TASTE

@ FUNCTIONS _., nutrition - survival

—» Information on toxicity and sugar content

9 basic tastes

sweefness: sugar (energy)

bitterness: plan’r CllCCllOidS, toXiNnS (dangerous, unpleasant, sharp, or disagreeable)
saltiness: sodium ions (osmoregulation)

sourness: acidity (uripe fruits, spoiled food)

umami: proteins (meaty)
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Thermal Gating of TRP lon Channels:
Food for Thought?

Emily R. Liman*
(Published 14 March 2006)
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Fig. 1. Model for thermal gating of TRP channels. In this simple
model, the channel can occupy one of two states—closed and Sweeter
open—and transitions between the two states are sensitive to
voltage (depolarization promotes entry into the open state).

Thermosensitivity of the channel results from an asymmetry in . . . .

the temperature dependence of opening and closing transitions. Fig. 2. Signaling of sweet taste is enhanced at warm temperatures.
For the heat-activated channels, the opening transition is more i 1 H H

temperature sensitive, whereas for cold-activated channels, the The frequency _Of actlon pOtentlals In QUStatory nerves in response
closing transition is more temperature sensitive. This model pre- to sweet chemicals is increased at warmer temperatures. TRPM5
dicts that the probability that channels are open (Po) as a func- . s .

tion of voltage (V) shifts to the left upon warming for TRPV1 and channels are essential for sweet taste, and it is hypothesized that
to the right for TRPMS8, a prediction that is validated by the data . P

[based on (10, 11)]. See (1) for an alternate allosteric model the increased activity of TRPM5 channels at warm temperatures

for thermo-gating of TRPMS. underlies thermal sensitivity of sweet taste (5).
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Figure 1 Morphology of taste buds (rat). a, Viable bud isolated from the vallate papilla. Taste pore at the upper left (arrow). Length of bud is 30 pm. b, Cut-open view of a bud
(cartoon). Highlighted are two receptor cells with apical microvilli and basolateral synapses. ¢, Images of a viable bud from the vallate papilla, taken with a 2-photon microscope.
The four optical planes depict multiple bipolar cells in different states of loading with a fluorescent dye, and nerve fibres. d, Three-dimensional reconstruction, from microscopic
serial sections, of a bud from the foliate papilla, the taste pore facing upwards. On the left, a solitary bipolar cell with innervating nerve fibre is also visible. Scale bar, 25 wm.
(Image courtesy of V. I. Popov, Institute of Cell Biophysics, RAS, Pushchino, Russia.). e, Bipolar receptor cell with sensory nerve fibre attached. Some morphological details and the
location of the main types of identified ion channels on the lateral membrane are indicated. BP, basal cell process.
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The cell biology of taste

Nirupa Chaudhari and Stephen D. Roper
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TRCs subtypes express different molecular patterns

Fig. 4. Diagram of TRC subsets according to expression of signaling molecules. Gene expression profiling, in situ hybridization and immunohistological
studies indicate the following pattern of co-expression for the molecules a-gustducin, Gyl13, PLCB2, IP3R3 and TrpmS5 in circumvallate taste buds. Note
the absolute co-expression of Gryl3, PLCB2, IP3R3 and TrpmS5. a-Gustducin is expressed in a subset of these TRCs. T2r receptors are expressed in
a subset of a-gustducin®™ TRCs. Additional TRC subsets will be defined as more comprehensive studies on the co-expression of the above mentioned
molecules and other signaling elements such as sweet/umami taste receptors (T1r), G proteins subunits and effectors (PDELA, adenylyl cyclase (AC))
are carried out. Modified from [37] with permission from the authors.
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o-Gustducin

Fig. 3. Co-expression of Trpm5 and IP3R3 with TRC signaling molecules. Immunohistological staining of CV papillae tissue showing the co-expression
of Trpm5 and IP3R3 with Gy13, PLCB2 and a-gustducin. Additionally we have directly confirmed the coexpression of Trpm5 and IP3R3 (Todd Clapp,
RFM and SCK, data not shown). Scale bar = 20 wm. Reproduced from [37,69] with permission from the authors.
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Figure 2. Model for the role of TRPMS in the perception of sweet, bitter or umami taste.

In taste receptor cells of the tongue, taste compounds bind to G-protein-coupled taste receptor proteins (TRs), evoking bitter, sweet or umami
taste sensation. These TRsinclude dimeric TIR2 + T1R3 for sweet tasteand more than 36 T2Rs for bitter taste (for a review, see [36]). TRs activate
phospholipase C (PLC) via the G protein « subunit a-gustducin, leading to the production of inositol 1,4,5-trisphosphate (IP,) and release of Ca®*
from intracellular stores via the IP; receptor (IP;R). The rise in intracellular Ca®* opens TRPM5, leading to membrane depolarization, activation of
voltage-gated Na* (Nay) channels and generation of action potentials (AP). The depolarization results in the release of ATP, probably via pannexin-
type hemichannels. The released ATP activates ionotropic purinergic (P,X) receptors on neighboring presynaptic cells, leading to depolarization,
activation of voltage-gated Ca®* (Cay) channels and Ca**-dependent exocytosis of serotonin-containing vesicles. Afferent sensory fibers are
depolarized by the serotonin release from the presynaptic cells (via ionotropic 5-HT3 receptors) and possibly by the ATP released from the taste
receptor cells (via P,X receptors).

