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Abstract. Solid tumors recruit and form blood vessels, used for maintenance

and growth as well as for formation and spread of metastases. Vascularization
is therefore a pivotal switch in cancer malignancy: an accurate analysis of its

driving processes is a big issue for the development of treatments. In vitro

experiments have demonstrated that cultured tumor-derived endothelial cells
(TECs) are able to organize in a connected network, which mimics an in vivo

capillary-plexus. The process, called tubulogenesis, is promoted by the activity

of soluble peptides (such as VEGFs), as well as by the following intracellular
calcium signals. We here propose a multilevel approach, reproducing selected

features of the experimental system: it incorporates a continuous model of mi-

croscopic VEGF-induced events in a discrete mesoscopic Cellular Potts Model
(CPM). The two components are interfaced, producing a multiscale frame-

work characterized by a constant flux of information from finer to coarser
levels. The simulation results, in agreement with experimental analysis, allow

to identify the key mechanisms of network formation. In particular, we pro-
vide evidence that the nascent pattern is characterized by precise topological
properties, regulated by the initial cell density in conjunction with the degree
of the chemotactic response and the directional persistence of cell migration.

1. Introduction. In both physiological and pathological conditions, blood vessel
formation and development is a complex and multiscale process, driven by the acti-
vation of endothelial cells (ECs) and essential for a myriad of biological phenomena
(for a review, see [16]). Among others, the vascularization is a pivotal transition in
cancer development. In fact by providing the nutrition and oxygen, it allows malig-
nant cells to grow and remain viable, and, eventually, to cause metastases and enter
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in the circulatory system [19]. The vascular transition is also active in determin-
ing the translation of dormant metastases to an aggressive status [18]. Indeed, the
switch to the angiogenic phenotype leads to a fast progression and to a potentially
fatal stage of fatal stage of the disease, representing therefore an important target
for therapeutic interventions in most types of malignancies. However, despite the
major progresses and promising successes achieved over the past few years in anti-
angiogenic pharmacological therapies, several limitations still occur due to different
factors, as commented in [18, 19, 26] and references therein.

A continuous effort in the development of biomedical therapies is advanced by
multiple in vitro models, which are providing a deeper understanding of selected
underpinning molecular and cellular events coordinated to control tumor-induced
vessel formation, as reviewed in [3, 16, 59]. In particular, recent experimental in-
vestigations have demonstrated that, at the macroscopic morphological analysis,
tumor blood vessels are irregular and dilated and that distinct venules, arterioles,
and capillaries are un-distinguishable [23, 32]. Moreover, they differ from their
“normal” counterpart by their altered blood flow and permeability, and by abnor-
malities in pericytes and in the basement membrane. Therefore, vascular endothelial
cells deriving from tumors (TECs) represent a more adequate model for studying
the mechanisms of malignant vascularization [5, 13, 38]. TECs have been isolated
and cultured from human carcinomas on the basis of membrane markers and ex-
hibit altered genotype, phenotype, and function. They are often aneuploid, display
chromosomal instability and express peculiar genes [15, 63, 73]. In addition, tumor-
derived ECs avoid senescence in vitro and show enhanced proliferation, motility
and overexpression of membrane receptors [14, 15, 38]. As “normal” ECs, TECs
cultured in Matrigel, a commercial product mimicking a natural basement mem-
brane matrix, are able to autonomously organize to form a bidimensional tubular
network, even in the absence of other cell types or positional cues [28], see Fig. 1.
The overall patterning is complete within almost 12 hours, a characteristic time
sufficiently distant from critical events, such as cell mitosis or death, that allows to
assume the cell density conserved. The final structure, which can be geometrically
described as a collection of nodes connected by homogeneously sized chords, is no
longer substantially modified and resembles a primitive in vivo capillary-like plexus,
see again [28]. The process, called in vitro tubulogenesis, is largely mediated by the
activity of chemical morphogens (such as VEGF isoforms) that, similarly to the
case of “normal” ECs (refer to [29, 56, 57, 58, 59]), exert a chemotactic force and,
concomitantly, activate a series of calcium-dependent cascades, regulating the cells
phenotypical behavior. In particular, a specific VEGF-induced protein cascades,
involving protein kinase A, PKA, arachidonic acid, AA, and nitric oxide, NO (see
Fig. 3) and resulting in an increase of intracellular calcium levels, due to the in-
flux of the ion from the extracellular environment, has been well established and
characterized in TEC models [28, 30].

The analysis performed on such experimental systems has revealed the role of
different factors operating in malignant vascular progression. However, innumer-
able other mechanisms, acting at different scales, are far from being completely
elucidated, and require a computational approach. Numerical models and simula-
tions are able to replicate selected features of the in vitro tubulogenesis, allowing
further insights of its driving processes. Indeed, in this work, we propose a theo-
retical multilevel model of the experimental TEC patterning. The cell population
is described at the mesoscopic level with a discrete Cellular Potts Model (CPM), a
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Figure 1. In vitro tubulogenesis of tumor-derived endothelial cells
(TECs). Morphometry of the capillary-like network formed in 12 hours
after cell incubation.

lattice-based Monte Carlo technique which follows an energy minimization philos-
ophy and preserves the identity and the behaviors of single cells [4, 34, 35, 37, 49].
The microscopic VEGF-induced intracellular events are instead approached with
a set of reaction diffusion equations. These two components are integrated and
interfaced together, constituting a hybrid simulation environment characterized by
a constant flux of information from finer to coarser levels, where the kinetics of
the molecular sub-cellular network strongly influence the formation of the macro-
scopic multicellular network. Our model appears a possibly new and biologically
interesting representative in the class of models of blood vessel development: from a
biological view point, the characterization of tumor-derived endothelial cells, instead
of “normal” endothelial cells, with their specific pathways represent an important
development. Moreover, we here employ some interesting improvements and exten-
sions of the CPM (explained in details in [72]): a more accurate representation of
cells, differentiated in their nucleus and cytosolic region and the introduction of a
new and more realistic Boltzmann-like probability function and, most relevantly, of
the microscopic level. Indeed, different published CPMs have already focused on
the in vitro vasculogenesis, providing that relatively simple cell-level mechanisms,
such as adhesion [51], elongation [52], and contact-inhibited chemotaxis [53], are
sufficient to obtain the organization of vascular cells into bidimensional networks.
However, those works have approached the biological problem only from a phe-
nomenological view point, prescribing to each individual a set of rules to follow
during the entire patterning. The authors have therefore neglected the evolution
of the internal state of the cells and of the intracellular dynamics (i.e., calcium
signals, for example) that underlie their phenotypic behavior. At this regard, we
here want to focus on the role played by the intracellular calcium level in affecting
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both the biophysical and biomechanical properties of TECs and, eventually, the
overall formation of the capillary-like structure. The model results reproduce with
good accuracy the formation of a tumor capillary structure in vitro and are able
to characterize its topological properties, with a close comparison with published
experimental observations. In particular, through different sets of numerical real-
izations, we show that the initial density of the overall culture, as well as biophysical
properties of single individuals, such as their calcium-dependent chemical and adhe-
sive strength and the persistent component of their migration, play a fundamental
role in determining the dynamic of network formation and its final configuration.
Such a systematical analysis of the TEC pattern ability has the potential to propose
biomedical approaches which are able to disrupt malignant neovascularization, as
we provide elsewhere [71].

The rest of this paper is organized as follows. In Section 2, we clarify the assump-
tions on which our approach is based. We then show in Section 3, the model ability
to reproduce accurate results with respect to biological evidence, These findings are
finally discussed in Section 4.

