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Introduction
The classical second messenger, cAMP, has recently gained atten-
tion as a player in the control of mitochondrial function. Typi-
cally, cAMP relies on its main effector, protein kinase A (PKA). 
This enzyme can be free in the cytosol or confined to precise 
subcellular locations thanks to a family of proteins called 
A kinase anchoring proteins (AKAPs; Feliciello et al., 2005; 
Pagliarini and Dixon, 2006; O’Rourke et al., 2011). Specific 
AKAPs such as AKAP 121 and SPHKAP/SKIP are known to 
tether PKA to the outer mitochondrial membrane (OMM) and 
intermembrane space in proximity of local targets (Lieberman 
et al., 1988; Feliciello et al., 2005; Kovanich et al., 2010; Means 
et al., 2011). This spatial organization allows timely phosphory-
lation of mitochondrial proteins that regulate apoptosis (BAD; 
Harada et al., 1999), mitochondrial shape (Drp1; Cribbs and 

Strack, 2007; Chang and Blackstone, 2007), and cristae mainte-
nance (ChChd3; Darshi et al., 2011; Means et al., 2011).

Recently, the existence of an independent intramitochon-
drial cAMP signaling circuit was also reported. This cascade 
consists of a matrix-localized cAMP source, the bicarbonate-
activated soluble adenylyl cyclase (sAC; Wuttke et al., 2001; 
Zippin et al., 2003), PKA holoenzyme (Sardanelli et al., 2006; 
Acin-Perez et al., 2009a, 2011a), and the cAMP-degrading 
enzyme PDE2A (Acin-Perez et al., 2011b). Matrix-confined 
PKA was proposed to phosphorylate cytochrome c oxidase 
(COXIV-I) to enhance oxidative phosphorylation (OXPHOS; 
Acin-Perez et al., 2011a). However, prior data suggesting that 
PKA activation inhibits OXPHOS (Bender and Kadenbach, 
2000; Robin et al., 2003; Helling et al., 2008) appear to be in 
striking conflict with this model.

Although the presence of a complete cAMP signaling ma-
chinery in the matrix suggests that mitochondria might be able 
to use a local cAMP messenger system in situ, the dynamic nature 
of these putative cAMP signals and how they impact downstream 
effectors is largely unknown. Additionally, the extent to which 
cAMP produced in the cytoplasm reaches different mitochondrial 

Cyclic AMP (cAMP)-dependent phosphorylation has 
been reported to exert biological effects in both 
the mitochondrial matrix and outer mitochondrial 

membrane (OMM). However, the kinetics, targets, and ef-
fectors of the cAMP cascade in these organellar domains 
remain largely undefined. Here we used sensitive FRET-
based sensors to monitor cAMP and protein kinase A (PKA) 
activity in different mitochondrial compartments in real 
time. We found that cytosolic cAMP did not enter the ma-
trix, except during mitochondrial permeability transition. 
Bicarbonate treatment (expected to activate matrix-bound 

soluble adenylyl cyclase) increased intramitochondrial 
cAMP, but along with membrane-permeant cAMP ana-
logues, failed to induce measureable matrix PKA activity. 
In contrast, the OMM proved to be a domain of excep-
tionally persistent cAMP-dependent PKA activity. Although 
cAMP signaling events measured on the OMM mirrored 
those of the cytosol, PKA phosphorylation at the OMM 
endured longer as a consequence of diminished control 
by local phosphatases. Our findings demonstrate that  
mitochondria host segregated cAMP cascades with dis-
tinct functional and kinetic signatures.
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Figure 1. Cyclic AMP produced in the cytosol does not reach the mitochondrial matrix. (A) Confocal images of HeLa cells expressing mito-EpacH90 
and loaded with MitoTracker red suggesting proper localization of mito-EpacH90. (B) cAMP measurements in intact cells expressing cytosolic EpacH90 
(black trace) or mito-EpacH90 (red trace; mean of five cells); typical of n = 9 experiments; 34 mito-H90, 19 Epac-H90 cells. (C) Digitonin-permeabilized 
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HeLa cells expressing mito-D3cpv (black traces) or mito-EpacH90 (red trace; n = 6 experiments; 10 mito-D3cpv cells, 13 mito-EpacH90 cells; red trace 
indicates the mean of three cells). (D) Mixed populations of permeabilized HeLa cells expressing mito-D3cpv (black trace) or mito-EpacH90 (red traces;  
n = 3 experiments; 5 mito-D3cpv cells, 8 mito-EpacH90 cells). After Ca2+ pulses, mitochondria changed morphology and failed to retain Ca2+, (hallmarks 
of MPT), coincident with responses of mito-EpacH90 to exogenous cAMP. (E) Permeabilized HeLa cells expressing mito-EpacH90 (n = 5 experiments;  
20 cells) subjected to increasing [Ca2+] in the presence of cAMP (10 µM). 100 µM Ca2+ induced a dramatic increase in cAMP measured by mito-EpacH90. 
(F) Cells expressing mito-EpacH90 bathed in Hepes-buffered normal Ringer’s solution (continuous perfusion) then switched to CO2/HCO3 -buffered 
Krebs-Ringer’s, inducing an apparent cAMP rise (presumably due to matrix sAC activation). Data from two representative cells are shown (n = 6 repeats;  
16 mito-EpacH90 cells). Error bars indicate mean ± SD.