TRPMS5 is also expressed in olfactory neurons..feromones
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Heat activation of TRPM5 underlies thermal
sensitivity of sweet taste

Karel Talavera', Keiko Yasumatsu®, Thomas Voets', Guy D , Nori hi ?, Yuzo Nil
Robert F. Margolskee® & Bernd Nilius'
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Bitter taste receptors on airway smooth muscle
bronchodilate by localized calcium signaling and
reverse obstruction

Deepak A Deshpande', Wayne C H Wang', Elizabeth L Mcllmoyle', Kathryn S Robinett!, Rachel M Schillinger',
Steven S An?, James S K Sham? & Stephen B Liggett'




Transient receptor potential family members PKD1L3
and PKD2L1 form a candidate sour taste receptor

Yoshiro Ishimaru*, Hitoshi Inadat, Momoka Kubota*, Hanyi Zhuang*, Makoto Tominagat?, and Hiroaki Matsunami*!

PNAS | August 15,2006 | wol. 103 | mo. 33 | 12560-12574
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Sour Taste Responses in Mice Lacking PKD Channels

Nao Horio'®, Ryusuke Yoshida'®, Keiko Yasumatsu'?, Yuchio Yanagawa®*, Yoshiro Ishimaru®®, Hiroaki
Matsunami®, Yuzo Ninomiya'*

Conclusions/Significance: These findings suggest that PKD2L1 partly contributes to sour taste responses in mice and that
receptors other than PKDs would be involved in sour detection.
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Table 3. ANOVA results for CT and GL nerve responses to
taste compounds (vs. WT mice) (Horio et al.).

PKD1L3 "/ PKD2L1 "/ PKD1L3/2L19%'/

nerve tastant DF F DF F DF F

cT HCl 164 02 1,74 3017 1,69 1217
CA 164 16 1,74 209 1,69 145
AA 164 24 174 225 1,69 1207
Suc 164 21 174 04 169 14
NaCl 164 20 174 00 169 28
QHCI 164 15 174 13 169 38
MSG 164 02 174 00 169 03
MPG 164 00 174 07 169 29

GL HCI 169 07 169 00 169 00
CA 169 02 169 38 169 06
AA 169 09 169 38 169 29
Suc 169 17 169 06 169 23
NaCl 169 06 169 22 169 02
QHCI 169 38 169 34 169 04
MSG 169 03 169 34 169 07
MPG 169 26 169 07 1,69 27

Response magnitudes were analyzed by two-way ANOVA. Table based on data
shown in Fig. 4. DF: degree of freedom. F: F values.

**%: P<20.001, ANOVA.

doi:10.1371/journal.pone.0020007.t003
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Ca2*-activated CI- currents are dispensable for olfaction

Gwendolyn M Billig!?, Balazs P4l', Pawel Fidzinski! & Thomas ] Jentsch'

Canonical olfactory signal transduction involves the activation of cyclic AMP-activated cation channels that depolarize the cilia of
receptor neurons and raise intracellular calcium. Calcium then activates Cl~ currents that may be up to tenfold larger than cation
currents and are believed to powerfully amplify the response. We identified Anoctamin2 (Ano2, also known as TMEM16B) as the
ciliary Ca2*-activated CI- channel of olfactory receptor neurons. Ano2 is expressed in the main olfactory epithelium (MOE) and

in the vomeronasal organ (VNO), which also expresses the related Anol channel. Disruption of Ano2 in mice virtually abolished
Ca?*-activated CI- currents in the MOE and VNO. Ano2 disruption reduced fluid-phase electro-olfactogram responses by only
~40%, did not change air-phase electro-olfactograms and did not reduce performance in olfactory behavioral tasks. In contrast
with the current view, cyclic nucleotide-gated cation channels do not need a boost by CI~ channels to achieve near-physiological
levels of olfaction.
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Figure 5 Effect of Ano2 disruption on Ca?*-
activated CI- currents. Patch-clamp recordings
of olfactory receptor neurons from the MOE
(a-i) and the VNO (j-1). (a,d,g) Typical current
traces obtained from Ano2** OSNs in the
presence of nominally O uM, 1.5 pM and 13 uM
Ca?* in the recording pipette, respectively.

