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■ Abstract The TRP (transient receptor potential) superfamily of cation channels
is present in all eukaryotes, from yeast to mammals. Many TRP channels have been
studied in the nematode Caenorhabditis elegans, revealing novel biological functions,
regulatory modes, and mechanisms of localization. C. elegans TRPV channels function
in olfaction, mechanosensation, osmosensation, and activity-dependent gene regula-
tion. Their activity is regulated by G protein signaling and polyunsaturated fatty acids.
C. elegans TRPPs related to human polycystic kidney disease genes are expressed
in male-specific neurons. The KLP-6 kinesin directs TRPP channels to cilia, where
they may interact with F0/F1 ATPases. A sperm-specific TRPC channel, TRP-3, is re-
quired for fertilization. Upon sperm activation, TRP-3 translocates from an intracellular
compartment to the plasma membrane to allow store-operated Ca2+ entry. The TRPM
channels GON-2 and GTL-2 regulate Mg2+ homeostasis and Mg2+ uptake by intestinal
cells; GON-2 is also required for gonad development. The TRPML CUP-5 promotes
normal lysosome biogenesis and prevents apoptosis. Dynamic, precise expression of
TRP proteins generates a remarkable range of cellular functions.

OVERVIEW: C. ELEGANS AS A MODEL SYSTEM
FOR UNDERSTANDING TRP FUNCTION

An astonishing variety of biological functions are associated with the conserved
TRP (transient receptor potential) channel superfamily, a class of channels de-
fined by sequence similarity to the Drosophila phototransduction channel TRP
(1, 2). TRPs assemble into homo- and heterotetramers to form cation-selective
ion channels that can be regulated by thermal stimuli, mechanical stimuli, lipids,
lipid derivatives, voltage, pH, phosphorylation, and intracellular Ca2+ stores (3).
Some TRPs serve as integrators of multiple regulatory pathways, and others are
activated by one predominant pathway. TRP proteins are linked to many sensory
modalities: vertebrate heat sensation (4–8), cold sensation (9, 10), osmosensation
(11, 12), pheromone sensation (13) and hearing (14); insect phototransduction (1,
15, 16), mechanosensation (17), thermosensation (18) and hearing (19); and ne-
matode olfaction, mechanosensation, and osmosensation (20–22). Although TRP
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functions have been studied most extensively in sensory neurons, vertebrate TRP
channels also regulate cardiovascular (23, 24), renal (25), and lysosomal functions
(26).

The TRP superfamily can be divided into seven families of channels based
on sequence similarity. In humans, six TRP families encode a total of 28 chan-
nel subunits: TRPC (classical/short; seven members including a pseudogene),
TRPV (vanilloid; six members), TRPM (melastatin/long; eight members), TRPML
(mucolipin; three members), TRPP (polycystin; three members), and TRPA (one
member) (27). Nonmammalian vertebrates also have a TRPN family (one mem-
ber) (28). All TRP members have six predicted transmembrane domains; several
families have a variable number of ankyrin motifs, suggested to participate in
protein-protein interactions (Figure 1). Outside of these core regions, members
of individual TRP families may share other motifs, such as coiled-coil domains.
Caenorhabditis elegans has members of all seven known TRP families as well
as novel TRP genes (Figure 1), and mutants are available for many of these loci.
Because of the simple anatomy of C. elegans, the functions of these channels can
be studied at single-cell resolution. Several C. elegans TRP channels have been
studied in nonneural tissues, which may provide insight into analogous cellular
functions of mammalian relatives. C. elegans studies of TRP channels have focused
less on the molecular gating and biophysical properties of the channels and more
on their integration into cellular pathways and neural circuits. As such, they are
a useful complement to biophysical and pharmacological studies of mammalian
counterparts.