2. Mathematical model. The proposed model spans the multiple levels involved
in the tumor capillary-like network formation. Our approach incorporates in fact a
continuous model of the specific VEGF-mediated intracellular cascades in a discrete
phenomenological Cellular Potts Model, which considers TEC migration, adhesion
and cytoskeletal remodeling. The different scales are thus integrated in a hybrid
framework, and directly impact each others: cell biophysical properties are in fact
realistically inherited by microscopic biochemical dynamics.

2.1. Extended Cellular Potts Model. The population of TECs is modeled at
the mesoscopic level using an extended Cellular Potts Model, which realistically
preserves the identity of single individuals, reproducing their behaviors and mutual
interactions. All CPM domains are d-dimensional lattices (i.e., regular numerical re-
peated graphs, with d = 1, 2, 3): however, since we wish to compare our simulations
to experimental cultures, where the vascular patterns are essentially monolayers, in
this work we use a bidimensional domain Ω ⊂ R2. Each lattice site x is labeled by
an integer number, j(x). j can be interpreted as a degenerate spin originally coming
from statistical physics. Subdomains of contiguous sites with identical spin form
discrete objects, which are also characterized by an object type, τ(j). As classically
adopted in CPM models, a neighbor of site x is identified with x′ while its overall
neighborhood with Ω

′

x (i.e., Ω
′

x = {x′ ∈ Ω : x′ is a neighbor of x}). As represented
in Fig. 2, each simulated TEC, i, is defined as a compartmentalized unit, composed
of two subregions which, in turn, are CPM objects: the cell nucleus, a central more
or less round cluster of type τ = N , whose location and geometry is estimated with
experimental images, and the surrounding cytosol, τ = C. Each compartment is
also characterized, as an additional attribute, by the cluster id i, which obviously
identifies the cell it belongs to. The TECs reside in a generalized substrate, a fur-
ther discrete object of type τ = M , which represents the experimental Matrigel.
It is assumed to be static, passive and homogeneously distributed throughout the
simulation domain, forming no large-scale structures as in [51, 52, 53]. The plasma
and the nuclear envelopes are defined as the borders between the cell cytosolic
compartment and, respectively, the medium and the nuclear region.

Simulated TECs move and evolve to iteratively and stochastically reduce a pat-
tern free energy, given by an hamiltonian H, whose expression will be clarified
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Figure 2. Representation of a compartmentalized cell i. Lattice sites
of the nuclear region τ(j(x) = N) are in yellow, lattice sites of the
cytosol in white τ(j(x) = C). The extracellular Matrigel is labeled with
τ = M , and is colored in black. In the zoom view it is possible to see

a sub-plasmamembrane lattice site and its first-nearest neighbors, Ω
′
x.

The borders of x in common with medium sites defined the cell plas-

mamembrane.

below. The core algorithm is a modified Metropolis method for Monte Carlo dy-
namics [37, 55], which is able to implement the natural exploratory behavior of
cells, reproducing their cytoskeletally-driven membrane fluctuations and extensions
of pseudopods. Procedurally, at each time step t, called Monte Carlo Step (MCS,
the basic unit of time of the discrete model), a lattice site, xsource, is selected at
random and assigns its spin, j(xsource), to one of its unlike neighbors, xtarget, also
randomly selected. The net energy difference due to the proposed change of do-
main configuration, ∆H|j(xsource)→j(xtarget) = H(after spin copy)−H(before spin copy),
is then evaluated. Finally, the trial spin update is accepted with an extended Boltz-
mann probability:

P (j(xsource)→ j(xtarget))(t) =

= tanh(Tj(xsource)(t)) min{1, e−∆H|j(xsource)→j(xtarget)
/Tj(xsource)(t)},

(1)

where Tj(xsource)(t), a Boltzmann temperature, is a sort of agitation rate of moving
compartment j(xsource). The specific form of (1) is identified so that it is possible
to treat the cases of frozen or of low motility individuals, for which the probabil-
ity of moving is null or limited even in the presence of favorable energy gradients,
as commented in [72]. Specifically, for every cell i and for τ(j(xsource)) = N ,
Tj(xsource) = TN is a constant low value mimicking the passive motion of the nu-
cleus, which is dragged by the surrounding cytosolic region. For τ(j(xsource)) = C,
Tj(xsource)(t) gives instead a measure of the intrinsic motility of i, which is enhanced
by its intracellular calcium level, as provided by wound healing experiments [30]:

Tj(xsource)(t) = T0

[
Ci(t)

Ci0 + h (Ci(t)− Ci0)

]
, (2)

where Ci(t) =
∑

x∈i C
i(x, t) is the total calcium level inside cell i, the individual

j(xsource) belongs to. Ci0 =
∑

x∈i C
i
0(x) =

∑
x∈i C0 is the basal total amount of the
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ion (the level below which the cell dies, for its estimation see the Appendix), while
T0 corresponds to the basal motility of the TECs (i.e., in resting conditions), and
T0/h is their asymptotic motility for saturating Ca2+ concentrations. The specific
form of (2) results in significative increments of cell motility in response to high
intracellular levels of calcium (i.e., the asymptotic motility of individuals is twice
its basal value): this choice is made to model the enhanced migratory capacities of
TECs w.r.t. their “normal” counterparts upon agonist stimulations.

For any given time t the pattern free energy, whose minimization, as seen, drives
the system evolution, is:

H(t) = Hshape(t) +Hadhesion(t) +Hchemotaxis(t) +Hpersistence(t). (3)

Hshape models the geometrical attributes of cell subunits. They are written as
non-dimensional relative deformations in the following quadratic form:

Hshape(t) = Hvolume(t) +Hsurface(t) =

=
∑
i,j

[
κi,j(t)

(
vi,j(t)− Vτ(j)

vi,j(t)

)2

+ νi,j(t)

(
si,j(t)− Sτ(j)

si,j(t)

)2
]
,

(4)

depending on the actual volume and surface of the compartments, vi,j(t) and si,j(t),
as well as on the same quantities in the relaxed state, Vτ(j) and Sτ(j), which cor-
respond to the initial measures of cell nucleus and cytosol. The formulation of (4)
allows to have finite energetic contributions, as well as a blow up in the case of
vi,j(t), si,j(t) → 0. This means that for instance an infinite energy is needed to
shrink a cell to a point. κi,j(t) and νi,j(t) are energy penalties referring to cell
mechanical moduli, which are in units of energy and directly related to intracellular
microscopic quantities. In particular, κi,j(t) ∈ R+ refers to volume changes of the
relative compartment, while νi,j(t) ∈ R+ represents its inverse compressibility (its
rigidity, i.e. the measure of the ease with which it is allowed to remodel). Assum-
ing that TECs do not grow during patterning (we do not include any nutrients,
as done in similar theoretical works [51, 52]), the fluctuations of their volume are
kept negligible with high constant values of κi,j = κ0, for any i and j. Moreover,
cell nuclei have a low elasticity, and thus for j : τ(j) = N , νi,j = νN is another
high constant quantity. Since intracellular calcium ions have been demonstrated to
facilitate cystoskeletal reorganizations (refer to [8] and to [31], where the authors
have specifically analyzed the influence of calcium signals on the actin dynamics in
a TEC model), for any i and for j : τ(j) = C, we set:

νi,j(t) = ν0 exp

(
−kC

i(t)

Ci0

)
, (5)

where ν0 is the intrinsic cells’ resistance to compression at the basal calcium level,
Ci0, and Ci(t) is the actual total calcium amount of cell i, see (2).
Hadhesion is the general extension of Steinberg’s Differential Adhesion Hypothesis

(DAH) [37, 77, 78]. In particular, it is differentiated in the contributions due to
either the generalized contact between subunits belonging to the same cell, or the
effective adhesion between membranes of different cells:

Hadhesion(t) = Hint
adhesion(t) +Hext

adhesion(t) =

=
∑
x,x′

[
J intC,N (δi(x),i(x′)(t))(1− δj(x),j(x′)(t)) + JextC,C(x,x′, t)(1− δi(x),i(x′)(t))

]
, (6)
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where x, x′ represent two neighboring lattice sites, δx,y = {1, x = y; 0, x 6= y} is the
Kronecher delta, and the Js are binding energies per unit of area. In particular,
J intC,N ∈ R− is a constant high tension which prevents the cells from fragmenting.

