










Preface

It can be argued that of all the biological sciences, physiology is the one in which
mathematics has played the greatest role. From the work of Helmholtz and Frank in
the last century through to that of Hodgkin, Huxley, and many others in this century,
physiologists have repeatedly used mathematical methods and models to help their
understanding of physiological processes. It might thus be expected that a close con-
nection between applied mathematics and physiology would have developed naturally,
but unfortunately, until recently, such has not been the case.

There are always barriers to communication between disciplines. Despite the
quantitative nature of their subject, many physiologists seek only verbal descriptions,
naming and learning the functions of an incredibly complicated array of components;
often the complexity of the problem appears to preclude a mathematical description.
Others want to become physicians, and so have little time for mathematics other than
to learn about drug dosages, office accounting practices, and malpractice liability. Still
others choose to study physiology precisely because thereby they hope not to study
more mathematics, and that in itself is a significant benefit. On the other hand, many
applied mathematicians are concerned with theoretical results, proving theorems and
such, and prefer not to pay attention to real data or the applications of their results.
Others hesitate to jump into a new discipline, with all its required background reading
and its own history of modeling that must be learned.

But times are changing, and it is rapidly becoming apparent that applied mathe-
matics and physiology have a great deal to offer one another. It is our view that teaching
physiology without a mathematical description of the underlying dynamical processes
is like teaching planetary motion to physicists without mentioning or using Kepler’s
laws; you can observe that there is a full moon every 28 days, but without Kepler’s
laws you cannot determine when the next total lunar or solar eclipse will be nor when
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Halley’s comet will return. Your head will be full of interesting and important facts, but
it is difficult to organize those facts unless they are given a quantitative description.
Similarly, if applied mathematicians were to ignore physiology, they would be losing
the opportunity to study an extremely rich and interesting field of science.

To explain the goals of this book, it is most convenient to begin by emphasizing
what this book is not; it is not a physiology book, and neither is it a mathematics
book. Any reader who is seriously interested in learning physiology would be well
advised to consult an introductory physiology book such as Guyton and Hall (1996) or
Berne and Levy (1993), as, indeed, we ourselves have done many times. We give only a
brief background for each physiological problem we discuss, certainly not enough to
satisfy a real physiologist. Neither is this a book for learning mathematics. Of course,
a great deal of mathematics is used throughout, but any reader who is not already
familiar with the basic techniques would again be well advised to learn the material
elsewhere.

Instead, this book describes work that lies on the border between mathematics
and physiology; it describes ways in which mathematics may be used to give insight
into physiological questions, and how physiological questions can, in turn, lead to new
mathematical problems. In this sense, it is truly an interdisciplinary text, which, we
hope, will be appreciated by physiologists interested in theoretical approaches to their
subject as well as by mathematicians interested in learning new areas of application.

It is also an introductory survey of what a host of other people have done in em-
ployingmathematicalmodels to describe physiological processes. It is necessarily brief,
incomplete, and outdated (even before it was written), but we hope it will serve as an
introduction to, and overview of, some of the most important contributions to the
field. Perhaps some of the references will provide a starting point for more in-depth
investigations.

Unfortunately, because of the nature of the respective disciplines, applied mathe-
maticians who know little physiology will have an easier time with this material than
will physiologists with little mathematical training. A complete understanding of all
of the mathematics in this book will require a solid undergraduate training in mathe-
matics, a fact for which we make no apology. We have made no attempt whatever to
water down the models so that a lower level of mathematics could be used, but have
instead used whatever mathematics the physiology demands. It would be misleading
to imply that physiological modeling uses only trivial mathematics, or vice versa; the
essential richness of the field results from the incorporation of complexities from both
disciplines.

At the least, one needs a solid understanding of differential equations, including
phase plane analysis and stability theory. To follow everything will also require an un-
derstanding of basic bifurcation theory, linear transform theory (Fourier and Laplace
transforms), linear systems theory, complex variable techniques (the residue theorem),
and some understanding of partial differential equations and their numerical simula-
tion. However, for those whose mathematical background does not include all of these
topics, we have included references that should help to fill the gap. We also make ex-
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tensive use of asymptotic methods and perturbation theory, but include explanatory
material to help the novice understand the calculations.

This book can be used in several ways. It could be used to teach a full-year course in
mathematical physiology, andwe have used thismaterial in thatway. The book includes
enough exercises to keep even the most diligent student busy. It could also be used as
a supplement to other applied mathematics, bioengineering, or physiology courses.
The models and exercises given here can add considerable interest and challenge to an
otherwise traditional course.

The book is divided into two parts, the first dealing with the fundamental principles
of cell physiology, and the second with the physiology of systems. After an introduc-
tion to basic biochemistry and enzyme reactions, wemove on to a discussion of various
aspects of cell physiology, including the problem of volume control, the membrane po-
tential, ionic flow through channels, and excitability. Chapter 5 is devoted to calcium
dynamics, emphasizing the two important ways that calcium is released from stores,
while cells that exhibit electrical bursting are the subject of Chapter 6. This book is
not intentionally organized around mathematical techniques, but it is a happy coinci-
dence that there is no use of partial differential equations throughout these beginning
chapters.

Spatial aspects, such as synaptic transmission, gap junctions, the linear cable equa-
tion, nonlinear wave propagation in neurons, and calciumwaves, are the subject of the
next few chapters, and it is here that the reader firstmeets partial differential equations.
The most mathematical sections of the book arise in the discussion of signaling in two-
and three-dimensional media—readers who are less mathematically inclinedmay wish
to skip over these sections. This section on basic physiological mechanisms ends with
a discussion of the biochemistry of RNA and DNA and the biochemical regulation of
cell function.

The second part of the book gives an overview of organ physiology, mostly from
the human body, beginning with an introduction to electrocardiology, followed by the
physiology of the circulatory system, blood,muscle, hormones, and the kidneys. Finally,
we examine the digestive system, the visual system, ending with the inner ear.

