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Invited Review

TRPV4 calcium entry channel: a paradigm for gating diversity

Bernd Nilius, Joris Vriens, Jean Prenen, Guy Droogmans, and Thomas Voets
Department of Physiology, Campus Gasthuisberg, Katholieke Universiteit Leuven, 3000 Leuven, Belgium

Nilius, Bernd, Joris Vriens, Jean Prenen, Guy Droogmans, and Thomas
Voets. TRPV4 calcium entry channel: a paradigm for gating diversity.Am J
Physiol Cell Physiol 286: C195–C205, 2004;10.1152/ajpcell.00365.2003.—The
vanilloid receptor-1 (VR1, now TRPV1) was the founding member of a subgroup
of cation channels within the TRP family. The TRPV subgroup contains six
mammalian members, which all function as Ca2� entry channels gated by a variety
of physical and chemical stimuli. TRPV4, which displays 45% sequence identity
with TRPV1, is characterized by a surprising gating promiscuity: it is activated by
hypotonic cell swelling, heat, synthetic 4�-phorbols, and several endogenous
substances including arachidonic acid (AA), the endocannabinoids anandamide and
2-AG, and cytochromeP-450 metabolites of AA, such as epoxyeicosatrienoic
acids. This review summarizes data on TRPV4 as a paradigm of gating diversity in
this subfamily of Ca2� entry channels.

transient receptor potential; calcium channels; vanilloid receptor

THE FREE INTRACELLULAR CA2� CONCENTRATION ([Ca2�]i) is an
important regulator of various cell functions. The most impor-
tant mechanisms for increasing [Ca2�]i are release of Ca2�

from intracellular stores and entry of extracellular Ca2� via
diverse Ca2� entry channels. In the last 10 years, several novel
Ca2� entry channels belonging to the still expanding family of
TRP cation channels have been discovered. More than 20
mammalian TRP genes have been identified, encoding mem-
brane proteins with six transmembrane segments (TM1–TM6)
and a putative pore region formed by a short hydrophobic
stretch between TM5 and TM6 (for detailed reviews, see Refs.
11, 48, 49). On the basis of their homology, mammalian TRP
proteins are classified into three subfamilies (50): TRPC (ca-
nonical), TRPV (vanilloid), and TRPM (melastatin). The core
transmembrane channel structure of TRP channels resembles
that of the pore-forming subunits of voltage-gated and cyclic
nucleotide-gated channels and consists of a coassembly of four
subunits (32).

THE TRPV SUBFAMILY

TRPV1 (VR-1), the founding member of the TRPV family,
was identified by expression cloning as a capsaicin- and heat-
gated channel (9). A similar expression cloning strategy for
proteins responsible for reabsorption of Ca2� in the kidney
(31) and the gut (63) led to the discovery of TRPV5 (ECaC1)
and TRPV6 (CaT1). The remaining three members (TRPV2–4)
were identified by using electronic search strategies designed
to recognize proteins related to TRPV1 or the related OSM-9
protein fromCaenorhabditis elegans (for a detailed review, see
Refs. 4, 27). Functionally, the six mammalian members of the
TRPV subfamily can be subdivided in two groups: TRPV1 to
TRPV4 are Ca2�-permeable, nonselective cation channels with
steep temperature dependence; TRPV5 and TRPV6 are highly
Ca2�-selective channels with low temperature sensitivity.
TRPV channels are also present in invertebrates:C. elegans

genome encodes five TRPVs, OCR-1 to OCR-4 and the above-
mentioned OSM-9;Drosophila melanogaster expresses two
TRPVs.

TRPV1 is an outwardly rectifying cation-selective ion chan-
nel with a preference for calcium (PCa/PNa � 10) and magne-
sium (PMg/PNa � 5) (9), which depends on a single aspartic
acid residue in the pore region of the protein (23). TRPV1 is
also activated by moderate heat (�43°C) and low pH (�5.9)
and may act as an integrator of chemical and physical pain-
eliciting stimuli. Gating by heat is direct, whereas mild acidosis
(pH � 5.9) reduces the temperature threshold for activation
and potentiates the responses to capsaicin (9, 30, 81). Capsa-
icin and the plant toxin resiniferatoxin are potent exogenous
agonists of the vanilloid receptor (77). Endogenous agonists
include the cannabinoid receptor agonist anandamide (arachi-
donoylethanolamide, AEA) and several eicosanoid products of
lipoxygenases including 12-(S)- and 15-(S)-hydroperoxyeico-
satetraenoic acids, 5-(S)-hydroxyeicosatetraenoic acid, and leu-
kotriene B4 (34, 66, 72, 105). TRPV1 mediates nociception and
contributes to the detection and integration of diverse chemical
and thermal stimuli (7).

TRPV2 (VRL-1), which is 50% identical to TRPV1, is
insensitive to capsaicin and low pH and has a higher threshold
for activation by heat (�52°C) (8).

TRPV3, the last member of the TRPV family to be cloned,
is thermosensitive in the physiological temperature range of 22
to 40°C (60, 73, 101).

