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m Abstract The field of computational cell biology has emerged within the past 5
years because of the need to apply disciplined computational approaches to build and
test complex hypotheses on the interacting structural, physical, and chemical features
that underlie intracellular processes. To meet this need, newly developed software tools
allow cell biologists and biophysicists to build models and generate simulations from
them. The construction of general-purpose computational approaches is especially
challenging if the spatial complexity of cellular systems is to be explicitly treated. This
review surveys some of the existing efforts in this field with special emphasis on a sys-
tem being developed in the authors’ laborat®fiytual Cell. The theories behind both
stochastic and deterministic simulations are discussed. Examples of respective appli-
cations to cell biological problems in RNA trafficking and neuronal calcium dynamics
are provided to illustrate these ideas.
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INTRODUCTION

In the past 20 years, the advent and dissemination of revolutionary new technolo-
gies have permitted cell biologists to probe the physics and chemistry of living
cells in situ. Confocal and two-photon excited fluorescence microscopies permit
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investigators to study the structure and dynamics of living cells with submicro-
meter three-dimensional (3D) spatial resolution and with time resolutions as fast as
milliseconds. These quantitative microscopies can be combined with fluorescent
indicators and fluorescent protein constructs to enable the study of the spatiotem-
poral behavior of individual molecules in cells. Patch clamp electrophysiological
recording can be used to study ion currents through single-channel proteins or
across the entire cell membrane. All these techniques can be further combined
with methods to impart specific perturbations to cells such as photorelease of
caged compounds to deliver controlled doses of second messengers or laser tweezer
manipulations to determine the response of cells to mechanical stresses. Thus many
of the cellular mechanisms, which in the past could only be studied in reconstituted
artificial environments in test tubes, can now be studied in their native milieu and
spatial organization.

Matching the advances in microscope-based technologies for studying living
cells has been enormous progress in our cumulative knowledge of biomolecular
structure and function. Massive structural biology efforts have produced exten-
sive databases of 3D protein structures. High-throughput molecular biology and
molecular genetics technologies have led to descriptions of the full genomes of
several organisms, including, of course, the human genome. More recently, high-
throughput proteomics technologies promise to catalog, for a given state of a given
cell, the dynamic levels of and interactions between all proteins and their post-
translational modifications. This wealth of molecular data has spawned the field of
bioinformatics to provide computational tools for the organization, analysis, and
synthesis of all this information. However, there is a critical need for new computa-
tional approaches that can link all the molecular-level data to the cellular processes
that can be probed with the microscope. The nascent field of computational cell
biology is emerging to fill this need and is the subject of this review.

The overall goal of computational cell biology is to enable cell biologists to build
and exercise predictive models of cellular processes. An operational definition
of the term model is most appropriately formulated in relation to the scientific
method. A model, in this language, is simply a collection of hypotheses and facts
brought together in an attempt to understand a phenomenon. Indeed, the choice of
which hypotheses and facts to collect and the manner in which they are assembled
themselves constitute additional hypotheses. For a cell biological model, the facts
and hypotheses are composed of the molecular species and the biochemical or
electrophysiological transformations that are presumed to underlie the cellular
events. A prediction based on the model is in one sense most useful if it does not
match the experimental details of the process—it then unequivocally tells us that the
elements of the model are inaccurate or incomplete. Although such negative results
are not always publishable, they are atremendous aid in refining our understanding.
If the prediction does match the experiment, it can never guarantee the truth of the
model but should suggest other experiments that can test the validity of critical
elements; ideally, it should also provide new predictions that can, in turn, be verified
experimentally.
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The very complexity of cell biological processes necessitates the development
of new computational approaches to enable the application of the classical sci-
entific method. A pair of separate factors contributes to this problem. First, the
large number of interdependent chemical reactions and structural components that
combine to affect and regulate a typical cell biological process forces one to seek
the help of a computer to build a model and generate quantitative predictions from
it. A structured computational framework is required to gather the relevant data
about a cellular system and then execute mathematically rigorous simulations to
establish whether the elements that were so identified are sufficient to produce
an experimentally observed biological endpoint. The second factor recognizes
that scientists trained in experimental cell biology are not typically equipped
with sufficient mathematical, physical, or computational expertise to generate
guantitative predictions from models. Conversely, theoretical biologists are of-
ten trained in the physical sciences and have difficulty communicating with ex-
perimentalists (bifurcation diagrams, for example, will not serve as a basis for a
common language). Appropriate computational tools will therefore provide anin-
terface that enables biologists to easily build models, run simulations, and visualize
simulation results in a way that allows direct comparison to experiments. At the
same time, these tools should be sufficiently sophisticated that they can facilitate
the analysis of models by theorists and thus, ultimately, promote communication
and collaboration between these communities.