C. ELEGANS TRPV CHANNELS FUNCTION
IN OLFACTION AND NOCICEPTION

The TRPV gene osm-9 was identified contemporaneously with its mammalian
homolog TRPV1 (VR1), defining the first typical family beyond TRPC channels
(4, 20). osm-9 mutants have abnormal olfactory responses to all odors sensed by
a class of ciliated neurons referred to as AWA neurons (20). The OSM-9 protein
is localized to AWA sensory cilia (Figure 2), consistent with a role in olfactory
signal transduction. In addition, osm-9 mutants have a near-complete defect in the
functions of ciliated sensory neurons called ASH neurons that act as polymodal
nociceptors. ASH neurons mediate behavioral avoidance of high osmolarity, me-
chanical stimuli, noxious odors, heavy metals, bitter substances, and acid pH (20,
29–31). The OSM-9 protein is localized to ASH sensory cilia and is required for
primary ASH sensory signal transduction—a nociceptive function analogous to
the function of mammalian TRPV1 (32).

In addition to osm-9, the C. elegans genome encodes four other TRPV genes:
ocr-1, ocr-2, ocr-3, and ocr-4 (21). Each ocr gene is expressed in a subset of the
cells that express osm-9, suggesting that ocr genes usually function together with
osm-9. This prediction is valid for the ocr-2 gene, which is expressed with osm-9
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Figure 1 TRP structure and select C. elegans TRP channels. (A) Schematic domain

structures for selected C. elegans TRP proteins. The cytoplasmic N′ region of sev-

eral TRP families contains a variable number of ankyrin repeats (green circles). The

TRPP protein LOV-1 has a large extracellular domain containing serine/threonine-rich

(green) and GPS (yellow) regions as well as a total of 11 predicted transmembrane

domains. Channel regions have six transmembrane domains, with S5 and S6 gate do-

mains flanking a pore-loop selectivity filter. The transmembrane domains and pore loop

have the strongest conservation among TRP family channels. The cytoplasmic C′ re-

gion varies among families and may contain lipid-binding motifs (orange box), coiled-

coil domains (red coil), or other functional structures. (B) Alignment of C. elegans
TRP channels. Conserved transmembrane regions were identified with SMART analysis and

refined with NCBI CDD/reverse psi-BLAST. ClustalW was used to align transmembrane

domains, and the results are presented as a phylogram. C. elegans has at least six candidate

TRP genes from novel families that are entirely uncharacterized; these are omitted from the

figure for clarity and are not discussed in the text.

in the ASH and AWA sensory neurons (Figure 2). Animals mutant for ocr-2 have
defects in nociception and olfaction that are similar to, though slightly less severe
than, the defects in osm-9 mutants. The similar mutant phenotypes of osm-9 and
ocr-2 suggest that these genes may form heteromeric channels in ASH and AWA,
although there is no direct biochemical evidence for this association. Increasing
evidence suggests that many TRP channels may be heteromeric, including channels
combining Drosophila TRP and TRPL as well as channels combining mammalian
TRPC1 and TRPC5 (33, 34).
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Figure 2 C. elegans TRPV proteins are expressed in sensory cilia. (A) Schematic diagram

of a hermaphrodite C. elegans, highlighting a subset of anterior neurons with TRPV channel

expression that are mentioned in the text (AWA, green; ASH, orange; ADF, purple; ASE,

pink; AWC, yellow; OLQ, blue). (B) Confocal image of an AWA olfactory neuron express-

ing GFP driven by the odr-10 promoter. The axon (red arrow), dendrite (yellow arrows),

and sensory cilia (white arrow) are visible. (C) Confocal image of ASH and AWA sensory

neurons expressing an OCR-2::GFP fusion protein. Note prominent expression of the OCR-

2 protein in cilia (arrowhead) and cell bodies; the axons and dendrites have little OCR-2

protein.