TRPV4 (OTRPC4, VRL-2, VR-OAC, and TRP12) was first
described as a channel activated by hypotonicity-induced cell
swelling (42, 55, 74, 99), but it might, as discussed below in
more detail, integrate a large variety of stimuli.

TRPV5 (ECaC1, CaT2) and the highly homologous TRPV6
(ECaC2, CaT1) were identified via an expression cloning
strategy screening for Ca2� influx-promoting genes inXenopus
oocytes, using cDNA libraries from rabbit distal tubule kidney
cells and rat duodenum, respectively. Both proteins share
�80% homology at the amino acid level (61–65), are func-
tionally very similar, and are able to form functional heterotet-
ramers (32). TRPV5 and TRPV6 are highly Ca2� selective
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(PCa/PNa � 100) and display anomalous mole fraction behav-
ior, Mg2� block, and Ca2�-dependent feedback inhibition (54,
86–88). All these properties are linked to a single negatively
charged aspartic acid residue in the pore region (D542 in
TRPV5, D541 in TRPV6) (56).

TRPV4: STRUCTURE AND EXPRESSION

Within the TRPV subfamily, TRPV4 displays significantly
stronger homology with TRPV1–TRPV3 than with TRPV5
and TRPV6 (Fig. 1). Species differences for TRPV4 are
minimal (human/mouse 95.2/96.9%; human/rat 94.8/97.0%,
mouse/rat 98.9/99.2% identity/similarity). TRPV4 consists of
871 amino acids with at least three ankyrin repeats in the NH2

terminus (Fig. 2).
TRPV4 is expressed in a broad range of tissues, including

lung, spleen, kidney, testis, fat, brain, cochlea, skin, smooth
muscle, liver, and vascular endothelium (10, 18, 37, 42, 74,
99). In situ hybridization in the brain indicates expression, in
the lamina terminalis of the mouse brain, in neurons of the
arched vascular organ of the lamina terminalis, in the median
preoptic area, the optic chiasm, neurons of the subfornical
organ, the ventral hippocampal commissure, anterior hypotha-
lamic structures, ependymal cells of the choroid plexus in the

lateral ventricles, and dorsal root ganglia (DRG) neurons (14,
42, 74). Interestingly, TRPV4 mRNA but not the protein could
be detected in the soma of DRG neurons, suggesting that there
might exist a mechanism for the transport of the TRPV4
protein from the neuronal bodies to the sensory terminals (26).
Direct functional measurement of endogenous TRPV4-medi-
ated Ca2� entry and/or whole cell currents have been described
so far only for endothelial cells (94, 96, 97), keratinocytes (10),
and DRG neurons (2).

TRPV4: FUNCTIONAL HALLMARKS

The exogenous agonist 4�-phorbol 12,13-didecanoate
(4�PDD) activates a large current in TRPV4-expressing cells
(Fig. 3, A–C), which is transient in the presence of Ca2� (Fig.
3A) and shows a complex time course comprising potentiation,
subsequent inhibition by higher [Ca2�]i, and desensitization of
the agonist response (see below). In the absence of Ca2�, the
current decays more slowly (Fig. 3, D–F). Clearly resolvable
inward currents can be measured with Ca2� or Mg2� as the
only permeating extracellular cation, demonstrating that both
divalent cations can permeate TRPV4 channels. Permeability
values relative to Na� are 6–10 for Ca2� and 2–3 for Mg2�

(42, 55, 74, 75, 91, 94). Current-voltage relationships display

Fig. 1. The TRPV family. A: dendrogram of the TRPV
family, based on homology (data obtained from Vector
NT, pairwise comparison). Accession nos. are NP_542437
(hTRPV1), NP_057197 (hTRPV2), AF 514998.1 (hTRPV3),
NP_067638 (hTRPV4), NM_019841 (hTRPV5), and
NP_06116 (hTRPV6). Phylogenetic distance was calcu-
lated using the Neighbor Joining method (Vector NTI 8).
B: identity (red) and similarity (black) of the human TRPV
(hTRPV) members. C: putative domain structure of
m(h)TRPV4. Indicated are putative PKC (blue triangles)
and PKA phosphorylation sites (pink triangle), ankyrin
binding repeats (ANK), the 6 transmembrane regions
(TM1–TM6), a glycosylation site close to the pore (red
triangle), and the pore region (see also Fig. 5). Red arrow
indicates a Ca2�/calmodulin binding site; aa, amino acid.
A tyrosine kinase site is present in the first ankyrin repeat
(Y253, not shown).
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slight outward rectification in the presence of extracellular
Ca2� and reverse at a positive potential. Outward rectification
is also evident at the single-channel level (Fig. 4). Single-
channel conductance is 90–100 pS for outward currents and
50–60 pS for inward currents (74, 75, 96, 97). Ruthenium red
(RR) reversibly inhibits inward but not outward currents (Fig.
3, G–I).