This review describes current efforts to address this need, especially within the
area of spatial modeling. We do not attempt to cover the large body of mathe-
matical modeling studies that have used ad hoc approaches with either analytical
solutions or numerical simulations that address only a specific problem. Rather,
we focus on the design and application of several new general-purpose software
tools for modeling intracellular physiology. The concentrations of reacting molec-
ular species as a function of time in a well-mixed reactor can be obtained by
solving ordinary differential equations (ODESs) that specify the rate of change of
each species as a function of the concentrations of the molecules in the system. If
membrane transport and electrical potential are to be included in the model, the
rate expressions can become more complex but can still be formulated in terms
of a system of ODEs. However, when diffusion of molecules within the complex
geometry of a cell is also considered, the resultant “reaction/diffusion” system
requires the solution of partial differential equations (PDESs) that describe vari-
ations in concentration over space and time. We discuss the difference between
stochastic and deterministic approaches to solving reaction/diffusion systems to
develop an understanding of when each is appropriate. We then briefly review
existing tools for analyzing biochemical systems at the ODE level. Finally, three
software systems for the construction and analysis of spatial models will be de-
scribed,StochSim, MCelland Virtual Cell. Virtual Cell was developed in our
lab, and we describe it in the most detail including examples of both contin-
uous and stochastic spatial models of cell biological processes that have been
studied.
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STOCHASTIC AND DETERMINISTIC DESCRIPTIONS OF
CELLULAR PROCESSES

A continuous approachto spatially resolved biochemical systems based on reaction-
diffusion PDEs provides a deterministic description in terms of average species
concentration. This description is accurate and effective so long as the number of
molecules in a system is macroscopically large. In this case, thermal stochastic
fluctuations around average values are relatively small and can therefore be ignored.
The complexity of most realistic models of cellular processes would require that
the equations be solved numerically, so both a spatial domain and a time interval
have to be sampled, and the equations should be correspondingly discretized.
The resultant linear algebraic system is then solved by employing effective linear
solvers. The most common approaches in engineering disciplines can be usually
categorized as finite difference (37) or finite element methods (44). However, these
approaches are difficult to implement within an automated software tool designed
to solve problems on cells with arbitrary geometries.

The finite volume method, developed originally for problems in heat transfer
(27), is especially well-suited to simulations in cell biological systems (31, 33). Itis
closely related to finite difference methods but allows for good control of boundary
conditions and surface profile assumptions while preserving the conservative na-
ture of the equations. Mostimportantly, the finite volume formalism accommodates
the heterogeneous spatial organization of cellular compartments. As implemented
in the Virtual Cell, the simulation geometry is composed of uniformly sampled
rectangular volume elements. Piecewise linear interpolation functions are used to
interpret the values of molecular concentrations and electric potentials between
element centers. Within such elements, the rate of change of the concentration of
a given molecular species is simply the sum of fluxes entering the volume element
from its adjacent neighbors plus the rate of production of the given species via
reactions. Appropriate jump boundary conditions are implemented at boundaries
between dissimilar compartments (i.e., membrane transport conditions). The nu-
merical formulation involves integrating the equations in time over each volume
element using appropriate interpolation profiles and boundary conditions. The so-
lution of each integration relates a small neighborhood of sample values over space
andtime. In choosing a solution method for the resulting system of algebraic equa-
tions, numerical stability, given the physically appropriate constraints associated
with physiological models, must be considered. Accordingly, diffusion is treated
implicitly, i.e. concentrations satisfy the system of simultaneous linear equations
evaluated at the next time point to maintain stability. The iterative method orig-
inally chosen for solving the linear algebraic system builds on effective routines
used for one-dimensional systems and is relatively easy to implement. However,
there are some significant drawbacks, such as the need to solve for all the ele-
ments in the rectangular domain even if only some compartments are of interest.
Moreover, in order for the method to converge in a reasonably small number of
iterations, the ratio. = DAt/ Ax?, whereD is the diffusion coefficientAt is the
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time step, andAx is the spatial step, must be kept small. This imposes severe
restrictions on the time step if high-spatial resolution is required and creates sig-
nificant problems for running realistic 3D simulations. These issues were resolved,
at least partially, by using a different linear solver. Linear solvers based on Krylov
space approximations, such as the conjugate gradient method, in conjunction with
a preconditioner (an operator that approximates the inverse of the matrix but can
be applied at a low computational cost), become powerful and robust. There are
commercial packages that implement a range of Krylov space methods, as well as
many of the well-known preconditioners (e.g., PCGPAK, Scientific Computing As-
sociates, New Haven, Connecticut). This has produced significant improvements
in computational times and enables the practical application of these methods to
much larger systems.

If the number of molecules involved in a process is relatively small, the fluctu-
ations can become important. In this case, the continuous description is no longer
sufficient and stochastic effects have to be included in a model. Single-channel
ionic currents are one such example. While predictions based on the deterministic
Hodgkin-Huxley model (20) are usually good for macroscopic phenomena, be-
cause of the nonlinearity of the system, stochastic behavior of ion channels proves
to be important in some circumstances even when the number of channels is rel-
atively large (35). Similar issues arise in calcium dynamics where the calcium
concentration (calcium sparks, calcium waves) (22) can be significantly affected
by the stochastic firing of calcium channels. Stochastic fluctuations of macro-
molecules are crucial for understanding the dynamics of vesicles and granules
driven by competing molecular motors. In the case of a relatively small number
of participating particles, a system that would be described deterministically by
reaction-diffusion PDEs requires fully stochastic treatment. In this approach, diffu-
sion is described as Brownian random walks of individual particles, and chemical
kinetics is simulated as stochastic reaction events. Numerical stochastic simula-
tions in this case are based on pseudo-random-number generation (28). They are
often called Monte Carlo simulations (the term, originally introduced by Ulam
and von Neumann in the days of the Manhattan Project) since throwing a dice is
actually a way to generate a random number. Because Monte Carlo methods are
general, relatively simple, and straightforward to implement, they can provide a
numerical solution of the original reaction-diffusion system even when stochastic
fluctuations are not an issue (see the descriptidd©éll, below).

