
Chapter 20

Modeling a Minimal Cell*
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Abstract

One important aim of synthetic biology is to develop a self-replicating biological system capable of
performing useful tasks. A mathematical model of a synthetic organism would greatly enhance its value
by providing a platform in which proposed modifications to the system could be rapidly prototyped and
tested. Such a platform would allow the explicit connection of genomic sequence information to physio-
logical predictions. As an initial step toward this aim, a minimal cell model (MCM) has been formulated.
TheMCM is defined as a model of a hypothetical cell with the minimum number of genes necessary to grow
and divide in an optimally supportive culture environment. It is chemically detailed in terms of genes and
gene products, as well as physiologically complete in terms of bacterial cell processes (e.g., DNA replication
and cell division). A mathematical framework originally developed for modeling Escherichia coli has been
used to build the platform MCM. A MCM with 241 product-coding genes (those which produce protein
or stable RNA products) is presented. This gene set is genomically complete in that it codes for all the
functions that a minimal chemoheterotrophic bacterium would require for sustained growth and division.
With this model, the hypotheses behind a minimal gene set can be tested using a chemically detailed,
dynamic, whole-cell modeling approach. Furthermore, the MCM can simulate the behavior of a whole cell
that depends on the cell’s (1) metabolic rates and chemical state, (2) genome in terms of expression of
various genes, (3) environment both in terms of direct nutrient starvation and competitive inhibition
leading to starvation, and (4) genomic sequence in terms of the chromosomal locations of genes.
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1. Introduction

1.1. Synthetic Cells Efforts to develop synthetic systems generally fall into two cate-
gories: (1) the development of biological components and systems
that can be combined to produce a preprogrammed outcome in
a biological system and (2) the generation of a complete, self-
replicating biological system capable of performing some useful
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task. Several recent review articles discuss efforts toward and the
potential impacts of the former goal (1–4). Alternatively, we and
others aim to address the latter goal—to design, characterize,
and ultimately synthesize a living cell de novo.

The concept of a synthetic cell is over a 100 years old (5). Even
then, Loeb described experimental abiogenesis as “the goal of
biology.” However, as the field of synthetic biology grows, it is
clear that what constitutes a “synthetic cell” is in many ways defined
by the goals of the researchers involved in producing the cell.
Nonetheless, some basic criteria have been defined. A “living” cell
must be capable of metabolic homeostasis, cellular reproduction,
and Darwinian evolution (6, 7). These properties can be achieved
by various strategies, and attempts to construct a synthetic cell can
be classified as either bottom-up or top-down. Bottom-up
approaches generally seek insights about the origin of life, and
therefore utilize basic chemical compounds that could plausibly
self-assemble into biological entities (8–10). Conversely, top-down
approaches aim to utilize modern cellular machinery, including
DNA genomes, transcription and translation machinery, and phos-
pholipid bilayers, in the design of a synthetic cell (11, 12).
As engineers, we envision an ideal synthetic cell as a platform system
that is chemically, physically, and importantly, mathematically
defined, and will facilitate future optimization of the organism for
a variety of predefined tasks.

A key factor that drives the development of a synthetic organism
is the value of a completely defined system. Natural microbes have
been utilized for decades as the workhorses for bioprocessing facil-
ities, and one may wonder whether the development of a synthetic
organism will have advantages beyond genetically manipulated nat-
ural organisms. Because a synthetic organismwould be a completely
defined system, it would be unique in that a complete mathematical
model of the cell could be developed. An in silico counterpart of a
synthetic cell would allow for quick and inexpensive optimization of
new properties that are to be incorporated into the cell to achieve
some predefined goal (e.g., to incorporate a drug synthesis pathway
into the cell’s metabolic pathway). As a first step toward develop-
ment of a synthetic cell, attempts are underway to define a minimal
cell, in both physical and computational terms.

1.2. Minimal Gene Sets

and Minimal Cells

The minimal cell concept can be traced back to the 1950s when
HaroldMorowitz and colleagues began to seek the smallest, autono-
mous, self-replicating entity (13). Because the genetic material of an
organism defines its characteristics, what most succinctly defines a
minimal cell is the makeup of its chromosome. Based onMorowitz’s
original concept, aminimal cell is defined as one possessing aminimal
gene set, defined as the minimum number of genes that are both
necessary and sufficient to promote sustained growth and division of
a bacterial cell in some optimally supportive culture environment.
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Establishing a minimal gene set, or minimal gene sets, is an
important step in synthetic biology. Various comparative genomic,
genetic, and biochemical approaches have been used to estimate
hypothetical minimal gene sets. However, a reductionist approach
that only considers each gene in the minimal gene set indepen-
dently will be insufficient. It is necessary to evaluate how these cell
systems functionally integrate (14).

1.2.1. Synthesis

of Minimal Cells

The J. Craig Venter Institute has been actively pursuing the goal of
synthesizing a cell using a top-down approach. Toward this end,
they successfully transplanted a complete Mycoplasma mycoides
chromosome into a Mycoplasma capricolum cell which had its
own genome removed (15). They also constructed a synthetic
Mycoplasma genitalium genome de novo (16). Next, they took
the entire genome from M. mycoides, modified it in yeast using
yeast genetic systems, and then transplanted the modified chromo-
some into M. capricolum (17). Finally, they reported the creation of
a bacterial cell containing only the chemically synthesized genome
(18). Although the Venter Institute has developed the technical
procedures necessary for synthetic cell construction, another impor-
tant step towardminimal cell synthesis is defining precisely what is in
its genome. Furthermore, there are no examples of an experimental
test of whether a proposed gene set is sufficient for driving
cellular life.

1.2.2. Natural Examples

of Minimized Gene Sets

There are some natural analogs of the hypothetical minimal cell that
have evolutionarily reduced genome sizes. All known small-genome
bacteria are associated with specialized lifestyles in stable environ-
ments, e.g., obligate symbiosis or specialized ecological niches (14).
The two largest forces pushing a bacterial species toward genome
reduction are symbiosis and resource economization, so it is not
surprising that the smallest genomes in nature are all in prokaryotes
living in symbiosis with other cells (14). Notable examples include:
Nanoarchaeum equitans, a symbiotic archaeon with 536 protein-
coding genes (19);Buchnera aphidicola, an endosymbiont of aphids
with 480 genes (20); and Pachypsylla venusta, an endosymbiont of
P. venustawith 182 predictedORFs (21). Because it can be grown in
pure cultures and has an extremely small-genome size (580 kbp, 470
genes), M. genitalium is considered the best living example of a
minimal cell (22); its genome represents a significant reduction from
that of other well-studied bacteria such as Escherichia coli, which has
approximately 4,300 genes (23). TheM. genitalium genome devel-
oped through “top-down” genomics, where genes are removed
from an existing organism to provide a metabolically simpler
cell (24). Thus, it exemplifies natural selection for a minimized
genome. These naturally minimized cells show that evolution
(a “bottom-up” approach) has suggested many forms of a minimal
cell (24), but all of them can survive the disruption of one or more
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genes (i.e., gene knockouts), and are therefore not truly minimal.
Estimates based on observation of naturally occurring bacteria
suggest minimal gene sets in the range of 200–500 genes (25–30).

1.2.3. Experimental

Estimates of Minimal

Gene Sets

There are genetic (26, 30), comparative genomic (25, 27, 31, 32),
and biochemical (11, 33) approaches to establishing an in vivo
minimal cell (11). Taken together, these techniques go beyond
naturally occurring minimization to propose minimal gene sets in
the range of 200–400 genes.

Genetic approaches identify essential genes by large-scale gene
disruption Kobayashi et al. (28) estimated 271 genes as the minimal
gene set by systematically inactivating single genes in Bacillus sub-
tilis using transposon mutagenesis. Similar genetic methods have
been used to estimate 1,490 essential genes in Mycobacterium
tuberculosis (34), 254 essential genes in B. subtilis (35), and 382
essential genes in M. genitalium (26, 30). There have been other
efforts to determine gene essentiality using gene inactivation
(36, 37). However, this approach can lead to falsely labeling
required genes as dispensable, which can derail any effort to create
a minimal gene set (11, 38). Conversely, a genetic approach could
also overestimate the minimal set substantially because genome
scale knockouts may identify genes as essential even when the
deletion only slows growth (32). Estimates have also been made
using comparative genomics. Mushegian and Koonin estimated a
set of about 250 genes as a minimal gene set after comparing the
full genome sequences of Haemophilus influenzae and M. genita-
lium (25). In 2000, Koonin reviewed advances since their 1996
paper that demonstrate the complexity in using comparative geno-
mics to establish a minimum gene set (25, 27). For example, of
the 256 genes identified as essential in 1996, 15% were found to
be dispensable in knockout experiments (27). Although many other
computational analyses have yielded important insights (31, 39–44),
comparative genomic approaches suffer limitations that could lead to
either an over- or underestimation of minimal gene sets (11). They
are particularly prone to missing unrelated proteins with the same
activity, which is referred to as nonorthologous gene displacement
(NOGD). Therefore, it is critical to develop a methodology for
distinguishing among proposed minimal gene sets. Finally, parallel
efforts have examined the minimal set of cellular reactions or func-
tions, as opposed to specific genes. Forster and Church described
the main biochemical pathways that are necessary for essential bacte-
rial functions, as well as an in vitro plan to synthesize a minimal cell
(11, 45). They proposed a minimal genome with 151 genes for
cellular information processing but omitted genes involved in major
metabolic pathways (11). Azuma andOta (46) determined the “min-
imal pathway maps,” or the minimal set of autonomous pathways
maps that could synthesize all required biomass components, for
E. coli and B. subtilis. They found that pathways maps from the
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Kyoto Encyclopedia of Genes and Genomes (KEGG) were more
likely to be conserved if they were involved in cellular information
processing. This approach, while still computational, avoids the
possibility of NOGD because a cellular function can be accepted
into the minimal set regardless of NOGD.