THE TRPV4 PORE

The ultimate proof that a membrane protein forms a func-
tional channel is the identification of its pore and experimental
evidence about mutations in the putative pore region that alter
permeation properties. Significant progress in the identification
of the molecular determinants of TRP channel pores has been
achieved for TRPV1, TRPV4, TRPV5, and TRPV6 channels
(23, 32, 56, 89–91). For these channels, point mutations have
been described in the linker between TM5 and TM6 that affect
Ca2� selectivity, relative monovalent permeability, and
blocker sensitivity, providing convincing evidence that, as in
the other six TM channels, this linker forms the pore loop
containing the selectivity filter.

Figure 5 shows an amino acid sequence alignment of the
putative pore regions of the six mammalian TRPV channels,
illustrating the high sequence conservation for TRPV1–4. In-
terestingly, there is also significant homology with the residues
in and surrounding the selectivity filter of the KcsA potassium
channel, the so-called K� channel “signature sequence” (TXX-
TXGYGD) (17, 103). The sequence similarities may indicate
conserved pore structures for these cation channels. The GYG
motif in the pore of the K�-selective channel is changed into a
GMG motif for TRPV1, -2, and -4 and a GLG motif for
TRPV3. This difference between TRPV1, -2, and -4 on one
hand and TRPV3 on the other hand might explain the remark-
ably higher single-channel conductance of TRPV3 (172 pS at
�60 mV vs. �100 pS for TRPV1, -2 and -4) (101).

The aspartate residue D682 is an important determinant of
the Ca2� sensitivity of the TRPV4 pore (Fig. 6). Neutralizing
this aspartate to alanine causes a moderate reduction of the
relative permeability for divalent cations and of the degree of
outward rectification, without significantly altering monovalent
permeability. Neutralizing D672 has only minor effects,
whereas neutralization of both aspartates causes a much stron-
ger reduction of Ca2� permeability and channel rectification
than D682 alone and shifts the permeability sequence for
monovalent cations from Eisenman IV to I. Moreover, neutral-
izing D682 but not D672 strongly reduces the channel’ s affin-
ity for RR (Fig. 7). In contrast, neutralization of the only
positively charged residue in the putative pore region, K675,
has no obvious effects on the properties of the TRPV4 channel
pore. Interestingly, a mutation to M680 in the region of the K�

channel signature sequence, which is likely an equivalent of
the GYG motif in K� channels, strongly reduces whole cell
current amplitude and impairs Ca2� permeation. Therefore, it
is reasonable to speculate that these mutated residues form part
of the TRPV4 selectivity filter and that the architecture of the
TRPV4 pore is comparable to that of K� channels.

ACTIVATION MECHANISMS

Synthetic TRPV4 agonists. Although TRPV4 was originally
considered to be a channel activated upon hypotonic cell
swelling, functional characterization of the channel was greatly
advanced by the discovery that the synthetic 4�PDD acts as a
robust and direct channel activator. This phorbol ester, which
has only weak PKC-activating potency (ED50 � 25 �M) and
does not activate TRPV1 or other TRPV channels, is the most
potent known activator of TRPV4 with an ED50 of 200–400
nM (94). The phorbol 12,13-didecanoate 20-homovanillate
phorbol-vanillate (PDDHV), a potent activator of TRPV1 (78),
fails to activate TRPV4 channels in inside-out patches. How-
ever, PDDHV activates TRPV4 currents in whole cell record-

Fig. 2. Sequence of mTRPV4 (accession no.
NP_071300) with the ankyrin binding repeats under-
lined in black and TM1–TM6 marked with red bars
above the amino acid code. The pore region is indicated
in blue type and the calmodulin binding site in red type.
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ings and also increases [Ca2�]i , suggesting that its vanillyl
moiety has to be cleaved by intracellular esterases (Watanabe
H, Vriens J, and Nilius B, unpublished observations). The
TRPV4 current activated by 4�PDD is transient, and repetitive
applications result in decreased responses, indicative of desen-
sitization. The classic PKC activator phorbol 12-myristate
13-acetate (PMA), which is structurally similar to 4�PDD,
displays a 10- to 50-fold lower potency than 4�PDD in
activating TRPV4 channels (94). These data strongly suggest
that 4�PDD acts via a mechanism distinct from the classic
interaction of a phorbol 12,13-diester with a phorbol ester/
diacylglycerol-type receptor target. The 4� configuration is
apparently not essential for channel activation, because
4�PDD also activates TRPV4 in a similar concentration range
(Watanabe H and Nilius B, unpublished observation; see also
Fig. 8). TRPV4 does not contain a typical cysteine-rich phor-
bol-binding site, homologous to the C1 domains described for
PKC and “nonkinase” phorbol ester receptors (40), and it is
therefore unlikely that activation results from binding of
4�PDD to such a site. In addition, the region of best alignment
with several PKCs, chimerins, and MUNC13 has very low
homology and is located in the pore region (650H-699C),
which makes it unlikely that phorbols are bound via a known
motif to TRPV4.