In situations where one subsystem requires discrete stochastic formulation,
whereas the other can be treated deterministically, the problem can be described
in terms of stochastic differential equations (17). As an example, in the Hodgkin-
Huxley model, the membrane voltage is treated as a continuous deterministic
variable described through a set of differential equations, whereas the single chan-
nel behavior is random. A natural way to introduce stochasticity in the model is to
replace open probabilities by the actual numbers of open channels (9, 13). In fact,
Hodgkin and Huxley introduced variables in their model to represent the propor-
tion of open gates for various ions. The number of open channels is random and is
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governed by a corresponding Markov kinetic model that explicitly incorporates the
internal workings of the ion channels. Mathematically, the membrane potential is
now described by a stochastic differential equation with a discrete random process.
Effects of stochasticity on nonlinear systems with excitable or bistable behavior
and numerical approaches to stochastic differential equations are areas of active
ongoing research (17, 41).

Numerical solution of stochastic differential equations includes the combination
of numerical techniqgues commonly applied to regular differential equations and
Monte Carlo methods employing random-number generators. But especially rel-
evant for computational cell biology, the pioneering work by Gillespie (14, 15) on
stochastic models for chemical reactions utilized an elegantly efficient algorithm
in which the probabilities of each reaction are calculated from rate constants and
numbers of substrate molecules. A stochastic method is used to determine which
reaction will occur based on their relative probabilities. The time step is then
adjusted to match the particular reaction that occurs. After the reaction is com-
plete, the numbers of substrate molecules are readjusted prior to the next cycle.
The Gillespie algorithm has been used extensively to analyze stochastic events in
the field of biochemical kinetics. When combined with stable, accurate numerical
schemes developed for the conventional differential equations, they can be applied
for numerical solution of stochastic differential equations with discrete random
processes. This type of approach has been utilized iNithgal Cell to combine
the deterministic description of a continuously distributed species (RNA) with the
stochastic treatment of discrete particles (RNA granules) (see below).

MODELING SOFTWARE FOR NONSPATTAL
BIOCHEMICAL SYSTEMS

This review does not cover the well-established field of molecular structure and
dynamics simulations, as this is outside the problem domain we define as cell
biology. However, another well-established target for computational approaches
that is worthy of mention is neuroscience, where a number of software tools are
available to simulate the electrophysiological behavior of single neurons and neu-
ronal networks. Because these tools can treat membrane transport and electrical
potential in cells, they are quite relevant to our problem domain. The two most
prevalent programs are NEURON (18) and GENESIS (5). Both use cable the-
ory (21) to treat the dynamics of electrical signals in the complex geometries of
neurons. This theory solves the equation for membrane potential in a series of
connected segments with the overall topology of the neuron. Ideally, each segment
is small enough to be treated as a compartment that establishes electrical equi-
librium rapidly on the timescale of the overall dynamics that are being modeled;
in this way the problem can be reduced to solving ODEs, even for a geometry
as complex as a neuron. Even more pertinent to cell biology are the recent ef-
forts at generalizing these modeling tools to treat intracellular signaling networks.
Hines & Carnevale (19) have added a model description language, NMODL, to
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NEURON that accommodates this larger problem domain. Bhalla has developed
a new interface called KINETIKIT that adapts GENESIS for chemical kinetics
(http://wvww.ncbs.res.infbhalla/kkit/index.html); this tool was employed in an
insightful analysis of the modularity of subsystems within complex signaling
networks (4).

Several software tools have been developed from the ground up specifically to
build complex biochemical reaction pathways and numerically simulate the time
course of the individual molecular species within them. Each tool can translate
reaction schemes into the corresponding system of ODEs and contains embedded
numerical methods for their solution. GEPASI (24) (http://www.gepasi.org/) is one
ofthe best established of these systems. It has an extensive list of predefined kinetic
types that significantly aid in the construction of models. It also offers access to a
number of optimization methods for deducing reasonable values of those parame-
ters that are not well constrained from experimental determinations. Jarnac/Scamp
(30) (http://members.tripod.co.uk/sauro/biotech.htm) is a scripting language that
allows users to build, manipulate, and analyze metabolic pathway models with
a syntax that is familiar to biologists and avoids having to deal with differential
equations. DBSolve (16) (http://websites.ntl.cenigor.goryanin/) is noteworthy
because it has been designed to interface readily with pathway databases. It
also contains mathematical tools such as bifurcation and metabolic control anal-
ysis. Berkeley Madonna was developed by Oster & Macey (http://www.berkeley
madonna.com/) as a general purpose modeling and analysis tool that allows both
graphical and text-based inputs of reaction kinetics; it contains several efficient
solvers and provides capabilities for bifurcation and sensitivity analysis.