JextC,C(x,x′, t) represents instead the local adhesive strength of the interface ∂x∩∂x′
between cells i and i′: from a statistical point of view it is a measure of the prob-
ability of the formation of local intercellular VE-cadherin-VE-cadherin complexes,
which depends on the quantity of active exposed molecules on either sides of the
interface. Since VE-cadherin activity is enhanced by calcium ions, which generate
clusters of activated molecules, we set:

JextC,C(x,x′, t) = J0 exp

(
−p C

i(x, t)Ci
′
(x′, t)

Ci0(x)Ci0(x′)

)
, (7)

where Ci(x, t) and Ci(x′, t) are the local calcium levels, and Ci0(x) = Ci0(x′) = C0

the local basal concentration of the ion. J0 represents the typical adhesive force of
resting TECs, estimated by qualitative observations of experimental cultures (see
Appendix). Notice that we do not consider an adhesion energy between the cells
and the simulated Matrigel, since such contact interactions do not play a major role
in the early stages of the network formation (we remainder the reader to Sec. 4 for
a more complete discussion).
Hchemotaxis reproduces the effect of cell preferential movement in the direction

of zones with higher concentration of morphogen, and is implemented with a local
linear-type chemotactic term [69]:

∆Hchemotaxis = µich(xsource, t) [Q(xtarget, t)−Q(xsource, t)] . (8)

xsource and xtarget are, respectively, the source and the final lattice site randomly
selected during a trial update in a MCS, cf. (1), and, in particular, xsource is a
cytosolic site of cell i and xtarget is one of its neighboring medium sites. µich ∈ R+

represents the local chemical sensitivity of the cell due to the activity of VEGF
surface receptors, whose avidity is enhanced by free calcium ions:

µich(xsource, t) = µch,0

[
Ci0(xsource) + Ci(xsource, t)

Ci0(xsource) + q Ci(xsource, t)

]
, (9)

where µch,0 is a basal intensity of the chemotactic response and Q(x, t) =
∑

x′ V (x′,
t), where x ∈ {xsource,xtarget} and x′, is a medium first-nearest neighbor of x,
evaluates the local extracellular level of VEGF sensed by the moving cell membrane
site. Relation (9) is a strong improvement of this work w.r.t. in classic CPMs (see,
for example [51, 52, 53]), as we briefly sketch in the following:

• in published CPM applications, all the cells of the same type feature the same
chemical sensitivity, despite of their individuality and internal state (here
defined by the intracellular calcium level);

• in those works, each single cell experiences a homogeneous chemotactic re-
sponse over the entire membrane, hiding relevant microscopic inhomogeneities
such as the clusterization of VEGF receptors or their local agonist-induced
activation which, as we will see in Sec. 3, is fundamental for polarization
mechanisms;

• finally, in the classical description, the chemical strengths are constant over
time and they do not adapt during the simulated process. This is an un-
plausible situation, since real cells constantly change their biophysical and
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biomechanical properties as a consequence of continuous internal and external
stimuli (we will comment this point again in Sec. 3).

The chemotactic response of TECs is similar, from a mechanical view point, to that
of “normal” ECs, except from an enhanced magnitude, due to the overexpression to
VEGF receptors [14, 38]: this is taken into account in (9) by setting an asymptotic
chemical sensitivity which is twice of its basal level. Moreover, as in normal ECs,
the TEC chemotactic strength is also mediated by active VE-cadherin molecules,
which, as seen, cluster at cell-cell interfaces acting as local inhibitors of pseudopo-
dal extensions. This mechanism, called contact inhibition of chemotaxis, has been
widely demonstrated to be necessary for capillary network formation, and is mod-
eled by imposing µch = 0 at cell-cell interfaces as done in similar theoretical works
[51].

Finally, Hpersistence models the persistent motion characteristic of vascular cells:

Hpersistence =
∑
i

µipers(t)||vi(t)− vi(t−∆t)||2, (10)

where vi is the instantaneous velocity of the center of mass of cell i, and ∆t = 1
MCS. µpers controls the cell persistence time and is:

µipers(t) = µpers,0

[
Li(t)

L0
− 1

]
, (11)

where Li(t) is the current measure of the longer axis of cell i, and L0 is the initial
cell diameter. (11) describes the fact that, after analogous chemical stimulations,
elongated vascular cells have seen to have a longer persistent movement than round
cells [41]. This is due to the increasing time needed by polarized actin filaments to
reorient into a new direction. In particular, Li(t) = L0 implies that µipers(t) = 0,
and thus that cell i is characterized by an uncorrelated Brownian motion.

Table I - Parameters Involved in the Cell-Level Model

Parameter Description Model Value

VN area of nuclear compartment 130 [µm2]
SN perimeter of nuclear compartment 35 [µm]
VC area of cytosolic compartment 1150 [µm2]
SC perimeter of cytosolic compartment 150 [µm]
T0 basal TEC motility 3.5
TN generalized motility of the nucleus 0.25
h Michaelis-Menten coefficient for T 1/2
κ0 volume elasticity of cell compartments 20
νN surface elasticity of nuclear compartment 20
ν0 intrinsic TEC elasticity 12
k exponential coefficient for νi,C 1

Jint
C,N generalized nucleus-cytosol adhesion -15 [µm−1]

J0 basal adhesion strength 5 [µm−1]
p coefficient for Jext

C,N 1/2
µch,0 basal chemotactic strength 0.5
q Michaelis-Menten coefficient for µch 1/2

µpers,0 basal inertia strength 1.2

2.2. Continuous model of VEGF-induced calcium-mediated dynamics. To
build a suitable model of proangiogenic chemical events in the TEC system, we start
from the following set of assumptions, see Fig. 3 for a diagrammatic representation:

• VEGF is autocrinally released by TECs, and diffuses and degrades in a finite
time throughout the extracellular environment;

• single molecules of morphogen are sequestered by the cells (via their surface
tyrosine kinase receptors), and initiate a sequence of reactions culminating
in the activation (via cAMP release) of protein kinase A (PKA), and the
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Figure 3. Schematic representation of VEGF-induced signaling cas-
cades in the control of tumor-derived tubulogenesis. VEGF are inter-
nalized by tyrosine kinase receptors and activate a series of intracellular
events inducing the activation of protein kinase A and the release of
arachidonic acid (AA) and nitric oxide (NO) respectively. These in-
tracellular messengers are then able to open plasma-membrane calcium
channels leading to the efflux of the ion from the extracellular environ-
ment, refer to [28, 30].

production of arachidonic acid (AA) and nitric oxide (NO) in the sub plas-
mamembrane regions [42, 56, 57, 80];

• within cell cytosol NO production is triggered by PKA, whose recruitment, in
turn, is AA-mediated;

• NO and AA open the relative and independent calcium channels in the cell
plasmamembrane, leading to extracellular calcium entry [28, 29, 56, 57, 80, 83].
In particular, in the activity of AA-dependent channels a permissive role is
played by PKA [30, 56, 57];

• calcium ions, reversibly buffered to proteins such as calmodulin or to mi-
tochondria [7, 9, 43], can be extruded back from cell by plasmamembrane
calcium ATPase and Ca2+-Na+ exchangers [36, 40, 82].

