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The emergence and convergence of cancer genomics,
targeted therapies, and network oncology have signifi-
cantly expanded the landscape of protein–protein inter-
action (PPI) networks in cancer for therapeutic
discovery. Extensive biological and clinical investiga-
tions have led to the identification of protein interaction
hubs and nodes that are critical for the acquisition and
maintenance of characteristics of cancer essential for
cell transformation. Such cancer-enabling PPIs have
become promising therapeutic targets. With technolog-
ical advances in PPI modulator discovery and validation
of PPI-targeting agents in clinical settings, targeting of
PPI interfaces as an anticancer strategy has become a
reality. Future research directed at genomics-based PPI
target discovery, PPI interface characterization, PPI-
focused chemical library design, and patient-genomic
subpopulation-driven clinical studies is expected to ac-
celerate the development of the next generation of PPI-
based anticancer agents for personalized precision
medicine. Here we briefly review prominent PPIs that
mediate cancer-acquired properties, highlight recog-
nized challenges and promising clinical results in tar-
geting PPIs, and outline emerging opportunities.

Rising interest in targeting PPIs
PPI interfaces represent a highly promising, although chal-
lenging, class of potential targets for therapeutic develop-
ment [1]. In cancer, PPIs form signaling nodes and hubs that
transmit pathophysiological cues along molecular networks
to achieve an integrated biological output, thereby promot-
ing tumorigenesis, tumor progression, invasion, and/or me-
tastasis. Thus, pathway perturbation, through disruption of
PPIs critical for cancer, offers a novel and effective strategy
for curtailing the transmission of oncogenic signals. As our
understanding of cancer biology has significantly increased
in recent years, interest in targeting of PPIs as anticancer
strategies has increased as well (Figure 1).

PPI interfaces constitute basic units in oncogenic
signaling networks
A variety of environmental, genetic, and epigenetic factors
induce the reprogramming of cancer-initiating cells and

the acquisition of physical and molecular features that
promote tumorigenesis and provide resistance to thera-
peutics. These characteristics, including sustained prolif-
erative signaling and evasion of growth suppressors,
permit the development and progression of cancer and
have been recognized as distinctive hallmarks of cancer
(Figure 2) [2]. These hallmarks provide a molecular frame-
work for our understanding of cancer, linking molecular
signaling events to pathological outcomes. The oncogenic
potential of cells is determined by a combination of genetic
and epigenetic alterations through the operation of well-
orchestrated signaling networks. Importantly, PPIs repre-
sent the basic units within such vital networks.

On oncogenic stimulation, PPIs play essential roles in
linking networks that relay oncogenic signals, allow the
acquisition of hallmark features of cancer, and serve di-
verse roles in driving and maintaining the growth of cancer
cells (Figure 2). From the engagement of receptors with
dysregulated growth factors to dimerization of receptor
tyrosine kinases triggered by gene amplification or muta-
tions, PPIs initiate a cascade of reactions to promote
uncontrolled cell proliferation [3]. Activated Ras, due to
perturbations such as epidermal growth factor receptor
(EGFR) activation, neurofibromin 1 (NF1) deletion, or
intrinsic mutation, assumes a conformation that allows
it to bind to multiple regulatory proteins and results in
enforced proliferation and survival. Survival signaling,
activated by proteins such as insulin-like growth factor
1 (IGF1) and phosphoinositide-3-kinase (PI3K) or disabled
by the negative regulator PTEN, enables tumors to
resist cell death through a number of different mecha-
nisms. For example, the Akt–FOXO3a–14-3-3 complex
mediates a transcription-dependent mechanism, whereas
the Akt–Bad–14-3-3 interaction mediates a transcription-
independent antiapoptotic mechanism [3]. In addition to
providing resistance to cell death, Akt also regulates the
mTOR complex to control cap-dependent translation,
through the eIF4E–eIF4G PPI, of a large number of
growth-promoting genes, including c-Myc. In turn, ampli-
fied c-Myc favors binding to Max over Mad and thereby
drives transcription of growth-promoting genes such as
cyclin D that modulate cell cycle progression [4].