A different philosophy drives the ECELL Project (42) (http://www.e-cell.org/).
This is a computational system for constructing whole-cell models, and a model of
a self-sustaining primitive cell, based on a subset of 127 genes from the genome of
a mycoplasma, has been completed. The model simulations are based on a series
of reaction rules that are designed to rapidly calculate the effects of perturbations to
individual components of the system. Models of red blood cells and mitochondria
are currently under development. Ultimately, the aim of the project is to develop
accurate computational models of complex cells such as cardiac myocytes.

At an early stage of development is another ambitious project, BioSpice, from
the laboratory of Adam Arkin (http://www.lbl.gowaparkin/). While this labo-
ratory has focused on analyzing prokaryotic genetic circuits (23), BioSpice is
ultimately intended as a general purpose modeling framework for both genetic
and biochemical networks. The open architecture of BioSpice is also intended
to ease the incorporation of new software modules that can expand the capabil-
ities of the system according to the needs of the modeling community. A simi-
lar philosophy is behind the development of a new software architecture, JSIM
(http://nsr.bioeng.washington.edu/), for a simulation tool that models solute trans-
port and exchange in the cardiovascular system; the aim here is also to produce
a sufficiently open architecture so that the software can be easily enhanced and
adapted to meet the needs of other modeling communities, including cell biology.
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Although we have given references for all these software tools, the best infor-
mation about the availability and current status of these packages is found on the
developers’ websites. Also, itis doubtful that this listis exhaustive; itis clear thatthe
collection of tools for computational approaches to cell biology is rapidly growing.

SOFTWARE FOR SPATTAL MODELS: StochSim,
MCell, and Virtual Cell

StochSim

The extraordinary efficiency of the Gillespie stochastic kinetics algorithm (14, 15)
is achieved by restricting the decision process to selecting which reaction will oc-
cur and adjusting the time step accordingly. Focusing exclusively on the reaction
avoids consideration of the properties of individual reactive species as discrete
entities, which minimizes processing time when the number of reacting species is
large. However, processing time increases in proportion to the number of different
reactions. Furthermore, the Gillespie approach does not easily accommodate the
existence of multiple states of different substrates, which may affect their reactiv-
ities, and since individual reactive species are not identified as discrete elements,
their states, positions, and velocities within the reaction volume cannot be followed
over time.

The StochSinprogram developed by Morton-Firth and Bray (24a—c) to ana-
lyze complex stochastic signaling pathways in bacterial chemotaxis addresses the
“multi-state” problem by shifting the focus from the reaction to the individual
reactive species. In this program individual molecules or molecular complexes are
represented as discrete software objects or intracellular automata. The time step
is set to accommodate the most rapid reaction in the system. At each time step
two separate molecules are sequentially selected at random from the total pop-
ulation. Dummy “pseudo-molecules” are included in the population to simulate
uni-molecular reactions. A random-number generator is used to determine if a re-
action will occur between the two selected molecules by comparison to a look up
table of probabilities of all possible reactions. When a reaction occurs the system is
updated according to the stoichiometry of the reaction. Molecules that existin more
than one state are encoded as “multi-state molecules” using a series of binary flags
to represent different states of the molecule such as conformation, ligand binding,
or covalent modification. The flags can modify the reactivity of the molecule, and
reactions can modify the flags associated with a multi-state molecule. If the num-
ber of reactions is small and the number of molecules |8tgmhSinmay be less
efficient than the Gillespie algorithm. However, in systems where molecules can
exist in multiple statesStochSims generally faster, with the added advantage of
being able to track individual molecules over multiple time steps.

The initial version ofStochSinfversion 1.0) treated the system as a well-mixed
solution, omitting spatial heterogeneity. A more recent version (22a) includes
a simple two-dimensional molecular lattice where nearest neighbor interactions
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can affect the reactivities of molecules in the lattice. Implementation of the lat-
tice was used to test the hypothesis that the remarkable sensitivity and dynamic
range of bacterial chemotaxis is achieved through adaptive receptor clustering
where ligand-induced changes in the signaling activity of receptors are propa-
gated throughout the cluster by nearest neighbor interactions (5a, 35a). This is a
particularly compelling illustration of the importance of including spatial hetero-
geneity in stochastic modeling of intracellular reactions.

MCell

Another software package designed for realistic 3D simulations of cellular phys-
iology, MCell, is described by its authors as a general Monte Carlo simulator of
cellular microphysiology (www.MCell.cnl.salk.edu). It is written by T. M. Bartol

Jr. and J. R. Stiles based on their initial code specifically tailored for simulating
the generation of postsynaptic miniature endplate currents (1, 40). The user in-
teraction withMCell is carried out through input files written in a special model
description language (MDL) (38), an approach similar to the one implemented
in GENESIS (5). MDL allows a user to create different types of diffusing ligand
molecules with various initial distributions, define patterns of ligand release, spec-
ify arbitrary locations of surfaces representing membranes and their interaction
with ligand molecules, define multiple types of ligand-binding sites and arbitrary
chemical reaction mechanisms for different ligands and their binding sites, and
select the type and format of output data that can be visualized.

The software then parses the MDL input files, creates the corresponding C
objects, and executes a simulation according to the user instrudtl@wdlutilizes
Monte Carlo randomwalk and chemical reaction algorithms using pseudo-random-
number generation. One MCell's convenient features is checkpointing, which
involves stopping and restarting a simulation as many times as desired. At each
checkpoint, one or more modifications to MDL files can be made, including chang-
ing surface permeability and location (thus modeling moving surfaces), modifying
reactants and reaction mechanisms, and varying the output type and format.