The various approaches to determine a minimal gene set have
been compiled and summarized in literature reviews (11, 14, 29).
Forster and Church conclude that the biochemical approach is still
more promising than genetics or comparative genomics (11). They
and others outline the steps necessary for synthesizing a minimal
cell, primarily from genes found in E. coli (11, 12, 33). Forster lists
the five gaps in our current knowledge that should be filled for the
production of a synthetic minimal cell. The fourth among these is
the lack of “biochemical parameters and computational models
sufficiently detailed to predict the effects of alterations (in a near-
minimal cell)” (11). Similarly, Foley and Shuler list five essential
characteristics of a biotechnological synthetic cell, the fifth being
“mathematically defined interactions and predictable kinetics of
(the) system” (47). These claims illustrate the importance of the
minimal cell model (MCM) approach.

In 2004, Gil et al. (29) presented an enhanced review of all the
previously proposed strategies for establishing aminimal gene set and
proposed what they called the “core” of a minimal bacterial gene set
(29). They started with a computational comparison of five
sequenced endosymbionts: Blochmannia floridanus; Wigglesworthia
glossinidia; and B. aphidicola, strains BAp, BSg, and BBp (41).
To that, they added in genes that had functional, but not sequence,
similarity amongst the bacteria considered. They compared their gene
set with the essential genes for B. subtilis (28) and E. coli (37), as well
as the computationally and experimentally derived minimal gene sets
for M. genitalium (25, 26). Genes that were present in all five
endosymbionts and that appeared to be essential in Mycoplasmas
were considered essential even if they were determined to be nones-
sential in bacteria with larger genomes (29). Finally, they analyzed the
gene list to fill in gaps in metabolic pathways that are assumed to be
essential. This resulted in a gene set with 206 protein coding genes
(29). The total was later corrected to 207 protein coding genes to
account for a stepmissing from the pentose phosphate pathway (43).
The gene set proposed by Gil has the following features (29):

1. A virtually complete DNA replication machinery, composed of
one nucleotide DNA binding protein, single-stranded binding
protein (SSB), DNA helicase, primase, gyrase, polymerase III,
and ligase.

2. A simple DNA repair system.

3. A virtually complete transcriptional machinery, including the
three subunits of the RNA polymerase, a s factor, an RNA
helicase, and four transcriptional factors.
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4. A nearly complete translational system.

5. Protein-processing, folding, secretion, and degradation.

6. Cell division driven by FtsZ only.

7. Two substrate transporters (PTS for glucose and PitA for
inorganic phosphate).

8. ATP production via substrate-level phosphorylation.

9. Four enzymes from the nonoxidative branch of the pentose
phosphate pathway.

10. Biosynthesis of phosphatidylethanolamine from dihydroxyace-
tone phosphate and activated fatty acids.

11. Nucleotide biosynthesis from phosphoribosyl pyrophosphate
(PRPP) and free bases adenine, guanine, and uracil, which are
obtained from the environment.

12. Cofactor biosynthesis from precursors obtained from the
environment.

13. No pathways for amino acid biosynthesis.

14. No protein transport systems for amino acids or inorganic ions
(with the exception of phosphate).

15. No genes for stable RNA products (i.e., tRNA or rRNA),
although they do define their proposed gene set as a minimal
set of “protein-coding” genes.

Gil et al. (29) argue that there may be several possible minimal
gene sets, saying “we should accept that there is no conceptual or
experimental support for the existence of one particular form of mini-
mal cell.” In this work, one potential mechanism for distinguishing
amongst minimal gene sets through computer modeling is presented.

1.3. Coarse-Grained

Cell Models

Computational models have made significant contributions to our
understanding of bacterial metabolism. Some models take advan-
tage of detailed genomic information (48), while others are based
primarily on flux-balance analysis, metabolic control theory, and
mathematical techniques for optimization (49–53). These model-
ing techniques are all intrinsically static, and so have limited ability
to predict aspects of cell regulation and dynamic response. Other
investigators have proposed methods to directly incorporate
dynamic (kinetic) information into models of central metabolism
(54). While some models have attempted to describe whole cells
(31, 55), these neglect important, nonmetabolic aspects of cell
growth (e.g., control of chromosome replication or cell division)
because there is no formalism to handle such “events” in the
context of a cell model.

Constraint-based models, including flux-balance analysis, have
a large representation in the literature. Under the time scale of
minutes, metabolite concentrations in cells are generally at steady
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levels and remain constant as long as environmental conditions do
not change. Therefore, a modeler can use the law of conservation of
mass to constrain the synthesis and consumption rates of those
metabolites. This is expressed as a stoichiometric constraint based
on the stoichiometric relation proposed by each reaction in the
system under study (53). The stoichiometric constraints are sup-
plemented with restrictions regarding reaction reversibility and
maximum reaction rate. The construction and applications of
these models are reviewed in Durot et al. (53), and there are several
interesting applications available (49–52).

These studies, and many other similar ones, make important
contributions toward our perception of systems biology. However,
all of these approaches neglect the coupling between cell physiology
and cell growth that is prevalent in physiological events such as
chromosome replication. Descriptions that neglect this coupling
may yield misleading conclusions because they implicitly assume
that the output of each pathway cannot influence any input into the
same pathway (56). Further, many of the models referenced above
assume an objective function, which typically maximizes the growth
rate. While such a function can be justified in the context of a specific
short-term situation, the real objective function (e.g., survival of the
organism) is more complex and involves issues such as the ability to
grow robustly and in a variety of environmental conditions.

The Shuler group has previously developed a whole-cell model
of E. coli that contains all of the functional elements for the cell to
grow, divide, and respond to a wide variety of environmental per-
turbations. All chemical species are included, but lumped into
pseudochemical groups. This “coarse-grained” model serves as
the basis for our efforts to build a MCM. The Shuler group first
described a mathematical model of a single E. coli cell in 1979 (57).
While the E. coli model summarizes the physiological functionality
required for a minimal cell, it does not capture explicitly the physi-
cal chemistry that supports those functions. It is unique in its
natural coupling of metabolism, transport, and cellular events.
At that time, it was the only model of an individual cell that did
not dictate timing of cell division (e.g., growth rate) and cell size;
instead, those aspects were outputs of the simulation. Also, it
responded explicitly to concentrations of nutrients in the environ-
ment (58). The base model presented by Domach and Shuler (59)
has been embellished with additional biological details to allow
prediction of a wide-range of responses to environmental and
genetic manipulations (60). The initial model included only 18
pseudochemical species that represented large groups of related
chemical species. Figure 1 lists the components of the E. coli
model and graphically depicts their relationships.

The mathematical description of cellular functions that comprise
the model was based on time-variant mass balances for each compo-
nent. Each mass balance accounted for the component’s synthesis
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(as a function of availability of precursors, energy, and relevant
enzymes), utilization, and degradation. Stoichiometric coefficients
for relating components throughmass balances were derived primar-
ily from published research, and in some cases, from experimental
data. It is important to note that themodel did not contain adjustable
parameters to fit model predictions to experimental results, nor did
the stoichiometric mass balances assume a steady-state (i.e., the
amount of each component was allowed to vary with time). Despite
the simplifications that were made in describing the cell, the model
accurately predicted changes in cell composition, size, and shape, as
well as the timingof chromosome synthesis as a functionof changes in
external glucose and ammonium concentration (61–65). The model
also addressed important issues such as energy generation and the
maintenance of the electropotential and chemical potential gradients
across the cytosolic membrane by including a description of the cell’s
energy accounting process and the movement of H+ ions (leaky
protons) along the membrane (57, 62, 63). Two examples of stoi-
chiometric mass balances for formation of precursors (amino acid)
and macromolecules (RNA) are given in Eqs. 1 and 2.