For cancer progression, cells must acquire mechanisms
to evade growth suppression. Several PPI complexes, in-
cluding MDM2–p53 and CDK4–pRB, play key roles in
neutralizing such tumor suppressive functions [2]. These
tumor suppressor mechanisms are often hijacked by viral
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oncoproteins, such as human papillomavirus E7 protein,
which binds to pRb, and E6 protein, which binds to p53, that
allow the virus to induce tumors. Such PPIs offer tumor-
specific targets. In addition to the examples given above, a
large number of PPIs dictate signaling networks that allow
the acquisition or maintenance of other hallmarks of cancer.

For instance, the VEGF–VEGFR and HIF1a–CBP PPIs
mediate signals that induce angiogenesis, the catalytic
activity of TERT dimers enables replicative immortality,
and a variety of reprogrammed enzyme–substrate interac-
tions, such as the onco-fusion gene-regulated PDHK1–
PDHA1 PPI, play integral roles in dysregulated cellular
metabolism by controlling a metabolic switch between gly-
colysis and oxidative phosphorylation [5]. In addition, mu-
tated p53 and Myc also play key roles in the regulation of
cancer metabolism. The IKK–NEMO–ASK1 complex inte-
grates the proinflammatory function with stress response
signaling initiated by reactive oxygen species [6]. It has
recently been shown that epigenomic reprogramming is a
critical part of cancer development [7], and PPIs involved in
epigenomic dysregulation, such as SMARCA4 interactions,
have been described [8].

As a result of oncogenic network reprogramming, some
PPIs contribute to distinct features of cancer, whereas
other PPIs are vital for multiple characteristics of cancer.
For example, the MDM2–p53 and Myc–Max PPIs play key
roles in evading growth suppression and cell death, as well
as in promoting genomic instability and cancer metabo-
lism. Thus, it is expected that interception of certain
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Figure 1. Rising number of publications in the field of cancer-related protein–
protein interactions. The PubMed database was searched using the following
keywords: protein–protein interaction, tumor, cancer, and inflammation.
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Figure 2. Representative PPIs in oncogenic signaling networks that drive the acquisition and development of hallmarks of cancer. Grey broken arrows connect PPIs to
corresponding cancer hallmarks. Some PPIs contribute to multiple features of cancer. It should be noted that some PPIs may impact global processes of cell growth and
their precise connections to cancer remain to be established.
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critical PPIs may disable multiple mechanisms that can-
cer cells rely on for survival. A large number of PPIs are
involved in driving tumorigenesis through the regulation
of oncogenic networks, so these PPI interfaces represent
fertile ground for anticancer therapeutic discovery and
development.

Overcoming challenges and current strategies for
targeting of PPIs
Challenges in discovering PPI modulators
A number of challenges and concerns exist regarding
targeting of PPIs, some of which include: (i) large PPI
interface areas, (ii) a lack of deep pockets, (iii) the presence
of noncontiguous binding sites, and (iv) a general lack of
natural ligands. In addition, PPI surfaces differ from
small-molecule binding sites in their shape and amino acid
residue composition. In contrast to the well-defined and
normally hydrophilic ligand-binding cavities observed in
the crystal structures of enzymes and G-protein-coupled
receptors, the interface surfaces of many protein–protein
complexes are typically hydrophobic and relatively flat and
often lack deep grooves where a small molecule can dock.
Recent studies have addressed some of these concerns, as
detailed in several publications [1,9,10]. Although the PPI
interface generally covers an average area of 1150–
10 000 Å2, which is larger than small-molecule binding
sites of 100–600 Å2, the presence of hot spots (small sub-
sets of amino acid residues that contribute the most to the
free binding energy) makes PPIs amenable to small-mole-
cule perturbations [10,11]. In addition, PPIs are often
mediated by post-translational modifications, such as
the binding of 14-3-3 to phosphorylated Ser/Thr motifs
and the interaction of bromodomain proteins to acetylated
lysine, which simplifies definition of the targeting inter-
faces [12–14]. The typical lack of natural ligands for PPIs
as starting points poses a significant challenge for struc-
ture-based drug design. However, promising examples of
natural products that can act on PPIs do exist, such as
rapamycin for mTOR and taxol for tubulin. There are also
significant differences in the chemical space between PPI
modulators (PPIMs) and conventional drug-like compounds
[9,15,16]. In general, PPIMs have a higher molecular weight
(> 400 Da) than that of typical drug-like compounds (200–
500 Da) and they often violate the ‘Rule of Five’ [9]. There-
fore, the application of commonly used high-throughput
screening (HTS) methods for PPIMs has been limited be-
cause of the biased chemical composition towards classical
target classes in current chemical libraries.