While this may seem to be an enormous amount of material (and it is!), there are
many physiological topics that are not discussed here. For example, there is almost
no discussion of the immune system and the immune response, and so the work of
Perelson, Goldstein, Wofsy, Kirschner, and others of their persuasion is absent. An-
other glaring omission is the wonderful work of Michael Reed and his collaborators
on axonal transport; this work is discussed in detail by Edelstein-Keshet (1988). The
study of the central nervous system, including fascinating topics like nervous control,
learning, cognition, and memory, is touched upon only very lightly, and the field of
pharmacokinetics and compartmental modeling, including the work of John Jacquez,
Elliot Landaw, and others, appears not at all. Neither does the wound-healing work of
Maini, Sherratt, Murray, and others, or the tumor modeling of Chaplain and his col-
leagues. The list could continue indefinitely. Please accept our apologies if your favorite
topic (or life’s work) was omitted; the reason is exhaustion, not lack of interest.
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As well as noticing the omission of a number of important areas of mathematical
physiology, the reader may also notice that our view of what “mathematical” means
appears to be somewhat narrow as well. For example, we include very little discussion
of statistical methods, stochastic models, or discrete equations, but concentrate almost
wholly on continuous, deterministic approaches. We emphasize that this is not from
any inherent belief in the superiority of continuous differential equations. It results
rather from the unpleasant fact that choices had to be made, and when push came to
shove, we chose to include work with which we were most familiar. Again, apologies
are offered.

Finally, with a project of this size there is credit to be given and blame to be cast;
credit to the many people, like the pioneers in the field whose work we freely bor-
rowed, andmany reviewers and coworkers (AndrewLeBeau,MatthewWilkins, Richard
Bertram, Lee Segel, Bruce Knight, John Tyson, Eric Cytrunbaum, Eric Marland, Tim
Lewis, J.G.T. Sneyd, Craig Marshall) who have given invaluable advice. Particular
thanks are also due to the University of Canterbury, New Zealand, where a signifi-
cant portion of this book was written. Of course, as authors we accept all the blame
for not getting it right, or not doing it better.

University of Utah James Keener
University of Michigan James Sneyd
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C H A P T E R 1

Biochemical Reactions

Cells can do lots of wonderful things. Individually they can move, contract, excrete,
reproduce, signal or respond to signals, and carry out the energy transactions necessary
for this activity. Collectively they perform all of the numerous functions of any living
organism necessary to sustain life. Yet all of what cells do can be described in terms
of a few basic natural laws. The fascination with cells is that although the rules of
behavior are relatively simple, they are applied to an enormously complex network of
interacting chemicals and substrates. The effort of many lifetimes has been consumed
in unraveling just a few of these reaction schemes, and there are many more mysteries
yet to be uncovered.

1.1 The Law of Mass Action

The fundamental “law” of a chemical reaction is the law of mass action. This “law”
describes the rate at which chemicals, whether large macromolecules or simple
ions, collide and interact to form different chemical combinations. Suppose that two
chemicals, say A and B, react upon collision with each other to form product C,

A + B k−→ C. (1.1)

The rate of this reaction is the rate of accumulation of product, d[C]
dt
. This rate is the

product of the number of collisions per unit time between the two reactants and the
probability that a collision is sufficiently energetic to overcome the free energy of acti-
vation of the reaction. The number of collisions per unit time is taken to be proportional
to the product of the concentrations of A and B with a factor of proportionality that
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depends on the geometrical shapes and sizes of the reactant molecules and on the
temperature of the mixture. Combining these factors we have

d[C]
dt

� k[A][B]. (1.2)

The identification of (1.2) with the reaction (1.1) is called the law ofmass action, and the
constant k is called the rate constant for the reaction. However, the law of mass action
is not a law in the sense that it is inviolable, but rather it is a useful model, much like
Ohm’s law or Newton’s law of cooling. As a model, there are situations where it is not
valid. For example, at high concentrations, doubling the concentration of one reactant
need not double the overall reaction rate, and at extremely low concentrations, it may
not be appropriate to represent concentration as a continuous variable.

While it is typical to denote reactions as proceeding in only one direction, withmost
biochemical reactions, reverse reactions also take place, so that the reaction scheme
for A, B, and C should have been written as

A + B
k+
−→←−
k−

C (1.3)

with k+ and k− denoting the forward and reverse rate constants of reaction, respectively.
If the reverse reaction is slow compared to the forward reaction, it is often ignored,
and only the primary direction is displayed. Since the quantity A is consumed by the
forward reaction and produced by the reverse reaction, the rate of change of [A] for
this bidirectional reaction is

d[A]
dt

� k−[C]− k+[A][B]. (1.4)

At equilibrium, concentrations are not changing, so that [C]eq � k+
k−
[A]eq[B]eq. If there

are no other reactions involving A and C, then [A]+ [C] � A0 is constant, and

[C] � A0
[B]

Keq + [B] . (1.5)

The number Keq � k−/k+ is called the equilibrium constant, and it relates to the relative
preference for the chemicals to be in the combined state C compared to the disasso-
ciated state. The equilibrium constant has units of concentration. If Keq is small, then
there is a high affinity between A and B. Notice from (1.5) that when [B] � Keq, half of
A is in the bound state.

Unfortunately, the law of mass action cannot be used in all situations because not
all chemical reaction mechanisms are known with sufficient detail. In fact, a vast num-
ber of chemical reactions cannot be described by mass action kinetics. Those reactions
that follow mass action kinetics are called elementary reactions because presumably,
they proceed directly from collision of the reactants. Reactions that do not follow
mass action kinetics usually proceed by a complex mechanism consisting of two or
more elementary reaction steps. It is often the case with biochemical reactions that the
elementary reaction schemes are not known or are very complicated to write down.
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1.2 Enzyme Kinetics

To see where some of the more complicated reaction schemes come from, we consider
a reaction that is catalyzed by an enzyme. Enzymes are catalysts (generally proteins)
that help convert other molecules called substrates into products, but they themselves
are not changed by the reaction. Their most important features are catalytic power,
specificity, and regulation. Enzymes accelerate the conversion of substrate into product
by lowering the free energy of activation of the reaction. For example, enzymes may
aid in overcoming charge repulsions and allowing reacting molecules to come into
contact for the formation of new chemical bonds. Or, if the reaction requires breaking
of an existing bond, the enzymemay exert a stress on a substrate molecule, rendering a
particular bond more easily broken. Enzymes are particularly efficient at speeding up
biological reactions, giving increases in speed of up to 10 million times or more. They
are also highly specific, usually catalyzing the reaction of only one particular substrate
or closely related substrates. Finally, they are typically regulated by an enormously
complicated set of positive andnegative feedback systems, thus allowing precise control
over the rate of reaction. A detailed presentation of enzyme kinetics, including many
different kinds of models, can be found in Dixon and Webb (1979). Here, we present
some of the simplest models.

One of the first things to realize about enzyme reactions is that they do not follow
the law of mass action directly. For as the concentration of substrate (S) is increased,
the rate of the reaction increases only to a certain extent, reaching a maximal reaction
velocity at high substrate concentrations. This is in contrast to the law of mass action,
which, when applied directly to the reaction of S with the enzyme E predicts that the
reaction velocity increases linearly as [S] increases.