In AWA and ASH neurons, both OSM-9 and OCR-2 proteins are enriched in sen-
sory cilia (21). OSM-9 and OCR-2 mutually depend on each other for localization
to cilia rather than to the cell body. Some neurons normally express the osm-9
gene in the absence of any ocr gene, and in these neurons, OSM-9 protein is found
in the cell body. However, ectopic expression of OCR-2 in one such cell class,
the AWC chemosensory neurons, is sufficient to drive OSM-9 to the cilia. These
findings suggest a physical interaction between the OSM-9 and OCR-2 subunits
that mediates their localization.
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G PROTEIN–COUPLED LIPID SIGNALING PATHWAYS
REGULATE TRPV CHANNEL SIGNALING

OSM-9 and OCR-2 have not been amenable to electrophysiological analysis in het-
erologous cells, and as a result, the molecular regulation of OSM-9/OCR-2 is only
partly understood. In AWA olfactory neurons, osm-9 and ocr-2 act downstream
of G protein–coupled odorant receptors, probably as the olfactory transduction
channel (20, 35). A similar role downstream of G protein–coupled receptors is
likely in some forms of ASH nociception, particularly the avoidance of noxious
odors (36). The role of OSM-9/OCR-2 in detecting physical stimuli such as high
osmolarity and nose touch may mean that these channels directly sense force. The
cytoplasmic OSM-10 protein is required only for osmosensation, suggesting that
a specialized sensory apparatus helps OSM-9/OCR-2 sense osmotic stimuli (37).

Genetic analysis indicates that sensory G proteins may activate OSM-9 and
OCR-2 by mobilizing specific polyunsaturated fatty acids (PUFAs). C. elegans
mutants in the omega-3 lipid desaturase enzyme fat-3 are deficient in long-chain
PUFAs. Like TRPV mutants, fat-3 mutants show pronounced defects in ASH
nociceptive behaviors and AWA olfactory behaviors as well as primary defects
in ASH sensory transduction measured by Ca2+ imaging (38). PUFAs stimulate
rapid, TRPV-dependent Ca2+ transients in the ASH neurons and induce TRPV-
dependent avoidance behaviors indicative of ASH activation. A battery of PUFA
biosynthetic mutants, as well as acute rescue of fat-3 mutants with dietary lipid
supplementation, have implicated the omega-3 and omega-6 PUFAs arachidonic
acid and eicosapentaenoic acid in OSM-9 TRPV signaling. The exact enzyme that
mobilizes these PUFAs downstream of G proteins is unknown. The physiological
mechanisms underlying the documented human health benefits of dietary omega-3
fatty acids are mysterious. By analogy with C. elegans, TRP channels that act in
inflammation and cardiovascular regulation may represent molecular targets for
dietary PUFAs in humans.

TRPV CHANNELS REGULATE TRANSCRIPTION
AND MODULATE COMPLEX BEHAVIORS

In addition to their roles in sensory transduction, osm-9, ocr-2, and ocr-1 reg-
ulate the transcription of sensory genes. osm-9 and ocr-2 mutants have reduced
expression of the G protein–coupled receptor ODR-10 (which recognizes the odor-
ant diacetyl) in AWA olfactory neurons (21). ocr-1, which is expressed in AWA
but has no detectable role in AWA olfactory signaling, also affects the level of
odr-10 expression. osm-9 and ocr-2 also stimulate expression of the serotonin
biosynthetic gene tph-1 (encoding tryptophan hydroxylase) in ADF neurons, a
pair of ciliated chemosensory neurons (39). osm-9 and the ocr genes are likely to
act in activity-dependent gene expression pathways that link sensory stimulation
to patterns of gene expression. The Ca2+/calmodulin-dependent kinase CaMKII
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functions downstream of OSM-9 and OCR-2 in the signaling pathway from sen-
sory transduction to gene expression in ADF neurons (39). In one straightforward
model, Ca2+ entry through OSM-9/OCR-2 channels could activate CaMKII to
initiate transcriptional changes.

The ability of OCR-2 to regulate gene expression in ADF neurons can be
separated from some of its other sensory functions. A point mutation in an N-
terminal helical region of OCR-2 eliminates its ability to stimulate tph-1 expression
but does not diminish AWA olfactory function or cilia localization of the OCR-2
protein (40). Conversely, inserting the N-terminal helical region of OCR-2 into the
related OCR-4 protein makes OCR-4 competent to stimulate tph-1 expression.