Current approaches for the discovery of PPI modulators
Structure-based design. Structural studies allow for the
identification of peptide fragments and amino acid resi-
dues that are critical for PPI. This information, combined
with that from functional assays, provides a basis for the
rational design of PPIMs. Not surprisingly, mimicking the
structure of binding peptides is one of the approaches
widely used to design novel PPIMs [17]. Application of
this approach led to the identification of potent inhibitors
of BCL2, XIAP, NOTCH, and MDM2 [18–22]. General
structure-based approaches include computational molec-
ular modeling [23,24], peptide engineering with display

technologies such as phage display [25], design of small
molecules based on a-helix and b-sheet scaffolds [26,27],
and synthesis of conformationally constrained ‘stapled’
peptides with a stabilized a-helical structure [28–31].

Small-molecule screening methods. In contrast to struc-
ture-based design, the screening approach allows the dis-
covery of small-molecule PPIMs even if structural
information is very limited or unavailable. Various screen-
ing approaches, including HTS, have been used to identify
compounds that target ‘hot spots’ of PPI interfaces [1].
Furthermore, HTS can be used to reveal inducible pockets
in PPI interfaces, as well as allosteric modulators. In many
cases, the screening approach is combined with structure-
based design to further enhance the physicochemical and
pharmacological properties of identified PPI modulators.

The most widely used HTS techniques for PPIs include
fluorescence polarization (FP) and Föster/fluorescence res-
onance energy transfer (FRET). FP measures the change in
emitted polarization signals in solution on association of a
small fluorescent molecule (such as a peptide) with a
relatively large binding partner. FRET is a nonradioactive,
photophysical effect in which energy absorbed by a donor
fluorophore is transferred to an acceptor fluorophore. By
coupling the donor and acceptor fluorophores with appro-
priate spectral properties to two interacting molecules, the
fluorophores can be brought into close proximity (10–
100 Å) and induce a FRET signal. Both FP and FRET
methods are extensively used in HTS campaigns for the
discovery of PPIMs [32]. Other HTS methods include
ELISA, flow cytometry, surface plasma resonance (SPR),
and label-free platforms [33]. In addition to these biochem-
ical HTS assays, intracellular PPIs can be coupled to
readouts for cell-based reporter assays, which incorporate
a more physiological cellular context and identify com-
pounds that are cell-permeable. For example, the p53–
MDM2 PPI has been linked to a reporter assay based on
cytoplasm-nuclear redistribution [34]. Various biosensors,
such as protein complementation assays, can also be used
to monitor PPIs in a HTS format.

In addition to biochemical and cell-based HTS assays,
fragment-based screening (FBS) is another approach com-
monly used for discovery of PPIMs. FBS aims to identify
molecular fragments with binding activity for a target pro-
tein. Once the fragments have been identified, they, or the
interactions they identify, are built into a drug-like com-
pound [35]. The main advantage of the FBS approach is that
a large chemical space can be targeted with approximately
103 fragments. The ligand efficiency (LE) of fragment hits is
high. Moreover, FBS can be successfully utilized for many
targets that were found to be challenging using traditional
HTS [36]. Owing to their low molecular weight (!200 Da)
and thus limited contact area with a protein, the binding
affinity of the fragments is relatively low (often in the
millimolar range). Therefore, to detect a binding event,
sensitive biophysical methods are required, including X-
ray crystallography, nuclear magnetic resonance (NMR),
and SPR [35,37,38]. Key advantages of NMR include auto-
mated sampling, high sensitivity, quantitative data on
binding affinity, and the ability to obtain structural infor-
mation about the binding site [39]. Examples of successful
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application of NMR in FBS include discovery of XIAP [40],
BCL2 [41], ZipA–FtsZ [42], and K-RAS–SOS [43] PPI inhi-
bitors. A combination of FBS assays is often employed for a
screening campaign. For instance, a combination of X-ray
and NMR FB HTS led to identification of the Hsp90 inhibi-
tor AT13387, which recently entered clinical trials [44,45].
Another assay commonly used for FBS is SPR, which detects
changes in the refractive index near a sensor surface. SPR
FBS has been utilized to identify novel inhibitors of Hsp90
interactions [46,47]. In contrast to methods for non-covalent
binding, a ‘tethering’ approach is used to detect reversible
covalent bonds formed between the cysteine of a target
protein and fragment molecules containing a disulfide bond
[48]. Tethering FBS has been employed to identify PPIMs
such as IL2–IL2-aR inhibitors [1].