A1 A2

A1*

A2*

P1 P2 P3 M3

M5

M1

E1

M2M

M2RTI
M2RTM

E2

Catabolic Load

PG

M4

E3
P4A2

Crosswall

M4

Flow of mass
Flow of information
Catabolic load

Fig. 1. A schematic representation of the single cell model and the modular approach to cell modeling. Labels indicate
pseudochemical groups which are defined below. Solid arrows represent pseudochemical reactions that govern the rate
and stoichiometry with which the pseudochemicals interconvert. Hollow arrows represent catabolic loads that account for
energy metabolism. Dashed arrows represent the flow of information. The approach illustrated with this figure is used
as the basis for the MCM presented in this chapter. The labels in pathways represent lumped pseudospecies defined as:
A1 ammonium ion; A2 glucose; P1 amino acids; P2 ribonucleotides; P3 deoxyribonucleotides; P4 membrane precursors;
M1 protein; M2M mRNA; M2RTI immature stable RNA; M2RTM mature stable RNA; M3 DNA; M4 cell envelope; M5 glycogen;
PG ppGpp; E1 enzymes for conversion of P2 to P3; E2 and E3 enzymes for cross-wall formation and cell envelope synthesis.
Asterisk indicates species that are external to the cell (61, 66, 95).
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a1A1 þ b1A1 þ � � � ! P1 (1)

g2P2 ! M2 þ � � � (2)

In Eqs. 1 and 2, a1, b1, and g2 are stoichiometric coefficients, and
A1, A2, P1, P2, and M2 are the masses of ammonium ion, glucose,
amino acids, ribonucleotides, and total RNA, respectively. Chemical
concentrations are measured in mass per cell, and stoichiometric
balances are based on carbon and nitrogen. Equation 3 shows the
corresponding requirements for phosphate energy coupled with the
biosynthetic reactions.

dP1ATP ! dP1ðADPþ PiÞ (3)

In Eq. 3, dP1 is a stoichiometric coefficient representing the
average amount of ATP hydrolysis that must occur to supply the
energy required for synthesis of a specific amount of amino acids
(P1) per cell. Also, the chemical reducing potential generated and
utilized is included in the accounting system. The change in mass of
a substance per cell per unit time can be found from a dynamic mass
balance accounting for synthesis, import, export, and consump-
tion. Note that this is not the same as concentration because the cell
volume is changing. Equation 4 is an example mass balance for
deoxyribonucleotides:

dP3

dt
¼ k3 � KP3

KP3 þ ðP3=VCÞ
� �

P2=VC

KP3P2 þ ðP2=VCÞ
� �

� A2=VC

KP3A2 þ ðA2=VCÞ
� �

� E1 � g3 �
dM3

dt

� �
(4)

In Eq. 4, k3 is the maximum rate of synthesis for deoxyribonu-
cleotides formation (time�1),KP3,KP3P2, andKP3A2 are saturation
constants (mass/volume), g3 is a stoichiometric coefficient, and E1

is the mass of enzyme E1 per cell (the rate limiting enzyme for
conversion of ribonucleotides into deoxyribonucleotides). The first
term in brackets on the right hand side shows dependency based on
deoxyribonucleotide concentration (P3/VC where VC is cytosolic
cell volume), the second term represents feedback inhibition of
synthesis by ribonucleotide concentration (P2/VC), the third
term indicates saturation-type dependence on glucose primarily
for ability to supply energy (A2/VC), and the last term represents
consumption to form DNA (M3).

The original model explicitly described discrete events that had
typically been ignored in other models (66). For example, in the
E. coli model changes in gene dosage (the number of copies of a
gene in a cell at a given time) depended on the replication fork
position, and the completeness of cross-wall formation depended
on the cell size and amount of cell membrane components synthe-
sized. Other biochemical details were added in subsequent studies.
For example, in one study, amino acids were differentiated into five
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families (67). In another study, the synthesis of ribosomes was
incorporated in greater detail (68). The model was utilized exten-
sively to improve the use of plasmids for recombinant protein
production, e.g., (68–72). Bailey reviewed the importance of
these contributions to the whole field of mathematical modeling
in biochemical engineering (58); now the approach serves as the
basis for the MCM modeling framework.

1.4. A Minimal

Cell Model

We present here the construction of a MCM based on the gene set
proposed by Gil et al. (29). However, previous work to establish a
prototype MCM attempted to identify a minimal gene set indepen-
dently. In 2001, the Cornell E. coli model was first used by the
Shuler group as a basis to construct a prototype MCM that simu-
lates a hypothetical bacterial cell with the minimum number of
genes necessary to grow and divide in an optimal environment
(73). The prototype MCM has also been posed as a generalized
model of chemoheterotrophic bacteria. The strategy for transition-
ing from the original Cornell single-cell model into the prototype
MCMwas to sequentially replace “pseudochemical” and “pseudor-
eaction” components of the model with distinct chemicals and
detailed reactions (74, 75).

It is our belief that a detailed model of E. coli would not be
computationally tractable because of its large number of gene
products (73). While it was not chemically detailed, the prototype
MCM was complete in terms of physiological function and was
modular in its structure. A modular species is one that can be
deconstructed into individual components while still maintaining
the essential connectivity to other functions in the cell (74). Adding
detail to different modules allowed us to recombine those submo-
dels into a functioning whole. The concept of modularity was
demonstrated by the inclusion of genomically/chemically detailed
nucleotide and lipid biosynthesis modules (74, 75). Additionally,
detailed genomic information about the location of DnaA binding
boxes on the E. coli chromosome was incorporated into the coarse-
grained model to predict key features of DNA replication (65).
Hence, the prototype MCM is a functionally complete, system-
level model formed by modification of a coarse-grained model of
a single cell of E. coli (73–75).

The new MCM described here goes beyond these prior models
to describe explicitly all genes in the cell, all chemical species, and
incorporates mechanisms for most cellular processes. The MCM
focuses on essential functions while finding examples of gene pro-
ducts that can perform those functions. While the postulated set of
minimal genes may change (e.g., if a new multifunctional protein is
found), the set of essential functions is expected to stay relatively
constant. Further, the technical difficulties associated with generat-
ing an experimental minimal cell and the ambiguities in interpreta-
tion of comparative genomic data promote the establishment of a
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theoretical computer model of a minimal cell. This model must be
explicit about minimal functions and include a realistic set of pro-
teins to accomplish these functions.

The efficacy of constructing a MCM has been demonstrated in
various proof of concept and validation studies (64, 73–75). It has
been also demonstrated that it is not the exact values of model
parameters that determine behavior, but that their values relative to
one another is critical (73). This suggests that the lessons from a
hypothetical general cell model will be broadly applicable to che-
moheterotrophic bacteria.

2. Materials

2.1. Python Framework

for a Minimal Cell Model

The MCM is a differential algebraic equation (DAE) system with
discontinuities due to discrete physiological events (e.g., cell divi-
sion). The full set of equations and parameters in Systems Biology
Markup Language (SBML) format as well as instructions for down-
load and simulation are available online at http://minimalcell.bme.
cornell.edu. The DAE is integrated numerically using SloppyCell, a
Python software package for simulation and analysis of biomolecu-
lar networks (76).

SloppyCell automatically compiles the structures listed in
Table 1 and creates a Reaction Network object which can be
integrated to obtain time course data for any variable in the
model. All model simulation results presented here are generated
by integrating the model from an initial condition until a stable cell-
division limit cycle is reached. It is common to study how bacterial
behavior changes at different steady-state growth rates, which is
controlled by varying the external nutrient concentration. While we
have done preliminary exploration of response to reduced glucose
levels, only growth at saturating levels of glucose is necessary for a
minimal cell.

2.2. Model Testing

Framework

A model must meet certain requirements to be considered repre-
sentative of a minimal organism, and several of these requirements
are testable computationally. Using the Python Unittest framework
(http://docs.python.org/library/unittest.html), a set of auto-
mated tests was implemented to verify that updates to the model
did not violate any testable minimal cell requirements. Most impor-
tantly, we aimed to automatically verify that every version of the
MCM met the following requirements:

1. Genome minimality—Every gene in a minimal cell is essential,
by definition. Therefore, the elimination of any gene from the
model should result in model failure. A series of tests were
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implemented that sequentially removed each gene in the
model, and verified that the loss caused model failure.

2. Resource minimality—While the minimal cell does live in an
optimally supportive culture environment, it should not have
unnecessary nutrients in the medium. The presence of an
unnecessary nutrient indicates a logical error in the assump-
tions about which genes are essential, because those nutrients
are likely participating in one or more reaction pathways that
may not be required. These tests removed each nutrient in turn
from the medium to ensure that its loss causes model failure.

3. Structure tests—A third set of tests ensured that rules, events,
and other model structures worked as expected in the MCM.
For example, for all times, the sum of all individual protein
masses in the cell should equal the total mass of protein in the
cell (M1). Similarly, the total mass of the cell should equal
the mass of the membrane plus the mass of the cytoplasm.

Table 1
Model structures used in the minimal cell model

Model structure Count Examples

Compartments 4 Cytoplasm, cell membrane, whole cell, medium

Chemical species 408 Glucose-6P, alanine, mRNAs, proteins

Reactions 570 Fructose-6P synthesis, CTP synthesis

Rate parameters 570 Mass action or Michaelis–Menten rate constants

Saturation parameters 581 Michaelis–Menten-like saturation parameters

Inhibition parameters 25 Michaelis–Menten-like inhibition parameters

Rate rules 1 Methylation state of chromosome

Algebraic rules 1 Cell width (CW)

Events 36 DNA replication initiation, cell division

Constraints 408 Each species must have mass >0

Genes 241 Protein and stable RNA coding genes

Single coding genes 102 dnaB, pgi, etc.

Gene clusters 19 replisome, etc.

Genes in clusters 139 Ribosomal proteins, dnaE, etc.