A model to explain the deviation from the law of mass action was first proposed
by Michaelis and Menten (1913). In their reaction scheme, the enzyme E converts the
substrate S into the product P through a two-step process. First E combines with S
to form a complex C which then breaks down into the product P releasing E in the
process. The reaction scheme is represented schematically by

S+ E
k1

−→←−
k−1

C
k2−→P+ E.

It is important to note that, although this appears to imply that P cannot combine
with E to form the complex, this is not the case. In fact, nearly all enzymes increase the
speed of the reaction in both directions. Typically, however, reaction rates aremeasured
under conditionswhere P is continually removed, which effectively prevents the reverse
reaction from occurring. Thus, to determine the kinetic parameters from experimental
data it suffices to assume that no reverse reaction occurs. Nevertheless, one must keep
in mind that this is not the case in vivo, and thus the expressions we derive for reaction
velocities can be applied only with great care to the physiology of intact cells. That
being said, we ignore these complexities in the remainder of this book.
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There are two similar ways to analyze this equation; the equilibrium approxima-
tion, and the quasi-steady-state approximation. Because these methods give similar
results it is easy to confuse these two approaches, so it is worthwhile to understand
their differences.

We begin by defining s � [S], c � [C], e � [E], and p � [P]. The law of mass action
applied to this reaction mechanism yields four differential equations for the rates of
change of s, c, e, and p as

ds

dt
� k−1c− k1se, (1.6)

de

dt
� (k−1 + k2)c− k1se, (1.7)

dc

dt
� k1se− (k2 + k−1)c, (1.8)

dp

dt
� k2c. (1.9)

Notice that p can be found by direct integration, and there is a conserved quantity since
de
dt

+ dc
dt

� 0, so that e+ c � e0, where e0 is the total amount of available enzyme.

1.2.1 The Equilibrium Approximation

In their original analysis, Michaelis and Menten assumed that the substrate is in
instantaneous equilibrium with the complex, and thus

k1se � k−1c. (1.10)

Since e+ c � e0, we then find that

c � e0s

Ks + s
, (1.11)

where Ks � k−1/k1. Hence, the velocity, V , of the reaction, i.e., the rate at which the
product is formed, is given by

V � dp

dt
� k2c � k2e0s

Ks + s
� Vmaxs

Ks + s
, (1.12)

where Vmax � k2e0 is the maximum reaction velocity, attained when all the enzyme is
complexed with the substrate.

At small substrate concentrations, the reaction rate is linear, at a rate proportional
to the amount of available enzyme e0. At large concentrations, however, the reaction
rate saturates to Vmax, so that the maximum rate of the reaction is limited by the
amount of enzyme present and the dissociation rate constant k2. For this reason, the

dissociation reaction C
k2−→P + E is said to be rate limiting for this reaction. At s � Ks,

the reaction rate is half that of the maximum.
It is important to note that (1.10) cannot be exactly correct at all times; if it were,

then according to (1.6) substrate would not be used up, and product would not be
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formed. This points out the fact that (1.10) is an approximation. It also illustrates the
need for a systematic way to make approximate statements, so that one has an idea of
the magnitude and nature of the errors introduced in making such an approximation.

1.2.2 The Quasi-Steady-State Approximation

An alternative analysis of an enzymatic reaction was proposed by Briggs and Haldane
(1925), and their analysis is now the basis for most present-day descriptions of enzyme
reactions. Briggs and Haldane assumed that the rates of formation and breakdown of
the complex were essentially equal at all times (except perhaps at the beginning of the
reaction, as the complex is “filling up”). Thus, dc/dt should be approximately zero. With
this approximation, it is relatively simple to determine the velocity of the reaction.

To give this approximation a systematicmathematical basis, it is useful to introduce
dimensionless variables

σ � s

s0
, x � c

e0
, τ � k1e0t, κ � k−1 + k2

k1s0
, ε � e0

s0
, α � k−1

k1s0
, (1.13)

in terms of which we obtain the system of two differential equations

dσ

dτ
� −σ + x(σ + α), (1.14)

ε
dx

dτ
� σ − x(σ + κ). (1.15)

There are usually a number of ways that a system of differential equations can be
nondimensionalized. This nonuniqueness is often a source of great confusion, as it is
often not obvious which choice of dimensionless variables and parameters is “best.” In
Section 1.4 we discuss this difficult problem briefly.

The remarkable effectiveness of enzymes as catalysts of biochemical reactions
is reflected by their small concentrations needed compared to the concentrations of
the substrates. For this model, this means that ε is small, typically in the range of
10−2 to 10−7. Therefore, the reaction (1.15) is fast, equilibrates rapidly and remains in
near-equilibrium even as the variable σ changes. Thus, we take the quasi-steady-state
approximation εdx

dτ
� 0. Notice that this is not the same as taking dx

dτ
� 0. However,

because of the different scaling of x and c, it is equivalent to taking dc
dt

� 0 as suggested
in the introductory paragraph. The quasi-steady-state approximation means that the
variable x is changing while restricted to some manifold described by setting the right-
hand side of (1.15) to zero. This assumption is valid, provided that ε is small and dx

dτ
is

of order 1.
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It follows from the quasi-steady-state approximation that

x � σ

σ + κ
, (1.16)

dσ

dτ
� − qσ

σ + κ
, (1.17)

where q � κ − α � k2
k1s0
. Equation (1.17) describes the rate of uptake of the substrate

and is called aMichaelis–Menten law. In terms of the original variables, this law is

V � dp

dt
� −ds

dt
� k2e0s

s+ Km
� Vmaxs

s+ Km
, (1.18)

where Km � k−1+k2
k1

. In quasi-steady state, the concentration of the complex satisfies

c � e0s

s+ Km
. (1.19)

Note the similarity between (1.12) and (1.18), the only difference being that the equi-
librium approximation uses Ks, while the quasi-steady-state approximation uses Km.
Despite this similarity of form, it is important to keep in mind that the two results are
based on different approximations.

As with the law of mass action, the Michaelis–Menten law (1.18) is not universally
applicable but is a useful approximation. It may be applicable even if ε � e0/s0 is not
small (see, for example, Exercise 6), and in model building it is often invoked without
regard to the underlying assumptions.

While the individual rate constants are difficult tomeasure experimentally, the ratio
Km is relatively easy to measure because of the simple observation that (1.18) can be
written in the form

1
V

� 1
Vmax

+ Km

Vmax

1
s
. (1.20)

In other words, 1/V is a linear function of 1/s. Plots of this double reciprocal curve are
called Lineweaver–Burk plots, and from such (experimentally determined) plots, Vmax
and Km can be found.