Two general approaches are used to perform computa-
tional screening of a 3D compound library: the ligand-
based (also known as the pharmacophore-based) approach
and structure-based virtual screening. A pharmacophore
model represents the chemical features of a set of com-
pounds critical for efficient protein binding [49]. These
features or pharmacophore points (such as H-bond donors
or acceptors, aromatic rings, and charges) have certain
coordinates in a 3D space. The aim of this procedure is to
identify compounds with a certain conformation and chem-
ical composition that match the requirements of a phar-
macophore model. The pharmacophore-based approach
has been successfully utilized to identify novel inhibitors
of the MDM2–p53 interaction [50,51], PPIs of BCL2 family
proteins [52], and 14-3-3 inhibitors [53]. Conversely, the
structure-based approach relies on structural information
for the binding site on the target protein. For this type of
screening, each compound in a chemical library has to be
computationally docked to the binding site, and a binding
affinity is estimated in terms of energy scoring functions.
Application of structure-based virtual screening has led to
the discovery of PPI inhibitors of Ubc13–Uev1 [54],
MDM2–p53 [55], and TCF4–b-catenin [56].

Clinical validation of PPI targeting in cancer
Thousands of compounds have already been tested as
potential inhibitors of various PPIs and the results are
promising. Titrobifan, a glycoprotein IIb/IIIa inhibitor, and
Maraviroc, an inhibitor of the CCR5–gp120 interaction,
are currently available on the market as cardiovascular
and anti-HIV drugs, respectively. These drugs demon-
strate the feasibility of PPI targeting for the treatment
of various diseases. In addition, several anticancer com-
pounds have entered clinical trials, highlighting the poten-
tial of the PPI targeting approach in cancer.

Inhibitors of the MDM2–p53 interaction: a breakthrough
in PPI targeting
p53 plays a critical role in cell cycle regulation, DNA repair,
angiogenesis, and apoptosis [57,58]. Activation of p53
increases the expression of human protein double minute
2 (HDM2, MDM2 in mouse), which in turn directly binds to
p53 and inhibits its tumor suppressive activity (Figure 2)
[59,60]. Structurally, the N-terminal domain of MDM2
binds a short 15-residue a-helical peptide of p53 [61]. Three
hydrophobic residues of p53 (Phe19, Trp23, and Leu26)

occupy a well-defined hydrophobic pocket of MDM2
(Figure 3). These structural features allow a strategy to
target the MDM2–p53 PPI. Various approaches were used
to identify drug-like inhibitors of MDM2–p53 interactions,
including the design of peptidomimetics, HTS, and compu-
tational drug design. As a result, several MDM2–p53 PPI
inhibitors have entered clinical trials [60,62]. For example,
a series of cis-imidazoline analogs named Nutlins were
identified by screening of compound libraries [59]. Nutlins
employ the same binding mode as the p53 Phe19, Trp23,
and Leu26 residues in the MDM2 binding pocket
(Figure 3). Further chemical optimization of Nutlin-3 led
to RG7112, the first MDM2 inhibitor to enter clinical trials
in patients with advanced solid tumors in 2007 [63].
Another MDM2–p53 PPI inhibitor, RO5503781, is current-
ly in a Phase I trial in patients with advanced malignancies
(http://clinicaltrials.gov/ct2/show/NCT01462175%3Fterm%
3DRO5503781%26rank%3D1). The exciting success of po-
tent MDM2–p53 PPI inhibitors has significantly accelerat-
ed studies to target other PPIs with small chemical
compounds as anticancer drugs.