2.2.1. Evolution of intracellular chemicals. Following the above clarified hypoth-
esis, for each cell i, the current levels of PKA, P i(x, t), AA, Ai(x, t), and NO,
N i(x, t), are controlled by a system of reaction-diffusion equations, which model
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their biosynthesis, diffusion within the cytosol, and natural decay:

∂Ai(x, t)

∂t
= DA∇2Ai(x, t)︸ ︷︷ ︸

diffusion

−λAAi(x, t)︸ ︷︷ ︸
decay

in i;

Ai(x, t) = αA
r(x, t)

βA + r(x, t)
at the internal boundary of i;

∂P i(x, t)

∂t
= DP∇2P i(x, t)︸ ︷︷ ︸

diffusion

−λPP i(x, t)︸ ︷︷ ︸
decay

+ γP
Ai(x, t)

ζP +Ai(x, t)︸ ︷︷ ︸
AA−induced production

in i;

P i(x, t) = αP
r(x, t)

βP + r(x, t)
at the internal boundary of i;

∂N i(x, t)

∂t
= DN∇2N i(x, t)︸ ︷︷ ︸

diffusion

−λNN i(x, t)︸ ︷︷ ︸
decay

+ γN
P i(x, t)

ζN + P i(x, t)︸ ︷︷ ︸
PKA−mediated production

in i;

N i(x, t) = αN
r(x, t)

βN + r(x, t)
at the internal boundary of i;

(12)
where Dz and λz with z = P,A,N are, respectively, the diffusion coefficients and
the degradation rates of the chemical messengers, which are homogeneous and con-
stant in cell cytosolic region. The boundary conditions in the system (12) describe
the production/activation, at the internal part of cells membranes, of the signal
transduction substances, which is mediated by the number of sequestrated VEGF
molecules, given by

r(x, t) =
∑

x′∈Ω′x:τ(j(x′))=M

B(x′, t), (13)

where B(x′, t) will be defined in details below, see Eq. (19). The last term in the
equation of PKA evolution models its AA-induced recruitment, while the last term
in the equation of for NO dynamics accounts for its biosynthesis, mediated by AA
via PKA itself: both are described by other saturating functions. In model (12), we
do not include the kinetics of multiple signal transduction proteins, that are known
intermediates in VEGF-induced pathways, but that do not strongly influence their
final outcome. Moreover, notice that the the volume of each cell i, as well as its
boundary, is time-dependent at it may deform at each MCS.

For each cell i, the intracellular level of calcium, Ci(x, t), is determined by a
balance of entry, extrusion, and buffering [27, 60, 76]:

∂Ci(x, t)

∂t
= Kbuff DC∇2Ci(x, t)︸ ︷︷ ︸

diffusion

in i;

nx · ∇Ci(x, t) = F iA(x, t) + F iN (x, t)︸ ︷︷ ︸
influxes

−F iout(x, t)︸ ︷︷ ︸
efflux

at the internal boundary of i,

(14)
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where nx is the unit outward normal to the external boundary of site x. The coef-
ficient of diffusion, DC , is assumed to be homogeneous throughout all cell subunits
(the diffusion of calcium across the nuclear envelope is taken to occur through non
selective pores, whose permeability is proportional to the diffusion constant of the

ion in the cytosol [22, 60]), while the scaling factor Kbuff =
Koff

Koff+KonbT
models the

activity of intracellular endogenous buffers, which have a significant impact on the
overall calcium dynamics, contributing to decrease the level of the ion [1, 9, 10, 12].
In particular, bT is the total concentration of buffer sites (considered constant and
experimentally estimated in different cell types), Kon is the rate of calcium uptake,
Koff the rate of its release. However, the value of Kbuff will be discussed in the Ap-
pendix. For each individual, the calcium fluxes with the extracellular environment
are considered as boundary conditions. In particular, the overall calcium efflux from
cell i incorporates the extrusion of the ion both via PM ATP-ase and Ca2+-Na2+

exchangers. In order to avoid over-complications, we approximate its total rate as
a single Michaelis-Menten form:

F iout(x, t) = kC

[
Ci(x, t)

Cout + Ci(x, t)

]
, (15)

where kC is the maximal rate of calcium extrusion, and Cout the calcium concen-
tration at which the rate of efflux is half maximal. F iA, and F iN model the Ca2+

influx distributions from the extracellular environment through independent chan-
nels, which are assumed to be saturably dependent on the concentration of the
relative second messenger:

F iA(x, t) = FA,max

[
P i(x, t)Ai(x, t)

qA +Ai(x, t)

]2

; (16)

F iN (x, t) = FN,max

[
N i(x, t)

qN +N i(x, t)

]2

. (17)

We use a quadratic exponent to fit experimental fluxes measured in [30, 56, 60].
Notice that (16) takes into account of the permissive role played by PKA in the
activity of the AA-dependent channels. In our approach we neglect the existence of
co-modulated channels and of potential cross regulations between them. Moreover,
we assume no calcium flows across intercellular membranes.

2.2.2. Evolution of extracellular chemicals. The extracellular spatial profile of
VEGF, V (x, t) satisfies:

∂V (x, t)

∂t
= DV∇2V (x, t)︸ ︷︷ ︸

diffusion

− λV V (x, t)︸ ︷︷ ︸
degradation

outside cells;

V (x, t) = φV︸︷︷︸
production

− B(x, t)︸ ︷︷ ︸
consumption

at the external boundary of cells;

nx · ∇V (x, t) = 0 at the boundary of domain Ω.
(18)

DV and λV are, respectively, the diffusion coefficient and the characteristic degra-
dation rate of the growth factor, which are homogeneous throughout the simulated
Matrigel [74]. The release of VEGF from TEC membranes is at a constant rate
φV per unit of time, see also [74]. B models instead the amount of VEGF that
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is sequestered by cell surface tyrosine kinase receptors. Locally, it is the smallest
between the actual available molecular concentration V and the maximal amount
of VEGF that can be captured by the cells per unit of time [6, 47], which we define
with βV and whose estimation will be clarified in the Appendix:

B(x, t) = min{βV , vV (x, t)}, (19)

where pre-factor v is in units of time.
Finally, the extracellular level of calcium evolves according to:

∂Cext(x, t)

∂t
= DC∇2Cext(x, t)︸ ︷︷ ︸

diffusion

outside cells;

nx · ∇Cext(x, t) =
∑

x′∈Ω′x:τ(j(x′))=C

−F iA(x′, t)− F iN (x′, t)︸ ︷︷ ︸
fluxes to cells

+ F iout(x
′, t)︸ ︷︷ ︸

fluxes from cells


at the external boundary of cells;

nx · ∇Cext(x, t) = 0 at the boundary of domain Ω,
(20)

where, as usually, nx is the unit outward normal to the external boundary of site
x. In particular, we use no-flux conditions at the external boundary of the domain,
while the other flux distributions are characterized in Eq. (14).