In addition to their primary sensory roles, OSM-9 TRPV channels can affect
sensory adaptation after prolonged exposure to an odor or taste. osm-9 is expressed
in many C. elegans ciliated neurons whose sensory transduction is mediated by
cGMP and cGMP-gated channels (20). In two of these cGMP signaling neurons, the
AWC olfactory neurons and the ASE gustatory neurons, osm-9 is not required for
primary sensory signaling but is required for sensory adaptation (41, 42). Neurons
that use TRPV channels in adaptation express only osm-9, whereas neurons in
which TRPV channels are primary transduction channels express both osm-9 and
at least one ocr gene. This distinction may be related to the preferential ciliary
localization of OSM-9/OCR-2 complexes, as described above.

Another modulatory function for osm-9 and ocr-2 is their ability to regulate
aggregation, or social behavior (43). Some natural isolates of C. elegans form ag-
gregates of dozens of animals when they forage on bacteria, the “social” phenotype
(44). Mutations in osm-9 or ocr-2 suppress aggregation, at least partly because
of TRPV function in the ASH nociceptive neurons (43). Aggregation requires
at least three different classes of sensory neurons, including TRPV-dependent
nociceptive neurons, oxygen-sensing neurons that signal using a soluble guanylate
cyclase (45), and a third neuronal class (46). TRPV-dependent nociception, oxy-
gen sensation, and signals from food are integrated to produce context-dependent
aggregation behavior.

PURSUING THE MAMMALIAN ANALOGY:
ORTHOLOGY BETWEEN TRPVS?

Sequence analysis suggests that the common ancestor of mammals and inver-
tebrates had one or two TRPV genes; there are no clear orthologies between
individual mammalian and nematode TRPVs. Nonetheless, experiments using het-
erologous expression of mammalian channels in C. elegans neurons have revealed
functional analogies between different mammalian TRPVs and C. elegans TRPVs.

The first experiment of this type involved the expression of rat TRPV1 in
ASH nociceptive neurons (21). TRPV1 has a role in pain sensation, responding to
irritants such as capsaicin. Rat TRPV1 expressed in ASH functions as a capsaicin-
gated channel and can cause C. elegans, which is normally oblivious to capsaicin,

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
6.

68
:7

19
-7

36
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ita

 d
eg

li 
St

ud
i D

i T
or

in
o 

- 
D

ep
ar

tm
en

t o
f 

Pl
an

t B
io

lo
gy

 o
n 

09
/1

4/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



6 Jan 2006 22:8 AR ANRV265-PH68-26.tex XMLPublishSM(2004/02/24)
P1: OKZ /NPC P2:
OJO

TRP CHANNELS IN C. ELEGANS 725

to avoid the irritant. The behavioral response to this artificial activation of ASH is
strikingly similar to the avoidance of repellents normally sensed by ASH. When
expressed in ASH, rat TRPV1 functions independently of native ASH signal trans-
duction pathways and cannot substitute for the normal functions of either osm-9
or ocr-2 (21).

By contrast, expression of the rat osmosensory channel TRPV4 in ASH noci-
ceptive neurons can rescue the osmosensitivity and mechanosensitivity of osm-9
mutants, although the channel cannot rescue their G protein–mediated odorant
responses (47). TRPV4 requires endogenous ASH signaling molecules to per-
form this function, but it changes the threshold for osmosensation to match the
mammalian threshold rather than that of C. elegans. Thus, TRPV4 functions as
a partial osm-9 ortholog, while retaining a distinct sensory signature. These re-
sults place TRPV4, and by implication OSM-9, very close to the primary event in
osmosensation.

Finally, expression of mouse or human TRPV2 in ADF neurons can partially
rescue the defect in tph-1 gene expression that is observed in ocr-2 mutants (40).
As does endogenous ocr-2, TRPV2 requires osm-9 for full function in ADF, again
suggesting that TRPV2 can be integrated into endogenous C. elegans signaling
pathways. The endogenous function of mammalian TRPV2 is not understood;
potential analogies with OCR-2 may be explored further.