The voltage-clamp protocol is shown in a.
(b,e,h) Current densities (//C) from Ano2-'~ OSNs
under conditions as in a,d,g. (c,f,i) Averaged
current-voltage relationships of steady-state
currents with O uM, 1.5 uM and 13 uM Ca?*

in the pipette, respectively. B wild-type cells,

A Ano2'- cells. Error bars, s.e.m. Number of
cells measured: (c) 7 wild type, 7 knockout;

(f), 15 wild type, 11 knockout; (i), 14 wild type,
10 knockout. (j,m) Typical current traces of
wild-type vomeronasal sensory neurons (VSNs)
with O uM Ca?+ (j) and 1.5 uM free Ca2* (m) in
the pipette. (k) Ano2-'~ VSN with O uM Ca*,
and (n) with 1.5 uM Ca2* in the pipette.

(1) Averaged current-voltage relationships from
VNO receptor neurons measured with 1.5 pM
Ca2+ (M Ano2+'+, 1 Ano2-'-; n=7 and 6,
respectively) and with O uM Ca?* (@ wild type,
O Ano2”'~; n = 5 for both). Error bars, s.e.m.
Voltage clamp protocol as in a.

larger. Averaged current/voltage curves
revealed that Ca®*-activated Cl- currents
of VSNs depend predominantly on Ano2
(Fig. 51). Although Anol is expressed in
the VNO (Fig. 3a), its contribution to VSN
currents seems minor.
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and 0.6% hexanal/0.4% octanal (n =5 for each
genotype) (d). Anosmic Cnga2¥ mice (n=3)
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On the scent of mitochondrial calcium

Frank Zufall

Odorants are now shown to elevate mitochondrial Ca2+ in sensory neurons; moreover, blocking this Ca2* sequestration
impairs dynamic range. Acute stimulation rapidly recruits mitochondria from the soma to the dendritic knob.
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Mitochondrial Ca2* mobilization is a key element in
olfactory signaling

Daniela Fluegge'*®, Lisa M Moeller', Annika Cichy', Monika Gorin', Agnes Weth?, Sophie Veitinger', Silvia Cainarca’,
Stefan Lohmer?, Sabrina Corazza®, Eva M Neuhaus®*, Werner Baumgartner?, Jennifer Spehr! & Marc Spehr!

In olfactory sensory neurons (OSNs), cytosolic Ca2* controls the gain and sensitivity of olfactory signaling. Important components
of the molecular machinery that orchestrates OSN Ca2* dynamics have been described, but key details are still missing. Here,

we demonstrate a critical physiological role of mitochondrial Ca2* mobilization in mouse OSNs. Combining a new mitochondrial
Ca?* imaging approach with patch-clamp recordings, organelle mobility assays and ultrastructural analyses, our study identifies
mitochondria as key determinants of olfactory signaling. We show that mitochondrial Ca2+ mobilization during sensory stimulation
shapes the cytosolic Ca2* response profile in OSNs, ensures a broad dynamic response range and maintains sensitivity of the
spike generation machinery. When mitochondrial function is impaired, olfactory neurons function as simple stimulus detectors
rather than as intensity encoders. Moreover, we describe activity-dependent recruitment of mitochondria to olfactory knobs, a
mechanism that provides a context-dependent tool for OSNs to maintain cellular homeostasis and signaling integrity.
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Figure 1 Schematic representation of Ca2* signaling mechanisms in cilia and dendritic knob of an
OSN. Much is known about the main Ca2* influx pathway in the cilia (1), the role of Ca2* in primary
olfactory signal transduction, and the principal Na*/Ca2* exchanger (NCKX4) that allows rapid response
termination and adaptation of an OSN2-2.8.11 Odor-evoked Ca2* signaling in the dendritic knob and
dendrite (2) involves additional Ca2* regulation mechanisms, including caffeine-sensitive endoplasmic
reticulum (ER) Ca2* stores, Ca2*-induced Ca?* release and voltage-activated (Ca,) Ca2* channels!Z.
However, an entire piece of the puzzle, an essential role of mitochondria (3) in OSN Ca?* regulation,
has been missing until now. NCLX, the mitochondrial Na*/Ca2* antiporter, and MCU, the pore-forming
subunit of the mitochondrial Ca2+ uptake channel, may participate in mitochondrial Ca2* flux!#,

with the caveat that molecular proof of their presence in OSNs is still lacking. AC3, adenylyl cyclase 3;
ANO2, Ca*-activated CI- channel; CaM, calmodulin; CNG, cyclic nucleotide gated; Gy, G protein;
IP4R, inositol-1,4,5-trisphosphate receptor; Ke,, Ca®*-activated K* channel; OR, odor receptor;

RyR, ryanodine receptor; SERCA, sarcoplasmic-endoplasmic reticulum Ca2+-ATPase.
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