The simulation domain iMCell is a rectangular box containing arbitrary sur-
faces. Because Monte Carlo simulations do not require volume sampling, geometry
treatment reduces to surface triangulation, which results in a list of polygons. 3D
surface reconstruction is a preprocessing step that is not a patiGfetl sim-
ulation. Third-party software should be used for this purpose. Once a surface is
generated, itis necessary to edit properties of the triangles that comprise the surface,
e.g., add particular types of binding sites at different densities, or specify different
permeability for different ligands. The automatic tools that would simplify and
accelerate this step are under development.

As the number of participating objects grows, the Monte Carlo algorithms
become slow. To speed up simulatioMCell is optimized by using 3D spatial
partitioning that makes computing speed virtually independent of microdomain
geometric complexity. Running parallel computations, another way to speed up
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Monte Carlo simulations, is also being pursuedMell. Although currently

the successful applications bfCell are limited to microphysiology of synaptic
transmission (39), other areas of possib€ell application include statistical
chemistry, diffusion theory, single-channel simulation and data analysis, noise
analysis, and Markov processes.

Virtual Cell

THE MODELING PROCESS WITHIN THE VIRTUAL CELL ENVIRONMENT TheVirtual

Cell is a software environment that is being specifically developed to enable the
use of modeling as an aid to the design and interpretation of experiments in
cell biology (31-34). It can be accessed and run over the Internet from within
a web browser (www.nrcam.uchc.edu). It is designed for biologists with little
training in physics and math, as well as for experienced mathematical modelers.
It achieves this by providing two separate workspaces for construction of mod-
els that are designed with the needs of each community in mind. The BioModel
workspace abstracts the model components through inputs specifying compart-
mental topologies, molecular species and their location, kinetic expressions for
the reactions and membrane fluxes, and the geometry. The Math workspace al-
lows for the input of a model with a mathematics description language (VCMDL).
Importantly, models developed through the BioModel workspace are used to gen-
erate a VCMDL version of the model that, if desired, may be modified or refined
within the Math workspace; this can facilitate collaboration between biologists and
modelers.

Simulations are performed and results are analyzed and visualized with tools
that are common to both workspaces. Simulations of both nonspatial (i.e., ODES)
and spatial (PDEs) models can be performed. For nonspatial models, compart-
ments are assigned appropriate volume fractions relative to their parents in the
model topology and surface-to-volume ratios for the proper treatment of mem-
brane fluxes. In spatial models, the segmented regions within a 1D, 2D, or 3D
image are connected to the corresponding compartments in the topology. The ge-
ometry is prepared for a model in a separate Geometry workspace and can come
from a segmented experimental image or can be defined analytically. Systems of
ODEs are solved numerically with a choice of several solvers including variable
time step stiff solvers. PDEs are solved via the finite volume method (27, 37)
adapted for the inclusion of membrane transport processes as well as automated
pseudo-steady-state approximations for fast reactions (31, 36). These are all im-
plemented in an extensivetGr library that also includes software for stochastic
simulations of particle motion and the reaction of individual molecules with con-
tinuously distributed species. At present, however, only deterministic models are
fully treatable through the web-based interface.

Figure 1 schematizes the way in which the modeling process is structu-
red within the Virtual Cell. This hierarchical structure emphasizes a general
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physiology definition, the BioModel, that specifies the topology of the system, the
identities and locations of molecular species, and reactions and membrane trans-
port kinetics. The BioModel can then have several Applications that each specify
a particular geometry, boundary conditions, default initial concentrations and pa-
rameter values, and whether any of the reactions are sufficiently fast to permit a
pseudo-steady-state approximation. Also at the Application level, individual reac-
tions can be disabled as an aid in determining the proper initial conditions for a
prestimulus stable state. An application of a BioModel is sufficient to completely
describe the governing mathematics of the model, and as noted above, a VCMDL
file is generated at this point. Thértual Cell is designed to maintain a separa-
tion between this mathematical description, generated either via a BioModel or a
MathModel, and the details of how the simulations are implemented. As shown
in Figure 1, several simulations can be spawned from a given Application. The
simulation specifications include the choice of solver, time step, and mesh size
for spatial simulations, and overrides of the default initial conditions or parameter
values. A local sensitivity analysis service is also available at the simulation level
to aid in parameter estimation and to determine which features of the model are
most critical in determining its overall behavior.

