and regulatory transcripts, like siRNA and lncRNA. One major benefit is that RNA-seq is independent of a priori knowledge on the sequence under investigation, thereby also allowing analysis of poorly characterized species. 

Brief outline of the workflow:

  1. bulk RNA is extracted from the sample and the desired RNA is selected (sample preparation)
  2.  the selected RNA is copied into stable double-stranded copy DNA (library construction)
  3.  the ds cDNA is then sequenced using various sequencing methods
  4.  the sequences obtained can are aligned to reference genome sequences, available in data banks, to identify which genes are transcribed. This type of analysis provides a quantification of the expression levels for the transcribed genes. Alternatively, RNA-seq can be used to identify alternative splicing, novel transcripts, and fusion genes, following a new transcript discovery approach.


The complete workflow of RNA-seq consists of: (1) experimental design; (2) sample and library preparation; (3) sequencing; and (4) data analysis. You will find a general explanation of each step in the following video.


For a deeper understanding of the RNA-seq technology and its applications follow these links:

https://www.intechopen.com/books/applications-of-rna-seq-and-omics-strategies-from-microorganisms-to-human-health/rna-seq-applications-and-best-practices 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648566/

GRO-Seq

Global Run-On is a high-throughput evolution of the Nuclear Run-On assay, introduced over 40 years ago, coupled to deep sequencing.

The advantage of this protocol is the exceptional sensitivity and the possibility to map nascent transcripts at the genome-wide scale providing a reliable and unbiased, real-time measure of transcriptional activity from engaged RNA polymerase in mammalian cells; in fact the steady-state level of RNA, measured by conventional sequencing methods, does not accurately mirror transcriptional activity per se.

Moreover it delivers a high-resolution map of coding and noncoding transcripts that is especially useful for annotation and quantification of short-lived RNA molecules, usually hard to detect because, owing to their instability, these transcripts do not accumulate in the nucleus and elude most RNA detection protocols.

For example, with this method it has been recently characterized enhancer-associated RNAs (eRNAs) and their transcription in response to stimuli such as estrogen, LPS and Epidermal Growth Factor; we have achieved crucial information on RNA polymerase II (RNAPII) such as density at different classes of protein coding genes, defects in elongation, pause-release and termination and the capacity to fire bi-directionally at most mammalian promoters, initiating noncoding RNAs that are transcribed antisense with respect to the messenger RNA.

Limitations: laboriousness of the technique and the amount of starting material (the number of cells that are required lies in the 10ˆ7 range)

Protocol:

  • Nuclei isolation: Nuclei from mammalian cells are isolated, washed to remove free nucleotides and kept at ice-cold temperature to arrest ongoing transcription;
  • Nuclear Run-On: Transcription is resumed in vitro when nuclei are incubated at 30°C in the presence of brominated nucleotides and the anionic detergent sarkosyl, which prevents de novo assembly of the pre-initiation complex and avoids re-initiation;

  • Elongation: Transcripts that were initiated at the time of nuclei isolation (commonly referred to as nascent RNA ) will be further elongated by engaged RNA polymerase, to allow incorporation;

  • Firts immunoprecipitation: affinity purification by means of commonly used antibodies against bromodeoxyuridine (anti-BrdU);

  •  End repair;

  • Second immunoprecipitation;

  • Adapter ligation;

  • Third immunoprecipitation;

  • Library preparaton: isolate nascent RNA can be ultimately converted into a Illumina-compatible DNA library suitable for deep sequencing;

Sources:

  • Gardini A. (2017) Global Run-On Sequencing (GRO-Seq). In: Ørom U. (eds) Enhancer RNAs. Methods in Molecular Biology, vol 1468. Humana Press, New York, NY, DOI: https://doi.org/10.1007/978-1-4939-4035-6_9
  • GRO-seq, A Tool for Identification of Transcripts Regulating Gene Expression, March 2017, Methods in Molecular Biology 1543:45-55, DOI: 10.1007/978-1-4939-6716-2_3
(GRO-Seq written by Fabiola Campestre)