Endogenous TRPV4 agonists. The potent activation of
TRPV4 by 4�PDD fueled the search for possible endogenous
TRPV4 agonists. Endocannabinoids are a class of endogenous
lipids, including amides and esters of long-chain polyunsatu-
rated fatty acids (15, 16, 45) that activate metabotropic canna-
binoid receptors. The endocannabinoid anandamide (AEA) and
the metabolite 12-hydroxyeicosatetraenoic acid are potent ac-
tivators of TRPV1 (27, 72, 82, 104, 105). Recently, AEA and
its metabolite arachidonic acid (AA) were found to cause a
robust increase in intracellular Ca2� and activate typical whole
cell currents in TRPV4-expressing cells (96). AEA and the
related endocannabinoid 2-arachydonyl glycerol (2-AG) (45)
are transported into the cell through the action of a membrane
transporter and degraded via a lipoxygenase. AEA is hydro-
lyzed to AA exclusively by fatty acid amidohydrolase (FAAH)
(13, 15), whereas 2-AG can also be hydrolyzed through mono-
acylglycerol lipase and other esterases (84). Methanandamide,
a nonmetabolizable analog of AEA, is not able to activate
TRPV4, and phenylmethylsulfonyl fluoride, a selective FAAH
inhibitor, inhibits the effects of AEA but not of AA, indicating
that FAAH-dependent hydrolysis of AEA to AA is required for
TRPV4 activation (96). Surprisingly, AA is not able to activate
TRPV4 in cell free patches, indicating that cellular metabolism
of AA is required for channel activation. ETYA, a nonspecific

Fig. 3. Activation of TRPV4 by 4�-phorbol 12,13-didecanoate (4�PDD). A: at a holding current of 0 mV, application of 1 �M
4�PDD induced an inward current (I) that typically appeared with some delay and rapidly inactivated in the presence of
extracellular Ca2�. B: time course of currents at �80 (F) and �80 mV (E) measured from repetitively applied voltage ramps from
�100 to �100 mV (holding potential 0 mV). C: current-voltage (I-V) relationships measured at times indicated by a and b in B.
Note the outward rectification in the presence of extracellular Ca2�. D: same protocol as in A, at holding current of 0 mV, but in
the absence of extracellular Ca2�. Note the delayed inactivation. E: time course of currents activated by 4�PDD at �80 and �80
mV. F: I-V curves at times labeled c and d in E. Note the near absence of rectification in Ca2�-free solution. G: inhibition of
currents through TRPV4 by ruthenium red (RR; 1 �M). Inward currents were completely blocked (holding current 0 mV). After
RR was washed out, a large inward current appeared. H: current traces at �80 and �80 mV. Note that in the presence of RR,
4�PDD activated an outward current but no inward current, indicating a voltage-dependent block of TRPV4 by RR. The inward
current appeared after RR was washed out. I: I-V curves at times labeled e–g in H. Block by RR is shown by trace f. Note the
absence of the inward current (compare with C). However, after RR was washed out, the typical outwardly rectifying I-V curve
reappeared [1.5 mM extracellular [Ca2�] ([Ca2�]e) present].
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blocker of all AA-metabolizing enzymes (19, 71), prevents
activation of TRPV4 currents by AA, which indicates that
lipoxygenase (LOX), cyclooxygenase (COX), and cytochrome
P-450 (CYP) metabolites of AA might act as potential activa-
tors of TRPV4 (96). Activation of TRPV4 by AA was insen-
sitive to indomethacin, nordihydroguaiaretic acid, and a com-
bination of these inhibitors, which ruled out an involvement of

the COX and LOX pathways. Miconazole, an inhibitor of
P-450 epoxygenase, and 17-octadecynoic acid (17-ODYA), an
inhibitor of the P-450 epoxygenase and 	/	-1-hydroxylases
(71), both fully abolished the AA activation of TRPV4 (96).
Importantly, the CYP inhibitors ETYA, miconazole, and 17-
ODYA do not directly inhibit TRPV4 channels, because they
can still be activated by 4�PDD in the presence of these
blockers. Given that 5
,6
-epoxyeicosatrienoic acid (EET) and,
to a lesser extent, 8
,9
-EET activate TRPV4 in a membrane-
delimited fashion, it is most likely that the epoxygenase path-
way is involved in TRPV4 activation. Thus AEA and AA
apparently act as endogenous chemical agonists of TRPV4,
activating the channels through CYP-dependent formation of
5
,6
-EET (96). It is unclear whether these endogenous ligands
can directly bind to the channel. Activation of TRPM2 by AA
depends on an ISXXTKE arachidonate recognition sequence
(ARS) (28) that was first shown to be important for AA
signaling in the two-pore-domain potassium channel TREK-1
(58). Such an ARS-like sequence, LSRKFKD, is present at the
TRPV4 COOH-terminal end of the NH2 terminus (amino acids
402–408 in mTRPV4). Its role in the activation of TRPV4 is
unclear because the corresponding deletion mutant could not
be functionally expressed (Vriens J, Prenen J, and Nilius B,
unpublished observations).