Mimicking the structure of Smac peptides resulted in
new XIAP antagonists in the clinic
One strategy widely used to identify lead PPIM compounds
is to mimic the structure of binding peptides [26,27]. For
example, the BIR3 domain of the XIAP binds to and
inhibits proapoptotic caspase-9. In turn, the anti-apoptotic
activity of XIAP can be neutralized by Smac, which is
released from mitochondria during apoptosis (Figure 2).
The XIAP–caspase-9 interaction can be disrupted by a
Smac tetrapeptide (AVPI) [64,65], which provides a novel
PPI target. A combination of structure-based design and
targeted compound library generation led to the identifi-
cation of GDC-0152, the first Smac mimetic to enter clinical
trials in patients with locally advanced or metastatic ma-
lignancies [19]. GDC-0152 binds to BIR domains with low
nanomolar affinity at the same binding site on IAPs as the
SMAC AVPI peptide (Figure 3). A Phase I trial with
another Smac mimetic, GDC-0917 (CUDC-427), has been
completed in patients with advanced solid tumors and
lymphomas. The structurally related LCL161 Smac mi-
metic has entered Phase II trials in patients with triple-
negative breast cancer (Figure 3) [20,66]. Other non-pep-
tide XIAP–Smac inhibitors include an orally available
derivative, AT-406, and two bivalent Smac mimetics,
TL32711 and HGS1029, all of which are currently in
clinical trials for various cancers [67,68].

FBS-based discovery of mitochondrial apoptosis
pathway modulators
BH3-containing proapoptotic proteins, such as Bax, bind to
the hydrophobic pocket of antiapoptotic BCL2 proteins
through a single a-helix (the BH3 domain). Mimicking of
the BH3 domain with small-molecule compounds has
shown significant therapeutic potential [18]. Several
BH3 mimetics have been identified using NMR-based
FBS combined with structure-based optimization. For in-
stance, ABT-737 has high binding affinity (nanomolar
range) for BCL2 and BCL-xL [69]. This compound occupies
the same hydrophobic pocket on BCL-xL as a Bak-derived
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peptide, overlapping with the Leu78 and Ile85 of Bak,
which are critical residues for peptide binding (Figure 3)
[69–71]. ABT-737 was further improved to generate orally
bioavailable ABT-263 (Navitoclax, Phase I) and ABT-199
(Phase I) with enhanced water solubility [72]. Another oral
BH3-mimetic, Obatoclax (GS-01570), discovered by screen-
ing of natural product libraries, is currently in Phase II
clinical trials in patients with small-cell lung cancer
[18,73,74].

Allosteric regulation of PPIs: Hsp90 inhibitors
The Hsp90 chaperone protein regulates the activity and
stability of numerous client proteins. Inhibition of Hsp90
can simultaneously shut down multiple oncogenic path-
ways, which has sparked interest in targeting of Hsp90
PPIs for cancer treatment [75–77]. The natural product
geldanamycin (GM) inhibits Hsp90–Src complex forma-
tion by binding to a 15-Å deep ATP-binding site in the
N-terminal domain of Hsp90 (Figure 3). A 17-allylamino,

17-demethoxy-substituted GM derivative, 17-AAG, was
later developed as a clinical candidate, and is currently in
Phase I and II trials in patients with multiple myeloma,
lymphoma, stage IV pancreatic cancer, non-small-cell
lung cancer, and solid tumors [78]. Other Hsp90 inhibitors
in clinical testing include IPI-504 (Phase II), BIIB021
(Phase I and II), PU-H71 (Phase I), NVP-AUY922 (Phase
II), AT13387 (Phase I/II), and KW-2478 (Phase I/II) [78].