Although a Lineweaver–Burk plot makes it easy to determine Vmax and Km from
reaction rate measurements, it is not a simple matter to determine the reaction rate
as a function of substrate concentration during the course of a single experiment.
Substrate concentrations usually cannot be measured with sufficient accuracy or time
resolution to permit the calculation of a reliable derivative. In practice, since it is more
easily measured, the initial reaction rate is determined for a range of different initial
substrate concentrations.

An alternative method to determine Km and Vmax from experimental data is the di-
rect linear plot (Eisenthal and Cornish-Bowden, 1974; Cornish-Bowden and Eisenthal,
1974). First we write (1.18) in the form

Vmax � V + V

s
Km, (1.21)
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and then treat Vmax andKm as variables for each experimental measurement of V and s.
(Recall that typically only the initial substrate concentration and initial velocity are
used.) Then a plot of the straight line of Vmax against Km can be made. Repeating this
for a number of different initial substrate concentrations and velocities gives a family
of straight lines, which, in an ideal world free from experimental error, intersect at the
single point Vmax and Km for that reaction. Of course, in reality, experimental error
precludes an exact intersection, but Vmax and Km can be estimated from the median of
the pairwise intersections.

1.2.3 Enzyme Inhibition

An enzyme inhibitor is a substance that inhibits the catalytic action of the enzyme.
Enzyme inhibition is a common feature of enzyme reactions, and is an important
means bywhich the activity of enzymes is controlled. Inhibitors come inmany different
types. For example, irreversible inhibitors, or catalytic poisons, decrease the activity of
the enzyme to zero. This is the method of action of cyanide and many nerve gases.
For this discussion, we restrict our attention to competitive inhibitors and allosteric
inhibitors.

To understand the distinction between competitive and allosteric inhibition, it is
useful to keep in mind that an enzymemolecule is usually a large protein, considerably
larger than the substrate molecule whose reaction is catalyzed. Embedded in the large
enzyme protein are one ormore active sites, to which the substrate can bind to form the
complex. In general, an enzyme catalyzes a single reaction or substrates with similar
structures. This is believed to be a steric property of the enzyme that results from the
three-dimensional shape of the enzyme allowing it to fit in a “lock-and-key” fashion
with a corresponding substrate molecule.

If another molecule has a shape similar enough to that of the substrate molecule,
it may also bind to the active site, preventing the binding of a substrate molecule, thus
inhibiting the reaction. Because the inhibitor competes with the substrate molecule
for the active site, it is called a competitive inhibitor.

However, because the enzyme molecule is large, it often has other binding sites,
distinct from the active site, the binding of which affects the activity of the enzyme
at the active site. These binding sites are called allosteric sites (from the Greek for
“another solid”) to emphasize that they are structurally different from the catalytic
active sites. They are also called regulatory sites to emphasize that the catalytic activity
of the protein is regulated by binding at this site. The ligand (any molecule that binds
to a specific site on a protein, from Latin ligare, to bind) that binds at the allosteric
site is called an effector or modifier, which, if it increases the activity of the enzyme,
is called an allosteric activator, while if it decreases the activity of the substrate, it
is called an allosteric inhibitor. The allosteric effect is presumed to arise because of a
conformational change of the enzyme, that is, a change in the folding of the polypeptide
chain, called an allosteric transition.
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Competitive Inhibition
In the simplest example of a competitive inhibitor, the reaction is stopped when the
inhibitor is bound to the active site of the enzyme. Thus,

S+ E
k1

−→←−
k−1

C1
k2−→E+ P,

E+ I
k3

−→←−
k−3

C2.

From the law of mass action we get

ds

dt
� −k1se+ k−1c1, (1.22)

di

dt
� −k3ie+ k−3c2, (1.23)

dc1

dt
� k1se− (k−1 + k2)c1, (1.24)

dc2

dt
� k3ie− k−3c2. (1.25)

As before, it is not necessary to write an equation for the accumulation of the product.
Furthermore, we know that e+c1+c2 � e0. To be systematic, the next step is to introduce
dimensionless variables, and identify those reactions that are rapid and equilibrate
rapidly to their quasi-steady states. However, from our previous experience (or from a
calculation on a piece of scratch paper), we know, assuming the enzyme-to-substrate
ratios are small, that the fast equations are those for c1 and c2. Hence, the quasi-steady
states are found by (formally) setting dc1/dt � dc2/dt � 0 and solving for c1 and c2.
Recall that this does not mean that c1 and c2 are unchanging, rather that they are
changing in quasi-steady-state fashion, keeping the right-hand sides of these equations
nearly zero. This gives

c1 � Kie0s

Kmi+ Kis+ KmKi
, (1.26)

c2 � Kme0i

Kmi+ Kis+ KmKi
, (1.27)

where Km � k−1+k2
k1

, Ki � k−3/k3. Thus the velocity of the reaction is

V � k2c1 � k2e0sKi

Kmi+ Kis+ KmKi
� Vmaxs

s+ Km(1+ i/Ki)
. (1.28)

Notice that the effect of the inhibitor is to increase the effective equilibrium constant of
the enzyme by the factor 1+ i/Ki, from Km to Km(1+ i/Ki), thus decreasing the velocity
of reaction, while leaving the maximum velocity unchanged.
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Figure 1.1 Diagram of the possi-
ble states of an enzyme with one
allosteric and one catalytic binding
site.

Allosteric Inhibitors
If the inhibitor can bind at an allosteric site, we have the possibility that the enzyme
could bind both the inhibitor and the substrate simultaneously. In this case, there
are four possible binding states for the enzyme, and transitions between them, as
demonstrated graphically in Fig. 1.1.

The simplest analysis of this reaction scheme is the equilibrium analysis. (Themore
complicated quasi-steady-state analysis is posed as Exercise 2.) We define Ks � k−1/k1,
Ki � k−3/k3, and let x, y, and z denote, respectively, the concentrations of ES, EI and
EIS. Then, it follows from the law of mass action that in steady state,

(e0 − x− y− z)s− Ksx � 0, (1.29)

(e0 − x− y− z)i− Kiy � 0, (1.30)

ys− Ksz � 0, (1.31)

xi− Kiz � 0, (1.32)

where e0 � e + x + y + z is the total amount of enzyme. Notice that this is a linear
system of equations for x, y, and z. Although there are four equations, one is a linear
combination of the other three (the system is of rank three), so that we can determine
x, y, and z as functions of i and s, finding

x � e0Ki

Ki + i

s

Ks + s
. (1.33)

It follows that the reaction rate, V � k2x, is given by

V � Vmax

1+ i/Ki

s

Ks + s
, (1.34)

where Vmax � k2e0. Thus, in contrast to the competitive inhibitor, the allosteric in-
hibitor decreases the maximum velocity of the reaction, while leaving Ks unchanged.
(Of course, the situation is more complicated if the quasi-steady-state approximation
is used, and no such simple conclusion follows.)
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1.2.4 Cooperativity

For many enzymes, the reaction velocity is not a simple hyperbolic curve, as predicted
by the Michaelis–Menten model, but often has a sigmoidal character. This can re-
sult from cooperative effects, in which the enzyme can bind more than one substrate
molecule but the binding of one substrate molecule affects the binding of subsequent
ones.