Table II - Parameters Involved in the Microscopic Model

Parameter Description Model Value

DV VEGF diffusion constant 10 [µm2s−1]

λV VEGF on-rate degradation constant 1.8 · 10−4 [s−1]

φV VEGF on-rate secretion constant 0.78 [h−1]
βV maximal rate of VEGF internalization 0.06 [pg/cell/h]

v VEGF internalization coefficient 1 [h−1]

DA AA diffusion constant 10 [µm2s−1]

λA AA on-rate secretion constant 30 [s−1]

αA maximal rate of VEGF-dependent AA release 30 [µMs−1]
βA Michaelis-Menten constant for VEGF-dependent AA release 1 [µM]

DP PKA diffusion constant 30 [µm2s−1]

λP PKA on-rate degradation constant 23 [s−1]

αP maximal rate of VEGF-dependent PKA release 30 [µMs−1]
βP Michaelis-Menten constant for VEGF-dependent PKA release 1 [µM]

γP maximal rate of AA-dependent PKA recruitment 30 [µMs−1]
ζP Michaelis-Menten constant for AA-dependent PKA recruitment 1 [µM]

DN NO diffusion constant 3300 [µm2s−1]

λN NO on-rate degration constant 0.1 [s−1]

αN maximal rate of VEGF-dependent NO release 30 [µMs−1]
βN Michaelis-Menten constant for VEGF-dependent NO release 1 [µM]

γN maximal rate of NO release 1.5 [µMs−1]
ζN dissociation constant between PKA and eNOS 0.5 [µM]
C0 basal cell calcium level 0.05 [µM]

Cext,0 extracellular calcium level 2000 [µM]

DC diffusion constant of Ca 220 [µm2s−1]

kC maximal rate of calcium efflux 24.7 [µMs−1 ]
Cout threshold concentration for calcium extrusion 0.32 [µM]

FA,max maximal rate of AA-dependent calcium influx 6 [s−1]

FN,max maximal rate of NO-dependent calcium influx 4.5 [s−1]
qA Michaelis-Menten constant for AA-dependent influx 2 [µM]
qN Michaelis-Menten constant for NO-dependent influx 5 [µM]

Koff dissociation constant between buffers and Cac 300 [s−1]

Kon on-rate constant of Cac buffering 100 [µM−1s−1]
bT total buffer concentration 450 [µM]
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3. Simulations and results. Our model framework is implemented with a modi-
fied version of the open-source Compucell3D1 environment [35, 67], which is able to
integrate all the proposed biological submodels, while maintaining their modularity.
The grid for the numerical solution of the PDEs is in fact matched with the CPM
lattice while, at every time step, each computational module is used as the initial
condition for the others. Indeed, the main lines of the computational algorithm are
as follows:

• the discrete CPM evolves through a MCS, following the rules given in Eq. (1);
• the local quantities of the chemicals are computed, basing on the new cell

configuration. In particular, after the spin flip, the target site, xtarget, is
assigned the same concentrations of the chemicals as the moving source site,
xsource. For example, if a medium site xtarget is occupied by a site, xsource, be-
longing to cell i, it results that Ai(xtarget, t) = Ai(xsource, t), N

i(xtarget, t) =
N i(xsource, t), P

i(xtarget, t) = P i(xsource, t) and Ci(xtarget, t) = Ci(xsource, t),
while, obviously, V (xtarget, t) = 0;

• the continuous equations of the chemicals are rederived, according the new
distribution of the chemicals themselves and to the new cell boundaries, and
solved, using a finite element scheme, characterized by 10 diffusion time steps
per MCS (this temporal step is sufficiently small to guarantee numerical sta-
bility);

• the biophysical properties of each individual (i.e., Eqs. (2), (5), (7), (9), and
(11)) are updated, given its new intracellular state and the new configuration
of the lattice;

• the Hamiltonian functional in Eq. (3) is updated, and the system is ready to
evolve again.

The domain Ω consists in a 500 × 500 square lattice, where each site is equivalent
to 4 µm2. Ω therefore represents a section of a 24-well plate of size LΩ = 1 mm. The
experimental time is set to 10 s per MCS: for this choice the simulated TECs move
with nearly the experimental velocity of vascular cells (≈ 25 µm/h [53, 65]) and the
overall patterning has a comparable time scale (≈ 12 h [28]). Initially, we randomly
distribute n = 150 TECs in Ω, reproducing a typical experimental cell density [28].
Each individual has an un-polarized morphology with a diameter of 40 µm (20 lattice
sites), while its nucleus is a central and round cluster of 6 µm (3 sites) of radius:
these measures agree with the most usual geometries observed in in vitro TEC
cultures [28, 30]. A single cell is therefore a moving subdomain, which extends over
an area of nearly 320 sites (≈ 1280 µm2): such a spatial resolution allows to have a
good approximation in the resolution of the spatio-temporal intracellular dynamics
without slowing down too much the speed computational machinery. Cells do not
undergo mitosis or death during the entire simulations: in this way, consistently with
the experimental observations given in Sec. 1 and with other similar approaches
[51, 52, 53], the density of the culture is conserved during the overall process. The
biological variables are initiated at their physiological levels: in particular, there
are no activated second messengers within the cells, and the intracellular basal
calcium concentration is assumed to be spatially homogeneous (see Appendix). In
the extracellular domain, the initial level of Ca2+ is set equal to Cext,0, while there
are no VEGF molecules. All others model parameters are listed in Tables I and II.

1http://www.compucell3d.org

http://www.compucell3d.org
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Figure 4. Tumor-derive capillary-like network formation. The simu-
lation initiates with 150 quiescent TECs over domain Ω, a square lattice
of size LΩ = 1 mm. Representative images show a time-sequence of the
tubule organization. Red scale bar is 100 µm long.

Figure 5. Dynamical evolution of TEC network formation. Time-
evolution of the number of lacunae and the number of nodes during
patterning in both simulations and experiments. Error bars for com-
putational values show standard deviations over 20 simulations, while
errors bars for experimental values show standard deviations over 8 re-
alizations. In vitro data have been evaluated from experimental images
periodically recorded (i.e., at 6 h-intervals) during tubulogenic processes
of cultures of endothelial cells derived from human breast carcinomas
(B-TECs), seeded onto Matrigel-coated wells and stimulated with an-
giogenic factors, as provided in [28].
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The model results provide a remarkable agreement with experimental observa-
tion, both in the final pattern structure, see Figs. 4 and 1 for a comparison, and in
the dynamical evolution, see Fig. 5. In particular, simulated TECs autonomously
organize into a typical capillary-like plexus, where connected one-two cells-wide
chords enclose lacunae, which are almost uniform in size. Information about the
overall pattern formation are instead obtained by counting the numbers of nodes
and lacunae at different times: as represented in Fig. 5 both of them quickly drop
and then slowly stabilize. This is due to the fact that the smaller lacunae shrink and
collapse and the unstructured cellular branches adhere and align to form a single
structure. As a further quantitative analysis of the formed network, we measure its
average metric and topological properties. The pattern features typical intercap-
illary distances (i.e., the mean diameters of lacunae) ranging from 120 µm to 250
µm, and a mean chord length (measured as the segment from one node to another)
of 180 ± 10 µm. The geometrical description of the emerging structure is in good
agreement with the experimental analysis provided in [28] on a culture of endothelial
cells derived from human breast carcinomas (B-TECs), plated on a growth factor-
reduced Matrigel and stimulated with angiogenic factors. Moreover, the network
sizes captured by our model are surprisingly consistent also with those measured
in the case of tubulogenic assays performed with “normal” endothelial cells (i.e.,
HUVECs, human umbilical vein EC, see [74]). In particular, these natural length
scales have been demonstrated to be dictated by the effective range of cell-to-cell
interactions, which is mediated by the release of the soluble VEGF (in particu-
lar by its diffusion coefficient and decay rate, see again [74]). Such characteristic
measures of a bidimensional capillary pattern (both tumor-derived or “normal”)
are biologically functional and instrumental for an optimal metabolic exchange: a
coarser structure would be in fact unable to differentiate to form the lumen, while
an immature and finer net would be obviously usefulness, refer to [21, 39].