TRPV4 activation by osmosensation and mechanical stimuli.
Senses based on mechanosensation include hearing and bal-
ance mediated by mechanosensors of the inner ear hair cells
and cutaneous touch sensation via the terminals of sensory
cells that innervate the skin (22). Changes in cell volume affect
other mechanosensors, e.g., osmosensitive neurosensory cells
in the circumventricular organs measure the osmolality of the
blood and communicate with neurosecretory cells, leading to
the secretion of antidiuretic hormone (6). TRPV4 can be
activated by exposing cells to hypotonicity, implying that this
channel might be a cellular osmosensor (42, 55, 74, 99). The
expression of TRPV4 in epithelial cells of kidney, in the stria

Fig. 4. Single-channel currents through
TRPV4 activated by 4�PDD. A: cell-at-
tached patch (�60 mV, 1.5 mM [Ca2�]e, 1
�M 4�PDD). Single-channel activity and
amplitude histogram (top) are shown from
the sweep labeled with a star (bottom),
showing the time course of open probability
(averaged current per sweep divided by sin-
gle-channel current). Single-channel current
was 3.7 pA. B: single TRPV4 channels at
different potentials activated by 1 �M
4�PDD. C: single-channel current-voltage
(i-V) relationship from more than 5 patches
per voltage. From linear regressions, an in-
ward conductance of 60 pS and outward
conductance of 102 pS were calculated (cur-
rents from amplitude histograms).

Fig. 5. Alignment of the putative TRPV4 pore region with that of other TRPV
channels and of the potassium channel KcsA. Transmembrane topology of
TRPV channels (top) and alignment of their putative pore region with the
bacterial potassium channel KcsA (bottom) are shown. Box marks the region
with the highest homology among TRPV1, TRPV2, and TRPV4, supposedly
the selectivity filter. Negatively charged residues and the crucial determinants
for TRPV4 permeation within this region are in bold type, and those for
TRPV4 are underlined. D672 and D682 in TRPV4 are indicated. GenBank
accession nos. are CAC 20703 (TRPV4), CAB 89866 (TRPV1), NP_057197
(TRPV2), NP_062815 (TRPV5), AAG 41951 (TRPV6), and PIR S60172
(KcsA). A, ankyrin binding repeats.
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vascularis of the cochlea, in sweat glands, and in the osmo-
sensory cells of the brain’ s circumventricular organs (14, 26,
42, 51, 74), is in agreement with such an osmosensor function.

Presently, the mechanism whereby swelling activates
TRPV4 is not yet fully solved. The NH2-terminal intracellular
domain of TRPV4 contains three or more ankyrin repeat
domains that seem to be involved in responses to physical
challenges, because TRPV4 activation is delayed if these
ankyrin repeats are lacking (42) (Vriens J and Nilius B,
unpublished observations). These repeats may anchor the chan-
nel to the cytoskeleton and form a mechanical link for gating.
A different mechanism of hypotonicity-induced activation of
TRPV4 proceeding via the phosphorylation of TRPV4 has
been proposed recently (100). These authors observed in a
heterologous expression model and in native murine distal
convoluted tubule cells in culture a rapid cell swelling-induced
tyrosine phosphorylation of TRPV4 mediated via a Lyn kinase-
dependent phosphorylation of residue Y253 in the first ankyrin
binding repeat. Mutation of this site abolished the hypotonic-
ity-dependent activation of TRPV4. This mechanism is, how-
ever, controversial. We did not observe any effect on the
swelling-induced response in the Y253F mutant (91a). An
alternative possibility could be that hypotonic activation of
TRPV4 acts through the above-described AA-EET-dependent
pathway, downstream of swelling-induced, PLA2-dependent
AA release (3, 59).

Activation by heat. An emerging characteristic of TRPV
channels is their distinct response to changes in temperature.
TRPV1 is activated at temperatures above 42°C and shows a
slight sensitization during repeated stimulations (8, 38). The
temperature threshold for TRPV3 activation is about 39°C, but
this channel shows strong sensitization during repetitive heat
challenges (60, 73, 101). TRPV4 is activated at temperatures
above �27°C. In contrast to TRPV1 and TRPV3, it desensi-
tizes upon repeated heat applications (26, 97). When constantly

exposed to 37°C, TRPV4 can still respond to increased tem-
peratures, i.e., its shows incomplete desensitization (26).
Likely, TRPV4 is constitutively active at body temperature.
Ca2�-dependent inactivation is a possible adaptive mechanism
to reduce channel open probability by the resulting increase in
[Ca2�]i (94, 95) (see also Modulation by Ca2�). The mecha-
nism of heat activation of TRPV4 is unclear. However, the
observation that heat in contrast to, for example, 4�PDD or
5
,6
-EET does not activate TRPV4 channels in cell-free in-
side-out patches (10, 95) argues against direct activation and
points to an indirect or messenger-mediated mechanism.

Modulation by Ca2�. Intracellular Ca2� is an important
regulator of TRPV4 channels and, depending on the concen-
tration, either potentiates or inhibits channel activity (75, 94,
95). Stimulation with 4�PDD activates TRPV4 current with a
certain latency, followed by inactivation. This decay is accel-
erated by increasing the extracellular Ca2� concentration and is
delayed in the absence of extracellular Ca2�. The ED50 for
intracellular Ca2�-dependent inactivation of TRPV4 is �400–
600 nM (94, 95), but the nature of this Ca2�-dependent
negative feedback mechanism has not yet been identified.
Inactivation in the presence of extracellular Ca2� was much
slower in a mutant channel with a point mutation in the sixth
transmembrane domain (F707A) (95).