Originally, much of the theoretical work on cooperative behavior was stimulated
by the properties of hemoglobin, and this is often the context in which cooperativity is
discussed. A detailed discussion of hemoglobin and oxygen binding is given in Chapter
16, while here cooperativity is discussed in more general terms.

Suppose that an enzyme can bind two substrate molecules, so it can exist in one of
three states, namely as a free molecule E, as a complex with one occupied center C1,
and as a complex with two occupied centers C2. The reactionmechanism is represented
by

S+ E
k1

−→←−
k−1

C1
k2−→E+ P, (1.35)

S+ C1
k3

−→←−
k−3

C2
k4−→C1 + P. (1.36)

Using the law of mass action, one can write down the rate equations for the 5
concentrations [S], [E], [C1], [C2], and [P]. However, because the amount of product [P]
can be determined by quadrature, and because the total amount of enzyme molecule
is conserved, we only need three equations for the three quantities [S], [C1], and [C2].
These are

ds

dt
� −k1se+ k−1c1 − k3sc1 + k−3c2, (1.37)

dc1

dt
� k1se− (k−1 + k2)c1 − k3sc1 + (k4 + k−3)c2, (1.38)

dc2

dt
� k3sc1 − (k4 + k−3)c2, (1.39)

where s � [S], c1 � [C1], c2 � [C2], and e+ c1 + c2 � e0.
Proceeding as before, we invoke the quasi-steady-state assumption that dc1/dt �

dc2/dt � 0, and solve for c1 and c2 to get

c1 � K2e0s

K1K2 + K2s+ s2
, (1.40)

c2 � e0s
2

K1K2 + K2s+ s2
, (1.41)

where K1 � k−1+k2
k1

and K2 � k4+k−3
k3

. The reaction velocity is thus given by

V � k2c1 + k4c2 � (k2K2 + k4s)e0s
K1K2 + K2s+ s2

. (1.42)
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It is instructive to examine two extreme cases. First, if the active sites act indepen-
dently and identically, then k1 � 2k3 � 2k+, 2k−1 � k−3 � 2k− and 2k2 � k4, where k+
and k− are the forward and backward reaction rates for the individual binding sites.
The factors of 2 occur because two identical binding sites are involved in the reaction,
doubling the amount of the reactant. In this case,

V � 2k2e0(K + s)s
K2 + 2Ks+ s2

� 2
k2e0s

K + s
, (1.43)

whereK � k−+k2
k+

is the equilibrium constant for the individual binding site. As expected,
the rate of reaction is exactly twice that for the individual binding site.

In the opposite extreme, suppose that the binding of the first substrate molecule is
slow, but that with one site bound, binding of the second is fast (this is large positive
cooperativity). This can be modeled by letting k3 → ∞ and k1 → 0, while keeping k1k3
constant, in which case K2 → 0 and K1 → ∞ while K1K2 is constant. In this limit, the
velocity of the reaction is

V � k4e0s
2

K2m + s2
� Vmaxs

2

K2m + s2
, (1.44)

where K2m � K1K2, and Vmax � k4e0.
In general, if n substrate molecules can bind to the enzyme, there are n equilibrium

constants,K1 throughKn. In the limit asKn → 0 andK1 → ∞while keepingK1Kn fixed,
the rate of reaction is

V � Vmaxs
n

Knm + sn
, (1.45)

where Knm � �n
i�1Ki. This rate equation is known as theHill equation. Typically, the Hill

equation is used for reactions whose detailed intermediate steps are not known but for
which cooperative behavior is suspected. The exponent n and the parameters Vmax and
Km are usually determined from experimental data. Observe that

n ln s � n lnKm + ln
(

V

Vmax − V

)
, (1.46)

so that a plot of ln( V
Vmax−V ) against ln s (called a Hill plot) should be a straight line of

slope n. Although the exponent n suggests an n-step process (with n binding sites), in
practice it is not unusual for the best fit for n to be noninteger.

An enzyme can also exhibit negative cooperativity, in which the binding of the first
substrate molecule decreases the rate of subsequent binding. This can be modeled by
decreasing k3. In Fig. 1.2 we plot the reaction velocity against the substrate concen-
tration for the cases of independent binding sites (no cooperativity), extreme positive
cooperativity (the Hill equation), and negative cooperativity. From this figure it can be
seen that with positive cooperativity, the reaction velocity is a sigmoidal function of the
substrate concentration, while negative cooperativity primarily decreases the velocity.
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Figure 1.2 Reaction velocity plotted against substrate concentration, for three different cases.
Positive cooperativity, K1 � 1000, K2 � 0.001; independent binding sites, K1 � 0.5, K2 � 2; and
negative cooperativity, K1 � 0.5, K2 � 100. The other parameters were chosen as e0 � 1, k2 � 1,
k4 � 2. Concentration and time units are arbitrary.

The Monod–Wyman–Changeux Model
Cooperative effects occur when the binding of one substrate molecule alters the rate
of binding of subsequent ones. However, the above models give no explanation of
how such alterations in the binding rate occur. The earliest mechanistic model pro-
posed to account for cooperative effects in terms of the enzyme’s conformation was
that of Monod, Wyman, and Changeux (1965). Their model is based on the following
assumptions about the structure and behavior of enzymes.

1. Cooperative proteins are composed of several identical reacting units, called
protomers, that occupy equivalent positions within the protein.

2. Each protomer contains one binding site for each ligand.
3. The binding sites within each protein are equivalent.
4. If the binding of a ligand to one protomer induces a conformational change in that
protomer, an identical conformational change is induced in all protomers.

5. The protein has two conformational states, usually denoted by R and T, which
differ in their ability to bind ligands.

To illustrate how these assumptions can be quantified, we consider a protein with
only two binding sites. Thus, the protein can exist in one of six states: Ri, i � 0,1,2, or
Ti, i � 0,1,2, where the subscript i is the number of bound ligands. For convenience,
we also assume that R1 cannot convert directly to T1, or vice versa, and similarly for
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Figure 1.3 Diagram of the states of
the protein, and the possible transitions,
in a six-state Monod–Wyman–Changeux
model.