Focusing on the trajectory of single cells, similarly to the experimental pictures
in [74] for HUVECs, Figure 6 shows that the motion is directed towards zones of
higher concentrations of morphogen, maintaining a directional persistence: a ran-
dom component is of course present, however it is not predominant. Such a char-
acteristic migration, which is the combination of chemotaxis and persistence, has
been experimentally demonstrated to be fundamental to produce capillary chords
in physiological cases as well, while the slower sideaway fluctuations of cells have
been shown to be responsible of pattern coarsening, when single branches connect
each other forming a structured network [53, 74]. Figure 6 captures also the elon-
gation process of TECs, which undergo a gradual transition from the initial round
stationary state to a migratory bipolar morphology, with clearly distinguishable
leading and trailing surfaces dictating the direction of motion. It is useful to un-
derline that the polarization of migrating individuals has not required any a priori
assumptions or prescribed rules on their length (as commonly done in similar mod-
els, see [52]). In the presented approach, it in fact emerges as the natural result
of the interplay between the local chemotactic-induced membrane extension at the
front of the cells (impossible with the homogeneous chemical strength used in those
approaches) and the mechanical properties given to their compartments, with a
stiff nucleus and a more fluid cytoplasm. In particular, the exogenous stimulus
causes the cell plasmamembrane to locally protrude in the direction of increasing
VEGF gradients, with a speed of protrusion proportional to the modulus of the lo-
cal chemical strength itself (for instance, in any CPM model the simulated objects
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Figure 6. Magnification of four representative single-TEC motion tra-
jectories obtained from a time-lapse simulation. The initial (i.e., at 0 h)
position of individuals is labeled with 1, while the final (i.e., at 12 h) with
2. Each segment tracks a displacement of 2 hours. In the background
the concentration field of VEGF is pseudocolor-scaled so that the max-
imum level is red and minimum level is blue. The TECs move in the
directions of higher morphogen concentrations, displaying a persistent
directional migration. The image also captures the polarization process
typical of vascular cells: it is useful to underline that cell elongation is
realistically reproduced in the model, as it emerges as the natural con-
sequence of the interplay between the calcium-induced reorganization of
the cell cytoskeleton and the VEGF chemotactic stimulus.

experience an implicit drag force from the lattice, and thus they have Aristotelian
dynamics, refer to [4, 50] for more detailed comments). Pushed by the leading
front, the overall cytosolic region, whose elasticity and mobility increase due to
the concomitantly calcium accumulation, then deforms and moves forward, while
pulling onto the nucleus with the same force. The nucleus (which, as a CPM object,
also follows Aristotelian dynamics), as a consequence of its rigidity, moves with a
lower velocity than the surrounding cytosol and lags behind, creating the polarized
morphology (see [70] for a detailed explanation).

The model allows also an accurate analysis of intracellular calcium events during
the overall tubulogenic process. In particular, as depicted in Fig. 7, our simulations
show that VEGF-evoked Ca2+ signals are clearly detectable in the early phases of
the patterning, when TECs are not well connected in a mature network, while when
the tubules are more structured they are significantly downregulated. The peculiar
temporal evolution of calcium signals has been observed also in in vitro assays [28]
and may play a specific role in transducing information during the different phases
of the process [59]. At this regard, even though experimental models have not yet
shed light on the molecular mechanisms underlying such a decay in calcium events,
our approach could suggest a simple and plausible functional explanation. The
initial dramatic increase in intracellular calcium levels is in fact necessary for the
enhancement of cell migratory properties (see Eqs. (2) and (9)), which is in turn
fundamental in the first stages of the patterning, as the TECs have to efficiently
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Figure 7. Time-evolution of VEGF-induced intracellular calcium dy-
namics. Calcium signals are clearly detectable at the early stages of
tumor capillary-like formation, while they are down-regulated in the fi-
nal phases of the process, when the network is more structured. Red
scale bar is 100 µm long.

move and interact. Subsequently, when the network is mature, the positions of cells
are stabilized in the structure and, without the necessity of a significant further
locomotion, their migratory capacities can be partially inactivated and, therefore,
the cytosolic Ca2+ can decrease until almost its basal level. It is useful to notice
that the use of a constant chemotactic strength (i.e., as in classical CPMs) would
have unrealistically affected the stabilization of the structure, since the cells would
have continued to move following the external chemical stimulus, likely detaching
from each other. The regulation of Ca2+-dependent mechanisms may thus represent
an important target for therapeutic strategies, which aim at disrupting malignant
vascularization and, eventually, at inhibiting tumor development as experimentally
provided in [61, 64] and theoretically demonstrated by us in [71].

Up to now we have shown the model ability to start from realistic initial data and
foresee the dynamics of tumor tubulogenesis consistently with respect to published
experimental works. We now focus on the pattern dependence from some critical
quantities. First, we perform simulations by varying the initial cell number, see Figs.
8 and 9. Below a critical value, n ≤ nc1 = 100, we observe the formation of groups
of disconnected structures, while, by increasing n, a single connected network forms.
In particular, for a wide range of cell densities, n ∈ (100 ; 300), the typical length
of chords and size of lacunae remain approximately fixed, while the chord thickness
grows to accomodate the increasing number of cells, and, consequently, the number
of lacunae slightly decreases. Finally, for n > nc2 = 300, we find a continuous
carpet of cells intersparsed by holes. Interestingly, this phenomenon resembles to the
percolative and Swiss cheese transitions observed in the development of physiological
vasculatures [33, 74]: therefore such a topological property is of biological relevance
also for tumor-derived vascular cells, and may be directly linked to the efficiency of
the nascent capillary plexus.

As a further validating prediction, we study TECs organization in the case of a
direct inhibition of the chemotactic mechanism, by imposing µich = 0 for each cell i
in Eq. (8). As represented in Fig. 10A, the resulting simulation reproduces a clear
disruption of network assembly, with the formation of poorly structured vascular
islands, similar to those experimentally obtained by extinguish VEGF gradients, for
example, in the case of “normal” ECs, by adding saturating amounts of exogenous
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Figure 8. Percolative property of tumor-derived endothelial cells. Fi-
nal patterns (i.e., after 12 h) formed by initially different numbers of
cells. (A) n= 50, (B) n=150, (C) n=200, (D) n=300, (E) n=400, and
(F) n=500. Except from the initial cell density all simulations use the
same standard parameter setting of the realization in Fig. 4. Red scale
bar is 100 µm long.

Figure 9. Percolative and “Swiss cheese” transition of tumor-derived
endothelial cells. Topological properties of the pattern as a function of
the initial cell density. Error bars show standard deviation over 20 sim-

ulations.

morphogen [52, 53, 74]. In particular, an accurate analysis of cell tracks shows
that, although maintaining a certain degree of directional persistence (due to the
term Hpers in (3)), cell movement is completely uncorrelated from the directions
of chemical gradients, see Fig. 10B. In particular, migrating individuals feature an
un-polarized morphology during the entire patterning: without experiencing the
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Figure 10. Inhibition of network organization by disrupting cell
chemotactic response (i.e., imposing µi

ch = 0 for each i in Eq. (8)).
In panel (A), we observe the formation of poorly differentiated vascu-
lar islands. As usually, the initial cell number is n = 150 while all the
other model parameters are the same of the basic simulation in Fig. 2.
Red scale bar is 100 µm long. Panel (B) reproduces the magnification
of four representative single-TEC motion trajectories obtained from the
time-lapse simulation. The initial (i.e., at 0 h) position of individuals is
labeled with 1, while the final (i.e., at 12 h) with 2. Each segment tracks
a displacement of 2 hours. In the background the concentration field of
VEGF is pseudocolor-scaled so that the maximum level is red and mini-
mum level is blue, as in Fig. 6. The motion of cells is uncorrelated from
the directions of high VEGF concentration, as they do not experience the
chemical force. Moreover, in the absence of the chemotactic stimulus,
the individuals do not elongate, remaining in a stationary un-polarized
morphology.