With the exception of genes and gene clusters, all the modeling structures are analogous to their SBML
counterparts (96). Rate, saturation, and inhibition parameters are can be set to values from the literature, or
estimated using the procedures described in this chapter. While there are 241 identified coding loci in the
model, only 102 are modeled as single genes. The remaining 139 are lumped into groups that have closely
coupled function and dynamics. These lumped groups are here named “gene clusters.” Table reused with
permission from ref. (95)
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3. Methods

3.1. Minimal Gene Set The MCM implements a whole-cell dynamic model of a single cell
that contains the minimal gene set described by Gil et al. (29). The
authors break their minimal gene set into five major categories:

1. Information storage and processing.

2. Protein processing, folding, and secretion.

3. Cellular processes.

4. Energetic and intermediate metabolism.

5. Poorly characterized genes.

There are key differences between the gene set presented in Gil
et al. (29) and what is included in the base MCM. In particular, the
minimal gene set proposed by Gil et al. (29) only considers protein-
coding genes (it does not include tRNA or rRNA species). Further-
more, the authors assumed that the cell could import amino acids
and inorganic ions (e.g., K+ and Mg2+) from the environment
through diffusion, but it is likely that transporters will be required.
Finally, the authors suggest that the cell will synthesize ATP
exclusively through substrate-level phosphorylation via lactate
fermentation, but they provide no mechanism for synthesized lac-
tate to exit the cell. Therefore, genes coding for three rRNA
species, 20 tRNA species, 14 protein components of amino acid
transport systems, four protein components for transport of
inorganic ions, and one protein corresponding to a lactate trans-
porter has been added to theMCM. These, together with the genes
identified in Fraser et al. (22), account for the 241 genes included
in the MCM (see http://minimalcellmodel.bme.cornell.edu for a
detailed listing). Figure 2 shows an overview of the metabolic
features of the MCM. Table 2 shows a summary of how many
genes fall into each functional category in the MCM.

3.1.1. Information Storage

and Processing

DNA Metabolism

The DNA replication and repair systems are less complex in Myco-
plasma species than in bacteria with larger genomes (77), and
similarly we expect that a minimal bacterium would retain a simple
DNA replication system. Gil et al. (29) state that the four basic
steps of DNA replication are:

1. Recognition of the origin of replication by protein components.

2. Recruitment of initiator proteins to the origin to promote
initiation of replication.

3. DNA synthesis along two forks on the circular chromosome.

4. Replication termination and the separation of the daughter
chromosomes.
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DNA replication initiation mechanisms vary widely in different
bacteria. The MCM combines concepts proposed by Gil et al. (29)
and those used in a DNA replication model in E. coli (64, 65).
Gil et al. include 13 genes in the minimal gene set for DNA
replication (29). Of those, three (dnaB, dnaG, and hupA) are
modeled explicitly as initiators of DNA replication, while the
remaining 10 are included in the replisome gene cluster.

Gil et al. (29) also include three genes in the minimal gene set
for DNA repair, restriction, and modification. It is debatable
whether a minimal cell would require these functions. Because the
MCM exists in a totally benign environment the extent of DNA
damage would be minimized. However, because single strand
breaks during DNA replication are common in natural bacterial
species, we would expect that the absence of these genes in a
hypothetical minimal cell would result in severely reduced cell
viability based on studies done in E. coli (78). Note that an average
cell viability of less than 50% would result in an unsustainable

Fig. 2. Overview of metabolic processes included in the MCM. External nutrients for the MCM include glucose, amino acids,
inorganic ions, cofactor precursors, fatty acid precursors, and free bases. Boxes in the cytoplasm are subsets of
metabolism described by the MCM. PPP pentose phosphate pathway, solid lines—flow of mass within the cell, dashed
lines—transport processes.

586 M.L. Shuler et al.



cell culture. Therefore, the three genes suggested by Gil et al. (29)
(nth, polA, ung) have been included. However, because the MCM
does not include a mechanism for DNA damage, the protein pro-
ducts of these genes have no mathematical impact on the cell
behavior. Currently, their only impact is via the energy burden the
cell experiences in their synthesis. It is possible that this model
could be modified to account for relevant DNA damage, and in
that case the three genes included for DNA repair would have a
mathematical function.

Table 2
Summary of genes used in the minimal cell model, listed by
category

Category No. genes

Basic DNA replication machinery 14

Basic transcription machinery 8

Biosynthesis of cofactors 12

Biosynthesis of nucleotides 15

Cell division 1

DNA repair, restriction, and modification 3

Glycolysis 10

Lipid metabolism 7

Pentose phosphate pathway 4

Protein folding 5

Protein post-translational modification 3

Protein translocation and secretion 5

Protein turnover 3

Proton motive force generation 9

Ribosomal RNA (rRNA) 3

Transfer RNA (tRNA) 20

Translation factors 12

Translation: amino-acyl-tRNA synthesis 21

Translation: ribosomal proteins 50

Translation: ribosome function, maturation, and modification 7

Translation: tRNA maturation and modification 6

Transport 23

Table reused, with permission, from ref. (95)
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RNA Metabolism

and Translation

Gil et al. list eight genes as being necessary for the basic transcription
machinery (29). Of these, seven are included in an RNA polymerase
gene cluster. The remaining gene, nusA, is used in transcription/
translation coupling, and is therefore included in the gene cluster for
translation factors. In addition to these eight, the MCM explicitly
includes 19 of the 21 proposed amino-acyl-tRNA synthesis genes.
The remaining two, pheS and pheT, are the a and b subunits of a
single amino-acyl-tRNA synthetase, so are included as a single gene
cluster. The six genes for tRNA maturation and modification are
included in the MCM as a single gene cluster. There are 50 ribo-
somal proteins included in the Gil et al. gene set (29). All 50 of these
are included in a single gene cluster called ribO, the largest gene
cluster by far. In the absence of a detailed mechanistic model for
ribosome assembly and function, these genesmust remain in a single
cluster with a single product corresponding to ribosomal protein.
Seven genes responsible for ribosome function and maturation are
included in the MCM as a single gene cluster called ribM.
The product of this gene cluster catalyzes RNA maturation and
ribosome synthesis reactions in the MCM. All 12 genes listed as
translation factors in the Gil et al. (29) gene set and nusA are
included as a single “translation factor” gene cluster called transF.
There are two genes that participate in RNA degradation in the Gil
et al. (29) gene set, pnp and rnc. They are included in theMCM as a
single gene cluster called degRNA.

3.1.2. Protein Processing,

Folding, and Secretion

Theminimal gene set proposed by Gil et al. (29) includes two genes
related to post-translational modification. One of these, pepA, was
omitted from the MCM gene set because it is unclear how its
product, aminopeptidase A/I, would be used in the minimal cell.
Gil et al. (29) included pepA because it was present in all of the
genomes they considered. However, it is nonessential in both
E. coli and B. subtilis (29). The other gene dedicated to post-
translational modification in the proposed minimal gene set is
map, which codes for methionine aminopeptidase, has been
included in the MCM (29). Five genes for protein folding, dnaJ,
dnaK, groEL, groES, and grpE, are included in the Gil et al. (29)
gene set. Because protein folding is required in all cells, we have
included these genes in theMCM as a single gene cluster. However,
the MCM does not contain a protein folding submodel, so the
products of the protein folding gene cluster do not impact
the model simulation. Finally, the three “protein turnover” genes
proposed by the Gil et al. (29) gene set, gcp, hflnB, and ion are
included as a single gene cluster that catalyzes protein degradation.

3.1.3. Cell Division Gil et al. (29) propose that the only gene necessary for cell division
in their minimal cell is ftsZ, and this gene is explicitly included in the
MCM. At the time of DNA replication termination, FtsZ catalyzes
the transfer of membrane material to the midcell region, promoting
cell division. Bacterial cells with the ftsZ gene typically have between
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5,000 and 20,000 FtsZ molecules (79). When termination of
DNA replication completes and the cell division process starts,
FtsZ recruits membrane material to the septum. This results in a
“figure-eight” shaped cell where the connecting region gets thin-
ner and thinner until the cell divides, as in Fig. 3.

3.1.4. Transport Gil et al. (29) include four genes related to transport of nutrients
into the cell. An inorganic phosphate transporter, pitA, is included
explicitly in the MCM. The three genes coding for the phospho-
transferase system (PTS), ptsG, ptsH, and ptsI, are included as a
single gene cluster.

3.1.5. Energetic and

Intermediate Metabolism

Metabolic processes are straightforward to represent in the coarse-
grained modeling framework, as these reactions are the main basis
for the previous cell models (61). All 10 genes listed by Gil et al.
(29) for glycolysis are included explicitly in the MCM. The nine
genes included as part of the ATP synthase machinery are included
as a single gene cluster in the MCM. It is presumed that the ATP
synthase can extrude protons from the cell and thereby maintain
the proton gradient by catalyzing the ATP synthesis reaction in
reverse. This is common behavior amongst lactic acid bacteria (80).
The four genes included for the pentose phosphate pathway are
included explicitly in the MCM (29, 43). The minimal gene set
contains genes for synthesizing ATP through substrate-level phos-
phorylation only. Specifically, the cell does not have an electron
transport chain. It does contain the F1ATPase in the cell mem-
brane, but Gil et al. (29) proposed it would participate principally in
proton gradient maintenance. The Gil et al. (29) gene set does not
explicitly address the issue of cellular use of NAD+ vs. NADP+ in
terms of reducing power. A review of the reactions catalyzed by the

SL

CW

Cell Membrane (VM)

Cytoplasm (VC)

Fig. 3. The spherical minimal cell model. CW cell width. The two labeled compartments,
cytoplasm (VC) and cell membrane (VM), together comprise the volume of the whole cell, V.
This illustration shows the cell after septum formation as started. When the septum is
complete (i.e., SL ¼ CW·2), division occurs. Figure reused, with permission, from ref. (95).
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minimal proteome reveals that in principle NAD+ coupled with
NADH should be sufficient. The single exception is that TrxB
(thioredoxin reductase) does prefer NADP+, but there is some
evidence that a similar enzyme could function with NAD+ (81),
so we follow the assumption of Gil et al. (29) and Gabaldón et al.
(43) and use NAD+/NADH for redox reactions. Importantly, the
metabolic rates in the MCM are able to balance NAD+ and NADH
so that there is sufficient reducing power generated. Of the seven
genes listed for lipid metabolism, four (cdsA, gpsA, psd, and pssA)
are included explicitly as single genes. The remaining three genes
(plsB, plsC, and fadD) are included as a single gene cluster involved
in lipid biosynthesis. plsB and plsC have been proposed as the basis
for lipid membrane synthesis in semisynthetic minimal cells (82).
All 15 genes listed for nucleotide biosynthesis by Gil et al. (29) are
included explicitly as single genes in the MCM. The 12 genes
identified by Gil et al. (29) for cofactor biosynthesis are also explic-
itly included in the MCM.