 

compartments and the question of how PKA tethered to mito-
chondria responds to cAMP compared with the enzyme in the 
bulk cytoplasm have only been partially addressed (DiPilato 
et al., 2004; Allen and Zhang, 2006; Acin-Perez et al., 2009b; 
Agnes et al., 2010).

Here we targeted fluorescence resonance energy transfer 
(FRET)-based cAMP and PKA activity sensors to the OMM 
and matrix to visualize changes in mitochondrial cAMP and 
PKA activity in real time in live cells. Our data demonstrate that 
mitochondria harbor at least two distinct cAMP microdomains 
(matrix and OMM) with unique signaling characteristics that 
separate them functionally from the cytosolic cAMP pathways.

Results & discussion
Among the most important information-bearing molecules, 
cAMP is known to influence mitochondrial function; however, 
whether cAMP penetrates the mitochondrial matrix is less clear 
(DiPilato et al., 2004; Acin-Perez et al., 2009b). To address this 
issue, we targeted the pH-insensitive FRET- and Epac-based 
cAMP sensor EpacH90 (van der Krogt et al., 2008) to the mito-
chondrial matrix. This construct (“mito-EpacH90”) colocalized 
with the marker MitoTracker red, which is consistent with mi-
tochondrial localization (Fig. 1 A).

HeLa cells expressing mito-EpacH90 or EpacH90 (cyto-
solic) were mixed and seeded onto glass coverslips so that cells  
harboring both types of sensor could be visualized in the same 
microscope field. Cells expressing EpacH90 responded to the  
cAMP-generating agonist forskolin (FSK) in the presence of the 
phosphodiesterase (PDE) inhibitor 3-isobutyl-methylxanthine 
(IBMX) and also to the Epac-specific membrane-permeant cAMP 
analogue 8-(4-chloro-phenylthio)-2 -O-methyladenosine-3 - 
5 -cyclic monophosphate (8CPT-OMe-cAMP). However, al-
though neighboring cells expressing mito-EpacH90 readily 
detected 8CPT-OMe-cAMP, they were insensitive to FSK and 
IBMX, which suggests that the messenger generated in the 
cytosol did not reach the matrix (Fig. 1 B).

We next used mixed populations of digitonin-permeabi-
lized HeLa cells expressing either mito-EpacH90 or the matrix-
targeted Ca2+ sensor mito-D3cpv (Filippin et al., 2005; Palmer 
and Tsien, 2006) together with the marker mCherry (Shaner 
et al., 2004). Mitochondria displayed the expected Ca2+ uptake 
(Baughman et al., 2011; De Stefani et al., 2011), indicating suc-
cessful permeabilization. Meanwhile nearby cells expressing 
mito-EpacH90 did not respond to exogenous Ca2+ or cAMP  
(10 µM) but only to the membrane-permeable cAMP analogue 
8-bromo-adenosine 3 -5 -cyclic monophosphate (8Br-cAMP; 
Fig. 1 C; see also Fig. S1 A).

Collectively, these data demonstrate that cAMP cannot 
permeate the inner mitochondrial membrane. This is in agree-
ment with prior studies using indirect biochemical approaches in 
isolated mitochondria (Acin-Perez et al., 2009b), but contrasts 
previous cAMP FRET imaging measurements by DiPilato et al.  
(2004). This discrepancy most likely lies in the localization sig-
nal used for our cAMP sensor, which minimized the fraction of 
reporter mislocalized to the cytosol.

Next, we investigated whether conditions exist that per-
mit cytosol and matrix to exchange information via cAMP. We  
reasoned that this communication might be most prominent dur-
ing the mitochondrial permeability transition (MPT; Newmeyer 
and Ferguson-Miller, 2003; Hajnóczky et al., 2006). We induced 
MPT in digitonin-permeabilized HeLa cells using Ca2+ overload 
(Bopassa et al., 2005) while monitoring mitochondrial Ca2+ and 
cAMP contemporaneously. Upon MPT, exogenous cAMP rap-
idly entered the matrix (Fig. 1 D). Treatment with 10 µM Ca2+ 
in the presence of 10 µM cAMP did not alter the matrix cAMP 
content; however, addition of 100 µM Ca2+ induced massive 
cAMP entry after roughly 60 s (Fig. 1 E). Our findings suggest 
that during MPT, cAMP is free to diffuse into the matrix, inter-
mingling these two otherwise independent cascades.

An intramitochondrial sAC has been proposed to gener-
ate cAMP in response to metabolically produced HCO3/CO2 
(Acin-Perez et al., 2009b). As shown in Fig. 1 F, mito-EpacH90 
responded with an increase of the FRET ratio when we switched 
acutely from Hepes-buffered media to HCO3 /CO2-buffered 
solutions. These data are consistent with the idea that bicarbon-
ate anion is capable of eliciting cAMP signals in the matrix by 
allowing sAC to independently generate cAMP (Acin-Perez et al., 
2009b, 2011a).

We next asked whether cAMP produced via HCO3 /CO2 
would stimulate the previously reported matrix-resident PKA 
(Sardanelli et al., 2006; Acin-Perez et al., 2009b; Agnes et al., 
2010). PKA activity was monitored using matrix-targeted ver-
sions of the FRET-based sensors AKAR3 and AKAR4 (Allen and 
Zhang, 2006; Depry et al., 2011; “mito-AKAR3; mito-AKAR4”; 
Fig. 2 A). HCO3 /CO2 caused the predicted increase in matrix 
cAMP content; however, contrary to our expectations, there was 
no increase in PKA activity in neighboring cells expressing 
mito-AKAR4 (identified by the marker mCherry; Fig. 2 B).