TRPP CHANNELS ARE REQUIRED FOR
MALE MATING BEHAVIOR

Mutations in the two genes PKD1 and PKD2 account for 95% of the occurrences
of human autosomal dominant polycystic kidney disease, one of the most common
inherited genetic disorders (48). PKD1 and PKD2 encode the polycystins, large
multidomain proteins that define the TRPP family of channels. Polycystic kidney
disease is associated with fluid-filled cysts in the kidneys and other tissues. The
mammalian polycystin-1 and polycystin-2 proteins are present in the cilia of renal
cells (49, 50), where they have been proposed to act in intracellular traffic, fluid
accumulation, or ion transport, or as generators or sensors of force. C. elegans
has homologs of each of these genes, which are called lov-1 (PKD1) and pkd-2
(PKD2) (Figure 3). These TRPP proteins underlie the behavior that male worms
exhibit when they encounter a hermaphrodite.

Male C. elegans use an elaborate sensory apparatus in their tail to execute a
stereotyped search for the hermaphrodite vulva. This search is followed by spicule
insertion and sperm release (51). lov-1 and pkd-2 males have defective responses
to contact with a hermaphrodite, whereas other TRP mutants such as osm-9 have
normal male mating behavior (22, 52). lov-1 and pkd-2 are expressed in the cilia of
the male-specific CEM, HOB, and ray neurons, which may have mechanosensory
functions (22, 52). lov-1; pkd-2 double mutants show the same behavioral defects
as do the single mutants, consistent with the possibility that each has essential
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Figure 3 Polycystin localization in the cilia of male-specific neurons: (A) Schematic dia-

gram of male tail, highlighting one of the ray neurons that expresses lov-1 and pkd-2 TRPP

proteins. The cilia extend into the fan-shaped male tail used for mating. (B) Enlarged view

of ray neuron sensory cilia and proposed LOV-1/PKD-2 interactions. The KLP-6 kinesin

is required for TRPP cilia localization, perhaps by transporting a LOV-1/PKD-2 complex

to cilia along microtubules (gray lines). Red coils, coiled-coil domains; orange box, PLAT

domain.

functions in the same signaling complex. Like their mammalian orthologs, PKD-2
and LOV-1 proteins are enriched in sensory cilia and require intact cilia for their
function (53, 54). Cilia morphology appears normal in lov-1 and pkd-2 mutants,
suggesting that they have an acute sensory role rather than a function in ciliogenesis.

The relationship between human kidney function and C. elegans mating is
most easily explained by suggesting a special relationship between TRPP chan-
nels and force-sensing cilia. In this scenario, TRPP channels sense both fluid flow
in the kidneys and mechanical stimuli during mating. A similar role is suggested
by the role of TRPP channels in early vertebrate development. Ciliated cells in
Hensen’s node of vertebrates establish the left-right asymmetry of the developing
embryo (55, 56). Some of these nodal cilia are motile, despite a 9 + 0 arrange-
ment of microtubules that is typical for nonmotile cilia (a morphology shared by
C. elegans cilia). Mouse polycystin-2 mutants have defects in left-right asymme-
try, and polycystin-2 is expressed in nodal cilia, consistent with a role in left-right
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patterning (57). The polycystin complex is thus a candidate to generate or sense
motility in nodal cilia.