An increase in intracellular Ca2� was shown to first stimu-
late TRPV4 (75), and TRPV4 currents stimulated by hypotonic
solutions or phorbol esters were strongly reduced at all poten-
tials in the absence of extracellular Ca2�. The permeant diva-
lent cations Ba2� and Sr2� were less effective than Ca2� in
potentiating TRPV4. This effect depended on an intracellular
site in the COOH terminus, to which calmodulin binds in a
Ca2�-dependent manner. This site, however, does not affect
inactivation. A positively charged �-helical stretch VGRL-
RRDRWSSVVPRVV, similar to the COOH-terminal Ca2�/
calmodulin-binding motif in TRPV6 and with some similarity

Fig. 6. Functional properties of the TRPV4
pore. A: I-V curve of whole cell currents nor-
malized to �100 mV in the presence of different
[Ca2�]e. Note the Ca2�-dependent outward rec-
tification representing the low-affinity block of
inward currents through TRPV4 by [Ca2�]e. B:
the double aspartate mutation D672A-D682A in
the pore region strongly reduced the Ca2�-de-
pendent block of inward current. C: Ca2� block
represented as ratio of the current at �100 and
�100 mV. Concentration for half-maximal
block of the wild-type channel was 765 �M
[Ca2�]e. Note that the pore mutations D682A or
the double aspartate mutations, but not the mu-
tation of D672 alone, decreased the low-affinity
block by Ca2�. These results indicate a low-
affinity binding of Ca2� in the TRPV4 pore,
which is mainly determined by D682.
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to the PKC pseudosubstrate site (52), has been identified in the
COOH terminal of TRPV4 starting at position 814 (75). By
mutagenesis, it has been shown that this motif is the structural
determinant of Ca2�-dependent potentiation (75). The same
site seems essential for the spontaneous opening of TRPV4
channels in the absence of any agonist (75). This spontaneous
activation might be responsible for the observed elevated Ca2�

levels in nonstimulated TRPV4-expressing cells (42, 74, 96,
97, 99). Interestingly, mutant channels with a single mutation
in the COOH terminus of TRPV4 (E797) were constitutively
open, i.e., spontaneous activation seemed to be increased (95),
suggesting that this site may interfere with Ca2� binding at the
neighboring calmodulin-binding motif.

Modulation by phosphorylation. The mechanism of TRPV1
activation and potentiation by PKC-dependent phosphorylation
has been investigated in detail (39, 57, 67, 85). It has recently
been shown that PMA, a known activator of PKC, also acti-
vates TRPV4 (21). Concentrations of PMA that are subthresh-
old at room temperature (94) activate TRPV4 at 37°C through
a PKC-dependent pathway. The PMA activation of TRPV4 is
dramatically reduced in the presence of the PKC inhibitors
calphostin C and staurosporine (21), indicating that phorbols

activate TRPV4 via PKC-independent and -dependent mecha-
nisms. The potentiating effect of PKC stimulation on TRPV4
activation by other stimuli, such as endogenous agonists, cell
swelling, and heat, has not yet been studied in detail. Putative
PKC phosphorylation sites are indicated in Fig. 1. Probably,
S88, S134, and S528 are the most likely candidates for medi-
ating functional effects.

Remarkably, modulation by lipids, such as phosphatidylino-
sitol 4,5-bisphosphate (PIP2), is still completely unknown for
TRPV4. The COOH terminus of TRPV1 contains a modular
PIP2 binding site (a cluster of basic residues interspersed by
hydrophobic amino acids, e.g., LRSSRVSGRHWKNFALV-
PLLREASARDRQSAQPEEVYLRQFSS for hTRPV1). Bind-
ing of PIP2 to this site causes tonic inhibition of the channels,
and PLC-mediated hydrolysis sensitizes the channel for acti-
vation by capsaicin, protons, and heat (68). This site, however,
is not conserved in TRPV4, but all TRPV4s contain a low-
homology site with six basic amino acids between residues 400
and 446 whose possible functional impact is still unknown.

Interference of various stimuli. TRPV4 is coexpressed with
TRPV3 in mouse keratinocytes (10). Heat responses were
significantly enhanced under hypotonic conditions and inhib-