3.1.6. Additional Genes The Gil et al. (29) gene set contains only four genes related to
transport of nutrients into the cell, as the authors proposed that the
cell could obtain essential nutrients from the environment by diffu-
sion (29). This may suffice for some nutrients, but it is likely that
protein transporters will be necessary for many others. Therefore,
the gene set proposed by Gil et al. (29) is supplemented with an
additional 19 genes dedicated to the transport of chemicals such as
amino acids. The MCM has a total of 23 genes related to transport.
The Gil et al. (29) gene set also does not include coding regions for
tRNA or rRNA species as they are not protein-coding genes. These
genes, however, are clearly essential parts of the minimal genome
for a modern chemoheterotrophic bacterium. TheMCM computer
chromosome was supplemented with coding regions
corresponding to 20 tRNA species. In cases where multiple tRNA
alleles correspond to a single amino acid, we assumed that the
tRNA region represented a gene cluster coding for all of those
alleles. The genome was also supplemented with genes for three
rRNA species. We found that theMCMgenerated large amounts of
lactate because while the Gil et al. (29) gene set includes lactate
dehydrogenase (which consumes pyruvate and NADH), it does not
include a mechanism to consume lactate. We propose the addition
of the lctP gene for export of lactate to the external environment.

3.1.7. Other Departures

from the Proposed

Minimal Gene Set

There are other genes that, while necessary for aminimal cell, have no
mathematical model available for their interaction with the whole-
cell. In these cases,wehave elected to include the genes to account for
their metabolic burden on the cell, but their genes and gene-products
currently have no connection to the rest of the cell. Themathematical
model could be adjusted to reflect their function as more detailed
descriptions of these components become available. These genes
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include those whose gene products degrade macromolecules (degM1
and degRNA), act solely on ions in the cell (kup,mgtA,mntH, nhaB,
pitA, pmf, and ppa), or catalyze processes for which the MCM lacks
mechanistic detail (dnarep, protfold, map). The proposed minimal
gene set includes the pepA aminopeptidase.However, there is no clear
function for this gene in theminimal cell, so we choose not to include
it. Eight “poorly” characterized genes are included in the gene set
proposed by Gil et al. (29). Most of these have no known function,
but were included because they were present in all of the genomes
considered in the study. Of these eight, onlymraW is included in the
MCM.MraW is a methyltransferase which is assumed to be necessary
for DNA methylation and chromosome replication. However, the
rest have no clear function for a minimal cell, and are therefore not
included in the MCM. The full list of genes from the gene set
proposed by Gil et al. (29) which have been excluded in the MCM
is presented at the project website at http://minimalcellmodel.bme.
cornell.edu.

3.1.8. Analysis of the

Minimal Gene Set

The minimal gene set proposed by Gil et al. (29) has been analyzed
in subsequent work by Gabaldón et al. (43). To perform a struc-
tural analysis, Gabaldón et al. (43) eliminated many of the 206
protein-coding genes from the minimal gene set proposed by Gil
et al. (29). Specifically, they removed polymerization reactions and
any reactions involving macromolecules. Furthermore, they only
considered reactions represented in the pathway maps of the KEGG
database, which eliminates many reactions involving cofactors.
Finally, the authors also only considered reactants and products
that had at least one carbon atom in common on each side of the
reaction. A metabolic reaction network was thus constructed by
comparing the gene functions from Gil et al. (29) to the new
reaction database created in Gabaldón et al. (43). The connection
degree distribution, clustering coefficient, average path length, and
network diameter, were measured for the metabolic reaction net-
work (43). It was found that the average path length and network
diameter tended to decrease with the size of the network (n) rather
than with the size of the genome. An average path length and
network diameter of 5.34 and 18, respectively, were reported for
the minimal gene set when they considered a network with 165
nodes by applying the eliminations discussed above (43). Gabaldón
et al. (43) also found that a random network had a much smaller
clustering coefficient than the natural or minimal gene sets
(C ¼ 0.031 for the minimal gene set compared to Cr ¼ 0.00977
for a random network of the same size). However, the ratio C/Cr

increases linearly with the number of nodes in a network, so smaller
networks (including the minimal gene set) have less clustering.
Most importantly, the results from Gabaldón et al. (43) show that
the minimal gene set and its corresponding reaction network
behaved as one would expect for a natural genome of the same
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size. Gabaldón et al. (43) also considered a reduced theoretical
reaction network containing only 39 genes with 50 enzymatic
steps for stoichiometric analysis. Their stoichiometric analysis did
not include cofactor metabolism because, they argued, coenzymes
play a catalytic function and do not affect the stoichiometric analy-
sis. The reduced theoretical reaction network also assumes lactate
to be a “sink” chemical whose concentration is essentially buffered.
Using the reduced theoretical reaction network, they investigated
the robustness of the minimal gene set. They found that most
mutations had a limited effect on the topology of the network,
but that the removal of a few key enzymes had drastic effects. At the
same time, the network was sensitive to sustained random attacks.
This analysis, however, did not imply that the minimal gene set
could be further reduced because maintaining the topology of a
network is different than maintaining its viability (43).

The minimal gene set used in the MCM is a modified and
supplemented version of that presented by Gil et al. (29). This
genome’s characteristics can be compared to those of some
naturally occurring small-genome bacteria as in Table 3 (22, 83).
The mollicutes, a category of bacteria that tend to have small size
and small genome, do not have a common general organization to
their genomes (83), but some of their features could be used as
organizational baselines for the MCM. For example, some molli-
cutes display bias in the GC skew near the chromosomal replication
origin and DNA replication initiation loci. Table 3 lists a gene
density of 100% for the MCM. This is because the MCM has no
noncoding regions of DNA. If one or more noncoding regions are
deemed necessary to bacterial survival, they can be added to the
MCM as genetic loci. For example, the origin of replication, ori, is
included as a genetic locus.

3.2. Reaction Network

Construction

3.2.1. Genome Construction

Once the gene set is assembled, the reaction network for the MCM
is constructed within our modeling framework. The genes in the
minimal bacterial gene set are not necessarily present in all bacterial
species (due to nonorthologous gene displacement), nor is the
sequence for a gene always known. The genomic sequences for

Table 3
Characteristics of the minimal cell model genome

Characteristic MCM value Lit. value Reference

Genome size (kbp) 233 580 Value from M. genitalium (22)

GC content (%) 40 27.73 Median value for mollicutes (83)

Gene density 100 81–92 Various Mycoplasma sp. (83)

Table reused, with permission, from ref. (95)
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the MCM’s gene set were almost exclusively downloaded from the
KEGG website (http://www.genome.jp/kegg/). For each gene in
the minimal gene set, we searched the KEGG database gene bank
for the following list of organisms, in the order shown in Table 4.

3.2.2. RNA and Protein

Synthesis

After we identified an appropriate DNA and protein sequence for
each gene in the MCM, sequence-dependent stoichiometries were
constructed for the mRNA and protein synthesis/degradation
reactions. Furthermore, the stoichiometry of DNA synthesis was
based on the DNA sequence. Thus, the actual consumption of
amino acids and nucleotides in the MCM depended on gene-level
sequence information. Rate laws for the synthesis of RNA species
were constructed according to the coarse-grained templates in
Eqs. 5 and 6.

dRNA

dt

� �
S

¼ vRNAi � GDi

GDsum
� dM2

dt

� �
S

(5)

dM2

dt

� �
S

¼ mM2S � P2minsat �M3 � RNApol (6)

In Eq. 5 vRNAi is a synthesis rate specific to RNAi that is
biologically related to a promoter strength (pg RNAi/pg M2),
GDi/GDsum is the fraction of total gene dosage represented by
gene i, and dM2/dtS is the overall RNA synthesis rate for the cell.
The gene dosage term appears for all mRNA synthesis equations
by default, but if it is not required it can be optionally removed
(i.e., when a gene’s transcription is not regulated this way).