Figure 11. Inhibition of network organization by disrupting cell per-
sistent movement (imposing µi

pers = 0 for each i in Eq. (10)), (A) panel,

and cell-cell adhesive interactions (setting Jext
C,C = 0 for each cell-cell in-

terface in Eq. (6)), (B) panel. In both case the initial cell number is
n = 150, while all the other model parameters are the same of the basic
simulation in Fig. 4. Red scale bar is 100 µm long.
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chemical stimulus, their membrane are in fact not able to protrude in a preferred
direction, but isotropically fluctuate in the environs. The inhibition the cell per-
sistent movement, with µipers = 0 for all i in Eq. (10), produces instead clumped,
stunted and somewhat immature vascular sprouts. They are typically thick (3-4
cells wide) and characterized by large intervascular spaces, see Fig. 11A. Finally,
the disruption of adhesive intercellular interactions (i.e., JextC,C = 0 for each cell-cell

interface in Eq. (6), the computational counterpart of anti-VE-cadherin antibodies)
results in a dispersed cellular population, see Fig. 11B, as provided in [52] also for
“normal” ECs.

4. Discussion. Vascular transition is a fundamental step in cancer development
and consists of an intricate and multilevel network of driving mechanisms. In par-
ticular, a series of molecular events strongly regulates the behavior and interactions
of tumor-derived endothelial cells, and, ultimately, their ability to organize in a
vascular plexus. These events are largely mediated by angiogenic factors (such as
VEGF isoforms [20]) and calcium plays an important role as a signal transducer
[28, 58, 59, 61]. However, the process of malignant vascularization is still not fully
clarified and a deep understanding of its multiscale events represents therefore a
tremendous challenge in cancer treatment, giving rise to multiple experimental and
computational models [3, 16].

In particular, different CPM works have provided a complete description of the
minimal set of phenomenological processes required for the formation of a vascular
network, see [51, 52, 53]. These approaches have been used as a useful starting point
for the construction of a model which aimed at analyzing the component mecha-
nisms of the patterning, not only at the cellular scale but also at the microscopic
level. In order to achieve these insights, with respect to the above-cited models, we
have made steps further both focusing on tumor-derived ECs and incorporating in
the classical CPM approach a continuous model of their specific intracellular bio-
chemical dynamics. For instance, the addition of the microscopic level has allowed
us to derive the TEC biophysical properties and behavior from their evolving inter-
nal state, without the use of a set of a priori rules, which is common in literature.
The resulting model has appeared to be quite successful in describing experimental
results reproducing with a high level of confidence a TEC tubulogenic assay, with a
number of parameters which are under control and biologically significant. The evo-
lution of the cell culture has been evaluated until 12 h, which has allowed to provide
a coherent comparison with the experimental counterparts. In particular, the final
patterns reproduced in Figs. 4, 8, 10, and 11 have represented quasi-steady states
of the system, as further iterations of the algorithm would have only resulted in neg-
ligible modifications of those morphologies. The system, in the absence of global
minimum configurations in which stabilizing (they could not exist in our model be-
cause of the presence of the chemical and the persistence terms in the hamiltonian
and, especially, of periodic boundary conditions in the domain), would have in fact
fluctuated around the presented configurations, which were rather characterized by
local energetic minima. The model has been able to characterize the geometrical
properties of the tumor capillary plexus, suggesting its dependence on the cell den-
sity. An overcrowded population of malignant endothelial cells would in fact alter
the development of a functional vasculature, while an initial cell number below a
well-defined range is not permissive for the formation of a mature and structured
network. Moreover, our simulations have predicted that an abnormal capillary-like
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bed is also caused by the abrogation of cell chemotactic response, as well as of their
persistence in motion and adhesive interactions. Such results could in principle give
rise to potentially efficient biomedical strategies that aim at disrupting tumor vas-
cularization [71]. In particular, along the text, we have underlined the model results
which have been previously carried out for “normal” ECs, both experimentally and
computationally. They have in fact represented an interesting parallelism between
physiological and pathological vascularization and show how an accurate analysis
of “normal” vessel formation is a fundamental starting point to interfere with its
malignant counterpart.

However, our work contains a number of assumptions and limitations, that can
be improved in several directions. Simplifications have been made at the molecular
level to limit the number of biochemical interactions: we have used a minimal de-
scription of the VEGF-induced sub-cellular machinery underlying calcium events,
which can be refined by providing both a finer degree of proangiogenic regula-
tory networks and more detailed structural and functional information on calcium
channels and pumps. For instance, tumor-derived tubulogenesis has widely demon-
strated to require the redundant action of multiple factors besides VEGF isoforms
(i.e., acidic and basic fibroblast growth factors, epidermal growth factor, transform-
ing growth factor-α, transforming growth factor-β and several more, as reviewed
in [25]). Moreover, the calcium-dependent pathway presented in this work is only
one of the numerous cascades activated by VEGF itself [45]. Therefore, an analy-
sis focused on these specific intracellular dynamics might be considered to have a
little effect on the study of the overall malignant vascularization. However, most
current drugs target the VEGF system, either by directly binding VEGF molecule
to slow its diffusion down (see [45, 61, 75] and references therein) while calcium
signals have been showed to be fundamental in malignant vascularization in a va-
riety of tumors [59]. Indeed, given that no single in silico model could incorporate
every aspects of every process involved in angiogenic progression, nor this level of
complexity would be necessary for a mathematical approach to be useful or pre-
dictive, our choice to focus on VEGF-induced Ca-dependent protein networks has
not represented a significant limitation, since it has followed the main lines of the
research on cancer treatment. However, we strongly believe that a deep and differ-
entiated understanding of the other multiple underpinning cellular and molecular
events coordinated to control tumor-derived vessel formation would advance efforts
aimed at the development of new therapies. At this regards, it is useful to underline
that the proposed method to interface the basic CPM with the continuous model
of microscopic dynamics does not apply only to this specific case but can be rather
considered a general guide: it can be in fact easily adapted to other pathways of
interest, given the equation (and the parameters) regulating the evolution of the
chemicals and the functional laws describing their influence on the cells biophysical
properties. A significative limitation of the approach is instead that, at the cellular
level, several TEC basal properties have been derived only from a qualitative com-
parison with experimental cultures, even if they have been constrained in a range
consistent with our own system, see Appendix for details: further selected experi-
ments would therefore be useful for a better calibration of the model parameters. A
further, natural development of the discrete CPM could be the incorporation of a
description of the kinetics of the cytoskeletal remodeling. The present version of the
model in fact does not focus on the dynamics of actin filaments, but rather considers
the cell cytosol as a single elastic body undergoing local mechanical stresses, due
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to thermodynamic forces and chemical stimuli, on its membrane. A more detailed
multiscale model would use the stress distributions at the PM as a signaling input
for the subsequent polimerization process of the actin cytoskeleton. Moreover, the
introduction of the dynamics of the cell cytoskeleton would also result in a more
accurate description of the movement of cell nucleus. In reality, the motility of
the nucleus is characterized not only by the drag forces exerted by the surround-
ing cytosol, but also on one side by the interactions with the matrix substrate,
mediated by the intermediate actin filaments and microtubules themselves, and
on the other by autonomous thermodynamical fluctuations. Another fundamental
improvement of our model is the explicit introduction of the interactions between
cells and extracellular environment. First of all, we have not taken into account
cell-matrix adhesion: however, even though it should obviously be included in a
more detailed model, its exclusion has not strongly influenced the final outcomes
of the approach. The contact interactions between vascular cells and homogenous
and isotropic matrix substrates have been in fact demonstrated to play a major
role in the stabilization of an in vitro vascular network, rather than in its early for-
mation. In particular, the theoretical works presented in [2, 44], supported by the
biological literature therein, have provided that the intercellular interactions and
their chemotactic and persistent migration represent the minimal set of biological
mechanisms sufficient to guarantee the emerging of the capillary structure. On the
other hand, cell-ECM adhesion only sustains the preservation of its morphology
under shear stresses and perturbations. Consistently, in [81], the traction/adhesion
between the cell population and the gel layer starts acting when a sufficient density
is locally obtained, i.e. when cells are no longer isolated but already connected. In-
deed, cell-substrate adhesive strengths could dominate the early stages of vascular
patterning only in extreme cases. As observed again by the authors of [81], a too
strong cell-ECM adhesion inhibits the movement of cells, which remain isolated and
dispersed in their initial position. An overly adhesive substrate causes in fact the
formation of clusters of integrin-ligand bounds at cells surfaces, that do not detach,
stopping further cell locomotion. On the contrary, a too weak cell-ECM adhesion
results in the packing of cells in big islands, as they try to minimize the parts of
their membrane in contact with the extracellular medium. Therefore, the exclusion
of cell-matrix adhesion from our model is not too restrictive, since we focused on
the initial formation of the network, and not on its following stabilization, and the
implicit assumption that cell-matrix contacts are characterized by an intermediate
strength. Following the same line of thoughts, the presented approach can be fur-
ther developed with the inclusion of other interactions between the cell population
and the substrate, that have been analyzed in other computational models. For
instance, in [48], the movement of cells has been biased towards direction of prin-
cipal strains of the underlying matrix, while in [62], the authors have added a cell
sensitivity to matrix density gradients (i.e., the haptotactic mechanism) and long-
range interactions in matrix stretching due to its fibrous nature. The mechanical
and topological properties could also be characterized. For example, dense protein
matrices, trapping a number of growth factor molecules, in fact slow morphogen dif-
fusion and, causing steeper gradients, alter cell chemical responses, while anisotropic
substrates drive cell migration and interfere with the network formation, especially
in a three-dimensional patterning. More experiments, focused on the relevance of
our findings, are then needed to shed light and validate our conclusions. Eventu-
ally, it would be also interesting the relevance of our results in vivo. However, in
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this case, it would be very difficult to have a complete control of all the involved
biological mechanisms, and there would be complications also due to the presence
of other cells types [16, 19].