As controls we generated sensors targeted to the OMM 
(“OMM-AKAR3” and “OMM-AKAR4”). As shown in Fig. 2 C,  
in mixed populations of HeLa cells expressing mito-AKAR3 
or OMM-AKAR3, mito-AKAR3 (red traces) did not respond 
to cytosolic cAMP generated by FSK/IBMX, whereas OMM-
AKAR3 in neighboring cells (black traces) did. This result was 
expected based on the finding that cytosolic cAMP does not 
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Figure 2. PKA activity in the mitochondrial matrix measured using targeted FRET-based reporters. (A) Confocal images of HeLa cells expressing mito-
AKAR4 loaded with MitoTracker red. (B) Mixed populations of HeLa cells transfected with mito-EpacH90 (black trace; mean of three cells) or mito-AKAR4 
(red trace; mean of four cells) were initially bathed in Hepes-buffered solution and then switched to CO2/HCO3

¯-buffered solution (n = 5 experiments; 
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10 mito-AKAR4 cells, 12 mito-EpacH90 cells). (C) HeLa expressing mito-AKAR3 (two representative cells; red traces) or OMM-AKAR3 (two representative 
cells; black traces; n = 8; 20 OMM-AKAR3 cells, 20 mito-AKAR3 cells). (D) HeLa cells expressing OMM-AKAR3 (two representative cells; black traces) 
compared with neighboring mito-AKAR3 positive cells (two representative cells; red traces; n = 10 experiments; 24 OMM-AKAR3 cells, 28 mito-AKAR3 
cells). (E) Cells expressing mito-AKAR3 (red trace; mean of three cells) or mito-EpacH90 plus mCherry (black traces; mean of six cells; typical of n = 4 
experiments; 10 mito-AKAR3 cells, 16 mito-EpacH90 cells). (F) HEK cells transfected with mito-AKAR4 (red trace) or OMM-AKAR4 together with mCherry 
(black trace; mean of four cells); typical of n = 3 experiments; 6 OMM-AKAR4 cells, 8 mito-AKAR4 cells). Error bars indicate mean ± SD.

 

reach the matrix. However, 8-(4-chloro-phenylthio)-adenosine-
3 -5 -cyclic monophosphate (8CPT-cAMP; a potent activator 
of PKA; see Fig. S1B) also failed to elicit PKA activity in the 
matrix as measured by mito-AKAR3 (Fig. 2 D; red traces; see 
also Fig. S1 C). 8CPT-cAMP rapidly reached the mitochondrial 
matrix (Fig. 2 E), but failed to elicit detectable PKA activity. 
In HEK cells, OMM-AKAR4 responded to cytosolic cAMP el-
evations induced by prostaglandin E2 (PGE2) and FSK/IBMX. 
Addition of 8CPT-cAMP did not elicit additional elevation  
of the ratio (likely because of saturation of the probe), whereas 
the PKA inhibitor N-[2-(p-Bromocinnamylamino)ethyl]-5- 
isoquinolinesulfonamide (H89) reversed the FRET signal. How-
ever, neighboring cells expressing mito-AKAR4 again showed 
no ratio changes during any of these treatments (Fig. 2 F).

Although the preceding findings would imply that the ma-
trix does not contain an endogenous PKA holoenzyme capable 
of responding to intramitochondrial cAMP signals, we also con-
sidered the trivial possibility that the AKAR sensors simply do 
not perform properly in the milieu of the matrix. As shown in 
Fig. S1 D, reduction of the bulky targeting signal (4Cox8) on 
the AKAR reporter did not alter our results, nor did we see FRET 
changes after delivery of exogenous cAMP to the matrix during 
MPT (Fig. S1 E). We also confirmed that the AKAR sensors 
were functional in the relatively alkaline environment of the 
matrix (Fig. S1 F).

As a further control, we prepared matrix-targeted versions 
of mCherry-tagged constitutively active PKA “mito-PKACat-
mCherry” (based on the catalytic subunit ; Day et al., 2011) 
and the potent protein kinase inhibitor PKI (isoform ), also 
tagged with mCherry (“mito-PKI-mCherry”). The mitochondrial 
localization of these constructs was ascertained by confocal  
microscopy (Fig. S2, A and B).

As detailed in Fig. S2 (C and D), the cytosolic parent con-
structs were extremely effective in activating (cyto-PKACat-
mCherry) or inhibiting (cyto-PKI-mCherry) PKA. In addition, the 
fact that cyto-PKACat-mCherry did not affect the FRET signal of 
mito-AKAR4 and that PKI targeted to the matrix did not influence 
cytosolic or OMM PKA activity (Fig. S2, E–H) attests to the fidel-
ity of our targeting strategy and demonstrates that we can indepen-
dently manipulate PKA activity in these different compartments.

As summarized in Fig. 3 A, mito-AKAR4 consistently  
reported significantly higher starting FRET ratios when co-
expressed with mito-PKACat-mCherry compared with neighboring 
controls. This effect was completely reversed by mito-PKI-
mCherry, and remained unaltered in the presence of cytosolic 
PKI. Importantly, matrix-targeted PKI had no effect on the ini-
tial mito-AKAR4 ratio, which suggests a lack of basal phosphory-
lation of the matrix-targeted sensor under resting conditions.