TRPP CILIA LOCALIZATION AND A POSSIBLE
RELATIONSHIP WITH THE F0/F1 ATPASE

The mechanisms by which membrane proteins such as LOV-1 and PKD-2 are lo-
calized to cilia are only partly understood. Targeted transport vesicles may carry
G protein–coupled receptors and TRPV channels from the Golgi to the base of the
cilia; an AP-1 adaptor complex appears to be essential for cilia-directed transport
(58). Within cilia, proteins are transported by the intraflagellar transport (IFT) pro-
tein complex, with kinesins that move to the cilia tip and a dynein that moves back
to the base of the cilia (59, 60). An uncharacterized transition occurs between the
dendrite and the base of the cilia to allow membrane proteins access to the cilia. A
genetic screen for mutants with pkd-2-like mating defects uncovered one potential
player in this process, the kinesin KLP-6, which affects PKD-2 localization to cilia
(61) (Figure 3). KLP-6 is related to the axonal synaptic vesicle transport kinesin
UNC-104/Kif1A. In klp-6 mutants, PKD-2 often accumulates at the base of the
cilia rather than the cilia proper, and it is also more prevalent in the dendrites. Cilia
morphology is normal in klp-6 mutants, implicating klp-6 in the function rather
than development of the cilia. lov-1, pkd-2, and klp-6 are all expressed in a subset of
ciliated neurons, most prominently in the male mating neurons. These results raise
the possibility that various motor proteins may have selective transport properties
in different ciliated cells.

A priority in the further understanding of TRPPs is the identification of addi-
tional signaling components in the TRPP complex. Within the LOV-1 (polycystin-
1) protein is a cytoplasmic loop called the PLAT (polycystin/lipoxygenase/a-toxin)
domain. A yeast two-hybrid screen with the LOV-1 PLAT domain yielded an F1
ATP synthase subunit, ATP-2 (62). Human polycystin-1 can also bind ATP-2. The
F0/F1 ATPase is an essential component of the mitochondrial respiratory chain,
and because mitochondria are absent from cilia, this interaction looks odd, per-
haps spurious. However, unlike other mitochondrial enzymes, both ATP-2 and the
transmembrane F0 subunit ASG-2 can be detected in cilia, and surface expres-
sion of the F0/F1 ATPase has been reported in mammalian cells as well (63, 64).
Reducing ATPase function in male sensory neurons with RNAi attenuates male
mating, leading Hu & Barr (62) to suggest that ATPase function in cilia may pro-
mote LOV-1/PKD-2 function. The F0/F1 ATPase is best known for its coupling of
a mitochondrial pH gradient to ATP production in respiration, and the presence of
this ATPase in cilia may be indicative of a high ATPase requirement in this com-
partment (62). Alternatively, cilia may use the F0/F1 ATPase in a distinct capacity,
such as its capacity to act as an ATP- and pH-regulated molecular motor (65, 66).

Genetic and biochemical studies should identify additional components of the
TRPP signaling complex. For example, microarray analysis has identified four
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genes that are coexpressed with lov-1 and pkd-2 in male-specific neurons (67);
Portman & Emmons (67) propose that these novel secreted proteins are components
of an extracellular force-sensing matrix surrounding sensory cilia.

TRPC AND TRPM CHANNELS: A FERTILE FIELD

The TRPC protein encoded by trp-3/spe-41 is found exclusively in sperm and is
required for a late step in fertilization (68) (Figure 4). Both male and hermaphrodite
C. elegans produce sterile sperm in trp-3 mutants. Unlike TRPP lov-1 and pkd-
2 mutants, male trp-3 mutants execute normal behavioral mating and transfer
sperm to hermaphrodites during mating. Moreover, trp-3 mutants have motile,
morphologically normal sperm. These sperm are even capable of competing with
other sperm for a position in the spermatheca, a small compartment near the oocytes
where hermaphrodites store sperm prior to fertilization. These experiments suggest
that trp-3 sperm have problems at a step between contact with the oocyte and
fertilization.

Ca2+ imaging of normal C. elegans sperm reveals increased Ca2+ influx if
internal Ca2+ stores are depleted with drugs such as thapsigargin (68). This influx
is diagnostic of store-operated Ca2+ channels, an important class of homeostatic
channels found in many cell types. In trp-3 mutant sperm, this influx is lost,
suggesting that TRP-3 functions as a store-operated channel in C. elegans sperm.
When heterologously expressed in HEK293 cells, TRP-3 promotes Ca2+ influx
in response to store depletion and Gq pathway activation. Studies of mammalian
TRPC subunits have provided conflicting evidence about the role of Ca2+ stores
in regulating this family (69), so it is gratifying to see that a native TRPC protein
functions as a store-operated channel in its endogenous context.