Table 4
Distribution of source genomes for finding sequences for
the genes in the minimal gene set

Organism KEGG abbreviation Number genes used

Mycoplasma genitalium mge 162

Escherichia coli eco 59

Bacillus subtilis bsu 10

Wigglesworthia brevipalpis wbr 3

Synechococcus elongatus syc 4

Cytophaga hutchinsonii chu 1

Bacillus pumilus bpu 1

Rhodobacter sphaeroides rsp 1

The organisms are listed in the order in which they were searched. Table
reused, with permission, from ref. (95)
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In Eq. 6, mM2S is the overall RNA synthesis rate constant
(pg M2/h/pg M3/pg RNApol), P2minsat is a dimensionless satura-
tion term for the scarcest ribonucleotide precursor, M3 is the mass
of DNA (pg), and RNApol is the lumped mass of enzymes involved
in RNA synthesis (pg). Note that due to the promoter strength
constant in Eq. 5, the sum of all RNA synthesis rates will not sum to
dM2/dtS. Equation 6 is therefore supposed to represent a base
capacity for RNA synthesis, the apportionment of which is deter-
mined for each RNA species by Eq. 5.

Gene dosage for each gene is monitored automatically as a
function of the replication fork position on the chromosome.
If there is a single, nonreplicating chromosome, in the cell, then
the dosage for each gene is equal to the gene copy number. Once
DNA replication begins, the gene dosage for each gene becomes a
calculable function of fork position (fork position is constrained by
the mass of DNA that has been synthesized since the most recent
DNA replication initiation). There are two ways to calculate gene
dosage. It can be updated via events each time the replication fork
passes through a coding locus. For many genes, this tends to be a
slow method because many events will fire as soon as the chromo-
some begins replicating. Alternatively, gene dosage can be calcu-
lated using a smooth function that approximates a step function.
We use a smooth exponential function to calculate the gene dosage
(see Note 1).

Real cells require RNA degradation so they can reuse nutrients
over the course of the cell cycle as different gene functions become
necessary. For a minimal cell cultured under constant benign envi-
ronment, the need for RNA turnover is far less compelling than for
a cell that has a plethora of genes to choose from. Therefore, the
MCM has relatively low degradation rate constants. Finally, it is
assumed that “stable” RNA species such as ribosomal RNA (rRNA)
have no degradation reactions.

Protein synthesis rates are calculated using a similar coarse-
grained template inspired by our previous efforts in bacterial cell
modeling (61, 66).

3.2.3. Metabolic Reactions Metabolic reactions corresponding to the genes in the MCM gen-
omes were assembled with the aid of the KEGG database as well as
knowledge of microbiological biochemistry. Developing a model of
this scale is complicated by lack of kinetic information for most
of the proposed reactions. At the same time, parameter analysis
research has revealed that in many biological models, the specific
values of parameters are not as critical as their ratios to one another
(73, 84, 85).

Saturation constants for activation terms in saturation-type rate
laws were estimated by applying a general rule of thumb that
postulates that a reasonable value for an unknown saturation con-
stant is one 25th of its normal intracellular concentration (NIC)
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(61). Similarly, inhibition constants for inhibition terms in rate laws
are estimated by applying a heuristic that the constant will be equal
to ten times that chemicals NIC. In the MCM, the NIC is set to the
predicted average concentration of each chemical species. This
rule has been applied in previous models (61, 67).

We also present here a method to quickly estimate rate
constants for coarse-grained models of single cells growing at
steady. The goal of developing this procedure is to rapidly obtain
a reasonable set of parameters that can be used to help test the
plausibility candidate minimal gene sets. This method is based on
the assumption that in a single cell growing and repeatedly dividing
at steady-state, each chemical species’ mass will double in the time
that it takes for the cell to divide, tD. This assumption is certainly
true in an exponentially growing population of bacterial cells
experiencing balanced growth, and applying the assumption to
the single-celled model allows us to calculate rate constants for
the reactions in the model.

We begin by using the doubling assumption for species Xi (i.e.,
Xi(td) ¼ 2Xi(0)) to write Eq. 7ðtd

0

dXi

dt
dt ¼ XiðtdÞ �Xið0Þ ¼ Xið0Þ (7)

The rate dXi/dt is not constant, but for most chemical species
the mass Xi will increase monotonically until it doubles in a nearly
linear fashion. We can take advantage of this to calculate a set of
approximate rate constants that are likely to result in a cell model
that will achieve a stable cell division cycle. Specifically, it is assumed
that the rate of production of a species Xi is linear in the rate
constants vj, and that the nonlinear portions of the rate laws are
known functions of the set all chemical species masses X. Further-
more, it is assumed that each species creates a constraint on some of
the rate constants as in Eq. 8.

XNR

j¼0

vj � ai;j � fj ðX Þ� ssi �Xið0Þ
td

(8)

Specifically, Eq. 8 says that the sums of all the reaction rates
acting on species i are constrained to being greater than Xi(0), the
mass of species i at time 0, divided by the desired doubling time.
While the assumption of linearity is not true (because fj(X) is
nonlinear), by applying this assumption to the initial conditions
for theMCM, linear constraints on the rate constants for the model
are obtained. This results in a system of constraint equations on all
the rate constants in the model, which can be expressed as a matrix
A. We define an objective function fopt as

fopt ¼
XNR

i¼1

vi (9)
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where NR is the number of reactions, and vi is the rate constant for
rate constant i, is introduced to frame the problem as a Linear
Programming (LP) problem with constraints A and objective
function fopt, which is minimized to obtain a starting set of rate
constants (see Note 2).

3.3. Geometry Themodel cell is composed of two compartments: a cytoplasm and a
membrane. The shape of the cell is assumed to be constrained to
a sphere, but a cylindrical model has been tested. Cell size is deter-
mined automatically from the volume of its compartments (i.e., a
constant density is assumed for each compartment). It is assumed that
the cell shape is spherical, and that septum formation at the mid-cell
region (Fig. 3). The two parameters describing the shape of the cell
are the length of the cylindrical cell body (CL) and the width of the
cell body (CW). For a spherical cell CL is always zero. The length of a
dividing cell’s dividing region (the septum) is referred to as SL.

3.4. Demands Cellular processes such asDNA replication, transcription, and trans-
lation, consume various reactants to create long biological polymers
(i.e., DNA, RNA, and protein, respectively). While it is possible to
model a dependence on multiple substrates using a combination of
Michaelis–Menten like saturation terms, the combination of many
such terms leads to unreliable models. This is because the combina-
tion of many fractional terms can lead to greatly reduced reaction
rates, even if all the reactants are in excess in the cytoplasm. For
example, there are 20 reactants in the pseudoreaction that produces
a particular protein product. Even at high concentrations, the
cumulative effect of 20 saturation terms in a rate law could greatly
decrease the calculated rate if they were all included. Instead, we
hypothesize that at any given time, a single reactant will have
the highest “demand” in a reaction. We propose that synthesis
of biological polymers depend on single reactants in a Michaelis–-
Menten fashion. For example, translation will only depend on a
single, limiting amino acid. During growth and development, the
limiting amino acid may change to reflect the changing demands of
the cell. To address that phenomenon, a “Demand” class was cre-
ated for the MCM. Each Demand object creates the parameters,
equations, and events necessary to track the limiting reagent for a
particular reaction. To create each Demand, we specify the species
that could act as limiting reagents for a reaction, as well as their
saturation constant for that particular reaction. The mass of each
species was used to determine the limited chemical (i.e., the species
with the lowest mass has the highest demand). This could later be
updated to use the number of moles or molar concentration, but
such an update is left as future work. The potential for demands to
impact the cell behavior are illustrated in Fig. 4, which shows an
example of how the “in demand” species for a reaction could change
over the cell cycle, and how that change affects themodel equations.
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Note that at the beginning of the simulation, one (and only
one) of the demand species in a Demand object can be limiting (i.e.,
the species associated with a particular Demand cannot all initially
be equal). If they were, the system could not select an initially
limiting reagent. The purpose of tracking demand during the sim-
ulation is to calculate which reactant is limiting the reaction at a
given time. A high demand corresponds to a low concentration of a
species, and a low demand corresponds to a high concentration.
When the demand for species A surpasses the demand for species B,
the reaction in question will automatically start using the mass of
the species B in the calculation of the reaction rate.

3.5. Events Events describe instantaneous, discontinuous changes in the state of
the model, and an implementation of events based on SBML is used
here (86). Because they cause discrete changes in the cell structure
or behavior that occur instantaneously when the cell reaches

d(mRNA)
dt

∝ [A]

dt ∝ [G]

[A]+Ks

d(mRNA)
[G]+Ks

Fig. 4. Chemical species demands over the course of the cell cycle. During the course of the cell cycle, changes in gene
dosage can cause changing requirements for nucleotides. In this illustration, the demand is initial for ATP, and then
switches to GTP. Figure reused, with permission, from ref. (95).
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some predefined condition, events require special mathematical
treatment during a simulation. For example, the “initiation of
DNA replication” event occurs when a threshold number of DnaA
molecules are bound to the DNA OriC. In the MCM, an event
could, e.g., describe instantaneous changes in the masses of the
chemical species in the cell (i.e., at cell division). There are a total
of 36 events in the base model. The names and trigger functions for
all 36 events are presented at http://minimalcellmodel.bme.conell.
edu. Here, we present as examples a generic event, as well as the
“DNA Initiation” and “DNATermination” events from theMCM.