Collectively, these data indicate that mito-AKAR4 is able 
to report PKA activity, but the endogenous PKA is either not 

Figure 3. Overexpression of PKA in the matrix is detected by AKAR 
sensors, and induces specific phosphorylation patterns. (A) Summary of 
the starting mito-AKAR4 ratios in the presence of mito-PKACat-mCherry, 
mito-PKI-mCherry, and cyto-PKI-mCherry (***, P < 0.0002 with respect 
to control). Error bars indicate mean ± SD. (B) Phosphorylation status of 
cytosolic and mitochondria-enriched fractions of HEK cells treated with 
cAMP-generating agonists or cell-permeant cAMP analogues, or trans-
fected with mito-PKACat-mCherry. A phospho-(Ser/Thr) PKA substrate  
antibody unveiled mito-PKACat-mCherry–dependent mitochondria-specific 
phosphorylation bands (arrows). The purity of mitochondria was tested 
using an antibody cocktail against the human OXPHOS subunits, whereas 
GAPDH was used to detect any cytosolic contamination (typical of n = 3 
independent experiments).
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mito-GO-ATeam2 (Fig. S3 D). In a recent paper, Lu et al. 
(2013) found that the mitochondrial transcription factor TFAM 
can be phosphorylated by overexpression of catalytically active 
PKA in the matrix of HEK cells (Lu et al., 2013). However, we 
interpret our data above and those of Lu et al. (2013) cautiously; 
PKA is a very strong kinase, and its expression in restricted 
domains such as the matrix might result in promiscuous phos-
phorylation of proteins with less than optimal PKA consensus 
sites (Ubersax and Ferrell, 2007).

During the course of our studies, we consistently observed 
that OMM-AKAR4 responses were very robust compared with 
the cytosol, which was also noted by Allen and Zhang (2006) 
using AKAR3 targeted to the OMM via a different targeting 
strategy. As shown in Fig. 4 A, in HEK cells challenged with 
the cAMP-generating agonist isoproterenol (ISO; 10 nM), both 
OMM-AKAR4 and AKAR4 responded strongly. However 
upon ISO removal, OMM-AKAR4 exhibited strikingly slower 
termination kinetics. In HEK expressing either OMM-EpacH90 
or EpacH90, all cells responded similarly to ISO, suggesting 
that cAMP rises and is degraded similarly in cytosol and OMM  

present in the matrix of HeLa and HEK cells (contrasting pre-
vious conclusions; Acin-Perez et al., 2009b; Agnes et al., 2010; 
Lu et al., 2013), or its activity is so low that it cannot be detected. 
These two cell types are predominantly glycolytic, therefore it 
will be interesting to determine whether these properties differ 
in metabolically active cells (e.g., heart, brain) that depend prin-
cipally on OXPHOS for their energy needs.

Interestingly, when we expressed mito-PKACat-mCherry 
and examined PKA-dependent phosphorylation patterns by West-
ern blotting, at least two mitochondrial-specific bands were ob-
served (Fig. 3 B). Meanwhile, activation of endogenous PKA 
through FSK (which generates extra-mitochondrial cAMP only)  
or 8CPT-cAMP (which potentially influences both the matrix 
and cytosol) did not yield this same mitochondrial-specific 
phosphorylation pattern. It is perhaps noteworthy that our 
measurements using a matrix-localized ATP sensor, mito-GO-
ATeam2 (Nakano et al., 2011), were not consistent with an effect  
of matrix-specific cAMP signals on ATP production (Fig. S3, 
A–C). Meanwhile, expression of mito-PKACat-mCherry did 
alter the resting mitochondrial ATP content as measured by 

Figure 4. Comparison of cAMP and PKA signals at the OMM and cytosol. (A) Mixed populations of HEK cells expressing OMM-AKAR4 (two representative 
cells; red traces) or soluble AKAR4 (two representative cells; black traces). Both sensors responded to 10 nM isoproterenol (ISO); however, the OMM-
AKAR4 signal reversed with significant delay compared with AKAR4 upon ISO removal (n = 4 experiments; 14 AKAR4 cells, 16 OMM-AKAR4 cells).  
(B) cAMP responses to ISO measured by OMM-EpacH90 (red trace; mean of four cells) or cytosolic EpacH90 (black trace) in HEK 293 cells (n = 3 
experiments; 9 EpacH90 cells, 12 OMM-EpacH90 cells). (C) cAMP kinetics measured by OMM-EpacH90 (red trace; mean of three representative cells) 
or cytosolic EpacH90 (black trace; mean of four representative cells) in HeLa cells (n = 3 experiments; 10 EpacH90 cells, 19 OMM-EpacH90 cells).  
(D) Comparison of AKAR4 and OMM-AKAR4. Termination of PKA activity by agonist removal or H89 resulted in slower FRET reversal specifically at the 
OMM; two representative cells are depicted (n = 3 repeats; 12 AKAR4 cells, 14 OMM-AKAR4 cells).
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PDEs are major players in the generation of cAMP micro-
domains (Zaccolo, 2011). However, their role in the generation 
of persistent PKA activity at the OMM appeared to be limited. 
We therefore considered the role of local Ser/Thr protein phos-
phatases, known constituents of macromolecular complexes 
coordinated by AKAPs (Feliciello et al., 2005; Carlucci et al., 
2008), in this process. As shown in Fig. 5 A, the potent Ser/Thr 
phosphatase inhibitor calyculin A attenuated the H89-induced 