5. Appendix - Parameter estimates. Several parameters of our model have
been taken from literature and are specifically referred to tumor-derived endothe-
lial cells, others have been derived from experiments with different cell lines and
experimental conditions. Finally, when a parameter value was not available, it has
been estimated within reasonable biophysical constraints. A summary of param-
eters used has been done in Tables I and II while, in this Appendix, we will give
details on how each estimate has been calculated.

The initial TEC dimensions are taken from literature, and represent the average
measures of experimental cultures [28, 30]. Given the phenomenological nature of
the CPM, a direct one-to-one correspondence between the CPM parameters de-
scribing the basal properties of TECs and the analogous experimental quantities
is not straightforward (see also reviews [34, 54] for a comment). However, it is
possible to realistically and accurately infer these values by deriving empirical re-
lationships with in vitro measurements. T0 represents the high intrinsic of TECs
and has been computed by comparing a simulated wound healing assay with its in
vitro counterpart. The values in the parameter space that have lead to the optimal
empirical fitting to experimental data in [28, 30] was T0 = 4.5. TN models instead
the intrinsic motility of cell nucleus. In particular, low values of TN translate into
small nuclear membrane fluctuation, which is biologically reasonable (see Sec 3 for
a detailed explanation). Indeed, as experimental data on nuclear membrane ruffles
were not available, we have experimented a large range of values, before settling on
a low value TN = 0.25. Since we have not included in the model any nutrients, in
order to keep fluctuations of cell volume within a few percent, after some trials we
have used an high κ0 = 20. Moreover, also the stochastic extensions and retractions
of nuclear membrane have been widely demonstrated to be negligible: therefore the
inverse compressibility of cell nuclei has been set to be an high νN = 20. ν0 repre-
sents the basal compressibility of the cell (i.e in the absence of any stimulation or
mechanical force): observing that resting TECs maintained their initial configura-
tion, with negligible changes of shape or cytoskeletal reorganization, we have chosen
a moderate ν0 = 12 [28, 30]. J intC,N is the generalized contact tension between the
nuclear subunit and the cytosolic region of each cell i. We have chosen an high
J intC,N = −15 to prevent TECs from disconnecting. J0 = 5 represents instead the
low basal adhesive strength of TECs, which have been demonstrated to adhere only
in confluence, see again [30]. µch,0 is the cell intrinsic chemotactic response: since
biological measurements were not available, we have tried a wide range of low values
and selected µch,0 = 0.5, assuming that the chemical sensitivity of the cell is strongly
increased by cytosolic calcium ions. µpers,0 represents instead the coefficient of cell
directional persistence: we set µpers,0 = 1.2, which fits best experimental measure
made on “normal” ECs in [53, 74].

VEGF secretion φV = 0.78 h−1, diffusion DV = 10 µm2s−1, and decay λV = 1.8
· 10−4 s−1 have been quoted in [74]. βV , the maximal amount of VEGF molecules
that can be locally bound by each TEC for unit of time has been estimated follow-
ing [6, 47]. To avoid further complications, we have not taken into account time-
dependent mechanisms, such as receptor recycling or clusterization. The diffusion
and the inactivation rate of PKA, respectively DP = 30 µm2s−1 and λP = 23 s−1,
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have been measured in [68], while the analogous values for AA, DA = 10 µm2s−1

and λA = 30 s−1 have been taken from [60], where they have been estimated fitting
experimental measurements made by the same group on bovine aortic endothe-
lial cells [56]. The intracellular NO diffusion has been taken to be DN = 3300
µm2s−1, as calculated in [46], while the coefficient of NO degradation λN = 0.1
s−1 has been evaluated again in [60]. The Michaelis-Menten coefficients αA = 30
µMs−1 and βA = 1 µM of VEGF-mediated production of AA have been chosen
for the best fit with experimental measures made in the same theoretical paper
[60]. Since few data were available for the VEGF receptor-mediated activation of
PKA and production of NO, and for the AA-induced PKA recruitment we have
used αP = αN = γP = αA and βP = βN = ζP = βA. The production of NO
regulated by AA, via PKA, has also been described by a classical Michaelis-Menten
function: γN = 1.5 µMs−1, the maximal rate of NO release, has been estimated by
fitting the time course of NO production experimentally measured using fluorescent
probes and selective electrodes in [11, 30, 56], while ζN = 0.5 µM has been taken
from [66]. The intracellular resting cytosolic Ca2+ concentration has been assumed
uniform for all cells, as Ci0(x) = C0 = 0.05 µM for any sites x of i, as well as the
initial external calcium concentration of the ion, Cext,0(x) = Cext,0 = 2000 µM,
following experimental [9] and theoretical [60] works. The calcium diffusion coef-
ficient DC = 220 µm2s−1 has been well characterized in literature for several cell
lines [27, 43, 60]. Several authors model the Ca2+ efflux as a sum of Hill functions
[60, 82]. We have approximated this by a single Michaelis-Menten term, with co-
efficients kC = 24.7 µMs−1, the maximal rate of extrusion, and Cout = 0.32 µM,
the calcium concentration at which the rate of exchange is half maximal, chosen
to fit those Hill-type curves over a physiological range of calcium concentration.
The calcium entry through AA- and NO-sensitive channels has been described by
saturable Michaelis-Menten relations, where FA,max = 6 s−1 and FN,max = 4.5 s−1

are the maximal influx rates, while qA = 2 µM and qN = 5 µM are the relative
concentrations of second messengers responsible for the half maximal activation of
the respective channels. All these parameters have been chosen to fit the calcium-
permeable channel currents obtained by patch clamp experiments in [30, 56, 60].
The rates of buffering and debuffering of Ca2+ to intracellular proteins have been
measured by several experimental works: in particular, we have used Kon = 100
µM−1s−1 and Koff = 300 s−1 from [7]. The total concentration of calcium binding
sites in the cytosol has instead been estimated to be bT = 450 µM, accordingly to
[27, 60].
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