R2 and T2. The general case is left for Exercise 3. The states of the protein and the
allowable transitions are illustrated in Fig. 1.3.

We now assume that all the reactions are in equilibrium. We let a lowercase letter
denote a concentration, and thus ri and ti denote the concentrations of chemical species
Ri and Ti respectively. Also, as before, we let s denote the concentration of the substrate.
Then, the fraction Y of occupied sites (also called the saturation function) is

Y � r1 + 2r2 + t1 + 2t2
2(r0 + r1 + r2 + t0 + t1 + t2)

. (1.47)

Furthermore, with Ki � k−i/ki, for i � 1,2,3, we find that

r1 � 2sK−1
1 r0, r2 � s2K−2

1 r0, (1.48)

t1 � 2sK−1
3 t0, t2 � s2K−2

3 t0. (1.49)

Substituting these into (1.47) gives

Y � sK−1
1 (1+ sK−1

1 )+ K−1
2 [sK

−1
3 (1+ sK−1

3 )]

(1+ sK−1
1 )

2 + K−1
2 (1+ sK−1

3 )
2

, (1.50)

where we have used that r0/t0 � K2. More generally, if there are n binding sites, then

Y � sK−1
1 (1+ sK−1

1 )
n−1 + K−1

2 [sK
−1
3 (1+ sK−1

3 )
n−1]

(1+ sK−1
1 )

n + K−1
2 (1+ sK−1

3 )
n

. (1.51)

In general, Y is a sigmoidal function of s.
Some special cases are of interest. For example, if K3 � ∞, so that the substrate

cannot bind directly to the T conformation, then

Y � sK−1
1 (1+ sK−1

1 )

(1+ sK−1
1 )

2 + K−1
2

, (1.52)

or if K2 � ∞, so that only the R conformation exists, then
Y � s

s+ K1
, (1.53)
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which is the Michaelis–Menten equation.
There are many other models of enzyme cooperativity, and the interested reader is

referred to Dixon and Webb (1979) for a comprehensive discussion and comparison of
other models in the literature.

1.3 Glycolysis and Glycolytic Oscillations

Metabolism is the process of extracting useful energy fromchemical bonds. Ametabolic
pathway is the sequence of enzymatic reactions that take place in order to transfer
chemical energy from one form to another. The common carrier of energy in the cell
is the chemical adenosine triphosphate (ATP). ATP is formed by the addition of an
inorganic phosphate group (HPO2−4 ) to adenosine diphosphate (ADP), or by the addition
of two inorganic phosphate groups to adenosine monophosphate (AMP). The process of
adding an inorganic phosphate group to amolecule is called phosphorylation. Since the
three phosphate groups on ATP carry negative charges, considerable energy is required
to overcome the natural repulsion of like-charged phosphates as additional groups are
added to AMP. Thus, the hydrolysis (the cleavage of a bond by water) of ATP to ADP
releases large amounts of energy.

Energy to perform chemical work is made available to the cell by the oxidation of
glucose to carbon dioxide and water, with a net release of energy. Some of this energy
is dissipated as heat, but fortunately, some of it is also stored in other chemical bonds.
The overall chemical reaction for the oxidation of glucose can be written as

C6H12O6 + 6O2 −→ 6CO2 + 6H2O+ energy, (1.54)

but of course, this is not an elementary reaction. Instead, this reaction takes place in
a series of enzymatic reactions, with three major reaction stages, glycolysis, the Krebs
cycle, and the electron transport (or cytochrome) system.

Glycolysis involves 11 elementary reaction steps, each of which is an enzymatic
reaction. Here we consider a simplified model of the initial steps. (To understand more
of the labyrinthine complexity of glycolysis, interested readers are encouraged to con-
sult a specialized book on biochemistry, such as Stryer, 1988.) The first three steps of
glycolysis are (Fig. 1.4)

1. the phosphorylation of glucose to glucose 6-phosphate;
2. the isomerization of glucose 6-phosphate to fructose 6-phosphate; and
3. the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate.

This last reaction is catalyzed by the enzyme phosphofructokinase (PFK1).
PFK1 is an example of an allosteric enzyme as it is allosterically inhibited by ATP.

Note that ATP is both a substrate of PFK1, binding at a catalytic site, and an allosteric
inhibitor, binding at a regulatory site. The inhibition due to ATP is removed by AMP,
and thus the activity of PFK1 increases as the ratio of ATP to AMP decreases. As PFK1
phosphorylates fructose 6-P, ATP is converted to ADP. ADP, in turn, is converted back
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Figure 1.4 The first three reactions in the glycolytic pathway.

to ATP and AMP by the reaction

2ADP −→←− ATP+ AMP,

which is catalyzed by the enzyme adenylate kinase. Since there is normally little AMP
in cells, the conversion of ADP to ATP and AMP serves to significantly decrease the
ATP/AMP ratio, thus activating PFK1. This is an example of a positive feedback loop;
the greater the activity of PFK1, the lower the ATP/AMP ratio, thus further increasing
PFK1 activity.

It was discovered in 1980 that in some cell types, another important allosteric
activator of PFK1 is fructose 2,6-bisphosphate (Stryer, 1988), which is formed from
fructose 6-phosphate in a reaction catalyzed by phosphofructokinase 2 (PFK2), a differ-
ent enzyme from phosphofructokinase (PFK1) (you were given fair warning about the
labyrinthine nature of this process!). Of particular significance is that an abundance of
fructose 6-phosphate leads to a corresponding abundance of fructose 2,6-bisphosphate,
and thus a corresponding increase in the activity of PFK1. This is an example of a neg-
ative feedback loop, where an increase in the substrate concentration leads to a greater
rate of substrate reaction and consumption. Clearly, PFK1 activity is controlled by an
intricate system of reactions, the collective behavior of which is not obvious a priori.