The subcellular localization of TRP-3 is developmentally regulated, provid-
ing an additional layer of channel regulation (68). The TRP-3 protein is found in
vesicular compartments of immature spermatids and translocates to the plasma
membrane in mature sperm during sperm activation. Mammalian TRPC5 and
Drosophila TRPL (TRP-like) dynamically regulate their subcellular localization
upon stimulation, and similar possibilities have been suggested for other TRP
channels as well (34, 70). Regulated surface expression may be an exciting com-
mon property of TRPC channels. It is intriguing that several TRPC subunits are
expressed in human sperm, hinting that C. elegans and humans may share ancient
cellular mechanisms of fertilization (71).

C. elegans has two other TRPC proteins encoded by trp-1 and trp-2. Mutant
phenotypes have not been described for these two genes. trp-1 is expressed in many
motor neurons and interneurons as well as vulval and intestinal muscles (20).

In a different fertility-related function, the TRPM family member gon-2 is
required during mid-larval stages for proper development of gonadal tissues (72).
In gon-2 mutants, germ cells fail to proliferate and mature, a defect that could be
either intrinsic to the germ cells or associated with other tissues that regulate the
germ line (73).
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Figure 4 TRP-3 functions as a store-operated channel in sperm. In immature sper-

matids, TRP-3 (green) is sequestered inside cytoplasmic membranous organelles (or-
ange). Following sperm activation, TRP-3 is found on the plasma membrane of sperm,

including the pseudopod region. Upon contact with an oocyte, Ca2+ enters sperm

through TRP-3 channels, followed by fusion with the oocyte and fertilization. Figure

modified from Reference 68.
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Mutations in gem-4 suppress gon-2 reduction-of-function alleles, restoring the
mutants to fertility. gem-4 encodes a widely expressed member of the copine family
of Ca2+-dependent phospholipid-binding proteins (74). gem-4 fails to suppress the
strongest gon-2 mutations, suggesting that it acts by modulating gon-2 activity.
Because of its lipid-binding, Ca2+-binding, and Mg2+-binding motifs, GEM-4 has
been suggested to regulate membrane trafficking of GON-2 (74).

Both GON-2 and the TRPM channel GTL-1 have roles in Mg2+ uptake by
intestinal cells and in Mg2+ homeostasis (74a). These channels are localized to
the apical surface of intestinal epithelial cells, in which they take up ions from
dietary sources. GTL-1 appears to form a constitutively active channel for Ca2+

and Mg2+, whereas GON-2 forms an outwardly rectifying channel for Ca2+ and
Mg2+ that is strongly inhibited by intracellular Mg2+. Animals with mutations
in both genes exhibit arrested development in low Mg2+ but can be rescued if
grown in high external Mg2+. Mutations in the human TRPM6 gene result in
familial hypomagnesemia with secondary hypocalcemia owing to poor Mg2+ up-
take in the intestine. Thus, for TRPM channels, as for TRPML channels (see
below), the physiological functions are strikingly comparable in nematodes and
humans.

cup-5: A LYSOSOMAL TRPML WITH LINKS
TO APOPTOSIS

Another family of TRP channels, the TRPMLs or mucolipins, is implicated in the
rare human familial disorder mucolipidosis type IV. Human patients exhibit early-
onset mental retardation and ophthalmic defects, including retinal degeneration,
owing to lysosomal sorting and lysosomal storage defects. TRPML channels may
be the most primitive of all of the TRPs, as yeast express a mechanosensitive,
Ca2+- and pH-regulated TRP channel in the lysosome-like vacuole (75–77).