Emerging opportunities for targeting of PPIs
Although validated PPIs remain active targets for thera-
peutic development, new concepts and promising PPIs
have emerged for anticancer drug discovery (Figure 2).
For example, increased knowledge of cancer genomics
and PPI-mediated epigenetic mechanisms and identifica-
tion of cancer-specific onco-fusion proteins have revealed a
large number of new PPIs that are directly associated with
pathology of cancer. Recent insight into the consequences
of various cancer therapeutics and the induced therapeutic
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Figure 3. Examples of protein–protein interaction (PPI) inhibitors that have entered clinical trials and emerging agents. Inhibitors of MDM2–p53, BCL2, XIAP, and Hsp90 PPIs
are in Phase I–III trials. Examples of promising PPI targets with recently identified novel inhibitors include MLL1–WDR5, b-catenin–TCF, BCLAF1–L3MBTL3, BRD4–histone
H4, and 14-3-3 interactions. Chemical structures of representative inhibitors are shown, along with available crystal structures for protein–protein complexes. Top left:
superimposition of Bak peptide (orange, carbon atoms colored cyan) and ABT-737 (carbon atoms colored green) bound at BCL-xL (PDB ID: 1BXL, 2YXJ). ABT-737 occupies
the same hydrophobic pocket on the BCL-xL surface as the peptide, overlapping with Leu78 and Ile85 Bak residues critical for peptide binding. Top right: crystal structure of
Hsp90 in a complex with geldanamycin (PDB ID: 1YET), the first Hsp90 inhibitor to enter clinical trials. Bottom right: superimposition of p53 peptide and Nutlin-2 (one of the
first identified potent MDM2–p53 inhibitors) bound to the N-terminal domain of MDM2 (PDB ID: 1YCR, 1RV1). Phe19, Trp23, and Leu26 residues of p53 occupy the
hydrophobic pocket of MDM2. The ethoxy and chlorophenyl groups of Nutlin-2 match the positions of Phe19, Trp23, and Leu26, respectively. Bottom left: superimposition
of SMAC AVPI peptide (carbon atoms colored orange) and GDC-0152, the first SMAC mimetic to enter clinical trials (carbon atoms colored green) (PDB ID: 3UW5, 1G73). The
molecular surfaces of Hsp90, BCL-xL, MDM2, and XIAP are colored according to their electrostatic potential (blue, positive; white, neutral; red, negative).
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resistance offers unanticipated PPIs as potential cancer
targets to enhance therapeutic efficacy.

Cancer genomics
Large-scale genomics initiatives, such as The Cancer Ge-
nome Atlas (http://cancergenome.nih.gov) and The Inter-
national Cancer Genome Consortium (http://icgc.org/icgc/
cgp), have led to the discovery of a plethora of genomic
alternations that drive tumorigenesis and/or progression
[79,80]. It is not hard to imagine that such changes will
lead to alteration of protein interaction networks that
regulate cell growth. For example, Akt-activating muta-
tions often rewire downstream phosphorelay systems via
altered PPIs, such as enhanced 14-3-3 interactions with
FOXO3a, Bad, and PRAS40 (Figure 2). To systematically
examine PPI network changes in cancer, we have con-
ducted large-scale experiments to establish cancer-associ-
ated PPI network maps based on genomic information from
glioblastoma multiforme [81] and other tumor types. Such
studies, along with predicted new PPIs [82], have revealed
novel PPIs that act as major drivers of cancer and thus are
potential targets for therapeutic exploration.

PPIs that regulate epigenetic mechanisms
Cancer genomics studies have not only validated the im-
portance of classical hallmarks of cancer but have also
revealed new characteristics that are intricately associated
with cancer, such as epigenetic dysregulation and RNA
splicing [8,79,80]. Recent advances outlining the contribu-
tion of dysregulated epigenetic mechanisms to cancer offer
new opportunities for PPI targeting. For instance, it has
been found that dysregulated histone methylation and
acetylation are associated with tumorigenesis. These
changes in turn dictate the specific recognition of modified
histones by methyllysine-binding proteins and by acetly-
lysine-binding bromodomains (Figure 2) [7,13]. A potent
and selective compound, UNC1215, was recently identified
that effectively disrupts the interaction of methylated
histone with the L3MBTL3 methyllysine binding protein
[83]. UNC1215 demonstrated significant selectivity
against more than 200 other analogous methyllysine rec-
ognition domains, making it a highly promising agent for
probing L3MBTL3 function in cancer. For the interaction
of acetylated histone with bromodomain-containing pro-
teins, two small molecules, JQ1 and I-BET, that are pan-
bromodomain and extraterminal domain (BET) family
inhibitors have been developed [84]. Antitumor activity
has been observed for JQ1 in a patient-derived xenograft
animal model. It is particularly valuable for Myc-driven
tumors [85]. I-BET-151 exhibited promising efficacy
against onco-fusion-driven leukemia [86]. Cancer-associat-
ed mutations in the RNA-splicing machinery indicate the
importance of PPIs in the regulation of RNA processing in
cancer, such as the association of frequently mutated
splicing factor 3b (SF3B1) with 3a (SF3A) in theU2 small
nuclear ribonucleoprotein complex [80].