Under certain conditions the rate of glycolysis is known to be oscillatory, or even
chaotic (Nielsen et al., 1997). This biochemical oscillator has been known and studied
experimentally for some time. For example, Hess and Boiteux (1973) devised a flow
reactor containing yeast cells into which a controlled amount of substrate (either glu-
cose or fructose) was continuously added. They measured the pH and fluorescence
of the reactants, thereby monitoring the glycolytic activity, and they found ranges of
continuous input under which glycolysis was periodic.
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A mathematical model describing this oscillation was proposed by Sel’kov (1968)
and later modified by Goldbeter and Lefever (1972). It is meant to capture only the
positive feedback of ADP on PFK1 activity, and does not take into account the negative
feedback process that was discovered more recently. (An interesting exercise would
be to construct a more detailed model, including both positive and negative feedback
processes, to see what difference this makes to the conclusions.) In the Sel’kov model,
PFK1 is inactive in its unbound state but is activated by binding with several ADP
molecules.Note that, for simplicity, themodel does not take into account the conversion
of ADP to AMP and ATP, but assumes that ADP activates PFK1 directly, since the overall
effect is similar. In the active state, the enzyme catalyzes the production of ADP from
ATP as fructose-6-P is phosphorylated. Sel’kov’s reaction scheme for this process is as
follows: PFK1 (denoted by E) is activated or deactivated by binding or unbinding with
γ molecules of ADP (denoted by S2)

γS2 + E
k3

−→←−
k−3

ESγ2,

and ATP (denoted S1) can bind with the activated form of enzyme to produce a product
molecule of ADP. In addition, there is assumed to be a steady supply rate of S1, while
product S2 is irreversibly removed. Thus,

v1−→S1, (1.55)

S1 + ESγ2
k1

−→←−
k−1

S1ES
γ

2
k2−→ESγ2 + S2, (1.56)

S2
v2−→. (1.57)

Applying the law of mass action to the Sel’kov kinetic scheme, we find five differ-
ential equations for the production of the five species s1 � [S1], s2 � [S2], e � [E], x1 �
[ESγ2], x2 � [S1ES

γ

2]:

ds1

dt
� v1 − k1s1x1 + k−1x2, (1.58)

ds2

dt
� k2x2 − k3s

γ

2e+ k−3x1 − v2s2, (1.59)

dx1

dt
� −k1s1x1 + (k−1 + k2)x2 + k3s

γ

2e− k−3x1, (1.60)

dx2

dt
� k1s1x1 − (k−1 + k2)x2. (1.61)

The fifth differential equation is not necessary, because the total available enzyme is
conserved, e+x1+x2 � e0. Now we introduce dimensionless variables σ1 � k1s1

k2+k−1
, σ2 �

( k3
k−3
)1/γ s2, u1 � x1/e0, u2 � x2/e0, t � k2+k−1

e0k1k2
τ and find

dσ1

dτ
� ν − k2 + k−1

k2
u1σ1 + k−1

k2
u2, (1.62)
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dσ2

dτ
� α

[
u2 − k−3

k2
σ
γ

2 (1− u1 − u2)+ k−3
k2
u1

]
− ησ2, (1.63)

ε
du1

dτ
� u2 − σ1u1 + k−3

k2 + k−1

[
σ
γ

2 (1− u1 − u2)− u1
]
, (1.64)

ε
du2

dτ
� σ1u1 − u2, (1.65)

where ε � e0k1k2
(k2+k−1)2

, ν � v1
k2e0

, η � v2(k2+k−1)
k1k2e0

, α � k2+k−1
k1

( k3
k−3
)1/γ . If we assume that ε is a small

number, then both u1 and u2 are “fast” variables and can be set to their quasi-steady
values,

u1 � σ
γ

2

σ
γ

2σ1 + σ
γ

2 + 1 , (1.66)

u2 � σ1σ
γ

2

σ
γ

2σ1 + σ
γ

2 + 1 � f (σ1, σ2), (1.67)

and with these quasi-steady values, the evolution of σ1 and σ2 is governed by

dσ1

dτ
� ν − f (σ1, σ2), (1.68)

dσ2

dτ
� αf (σ1, σ2)− ησ2. (1.69)

The goal of the following analysis is to demonstrate that this system of equations
has oscillatory solutions for some range of the supply rate ν. First observe that because
of saturation, the function f (σ1, σ2) is bounded by 1. Thus, if ν > 1, the solutions of the
differential equations are not bounded. For this reason we consider only 0 < ν < 1. The
nullclines of the flow are given by the equations

σ1 � ν

1− ν

1+ σ
γ

2

σ
γ

2

(
dσ1

dτ
� 0

)
, (1.70)

σ1 � 1+ σ
γ

2

σ
γ−1
2 (p− σ2)

(
dσ2

dτ
� 0

)
, (1.71)

where p � α/η. These two nullclines are shown plotted as dotted and dashed curves
respectively in Fig. 1.5.

The steady-state solution is unique and satisfies

σ2 � pν, (1.72)

σ1 � ν(1+ σ
γ

2 )

(1− ν)σγ2
. (1.73)

The stability of the steady solution is found by linearizing the differential equations
about the steady-state solution and examining the eigenvalues of the linearized system.
The linearized system has the form

dσ̃1

dτ
� −f1σ̃1 − f2σ̃2, (1.74)
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Figure 1.5 Phase portrait of the Sel’kov glycolysis system with ν � 0.0285, η � 0.1, α � 1.0,
and γ � 2. Dotted curve: dσ1

dτ
� 0. Dashed curve: dσ2

dτ
� 0.

dσ̃2

dτ
� αf1σ̃1 + (αf2 − η)σ̃2, (1.75)

where fj � ∂f

∂σj
, j � 1,2, evaluated at the steady-state solution, and where σ̃i denotes

the deviation from the steady-state value of σi. The characteristic equation for the
eigenvalues λ of the linear system (1.74)–(1.75) is

λ2 − (αf2 − η− f1)λ+ f1η � 0. (1.76)

Since f1 is always positive, the stability of the linear system is determined by the sign of
H � αf2− η− f1, being stable if H < 0 and unstable if H > 0. Changes of stability, if they
exist, occur atH � 0, and are Hopf bifurcations to periodic solutions with approximate
frequency ω �

√
f1η.

The function H(ν) is given by

H(ν) � (1− ν)
(1+ y)

(ηγ + (ν − 1)y)− η, (1.77)

y � (pν)γ . (1.78)

Clearly,H(0) � η(γ−1), H(1) � −η, so for γ > 1, theremust be at least one Hopf bifurca-
tion point, below which the steady solution is unstable. Additional computations show
that this Hopf bifurcation is supercritical, so that for ν slightly below the bifurcation
point, there is a stable periodic orbit.

An example of this periodic orbit is shown in Fig. 1.5 with coefficients ν �
0.0285, η � 0.1, α � 1.0, and γ � 2. The evolution of σ1 and σ2 are shown plotted
as functions of time in Fig. 1.6. This periodic orbit exists only in very small regions
of parameter space, rapidly expanding until it contacts the S2 � 0 axis, into which it
collapses.
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Figure 1.6 Evolution of σ1 and σ2 for the Sel’kov glycolysis system toward a periodic solution.
Parameters are the same as in Fig. 1.5.