Figure 5. Phosphatase-dependent termination of PKA 
signals at the OMM and cytosol. (A) Acute addition of 
20 nM calyculin A to mixed populations of cells express-
ing OMM-AKAR4 (one representative cell; red trace) 
or AKAR4 (one representative cell; black trace; n = 6 
experiments; 14 AKAR4 cells, 14 OMM-AKAR4 cells).  
(B) HEK cells expressing OMM-AKAR4 or AKAR4.  
(B, right) Mean of the slope of the responses to ISO (an 
estimate of PKA activity; n = 9 experiments; 40 AKAR4 
cells, 22 OMM-AKAR4 cells) or 10 µM H89 on top of 
FSK/IBMX (an estimate of phosphatase activity). AKAR4, 
39 cells; OMM-AKAR4, 25 cells; n = 12 experiments 
(***, P < 0.00015). (C) Mixed populations of HeLa cells 
expressing cyto-PKACat-mCherry together with OMM-
AKAR4 (one representative cell; red trace) or with nontar-
geted AKAR4 (one representative cell; black trace; n = 11 
repeats; 9 AKAR4 cells; 16 OMM-AKAR4 cells). The high 
starting ratios reversed with different kinetics upon addi-
tion of 10 µM H89 (P < 0.0002). (C, right) Mean slope 
of the responses to H89 across all experiments (***, P < 
0.0002). Error bars indicate mean ± SD.

(Fig. 4 B). In HeLa cells, treatment with a low dose of FSK  
(2 µM) remained undetected both in cytosol and OMM because 
of the strong PDE activity in that cell type. However, both do-
mains responded equally upon treatment with IBMX, unveiling 
the underlying cAMP production (Fig. 4 C). When we mea-
sured PKA activity using the same protocol in cells expressing 
OMM-AKAR4 or AKAR4 (Fig. 4 D), the termination of the 
signal at the OMM was again dramatically slower.
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University, Philadelphia, PA) was introduced into these plasmids using custom-
made primers encoding this fragment and pre-designed restriction enzyme 
sites for HindIII. The protein kinase A inhibitor isoform alpha (purchased 
from Origene Technologies, Rockville, MD) was amplified with primers 
bearing BamHI sites and subcloned in-frame with mCherry in pcDNA3. 
PKACat-mCherry (PKA catalytic subunit alpha from mouse) was a gift from 
Susan S. Taylor (University of California at San Diego, La Jolla, CA) and 
Roger Y. Tsien (University of California at San Diego and Howard Hughes 
Medical Institute, La Jolla, CA). Matrix targeting for PKI-mCherry and PKA-
Cat-mCherry was achieved using the 4cox8 sequence. All constructs were 
tested functionally and verified by sequencing (Dana Farber DNA Resource 
Core, Boston MA).

Cell culture and transfection
HeLa and HEK293 cells were obtained from the American Type Culture 
Collection and were grown in DMEM + 10% FBS. Both cell lines were 
maintained in a humidified CO2 (5%) incubator at 37°C and were split 
every 2–3 d after reaching 80% confluence. All plasmids were transfected 
using Effectene transfection reagent (QIAGEN).

Confocal imaging
HeLa cells were seeded onto glass coverslips and transfected with sensors the 
next day. 24 h after transfection, the cells were loaded with 10 nM Mito-
Tracker red or 25 nM MitoTracker green for 15 min at 37°C. Subsequently, 
cells were rinsed four times with Hepes-buffered Ringer’s solution containing 
(in mM): 125 NaCl, 25 Hepes, 10 glucose, 5 K2HPO4, 1 MgSO4, and  
1 CaCl2, pH 7.40. Coverslips were mounted onto a home-built flow-through 
perfusion chamber, and cells were bathed in Hepes-buffered Ringer’s so-
lution at room temperature and imaged under a 60× Plan-Apochromat  
(NA 1.40) oil immersion objective lens using a confocal microscope 
(Eclipse C1si; Nikon). Images were collected on live cells with Kalman 
filtering (n = 6) using the EZ-C1 software (Nikon).

Cell permeabilization
Cells were briefly rinsed with an intracellular-like buffer (125 mM KCl,  
25 mM NaCl, 10 mM Hepes, 0.5 mM MgCl2, 1 mM ATP, 500 µM EGTA, 
and 211 µM CaCl2, pH 7.25) complemented with 5 mM succinate and 
5 mM glutamate. Consequently, cells were treated with intracellular buffer 
containing digitonin (5–10 µg/ml). Cellular permeabilization was deter-
mined on stage by visual evaluation of the plasma membrane morphology 
under bright-field illumination.

Western blotting
HEK cells were transfected with mito-PKAC (a) mCherry or left untrans-
fected. 24 h later, proteins were extracted from the transfected popula-
tions, while the nontransfected cells were treated with cAMP analogues 
(8CPT-cAMP, 8Br-cAMP, or 6Bnz-cAMP) or FSK in the presence or ab-
sence of the PKA inhibitor H89 for 1 h at 37°C. Subsequently, cells were 
lysed using RIPA buffer (Sigma-Aldrich) complemented with a protease 
and phosphatase inhibitor cocktail (Thermo Fisher Scientific). Cell lysates 
were sonicated and insoluble material was removed by centrifugation at 
14,000 g for 10 min at 4°C. Mitochondria were extracted using a com-
mercial mitochondria isolation kit (Thermo Fisher Scientific) according to 
the manufacturer’s instructions. Total cell lysates or mitochondria-enriched 
fractions were resolved on 5–20% Tris-glycine SDS-PAGE gels (Wako 
Chemicals, Inc.) and electroblotted onto polyvinylidene fluoride (PVDF) 
membranes (Hybond-P; GE Healthcare). After transfer, PVDF membranes 
were blocked for 3 h at room temperature in 5% BSA–Tris-buffered saline/
Tween 20 (TBST; 10 mM Tris HCl, pH 8.0/150 mM NaCl/0.1% Tween 
20). Next, the membranes were incubated overnight at 4°C with a phos-
pho-(Ser/Thr) PKA substrate antibody diluted 1:700 in 5% BSA-TBST. The 
day after, the membranes were washed four times with TBST and incu-
bated at room temperature for 1 h with a peroxidase-conjugated second-
ary antibody (1:2,000; Santa Cruz Biotechnology, Inc.). Peroxidase 
activity was detected with enhanced chemiluminescence (ECL Advance 
Western blotting detection kit; GE Healthcare). GAPDH antibody (1:4,000; 
Santa Cruz Biotechnology, Inc.) was used as a loading control for the total 
cell lysates and to detect cytosolic protein contamination in the mitochon-
drial enriched samples, whereas a total OXPHOS Human WB antibody 
cocktail against complexes I–V (1:700; Abcam) was used to determine 
mitochondrial enrichment.