Fig. 7. Block of TRPV4 by RR. A: currents are shown through wild-type (WT) TRPV4. Channels were activated by 1 �M 4�PDD.
Holding potential was �20 mV. The voltage protocol consisted of a hyperpolarizing prestep to �100 mV, followed by test steps
from �100 to �80 mV spaced by 20 mV and a further step back to �100 mV (see B, inset; [Na�]e � 150 mM, [Ca2�]e � 5 mM).
The slow decay of the inward current is likely due to inhibition by Ca2�. B: 1 �M RR completely abolished the inward current
but did not affect the outward currents in WT TRPV4 channels. This again indicates that the block of TRPV4 by RR is voltage
dependent. C: the double mutant D672A-D682A currents are similar to those for the WT; however, the Ca2�-dependent decay was
delayed. D: RR had much less effect on the mutant channel than on the WT. Inward currents were still large and decayed slowly,
probably due to the slower entrance of RR into the pore vestibule. E: voltage dependence of the block by 1 �M RR for WT TRPV4
and the 3 mutants. The voltage at the abscissa is the test potential after the first step to �100 mV. The unblocked fraction in the
presence of RR was obtained by measuring peak tail currents during the second step to �100 mV and normalizing them to the
current in the absence of the blocker (see also Ref. 91).
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ited under hypertonic conditions in these cells. 4�PDD also
augmented the responsiveness to heat, i.e., a concentration of
4�PDD that is subthreshold at room temperature activates
TRPV4 at higher temperatures (10, 21). Similar synergistic
effects have also been observed for the responses of TRPV1
channels to capsaicin, heat, and protons.

TRPV4 expressed in human embryonic kidney (HEK) cells
also clearly shows this stimulus interdependence of activation.
At room temperature, activation by hypotonic cell swelling,
shear stress, and PKC is modest or absent, but 4�PDD induces
a clear effect. At elevated temperatures (37°C), TRPV4 is
rapidly activated by all stimuli. Temperature appears to be a
critical modulator of TRPV4 channel gating, leading to acti-
vation of the channel by a diverse range of microenvironmental
chemical and physical signals (21). It is obvious from these
data that the precise threshold for TRPV4 activation depends
on the cellular context and environmental history of the chan-
nel. Activity-dependent changes in channel state, channel
phosphorylation, or dephosphorylation (100); changes in os-
molarity; activation of downstream signaling pathways; and

protein-protein interactions such as heteromultimeric channel
formation may all cause diversity in activation parameters.
Heat does not affect the 5
,6
-EET-induced increase in [Ca2�]i,
but this increase is reduced under hyposmotic conditions (Vriens
J and Nilius B, unpublished data). Likely, the heat-sensitive
pathway is different from the swelling-induced pathway.

POSSIBLE PHYSIOLOGICAL FUNCTIONS FOR TRPV4

One key question remains: What are TRPV4 channels good
for? The ability of this unique channel to respond to a broad
variety of signals has evoked hypotheses about its possible
involvement in processes ranging from sensory detection and
thermoregulation to regulation of vascular tone and signaling
in the brain. At present, most of this is still speculative, but the
recent creation of TRPV4-deficient mice will allow a direct
testing of these hypotheses.

Keratinocytes are capable of detecting modest temperature
elevations, which contribute to warmth perception and/or cu-
taneous thermoregulation. In a recent study, strong evidence
was provided for an involvement of TRPV4 in these responses
(10). In addition to peripheral temperature sensing, TRPV4 might
also play a role in regulating thermogenesis. TRPV4 is expressed
in the preoptic and anterior hypothalamus (26, 42), the control
center of thermogenesis that contains specialized warm- and
cool-sensitive neurons, which are also activated by hyposmo-
larity (1, 5, 33, 83). The high level of TRPV4 expression in
endothelial cells (94, 97) may hint to another role in thermo-
regulation by influencing the vasomotor activity of peripheral
vessels. The involvement of TRPV4 in thermosensation and
thermoregulation might become clearer in mice lacking TRPV4.

The basal level of TRPV4 activity at normal body temper-
ature will undoubtedly contribute to Ca2� homeostasis and
might influence the growth and differentiation state of cells
expressing TRPV4. Primary keratinocytes maintain an undif-
ferentiated proliferative phenotype at low extracellular Ca2�,
whereas exposure to higher Ca2� inhibits proliferation,
changes cell morphology and induces terminal differentiation
(10, 102). In endothelial cells, temperature-sensitive Ca2�

entry through TRPV4 could have important consequences, e.g.,
for a steady-state production of nitric oxide, and might con-
tribute to the known vasoconstriction and vasodilatation of
peripheral blood vessels induced by cooling and warming,
respectively (46). In addition, the temperature sensitivity of
endothelial TRPV4 might suggest a role in mediating inflam-
matory pathophysiology in fever, e.g., by changing barrier
properties that depend on Ca2� influx (79).

Until now, TRPV4 is the only TRP channel that has been put
forward as a potential constituent of a mammalian mechano-
transducer (42), although its biophysical properties do not
really match those of a mechanosensitive channel, because
pressure applied to TRPV4-expressing cell-attached patches
does not activate this channel (74). Nevertheless, it is an
interesting possibility that TRPV4 is involved in mechanosens-
ing, e.g., in endothelial cells via a mechanostimulation of PLA2

and subsequent activation by AA and 5
,6
-EET (96). Interest-
ingly, TRPV4 responds to shear stress, which might be espe-
cially important for endothelial cell function (21, 53). The
proposed mechanosensitivity of TRPV4 has also made it a
candidate gene for inherited dominant nonsyndromic hearing
impairment (25, 27).