The Virtual Cell software displays spatial and nonspatial simulation solutions
for the variables over time. The spatial data viewer displays a single plane section
of a 3D data set and can sample the solution along an arbitrary curve (piecewise
linear or Bezier spline) or at a set of points. Membranes are displayed as curves
superimposed on the volume mesh, and membrane variables are displayed along
these curves. The nonspatial data viewer plots any number of variables over time
on the same plot. All plot windows support a tabular display that allows the user to
copy the data into any spreadsheet program. A completely integrated data export
service provides for data retrieval in a number of formats (e.g., comma-separated
value, gif images, Apple QuickTime movies, animated gif movies) and data re-
duction schemes (subset of variables, time, and space including data sampling
at selected points and along selected curves). Because the model can be mappec
to a geometry acquired directly from the microscope, many of the same image
analysis tools used to analyze experiments can be applied directly to simulation
results. A poor correspondence between simulation and the experiment indicates
that the model must be either incomplete or incorrect; indeed such negative results
are highly informative because they can suggest how the hypotheses underlying
the model need to be modified to accommodate the experiments. When the sim-
ulations are consistent with experiment, the ability to visualize the behavior of
experimentally inaccessible molecular species often provides important new in-
sights and suggests new experiments to further test the model validity. To illustrate
some of these concepts, we now summarize the results of two studies that utilized
the Virtual Cell system. The second of these takes advantage of stochastic mod-
eling capabilities included in theirtual Cell C++ library but have not yet been
migrated to the web-based user interface.
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DETERMINISTIC VIRTUAL CELL MODEL OF CALCIUM DYNAMICS IN A NEURONAL

CELL The Virtual Cell software is a valuable tool for formulating and testing
hypotheses on the behavior of complex intracellular reaction/diffusion systems. A
key to the successful application of this kind of modeling is that there be suf-
ficient data to formulate reasonable quantitative hypotheses and that there be
appropriate experimental methods available to validate or disprove the predic-
tions of a model. The study of intracellular calcium signals fulfills these require-
ments exceptionally. This is because of the ready availability of fluorescence
microscopy—based methods for following the spatial and temporal patterns of
calcium changes in living cells [e.qg., (26, 43)]. Arguably, it is the availability of
these methods that has led to an explosion of interest in calcium dynamics and
that, in turn, has led to further studies of the biochemical and electrophysiological
events that lie upstream and downstream from the calcium signal. Ample data are
often available to begin the development dfigtual Cell model with few addi-

tional experiments. On the other hand, the molecules and mechanisms that can
be involved in the control of intracellular calcium are sufficiently numerous and
complex so as to make it difficult to understand experimentally observed behavior
without the use of modeling.

In particular, inositol-1,4,5-triphosphate (Ingfediated calcium release from
the endoplasmic reticulum (ER) is a common mechanism for receptor-mediated
signaling in many celltypes (2, 3, 29). We have usediheal Cellto help analyze
and interpret experimental data on the details of the calcium release process in dif-
ferentiated N1E-115 neuroblastoma cells (11, 12). In addition to providing insights
on how morphology controls spatiotemporal patterns of InsP3 signaling within the
cell, the needs of the calcium modeling have inspired significant improvements to
theVirtual Cell such as a generalized automated pseudo-steady-state treatment for
fast reactions (36) and a flux correction algorithm for the “staircase” membranes
in the finite volume method (33).

In our study, the neuromodulator bradykinin (BK) was the external stimulus that
set off InsR production at the inner surface of the plasma membrane. Combining
calcium imaging, quantitative uncaging of microinjected sthd simulations
from theVirtual Cell led to the conclusion that BK triggers a buildup of 1gs$®
the neurite at a rate and to an extent much greater than in the soma (11, 12). The
proximal segment of the neurite is the critical region for aresponse to a BK stimulus
and is necessary and sufficient to initiate and propagate the calcium signal to other
regions of the cell. The high surface-to-volume ratio in the neurite intensifies
the InsR signal in this region. A high density of ER calcium stores in the soma
(predicted by the simulations and then confirmed by 3D immunofluorescence)
balances the rapid rise of [IngB, in the neurite to explain the contrasting results
for both global and focal stimulations of these cells.

Figure 2 shows the results of an experiment and a simulation for the response
of a cell to uniform global application of BK. The experimental data were col-
lected on a fast digital-imaging microscope using the fluorescence from the in-
dicator fura-2 to record the spatiotemporal changes irfffca Because the
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simulation was based on the cell geometry of the experiment, a direct comparison
of the observed and predicted [#,: dynamics can be made (first two columns

of Figure 2). It must be emphasized that this close match between experiment and
simulation was achieved only after many iterations between modeling and data
collection, which helped to uncover previously unknown or misunderstood details
of the components of the system (such as the high density of stores in the soma, as
mentioned above). Also in Figure 2 are simulation results for the spatiotemporal
pattern of InsRand the open state of the Ingeceptor calcium channel in the ER.

This ability to visualize molecular species that are inaccessible experimentally is
one of the most valuable benefits of computational modeling.

STOCHASTIC MODELS FOR RNA TRAFFICKING IN THE VIRTUAL CELL RNA traffic-
king targets expression of specific proteins to particular subcellular compartments
and minimizes ectopic expression elsewhere in the cell. Studies of RNA trafficking
in oligodendrocytes reveal that RNAs are assembled into trafficking intermediates
termed granules (8), each containing multiple (approximately 30) RNA molecules
(25), associated RNA-binding proteins, components of the translation machinery,
and molecular motors (conventional kinesin and cytoplasmic dynein). RNAs with
similar trafficking pathways are co-assembled into the same granules, whereas
RNAs with different trafficking pathways are segregated into different granules.
Conventional kinesin moves granules toward the plus ends of microtubules while
cytoplasmic dynein moves granules toward the minus ends. The balance of power
between kinesin and dynein activities in individual granules determines their direc-
tion and rate of movement along microtubules (6). Time lapse analysis of granule
dynamics in living cells reveals rapid back-and-forth vibration along the axis of
the microtubule, which is believed to reflect stochastic fluctuations in motor ac-
tivities in individual granules. Biased activity of kinesin over dynein results in
translocation of specific RNA granules to the periphery of the cell.