Ratio imaging
Cells were mounted onto a home-built perfusion chamber and bathed in 
Hepes-buffered Ringer’s solution containing (in mM): 125 NaCl, 25 Hepes, 

recovery of both AKAR4 and OMM-AKAR4 in HeLa cells 
stimulated with FSK/IBMX. These data suggest that the termi-
nation of PKA activity at the OMM depends largely on calycu-
lin A–sensitive phosphatases.

In HEK cells challenged with 10 nM ISO, the onset of 
PKA activation was similar in cytosol and OMM (Fig. 5 B, 
right). However, the termination of the response after PKA inhibi-
tion by H89, which reflects the local phosphatase activity, was 
again significantly slower at the OMM (P < 0.0002; Fig. 5 B, 
right). Finally AKAR4 and OMM-AKAR4 responded differ-
ently to H89 in cells expressing the catalytically active PKA-
Cat-mCherry. As expected, both sensors displayed a much higher 
starting ratio in the presence of PKACat-mCherry (Fig. 5 C; 
see also Fig. S2 C), but the H89-induced decline in the OMM-
AKAR4 ratio was still significantly slower compared with that 
of AKAR4 (Fig. 5 C, right), which indicates that these differ-
ences did not depend entirely on local PKA activity.

Collectively, these data indicate that the OMM is a privi-
leged cAMP signaling microdomain with high PKA activity. 
This microenvironment promotes cAMP-triggered activity not 
only by concentrating PKA in situ via specific AKAPs (Feliciello 
et al., 2005), but also, as demonstrated by our data, by hosting  
a less active Ser/Thr phosphatase population. We propose that 
this pro-PKA OMM maintains the phosphorylation state of 
local targets such Drp1, BAD, and Ca2+ release channels at ER–
OMM junctions (Rizzuto et al., 1998; Harada et al., 1999; Cribbs 
and Strack, 2007; Chang and Blackstone, 2007; Csordás et al., 
2010; Merrill et al., 2011) even in the face of waning cytosolic 
PKA activity.

In this work we found that the mitochondrial matrix of 
HEK and HeLa cells contains low or null PKA activity. How-
ever, this raises the question of how mitochondrial proteins that 
contain PKA consensus can be phosphorylated in the matrix 
(Covian and Balaban, 2012). Our finding that the OMM is rich 
in PKA activity together with the observation that the inter-
membrane space contains a functional AKAP (Means et al., 2011) 
raises the possibility that PKA targets might be phosphorylated 
during their transition into the matrix.

Materials and methods
Reagents
8Br-cAMP, 8CPT-cAMP, 8CPT-OMe-cAMP, and N6-Benzoyladenosine-3 ,  
5 -cyclic monophosphate (6Bnz-cAMP-AM) were purchased from Biolog 
Inc. and EMD Millipore. H89 was purchased from Enzo Life Sciences. 
All restriction enzymes were obtained from New England Biolabs, Inc. 
Custom-made primers and MitoTracker red/green were purchased from 
Invitrogen. Unless otherwise noted, all other reagents were obtained 
from Sigma-Aldrich.