3.5.1. Generic

Event Example

Imagine an event where the concentration of a metabolite (elicitor)
activates the synthesis of a species in a secondary metabolic pathway.
When the concentration of the elicitor is above a threshold, the
event is triggered, i.e., when [elicitor] > threshold. Once the trigger
function’s value changes from false to true, the event “fires,” and
the cell responds by executing a number of event assignments.
In the case of the elicitor, one might expect a number of reaction
pathways to be activated or augmented. For example, we could
write the following two event assignments:

vx ! 1e6

flage ! 1

where vx is some reaction rate constant that is increased to a new
level by the presence of the elicitor, and flage represents that some
other physiological process has been activated.

3.5.2. DNA Initiation DNA Initiation is the start of chromosome synthesis. The trigger func-
tion for DNA Initiation is shown in

ðDnaGbound�to�Ori � initthresholdÞjjðflagmeth ¼ 1Þ (10)

In short, the replication process is triggered when the mass of
DnaG bound to the origin of replication (Ori) exceeds threshold
initthreshold. There are currently 21 event assignments associated
with DNA replication initiation (see Note 3).

3.5.3. DNA Termination The simple trigger function for DNA replication termination
becomes true when the replication fork reaches the terminus of
replication.

ForkPos0 �1:0 (11)

After DNA replication ends, 11 variables are updated in the
MCM. For example,Cperiod, the length of chromosome replication,
is updated to reflect the total time during which chromosome
replication was active.
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3.6. Estimation of Initial

Conditions

A chemically detailed model of a bacterial cell must have an initial
mass equal to the sum of all its chemical species. For many chemical
species, even average cell cycle values are not known, let alone
detailed concentration information as a function of the cell cycle
progression. To obtain initial conditions for theMCM,we used data
for groups of chemical species published for E. coli and made
assumptions about how these groups would be subdivided into
the hypothetical cell (87). Because no experimental analog for a
minimal cell exists, we propose that using composition data
measured in E. coli is a valid first-approximation because a minimal
cell would have a similar chemical make-up to other chemohetero-
trophic bacteria.

The average component masses used to calculate initial
conditions are summarized in Table 5 (87). These proportions
agree with the E. coli data from which they were derived. Once
the component masses were estimated, the masses of individual
chemical species were initialized using a procedure we developed
for the MCM (see Note 4). The initial conditions for all species
in the base MCM are available for download from http://minimal
cellmodel.bme.cornell.edu.

This estimate of initial conditions for each chemical species is
instrumental in determining the reaction rate constants in the
MCM. The final simulated birth composition is found by letting
the cell establish steady-state replication and differs from this initial
estimate. The initial estimate must be sufficiently realistic to yield a
stable behavior in the model cell.

3.7. Simulating a

Repeating Cell Cycle

To demonstrate that the current proposed minimal gene set is
capable of supporting cellular life, we show now that it is capable
of simulating a repeated cell division cycle. Once the initial condi-
tions and parameter values for the model are all set, we perform a
numerical integration of the model DAE system using SloppyCell.
Typical results from such an integration are presented in Fig. 5,
which shows themass of ATP over time for a nascentMCM integra-
tion. It is of note that the trajectory is not initially steady. Rather, the
mass of ATP increases sharply over the first several hours of simula-
tion time and then dips again before reaching a stable, repeating
state, showing that theMCMdynamically approaches a steady-state
rather than arbitrarily being forced into one.

3.8. Calculation of

Growth Parameters

Part of the utility of a chemically detailed cell model is that an
engineer can design experiments that probe its behavior in response
to various environmental and genetic manipulations. The MCM
can serve as a platform to evaluate and test the plausibility of
candidate minimal gene sets, as it does in the work presented
here. One way to perform such a test is to compare the model
predictions to those for general chemoheterotrophic bacteria.
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While there is not a biological analog of the MCM, it is comparable
to a generalized chemoheterotrophic bacterial cell (73, 74). Table 6
contains calculated growth and molecular composition parameters
obtained using the MCM. These values are compared to values for
E. coli (88). In Table 6, genomic sequence measurements are based
on values fromMycoplasma and other organisms listed in the KEGG
database (89). Parameters in class I are inputs to themodel (e.g., the
number of deoxyribonucleotide residues per genome is fixed by the
sequences of the genes in the minimal gene set). Parameters in
classes II–V are outputs from the model simulation, except for Cp,
which is an input constant based on our previous model of E. coli
(61). The five classes in Table 6 are defined as:

Table 5
Initial conditions of groups of macromolecules in the minimal cell model

Class Parameter Symbol E. coli MCM

I Deoxyribonucleotide residues per
genome kbp/genome

kbo/genome 4,700 233

Ribonucleotide residues per 70S
ribosome

nucl/rib 4,566 4,546

Amino acid residues per 70S ribosome aa/rib 7,336 6,856
Ribonucleotide residues per tRNA nucl/tRNA 80 77
Amino acid residues per RNA
polymerase core

aa/pol 3,407 3,010

II Fraction of total RNA that is stable RNA fsRNA 0.98 0.96
Fraction of stable RNA that is tRNA ftRNA 0.14 0.15
Fraction of active ribosomes fracrt 0.921 0.797

III Fraction of total protein that is r-protein ar 0.09–0.22 0.12
Fraction of total protein that is RNA
polymerase

ap 0.009–0.01 0.03

IV Peptide chain elongation rate Cp 12–22 aa/s 23 aa/s
DNA chain elongation rate Cd 500–830 nucl

bp/s
184 nucl
bp/s

V Time to replicate the chromosome C 40–67 min 21.1 min
Time between termination of replication
and division

D 20.2 min 19.5 min

The average masses from E. coli are based on values reported in Neidhardt et al. (87). The average mass in
the MCM is calculated by assuming that each component accounts for the same mass percentage in E. coli
and the minimal cell, but that the total average mass of the minimal cell is 0.2 pg. Note that the actual
average value of DNA used in the MCM is based on its genome sequence, not on the data from E. coli
presented in this table. In the current model the mass of the chromosome is MCHR ~ 3.77 � 10�4 pg.
Table reused, with permission, from ref. (95)

600 M.L. Shuler et al.



Table 6
Parameters related to the growth and molecular composi-
tion of the minimal cell model

Component Avg. mass in E. coli (pg) Avg. mass in MCM (pg)

Protein 1.56 � 10�1 1.20 � 10�1

rRNA 4.77 � 10�2 3.68 � 10�2

tRNA 6.33 � 10�3 6.33 � 10�3

mRNA 2.10 � 10�3 1.62 � 10�3

DNA 9.00 � 10�3 6.95 � 10�3

Lipid 2.60 � 10�2 2.01 � 10�2

Metabolites 1.00 � 10�2 7.72 � 10�3

This table is modeled after Table 20.1 from ref. (88). See the main text for a
definition of parameter classes I–V. Table reused, with permission, from ref.
(95)

Fig. 5. The approach to steady-state for a MCM. The trajectory shown is for the mass of ATP over time, but any chemical
defined in the MCM can be output. The sudden periodic halving in the mass of ATP corresponds to the moment of cell
division, when all masses in the cell are instantaneously halved.
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1. Structural parameters that do not vary with growth rate. These
parameters are calculated from the genome/proteome
sequence of the minimal cell.

2. Partition parameters are essentially invariant. The values pre-
sented are typical values for the model and are close to those for
E. coli presented by (88).

3. Other partition parameters expected to vary with the growth
rate. The values presented here are for a minimal cell with
growth rate equal to 0.86 h�1.

4. Kinetic parameters describing functional activities. The peptide
chain elongation rate, Cp, is a constant parameter of the model,
which we chose to match the value used by (61). The DNA
chain elongation rate, Cd, is calculated by dividing the chro-
mosome length by the period of time it takes to replicate the
chromosome during the simulation (the C period).

5. Chromosome replication and cell division parameters calcu-
lated by the simulation.

There are many common features between the E. coli data and
the MCM (e.g., fraction of active ribosomes, or DNA chain elon-
gation rate). However, some calculations from the MCM do not
match the data from E. coli due to the nature of a minimal cell.
In class I, e.g., the deoxyribonucleotide residues per genome will be
lower in the MCM because it is a model of a cell defined by its low
number of genes. Slight differences in the sequence lengths for
ribosomes, tRNAs, and RNA polymerase occur due to sequence
differences between E. coli and the source organisms used for the
MCM. The partition factors (classes II and III) show strong agree-
ment between E. coli and the MCM, and one would expect these
features to hold constant amongst many bacterial species.
The peptide chain elongation rate, Cp, is in agreement with the
high-end of the values for E. coli, but this quantity is actually an
input to the model based on data for E. coli (59), so it is unsurpris-
ing that they concur. The DNA chain elongation rate, Cd, falls
significantly below that of E. coli. Mycoplasma species tend to have
slow DNA replication rates, e.g., 100 bp/s in M. capricolum (90),
so it is not unexpected that a minimal cell would also have slower
DNA replication rates. However, because of its minimized chro-
mosome, the MCM actually exhibits a shorter C-period
(24–25 min) than E. coli. Finally, the D-period, the time between
replication termination and cell division, for the MCM and for
E. coli is similar (20.2 min for E. coli vs. 19.6 min for the MCM).