Onco-fusion PPIs offer cancer selectivity
PPIs are important for the catalytic activity of many
enzymes, including epigenetic-modifying enzymes, which
can also be targeted. One example is the development of

high-affinity peptidomimetics that antagonize the interac-
tion of the histone methyltransferase mixed lineage leuke-
mia (MLL1) and its activator WDR5. Dysregulated MLL1
is associated with various leukemias. Disruption of the
MLL1–WDR5 PPI by peptidomimetics effectively de-
creased MLL1-fusion-mediated leukemogenesis [87]. Sim-
ilarly, targeting of the MLL1–menin PPI led to the
development of a series of lead compounds with therapeu-
tic potential [88]. Importantly, fusion proteins such as
MLL1 offer tumor-selective targets; thus, future efforts
targeting onco-fusion-protein-specific PPIs are not only
warranted but are much needed [89].

PPIs in protein complexes
As indicated for MLL1 and many other hub proteins that
mediate oncogenic signaling, PPIs often involve multipro-
tein complexes. Selective inhibition of a particular PPI in
the complex for a desired therapeutic effect is challenging.
However, selective disruption of MLL1–WDR5 gave rise to
promising antileukemogenesis activity [87]. Inhibition of
MAML interaction with ICN1/CSL by a stapled peptide in
NOTCH1 signaling is another example that offers a novel
strategy for treating NOTCH1-dependent cancer [22]. An-
other challenge is experimental identification of selective
agents via HTS. For example, 14-3-3 proteins interact with
multiple partners, such as Raf-1, Bad, and FOXO [14].
Although these interactions engage a common binding
groove, some partner-selective residues have been sug-
gested. Technologies that can identify pan and specific
modulators are expected to greatly accelerate the develop-
ment of selective PPI inhibitors.

PPIs in combination therapies
Another emerging opportunity for PPI targeting in cancer
is rewired PPIs in oncogenic signaling networks triggered
by therapeutic insults. For example, inhibition of mTOR
induces paradoxic activation of Akt [90]. Activated Akt
triggers phosphorylation-dependent PPIs, such as 14-3-
3-mediated PPIs [3,12]. Such induced PPIs may yield
new cancer dependence and serve as new targets to over-
come pharmacologically induced drug resistance. Interest-
ingly, treatment of cancer cells with an MEK inhibitor
renders them sensitive to the BCL2 PPI inhibitor ABT-263
[91]. PPI modulation is expected to have broad and impor-
tant roles in future mechanism-based combination thera-
pies.

Concluding remarks
Future efforts aimed at targeting of PPIs will be greatly
accelerated by a number of recent advances. Understand-
ing the nature of PPI interfaces and successful PPIMs may
provide rationale design strategies for PPI-focused librar-
ies. PPI assay technologies that closely reflect physiologi-
cal conditions and address multiprotein complex issues are
likely to shorten the process of lead discovery. PPI target
discovery coupled with functional validation in genetically
defined model systems is vital in moving PPIMs into the
pipeline for clinical evaluation. These activities are fueled
by a new US national initiative, the Cancer Target Discov-
ery and Development (CTD2) network (http://ocg.cancer.
gov/programs/ctdd.asp). CTD2 aims to bridge the gap
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between the vast amount of cancer genomics information
and limited therapeutics by accelerating the discovery of
new promising targets, including PPIs. Emphasizing col-
laborative interactions among members with complemen-
tary and unique expertise, the CTD2 network focuses on
rapid identification and characterization of potential tar-
gets for the development of cancer therapeutics. These
scientific efforts will significantly accelerate the expansion
of the PPI target landscape, which we hope will lead to a
paradigm shift in targeting the once ‘undruggable’ for
personalized cancer therapy and precision medicine.
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