Fig. 8. Comparison of the pharmacology of activation of TRPV1 and TRPV4
by phorbols and fatty acids. Shown are the structures of agonists for TRPV1
and TRPV4. TRPV1 agonists seem to require the vanillyl moiety. For the
phorbols, the 4� vs. 4� structure is indicated by a dashed and solid triangle,
respectively. Kd values for TRPV1 are from Ref. 77, and values for TRPV4 are
from Refs. 94 and 96 and from Watanabe H and Nilius B [unpublished data for
4�PDD and 4�-12,13-didecanoate 20-homovanillate phorbol-vanillate (PD-
DHV); 4�PMA has not yet been tested].
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The TRPV4 activators AEA and 2-AG likely play an im-
portant role in the control of the vascular tone and potentially
in shock conditions (44, 69, 70, 92, 93, 105). Interestingly,
their effects could not be fully explained by an action on CB1
and CB2 receptors or on TRPV1 channels (24, 29, 35, 36, 92).
Our data about the activation of TRPV4 by AEA and 2-AG
might provide the missing link for the action of these com-
pounds on endothelium.

Endocannabinoids are potent neuromodulators that may
mainly act as retrograde messengers (20, 98). The finding that
endocannabinoids are involved in TRPV4 activation identifies
a new molecular target for cannabinoids and provides a link to
modulation of synaptic function (16). In this respect, it might
be of interest that the gene locus for the human TRPV4 channel
is associated with bipolar affective disorder (14).

It has been shown that TRPV4 has a physiological role in rat
primary afferent neurons and is involved in the detection of
osmolarity in nociceptors (2). TRPV4 is thus a sensory trans-
ducer for osmotic stimulus-induced nociception. The TRPV4
protein is transported in sensory nerve distally toward the
peripheral nerve endings. Single-fiber recordings on C-fibers
showed an activation due to a hypotonic stimulus and, in
addition, an enhanced production of the hyperalgesic inflam-
matory mediator prostaglandin E2. It was also shown that this
osmotransduction causes nociception and induced pain-related
behavior in mice. This is the first report on the role of TRPV4
in pain signaling. Thus we conclude that TRPV4 might be a
new target for the development of novel analgesics.

The recently described TRPV4-deficient mouse shows a
markedly reduced sensitivity of the tail to pressure and acidic
nociception, which is compatible with a role of TRPV4 in
mechanosensation. The threshold to noxious stimuli and the
conduction velocity of myelinated nerves responding to stimuli
were also impaired, indicating that TRPV4 might be essential
for the normal detection of pressure by a high-threshold mech-
anosensor (76). Another functional role of TRPV4 suggested
by the Suzuki group is its putative role in osmoregulation (47).
TRPV4 is expressed in the cerebral circumventricular organs
(42), which is important for regulation of water input and/or
osmolarity in the body. In TRPV4-deficient mice, water intake
behavior, or serum osmolarity, and serum vasopressin (AVP),
were not changed. During short-term salt ingestion, however,
serum AVP and AVP secretion were significantly increased. In
brain slices, hyperosmolarity exaggerated AVP secretion. It
was concluded that TRPV4 might transmit a negative signal for
AVP. The underlying mechanism is unclear, because in this
case hyperosmolarity might be able to activate TRPV4.

Some clues for the functional role of TRPV4 may be
obtained from TRPV subfamily members in C. elegans and
Drosophila. OSM-9, one of the five C. elegans TRPV chan-
nels, is present in chemosensory and mechanosensory neurons,
and OSM-9-deficient worms have defective olfactory and
mechanosensory responses (12). Together with other TRPV
channels (e.g., OCR-2), OSM-9 is essential for the diverse
sensory functions and localized in sensory cilia (80). Impor-
tantly, the different C. elegans TRPV channels promote the
targeting of each other to cilia. Likely, different combinations
of TRPV proteins allow cell type-specific regulation of channel
function and localization, and combinations of TRPV proteins
may direct different functions to distinct subcellular locations.
The D. melanogaster genome includes two predicted TRPV

genes (43, 80). One gene encodes an 833-amino acid protein
called Nanchung (Nan), which shares several topological hall-
marks with TRPV4. Functional expression of Nan results in a
Ca2�-permeable channel activated by cell swelling. Nan is
exclusively expressed in chordotonal neurons and is localized
in the sensory cilia of the Drosophila antennas. Antennal
sound-evoked potentials are completely absent in mutants
lacking Nan. This TRPV channel therefore acts, at least in
Drosophila, as a chordotonal mechanotransducer that is essen-
tial for hearing (41).

NOTE ADDED IN PROOF

After acceptance of this paper, the W. Liedtle laboratory published
impressive data on the involvement of TRPV4 in osmoregulation.
TRPV4-deficient mice drink less water, become more hyperosmolar,
have a decreased blood level of antidiuretic hormone, and show an
impaired response to hyper- and hyposmolar stimuli. Data indicate
that TRPV4 is a necessary osmotic sensor in the circumventricular
organs in the mammalian CNS (Liedtke W and Friedman JM. Ab-
normal osmotic regulation in trpv4�/� mice. Proc Natl Acad Sci
October 27, 2003; 10.1073/pnas.173541610).
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