C. elegans has one TRPML gene, cup-5, whose reduction-of-function mutants
have an endocytosis defect in coelomocytes, scavenger cells that filter soluble pro-
teins from the C. elegans body cavity (78). cup-5 is expressed in many cell types
and localizes to internal vesicles that are most likely to be lysosomes and late endo-
somes. cup-5 mutants have abnormally large internal vacuoles and an inappropriate
accumulation of proteins that should have been degraded in lysosomes. Animals
bearing null mutants in cup-5 have a maternal-effect lethal phenotype, with exces-
sive apoptosis and many cells with large, malformed lysosomes and vacuoles (79).
On the basis of these cell-biological criteria, the C. elegans phenotype closely
matches the pathology of human mucolipidosis. Indeed, mammalian TRPML1
expressed from a heat-shock promoter rescues the lethality of cup-5 mutants, con-
sistent with an orthologous function (79). Similarly, coelomocyte expression of
mammalian TRPML1 or TRPML3 rescues the cup-5 endocytosis defects (80).

Detailed analysis of cup-5 mutants, using subcellular markers and electron
microscopy, indicates that their primary cellular defect is in lysosome biogenesis
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and that the accumulated organelles in cup-5 mutants have mixed properties of late
endosomes and lysosomes (79, 80). Thus, human and C. elegans mucolipins may
share a function in lysosome biogenesis. Human TRPML1 expressed in liposomes
forms a cation channel that is inhibited at low pH (81); perhaps a change in CUP-
5/TRPML1 activity accompanies or defines the maturation of lysosomes.

cup-5 mutants have been isolated in a genetic screen for mutations that stim-
ulate apoptosis (79). Animals bearing null mutants in cup-5 have high levels of
apoptosis even in the presence of a death-preventing bcl2 (egl-9) mutation. Hersh
et al. (79) suggest that apoptosis is secondary to the cup-5 defect in lysosome and
vacuole formation. A worm TRPM subunit, ced-11, has been identified as an apop-
tosis mutant with abnormal cell corpses (G. Stanfield & H.R. Horvitz, personal
communication), but the mechanism for this phenotype has not been described.

C. ELEGANS TRPS AND OPEN QUESTIONS

The study of C. elegans has already shed light on numerous aspects of TRP channel
function and localization. The diverse C. elegans TRP channels offer avenues for
illuminating additional questions. Because it is relatively easy to examine subcel-
lular localization of C. elegans proteins in live animals, this should be a particularly
valuable system for studying mechanisms of surface expression, trafficking to sen-
sory cilia, and regulated translocation of TRP channels. An open area to explore
is the relationship between channel trafficking and cellular function. For example,
when channels such as TRP-3 in spermatids are contained in intracellular com-
partments, are they sequestered or are they actively producing cationic currents?

C. elegans has been an outstanding model for studying mechanosensation me-
diated by the Deg/EnaC channel family (reviewed in Reference 82); in the future, it
may be a useful model with which to study possible mechanosensory functions of
TRPs. One avenue to explore is the proposed mechanosensory and osmosensory
function of OSM-9/OCR-2 channels in ASH nociception. Other TRP channels
may also have mechanosensitive functions; for example, the TRPV gene osm-9
is expressed, together with the uncharacterized TRPV gene ocr-4, in OLQ, PVD,
and FLP mechanosensory neurons. Another candidate mechanosensor is the
C. elegans TRPN protein Y71A12B.4/trp-4, the ortholog of Drosophila and ze-
brafish mechanoreceptive channels of the nompC family (17). trp-4 is expressed
in CEP and ADE neurons, which are thought to detect the light mechanosensory
stimulus provided by a bacterial lawn (83). Mutants in ocr-4 and trp-4 have not
yet been described.

Several C. elegans TRP genes are completely uncharacterized. These include
one TRPA family member, C29E6.2, which shares 88% identity with the candi-
date Drosophila thermosensory channel ANKTM1, as well as several uncharacter-
ized TRPC, TRPM, and TRPV family members. Six additional TRP genes in the
C. elegans genome are apparently unrelated to the existing seven TRP families, and
these could open up entirely new areas of TRP biology. The continuing analysis of
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C. elegans TRP channels should raise and answer new questions while providing
a physiological and cellular context for TRPs.
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