Generation of mitochondrial-targeted FRET-based sensors
The FRET-based cAMP sensor EpacH90 was a generous gift of Kees Jalink 
(Netherlands Cancer Institute, Amsterdam, Netherlands). AKAR3 and AKAR4 
were provided by Jin Zhang (John Hopkins University School of Medicine, 
Baltimore, MD). Hiromi Imamura (The Hakubi Project, Kyoto University, 
Kyoto, Japan) provided us with the mitochondrial ATP sensors, mito- 
GO-ATeam2/3. The matrix targeting signal 4Cox8 was extracted from 
mito-D3cpv (a gift of Giulietta Di Benedetto and Tullio Pozzan, University of 
Padova, and Venetian Institute of Molecular Medicine, Padua, Italy) using 
HindIII and introduced to the N terminus of EpacH90 (pcDNA3), AKAR3, 
and AKAR4 (pcDNA3 ). The OMM targeting peptide yTom70 (derived 
from yTOMmCherry; provided by Gyorgy Hajnoczky, Thomas Jefferson 
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10 glucose, 5 K2HPO4, 1 MgSO4, and 1 CaCl2, pH 7.40. For the experi-
ments of sAC activation, we acutely switched the superfusion from Hepes 
Ringer’s to Krebs-Henseleit solution containing (in mM): 120 NaCl, 2.09 
K2HPO4, 0.34 KH2PO4, 24 NaHCO3, 1 MgSO4, 1 CaCl2, and 10 D-glucose. 
Krebs-Henseleit solution was gassed continuously with 95% O2/5% CO2  
to maintain a pH of 7.4. Real-time FRET imaging experiments were per-
formed at room temperature using fluorescence ratio imaging systems built 
around TE200 and TE2000-U inverted fluorescence microscopes (both 
from Nikon) equipped with a QuantEM 512 camera (Photometrics) or an 
ORCA ER camera (Hamamatsu Photonics), respectively. MetaFluor soft-
ware (Molecular Devices) was used to control filter wheels (Sutter Instru-
ment) placed in the excitation and emission path, and to acquire ratio 
data. Coverslips were mounted in a home-built flow-through perfusion 
chamber, and cells were imaged using 40× Plan Fluor (NA 1.30) or 60× 
Plan-Apochromat total internal reflection fluorescence (NA 1.45) oil immer-
sion objective lenses. FRET emission ratios for the following reporters were 
acquired every 5–10 s: 485nm/535 nm for EpacH90 (440 nm excita-
tion), 535 nm/485 nm for AKAR-based and mito-D3cpv sensors (440 nm 
excitation), and 560 nm/510 nm for mito-GOATeam2&3 (470 nm excita-
tion). The fluorescence of mCherry (excitation 585 nm, emission 610 nm) 
did not interfere with any of these measurements (Lefkimmiatis et al., 
2009). Figures depict typical traces chosen from a single representative 
experiment that was repeated multiple times; “n” refers to the number of re-
peats for a given experiment.

Statistics
Data are presented as mean ± SD. Student’s t tests for unpaired data and 
one-way analysis of variance (Anova) with Bonferroni post hoc tests were 
used to determine the significance between treatments. The number of rep-
licates and samples are indicated in figure legends (***, P < 0.0002).