A stochastic model for granule assembly has been developedvirthal Cell.
RNA is treated as a disperse chemical species that diffuses from a source in the
nucleus, through the nuclear envelope into the cytoplasm where RNA molecules
are captured, to core granules treated as discrete species moving stochastically
throughout the cytoplasmic volume and undergoing elastic interactions with the
cell membrane and nuclear envelope. The simulation is constrained within a 2D
profile of an actual oligodendrocyte extracted from a confocal microscopic image
data. The parameters used in the simulation—RNA concentrations in the nucleus
and cytoplasm, number of granules in the cytoplasm, rate of movement of gran-
ules, rate of diffusion of RNA, rate of export of RNA from the nucleus, and
number of RNA molecules per granule—are either experimentally determined
or estimated based on observations in other systems. The simulation integrates
chemical reactions and diffusion of a disperse species (RNA) with stochastic
properties of mobile discrete species (granules) constrained by elastic interac-
tions with immobile structures (membranes) within the cell. A representative im-
age from the simulation is shown in Figure 3. The entire simulation is available
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at http://www.nrcam.uchc.edu/rrieaffick_dir/rnatraffick.html. The kinetics of
granule assembly in theirtual Cell recapitulate the kinetics observed experi-
mentally in microinjected oligodendrocytes. As the simulation proceeds, granules
tend to accumulate in varicosities and diverticuli within the cell in a pattern rem-
iniscent of the distribution of granules observed experimentally in microinjected
oligodendrocytes. The unusual fractal geometry of the reaction volume, which is
a realistic representation of the intracellular space in an oligodendrocyte, appears
to constrain the movement of granules in ways that could not be predicted based
on simulations in a symmetric reaction volume. This example illustrates the im-
portance of using actual image data to define the geometry of the reaction volume.

A stochastic model for granule dynamics on microtubules has also been devel-
oped using th&irtual Cell (7). Microtubules are represented as one-dimensional,
oriented contours of arbitrarily defined shapes decomposed into discrete contour
elements. Granules are represented as zero-dimensional points, which can be cap-
tured to microtubules if one or more contour element is within a specified capture
radius, corresponding to the actual size (approximatelgtbof an RNA granule
in a living cell. Each granule contains multiple plus end and minus end motors,
each of which can be in one of three states relative to the microtubule (U, unbound;
I, bound inactive; and A, bound active). Granule capture is a stochastic event me-
diated by binding of a specific motor molecule to a specific contour element. The
type of motor that binds to the contour at each time step depends on the population
of motors of each type associated with the granule and the corresponding motor
on-rates multiplied byAt. Monte Carlo methods are used to determine whether
the granule will be captured within each time step, and if captured, which motor
will bind to the contour element.

Once captured to a microtubule, granule movement along the axis of the mi-
crotubule is determined by stochastic state transitions for each motor associated
with the granule. Because there are two types of motors in each granule, there are
eight single-motor state transition rats; k, k, k. An important simplifying
assumption is that the granule can have no more than one active motor at any
time. The instantaneous behavior of the granule then depends on the type of the
active motor (if there is one) and the state of the “cloud” of inactive motors. The
discrete-valued variable determines the state of the granule depending on the
type of the active motor. This variable can take on one of the three value®,
no active motors, the granule does not mave; 1, a minus motor is active, the
granule is moving toward the minus end with the velocity ands = 2, a plus
motor is active, the granule is moving toward the plus end with the velogity
Because the numbers of plus and minus motors in the clbud,are large, the
state of the cloud can be described by two continuous variablesiepresenting
the probabilities for the plus and minus inactive motors to be in a bound state, so
that the instantaneous number of inactive bound plus and minus motdts Bre
andN_P_. The discrete and continuous variables are separated in the sense that
the dynamics of the discrete varialdés determined by the rates of the<Al
transitions, whereas the dynamics of the continuous varigbleslepend on
the rates of the +> U transitions. However, the variables are also interdependent
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because the active motor exerts strain on inactive bound motors, making it easier
for them to detach from the microtubule, and the inactive bound motors exert drag
on the active motor, creating an additional load on it. Granule dynamics in the
Virtual Cell recapitulate experimentally observed granule dynamics. Moreover,
because the positions and the velocities of individual granules and the states of
motors within each granule can both be tracked over time, it is possible to correlate
particular aspects of granule dynamics with specific state transitions of the mo-
tors within the granule leading to experimentally testable predictions concerning
the way stochastic interactions of different molecular motors result in directional
intracellular trafficking of RNA granules.

TheVirtual Cell program has several important advantages for stochastic mod-
eling in eukaryotic cells. First, realistic image-based cell geometries are used to
define intracellular reaction volumes, which constrain the stochastic behavior of
intracellular reactants in unexpected ways. Second, definitions of reactive species
can include multiple states described as either discrete parameters or continuous
variables, which provide extraordinary contextual richness and behavioral ver-
satility. Third, dynamic transformation and translocation of multiple individual
reactive species can be tracked over time, facilitating integration of spatially het-
erogeneous stochastic models with simultaneous deterministic reaction/diffusion
models. A major future challenge for tMatual Cell will be to integrate dynamic
shape changes in the reaction volume within the powerful and flexible stochastic
modeling platform already developed. If this can be accomplished, the holy grail
of stochastic modeling of cell motility may be attainable using\thiual Cell.