3.9. Response

to Environmental

Conditions

TheMCMconnects the physiology of theminimal cell directly to its
environment. TheMCMcould be used to guide the development of
an appropriate nutrient media for synthetic cells. Except for inor-
ganic ions, which are not tracked in the MCM, removing any of the
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external nutrients causes the cell to fail. To further study the effect of
environmental nutrient modifications, model cells growing at
steady-state were exposed to step-changes in the external concen-
tration of arginine, a competitive inhibitor of transport for other
amino acids. Transport systems with multiple substrates are subject
to competitive inhibition (91). To reduce the total number of genes
as much as possible, several transporters with broad specificity were
included in the MCM. For example, the Bgt transport system, an
ATP-binding-cassette (ABC) dimer found in Synechocystis sp., is
known to transport alanine, glutamine, glycine, leucine, proline,
and serine (92). TheMCMaccounts for multiple substrate inhibition
using Michaelis–Menten competitive inhibition terms. Each trans-
port rate law has one inhibition term for each alternative substrate.
For example, a transporter that carries four substrates will have three
external inhibition multipliers for each of its transport rate laws.

Thus, the concentrations of some substances cannot be arbi-
trarily increased because at some level they inhibit growth by caus-
ing the cell to be starved of another nutrient. To exemplify the
effect of competitive substrate inhibition on the viability of
the MCM, the external concentration of arginine was increased
5�, 10� and 15� (Fig. 6). Arginine is transported into the cell
by the Nat transport system of Synechocystis sp., which also trans-
ports histidine and lysine (92). The rate of histidine uptake is
described in Eqs. 12 and 13.

RHis ¼ vR�His �Ksat�His�ext �Ksat�ATP �Ki�His �Ki�R�His

� TNat (12)

Ki�R�His ¼ Ki�R�His�Arg�ext

Ki�R�His�Arg�ext þ Argext

� Ki�R�His�Lys�ext

Ki�R�His�Lys�ext þ Lysext
(13)

In Eq. 12, RHis describes the rate of histidine uptake (pg/h),
vR-His is the rate constant for histidine uptake (pg His/h/pg TNat),
Ksat-His-ext and Ksat-ATP are dimensionless Michaelis–Menten satura-
tion terms for external histidine and cellular ATP, respectively, Ki-His

is a dimensionless Michaelis–Menten product inhibition constant for
cellular histidine, Ki-R-His is a dimensionless competitive inhibition
term defined in Eq. 13, and TNat is the mass of transporter TNat (pg).
In Eq. 13, Ki-R-His-Arg-ext and Ki-R-His-Lys-ext are inhibition constants
(g/mL) that describe transport inhibition by arginine and lysine,
respectively on the histidine transport reaction. Based on these equa-
tions, it is expected that the transport rate for histidine will drop as
either arginine or lysine is introduced into the medium. Figure 6
demonstrates such an effect, with arginine values becoming inhibi-
tory somewhere between the 10� and 15� increase of the default
concentration (Fig. 6c, d). This shows that there is an intermediate
transition nutrient concentration where the cell transitions between
life and death.
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4. Notes

1. The gene dosage for each gene in the MCM was calculated
using functions of the form:

HF(FP; gp) ¼ 1

ð1þ e�200�ðFP�gpÞÞ
where HF is the heavy-step function, FP is the fork position
(a function of time), and gp is the position of the gene on the
chromosome (from 0 to 1). This function approximates a
discrete change in gene dosage without slowing down the
integration for the firing of many events.
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Fig. 6. Effect of amino acid inhibition on histidine (His) mass and cell viability in response to increases in extracellular
arginine (Arg). Blue trajectories are the unaltered histidine mass over time, while the green trajectories represent the
histidine mass after changes (a–d). Red dots represent the time and state of cell death. (a) Default trajectory. (b) 5�
increase in the external concentration of arginine. (c) 10� increase in the external concentration of arginine. (d) 15�
increase in the external concentration of arginine.
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2. The space of possible rate constant choices is a many dimensional
space and there can be infinitely many sets of constants that
would satisfy the given constraints. The objective function is
minimized because the constraints placed on the reaction rate
constants (doubling all chemical speciesmasses) tend to force the
system tohave higher rate constants. Tobalance these constraints
and estimate reasonably sized rate constants, their sum is mini-
mized. The LP system is solved using the Python lpsolve package
(93). A wrapper class for lpsolve is included with theMCMcode.

3. Every event is associated with event assignments that can both
specify the physiological effect of the event and set tracking
parameters to measure statistics about the cell cycle progress
(e.g., time for chromosome replication). Some event assign-
ments associated withDNA initiation are listed here as examples.

After DNA replication commences, it is assumed that the
proteins bound to the Ori are rapidly forced off by the opening
of the chromosome replication fork. Thus, we include, e.g., an
event assignment for unbinding of DnaG protein from the
origin of replication,

DnaGboundto�Ori ! 0;

as well as an event assignment for renewal of the cytosolic
DnaG pool.

DnaG ! DnaGþDnaGboundto�Ori �OriGD

Some event assignments reflect changes in the cell’s state. For
example, setting a flag variable to indicate that the chromosome
is no longer methylated indicates that the chromosome is not
immediately ready to start another round of initiation.

flagmeth ! 0

Other event assignments are updates of bookkeeping para-
meters. For example, tDNA-init tracks when chromosome repli-
cation initiation occurs.

tDNA�init ! time

4. To derive initial values for chemical masses, the following pro-
cedure was used (M. Domach, Carnegie Mellon University,
personal communication, October 17, 2007):

(a) The minimal cell is assumed to have an average dry mass of
about 0.2 pg, which is about 75% of the dry weight of
E. coli (87).

(b) Data for the average composition of protein, mRNA,
tRNA, rRNA, DNA, lipids, and metabolites in E. coli, was
gathered (87). These weight fractions were assumed to be
the same for the MCM.
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(c) Cell age is defined as age ¼ t/tD, where t is the time since
the last division and tD is the steady-state doubling time.
A steady-state growth rate mg is also defined. The age
distribution, f(age), for a culture in continuous steady-
state growth with a constant tD was derived by (94) as

fðageÞ ¼ 2mge
�lnð2Þ�age

We find the average age of a culture (i.e., the 50th percen-
tile), by solving the following equation for age50.ðage50

0

fðageÞdðageÞ ¼ 0:5

This yields that the average age of a synchronized, expo-
nentially growing cell population (i.e., age50) is approxi-
mately 0.415*tD.

(a) Assuming the cell is in balanced growth, the population
weighted average mass of a chemical speciesX in the cell
will correspond to when the cell is 41.5% of the way
through the division cycle. Thus, the initial mass can be
calculated from the average mass using the following
relations:

X ¼ X0e
ðlnð2Þ�0:415Þ

X ¼ 1:33 �X0

(b) The average mass of each of the protein, mRNA, tRNA,
rRNA, and metabolites groups, was set to be equal to
the mass fraction calculated in step b times the total
mass selected in step a. Then, the mass at the start of the
cell cycle was assumed to be the average value divided
by 1.33.

(c) The initial mass of DNA was set to the mass of one
complete chromosome, which was based on the mass
of the sequence of the minimal gene set.

(d) The initial mass of membrane lipids was set to be ade-
quate to “envelope” the cytoplasm of the cell.

Acknowledgements

JA gratefully acknowledges funding from the DOE Computational
Science Graduate Fellowship Program (CSGF) of the Office of
Science and National Nuclear Security Administration in the
DOE under contract DE-FG02-97ER25308.

606 M.L. Shuler et al.



References

1. Agapakis CM, Silver PA (2009) Synthetic biol-
ogy: exploring and exploiting genetic modular-
ity through the design of novel biological
networks. Mol Biosyst 5(7):704–713. doi:
10.1039/b901484e, http://dx.doi.org/
10.1039/b901484e

2. Drubin DA, Way JC, Silver PA (2007) Design-
ing biological systems. Genes Dev 21
(3):242–254. doi: 10.1101/gad.1507207,
http://dx.doi.org/10.1101/gad.1507207

3. Purnick PEM, Weiss R (2009) The second
wave of synthetic biology: from modules to
systems. Nat Rev Mol Cell Biol 10
(6):410–422. doi: 10.1038/nrm2698,
http://dx.doi.org/10.1038/nrm2698

4. Leonard E et al (2008) Engineering microbes
with synthetic biology frameworks. Trends
Biotechnol 26(12):674–681. doi: 10.1016/j.
tibtech.2008.08.003, http://dx.doi.org/
10.1016/j.tibtech.2008.08.003

5. Loeb J (1906) The dynamics of living matter.
Macmillan, New York, NY

6. Pohorille A, Deamer D (2002) Artificial cells:
prospects for biotechnology. Trends Biotech-
nol 20(3):123–128

7. Rasmussen S et al (2004) Evolution. Transi-
tions from nonliving to living matter. Science
303(5660):963–965. doi: 10.1126/sci-
ence.1093669, http://dx.doi.org/10.1126/
science.1093669

8. Hanczyc MM, Szostak JW (2004) Replicating
vesicles as models of primitive cell growth and
division. Curr Opin Chem Biol 8(6):660–664.
doi: 10.1016/j.cbpa.2004.10.002, http://dx.
doi.org/10.1016/j.cbpa.2004.10.002

9. Luisi PL, Ferri F, Stano P (2006) Approaches
to semi-synthetic minimal cells: a review. Nat-
urwissenschaften 93(1):1–13. doi: 10.1007/
s00114-005-0056-z, http://dx.doi.org/
10.1007/s00114-005-0056-z
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