Online supplemental material
Fig. S1 shows validation of mito-EpacH90 and functional validation of the 
mitochondrial matrix PKA activity sensors. Fig. S2 shows the mitochondrial 
localization and functional validation of the OMM-AKAR4 construct, con-
stitutively active PKA, and PKA inhibitors. Fig. S3 depicts measurements of 
intramitochondrial free ATP using mito-GO-ATeam2 in response to FSK/
IBMX (affects cytosolic cAMP) versus membrane permeant analogues  
(affects both cytosolic and matrix), and the effects of PKA and PKI on mito-
chondrial ATP content. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.201303159/DC1.
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Figure S1. Validation of mito-EpacH90 and AKAR-based sensors targeted to mitochondria. (A) To assess the cAMP sensitivity of mito-EpacH90, we took 
advantage of the small number of cells ( 5%) in which the overexpressed sensor was poorly localized, resulting in probe within both mitochondria and 
cytosol. Permeabilized cells expressing well-targeted mito-EpacH90 (two representative cells; red traces) responded only to 8Br-cAMP, and not to exog-
enous cAMP. However, permeabilized cells in the same microscope field with delocalized sensor reported cAMP concentrations from 1 µM to 10 µM, 
well within the range of the parent probe EpacH90 (one representative cell; black trace). Data presented are from a single representative experiment out 
of four repeats (20 mito-EpacH90 cells, 4 nontargeted cells). (B) HEK cells were treated with cell-permeant cAMP analogues (10 nM 6Bnz-cAMP-AM,  
1 mM 8CPT-cAMP, or 1 mM 8Br-cAMP), or with saturating concentrations of FSK (50 µM), the latter either alone or in the presence of the PKA inhibitor 
H89 (10 µM). PKA-dependent phosphorylation patterns were detected in total cell lysates (10–20 µg) by Western blotting using the Phospho-(Ser/Thr) PKA 
substrate antibody. The cAMP analogues generated phosphorylation patterns very similar to those of FSK, with 8CPT-cAMP being nominally the most potent; 
presented here is a single experiment typical of three repeats. (C) In cells in which mito-AKAR3 (two representative cells; black traces) was delocalized 
(<2% of total cells), the probe responded reversibly to 8CPT-cAMP, which suggests that mito-AKAR3 is functional. Meanwhile, neighboring cells in which 
mito-AKAR3 was contained within mitochondria (two representative cells; red trace) did not respond. Data shown are from one representative experiment 
out of four repeats (5 OMM-AKAR3 cells, 10 mito-AKAR3 cells). (D) PKA activity was monitored in mixed populations of HeLa cells expressing AKAR3 
targeted to the matrix using a less bulky targeting sequence (2Cox8-AKAR3; two representative cells; red trace) or OMM-AKAR4 (single representative cell; 
black trace) together with mCherry. It is important to note that the Cox8 targeting motif is cleaved once the sensor reaches the matrix; the data shown are 
from one representative experiment out of eight repeats (20 2Cox8-AKAR3 cells, 19 OMM-AKAR4 cells). (E) Native cAMP does not induce PKA activity 
in the mitochondrial matrix. Mixed populations of HeLa cells expressing either mito-AKAR3 (three representative cells; red traces) or OMM-AKAR3 (plus 
mCherry; three representative cells; black traces) were permeabilized on the microscope stage using digitonin in the presence of 10 µM cAMP. Thanks to 
the presence of cAMP in the media, we were able to precisely time the moment in which the plasma membrane became permeabilized in individual cells as 
measured by the activation of OMM-AKAR3 ( 3 min). Upon permeabilization, we challenged the cells using 300 µM Ca2+ to induce MPT in the continued 
presence of 10 µM cAMP. We expected mitochondria to undergo permeability transition 1 min into the Ca2+ treatment (see Fig. 1 E), an event that would 
allow cAMP to reach the matrix and activate PKA. However, 5 min of this treatment failed to induce any PKA activity, as measured by mito-AKAR3. Data 
shown are from one representative experiment out of five repeats (17 mito-AKAR3 cells, 13 OMM-AKAR3 cells). (F) To mimic the alkaline environment of 
the mitochondrial matrix in HeLa cells expressing OMM-AKAR4, we used 20 mM NH4Cl to elicit cellular alkalinization (intracellular pH of 7.8). During 
this treatment, OMM-AKAR4 responded to FSK and IBMX treatment in an H89-sensitive manner. Data shown are from a single representative experiment 
out of three repeats (11 cells).
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Figure S2. Mitochondrial targeting and 
validation of the genetically encoded matrix-
targeted PKA inhibitor and catalytic subunit.  
(A and B) Live-cell confocal images of HeLa 
cells expressing mito-PKACat-mCherry (A) or 
mito-PKI-mCherry (B). Cells were co-loaded with 
the mitochondrial marker MitoTracker green. 
(C) Co-expression of cyto-PKACat-mCherry 
together with the FRET-based PKA activity re-
porter AKAR4 (single representative cell; red 
trace) consistently resulted in higher starting 
FRET ratios (as compared with neighboring 
cells expressing AKAR4 alone; two represen-
tative cells; black trace) that were reversed by 
the PKA-inhibitor H89. Data shown are from 
one representative experiment out of five re-
peats (6 AKAR4 cells, 11 PKACat-mCherry 
cells). (D) In contrast, when we coexpressed 
cyto-PKI-mCherry together with AKAR4 (four 
representative cells; red traces), this construct 
completely blocked the AKAR4 response to 
FSK/IBMX, a treatment that consistently satu-
rated AKAR4 (two representative cells; black 
traces) in neighboring cells that did not express 
PKI. Data shown are from one representative 
experiment out of five repeats (11 AKAR4 
cells, 16 PKI-mCherry cells). (E) Live-cell con-
focal images of HeLa cells expressing OMM-
AKAR4 and loaded with the mitochondrial 
marker MitoTracker red. (F) Confocal images 
of HeLa cells coexpressing OMM-AKAR4 and 
mito-PKI-mCherry. (G) Bar graph of the start-
ing ratios in cells expressing AKAR4 (54 cells) 
or mito-AKAR4 alone (81 cells), or together 
with cytosolic PKACat-mCherry (20 cells). The 
AKAR4 starting ratio in the presence of the 
constitutively active catalytic subunit was very 
high; however, no difference was detected in 
the mito-AKAR4 ratio in the presence of PKA-
Cat-mCherry. Data reflect the mean of all cells 
(***, P < 0.0001). Error bars indicate mean ± 
SD. (H) Mixed populations of cells expressing 
OMM-AKAR4 alone (two representative cells; 
black traces) or coexpressing OMM-AKAR4 
and mito-PKI-mCherry (two representative 
cells; red traces). In all cells, OMM-AKAR4 
responded to FSK/IBMX in an H89-sensitive 
manner, independent of the presence of mito-
PKI-mCherry. These experiments demonstrate 
that mito-PKI-mCherry and OMM-AKAR4 are 
physically and functionally segregated in the 
matrix and OMM, respectively, even when 
overexpressed in the same cell. Data shown 
are from one representative experiment out of 
six repeats. Highlighted panels show enlarged 
views of the boxed regions.
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Figure S3. Mitochondrial ATP measurements in single cells. HeLa cells expressing mito-GO-ATeam2 or mito-GO-ATeam3 were mounted in a home-built 
flow-through perfusion chamber, and imaged using 40× or 60× oil immersion objective lenses. 560 nm/510 nm FRET emission ratios were acquired every 
5–10 s. (A) Cells expressing the FRET-based ATP sensor GO-ATeam2 targeted to the mitochondrial matrix (mito-GO-ATeam2) consistently responded to 
treatment with FSK/IBMX, which induced cAMP elevation in the cytosol but not the mitochondrial matrix (n = 12 experiments; 68 mito-GO-ATeam2 cells). 
(B) Cells expressing the mutant ATP-blind sensor mito-GO-ATeam3 remained insensitive to FSK/IBMX treatment (n = 2 experiments; 10 mito-GO-ATeam3 
cells). (C) Mito-GO-ATeam2 responded to cytosolic cAMP increases induced by FSK/IBMX; however, no additional increase in ATP production was 
observed when we added high concentrations of the cell-permeant cAMP analogue 8CPT-cAMP, which was expected to activate matrix-located cAMP-
sensitive pathways. Data are shown from a single representative experiment out of six repeats (28 mito-GO-ATeam2 cells). (D) Bar graph summarizing the 
effects on mitochondrial ATP content in HeLa cells transfected for 24 h with mito-GO-ATeam2 alone (control) or together with mito-PKI mCherry (“mito-PKI”), 
mito-PKACat(a)mCherry (“mito-PKA”), cyto-PKI-mCherry (“cyto-PKI”), or cyto-PKACat(a)mCherry (“cyto-PKA”). ATP content was assessed by measuring the 
change in the FRET ratio after acute treatment with the mitochondrial uncoupler FCCP. Data are from at least four independent experiments for each condi-
tion. Error bars indicate mean ± SD.