FUTURE CHALLENGES AND PROSPECTS

Future development and enhancement of computational tools for cell biology will
provide opportunities to develop larger and more realistic models with a wider
range of modeling capabilities. One advantage of using computer tools in cell
modeling is the potential ability to deal with complex models. The only prudent
way to construct complex models is to assemble them from smaller submodels
(modeling cassettes) that are well understood and tested. To make sure that the
model components are compatible, a careful analysis of assumptions is necessary.
Ideally, the results of this analysis should be documented in some formal way
so that the compatibility test could be made automatic. The analysis of the most
successful mathematical models that are frequently used in cell modeling with
respect to all the assumptions, both explicit and implicit, made in constructing
those models is a first step in this direction.

As we move toward modeling complex systems on realistic 3D structures, com-
putational efficiency of numerical algorithms becomes a critical issue. Numerical
methods should be fully automated, reasonably accurate, stable, and fast. Be-
cause of variability in biological systems, it is particularly important in biological
applications to be able to rerun simulations a number of times with varying param-
eters. Therefore, even 3D simulations of complex systems must complete within
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a relatively short time. The numerical algorithms currently used inVintial

Cell are applicable to a wide range of problems, particularly now that we have
developed and implemented the automatic numerical approach to fast reactions in
reaction/diffusion systems (36). However, we use a fixed time step spatial solver
and leave it to the user to specify the time step. In combination with currently
used explicit treatment of reactions and membrane fluxes, this may lead to nu-
merical instability when the chosen time step is larger than characteristic times
of explicitly treated processes. Also, it is currently the user's responsibility to
distinguish the fast subsystem, although, in principle, it is possible to automati-
cally detect the fast subsystems based on the values of reaction constants, initial
concentrations, and other simulation parameters. Usually, the mosttime-consuming
part of a simulation is solving the large linear algebraic system resulting from the
discretization of governing PDEs. The optimal choice of a linear solver and the
parameters associated with it is therefore critical to the efficiency and robustness
of the overall package. To improve stability, accuracy, and overall efficiency of
numerical simulations, the issues of reaction stiffness in the PDEs, more accurate
representation of irregular boundaries, and choice of effective linear solvers need
to be addressed.

Although software systems such@mchSim, MCellandVirtual Cell provide
modeling capabilities to cell biologists and biophysicists, which would previously
have required highly specialized training in numerical methods and mathemati-
cal physics, their problem domains do not encompass all the areas of interest in
the broad field of cell biology. In particular, thértual Cell features currently
accessible from the user interface are limited to deterministic reaction/diffusion
systems mapped to arbitrary, but fixed, geometries including arbitrary fluxes and
reactions associated with membranes. Although a wide range of cellular processes
falls into this category, additional features are being developed, including model-
ing membrane potential, stochastic processes, lateral diffusion in membranes, and
one-dimensional structures such as microtubules and microfilaments. Currently
some of these are only accessible through custom executables that call on these
features through the-&+ library. It remains to make them accessible through the
user interface. Also needed are computational tools to treat cell structural dynam-
ics to enable the construction of models of such processes as cell migration or
mitosis. Such tools will be especially challenging because they will require new
formulations for the physics underlying cell structural changes; in contrast to the
firm theoretical foundation for reaction/diffusion processes, this physics has not
yet been firmly established.
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Figure 2 (See figure on previous page) Experiment and simulation of calcium dy-
namics following BK stimulation of a N1E-115 neuroblastoma cell. A 250 nM solution

of BK was applied uniformly to the cell at time 0, and the f€fa,: is monitored with

fura-2 to produce the experimental record shown in the left column. The data were
collected through a microscope using a cooled ccd camera at 15 frames/sec. Repre-
sentative frames are shown, and the change in calcium in the negréen(boX and

soma yellow boy are plotted in the inset. Thértual Cell simulation shown in the next
column provides a good match to the experiment. The third and fourth columns display
the simulation results for [IngR,: and R, the open probability of the IngRensitive
calcium channel in the ER membrane. Details on the model components have been
published (11, 12), and this figure has been adapted from that work (12).
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Figure 3 Stochastic modeling of granule assembly inYiual Cell. The external
contour of an oligodendrocyte in culture was extracted from a confocal micrograph of an
oligodendrocyte injected with fluorescent dextran to visualize the cytoplasmic volume.
Dextran was size-excluded from the interior of the nucleus (showarkgray). RNA

was set at a constant (high) concentration in the nucleus and could diffuse through
the nuclear envelope as a disperse species creating a concentration gradient within
the cytoplasm (shown igray scal@. Individual granules are represented as discrete
particles that walk randomly throughout the cytoplasm and undergo elastic collisions at
the plasma membrane and nuclear envelope. Core granules (lacking RNA) are shown
in green Diffusing RNA molecules are captured to individual granules. When the
number of captured RNA molecules reaches a threshold, the granule is shgn in
Granules tend to get trapped in varicosities and diverticuli in the distal processes.
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