While the Sel’kov model has certain features that are qualitatively correct, it fails
to agree with the experimental results at a number of points. Hess and Boiteux (1973)
report that for high and low substrate injection rates, there is a stable steady-state
solution. There are two Hopf bifurcation points, one at the flow rate of 20 mM/hr
and another at 160 mM/hr. The period of oscillation at the low flow rate is about 8
minutes and decreases as a function of flow rate to about 3 minutes at the upper
Hopf bifurcation point. In contrast, the Sel’kov model has but one Hopf bifurcation
point.

To reproduce these additional experimental features we consider a more detailed
model of the reaction. In 1972, Goldbeter and Lefever proposed a model of Monod–
Wyman–Changeux type that provided a more accurate description of the oscillations.
More recently, by fitting a simpler model to experimental data on PFK1 kinetics in
skeletal muscle, Smolen (1995) has shown that this level of complexity is not necessary;
his model assumes that PFK1 consists of four independent, identical subunits, and
reproduces the observed oscillations well. Despite this, we consider only the Goldbeter–
Lefever model in detail, as it provides an excellent example of the use of Monod–
Wyman–Changeux models.

In the Goldbeter–Lefever model of the phosphorylation of fructose-6-P, the enzyme
PFK1 is assumed to be a dimer that exists in two states, an active state R and an
inactive state T. The substrate, S1, can bind to both forms, but the product, S2, which
is an activator, or positive effector, of the enzyme, binds only to the active form. The
enzymatic forms of R carrying substrate decompose irreversibly to yield the product
ADP. In addition, substrate is supplied to the system at a constant rate, while product
is removed at a rate proportional to its concentration. The reaction scheme for this is
as follows: let Tj represent the inactive T form of the enzyme bound to j molecules of
substrate and let Rij represent the active form R of the enzyme bound to i substrate
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molecules and j product molecules. Then

R00
k1

−→←−
k−1

T0,

S1 +R0j
2k2
−→←−
k−2

R1j
k−→R0j + S2, S1 +R1j

k2
−→←−
2k−2

R2j
2k−→R1j + S2, j � 0,1,2,

S2 +R00
2k2
−→←−
k−2

R01, S2 +R01
k2

−→←−
2k−2

R02,

S1 + T0
2k3
−→←−
k−3

T1, S1 + T1
k3

−→←−
2k−3

T2.

The possible receptor states are illustrated graphically in Fig. 1.7. In this system, the
substrate S1 holds the enzyme in the inactive state by bindingwith T0 to produce T1 and
T2, while product S2 holds enzyme in the active state by binding with R00 to produce
R01 and binding with R01 to produce R02. There is a factor two in the rates of reaction
because a dimer with two available binding sites reacts like twice the same amount of
monomer.

The analysis of this reaction scheme is substantially more complicated than that of
the Sel’kov scheme, although the idea is the same.Weuse the law ofmass action towrite
differential equations for the fourteen chemical species. For example, the equation for

T0 T1 T2

R00 R01 R02

R10 R11 R12

R20 R21 R22

2k2s 2 k2s 2

k-2 k-2

k-2 k-2 k-2

k-2k-2k-2

2k2s 1 2k2s 1 2k2s 1

k2s 1 k2s 1 k2s 1

k1k-1

k3s 1 k3s 1

k-3 k-3

2

2

2

2 2 2

Figure 1.7 Possible receptor states of the
Goldbeter–Lefever model for glycolytic os-
cillations.
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s1 � [S1] is

ds1

dt
� v1 − F, (1.79)

where

F � k−2(r10 + r11 + r12)+ 2k−2(r20 + r21 + r22)

− 2k2s1(r00 + r01 + r02)− k2s1(r10 + r11 + r12)

− 2k3s1t0 − k3s1t1 + k−3t1 + 2k−3t2, (1.80)

and the equation for r00 � [R00] is

dr00

dt
� −(k1 + 2k2s1 + 2k2s2)r00 + (k−2 + k)r10 + k−2r01 + k−1t0. (1.81)

We then assume that all twelve of the intermediates are in quasi-steady state. This leads
to a 12 by 12 linear system of equations, which, if we take the total amount of enzyme
to be e0, can be solved. We substitute this solution into the differential equations for s1
and s2 with the result that

ds1

dt
� v1 − F(s1, s2), (1.82)

ds2

dt
� F(s1, s2)− v2s2, (1.83)

where

F(s1, s2) �
(
2k2k−1ke0
k+ k−2

)(
s1(1+ k2

k+k−2
s1)(k2s2 + k−2)2

k2−2k1(
k3
k−3
s1 + 1)2 + k−1(1+ k2

k+k−2
s1)2(k−2 + k2s2)2

)
. (1.84)

Now we introduce dimensionless variables σ1 � k2s1
k−2
, σ2 � k2s2

k−2
, t � τ

τc
and parameters

ν � k2v1
k−2τc

, η � v2
τc
, where τc � 2k2k−1ke0

k1(k+k−2)
, and arrive at the system (1.68)–(1.69), but with a

different function f (σ1, σ2), and with α � 1. If, in addition, we assume that

1. the substrate does not bind to the T form (k3 � 0, T is completely inactive),
2. T0 is preferred over R00 (k1 � k−1), and
3. if the substrate S1 binds to the R form, then formation of product S2 is preferred
to dissociation (k � k−2),

then we can simplify the equations substantially to obtain

f (σ1, σ2) � σ1(1+ σ2)2. (1.85)

The nullclines for this system of equations are somewhat different from the Sel’kov
system, being

σ1 � ν

(1+ σ2)2

(
dσ1

dτ
� 0

)
, (1.86)

σ1 � ησ2

(1+ σ2)2

(
dσ2

dτ
� 0

)
, (1.87)
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and the unique steady-state solution is given by

σ1 � ν

(1+ σ2)2
, (1.88)

σ2 � ν

η
. (1.89)

The stability of the steady-state solution is again determined by the characteristic
equation (1.76), and the sign of the real part of the eigenvalues is the same as the sign of

H � f2 − f1 − η � 2σ1(1+ σ2)2 − (1+ σ2)− η (1.90)

evaluated at the steady state (1.86)–(1.87). Equation (1.90) can be written as the cubic
polynomial

1
η
y3 − y+ 2 � 0, y � 1+ ν

η
. (1.91)

For η sufficiently large, the polynomial (1.91) has two roots greater than 2, say, y1 and
y2. Recall that ν is the nondimensional flow rate of substrate ATP. To make some corre-
spondence with the experimental data, we assume that the flow rate ν is proportional
to the experimental supply rate of glucose. This is not strictly correct, although ATP is
produced at about the same rate that glucose is supplied. Accepting this caveat, we see
that to match experimental data, we require

y2 − 1
y1 − 1 � ν2

ν1
� 160
20

� 8. (1.92)

Requiring (1.91) to hold at y1 and y2 and requiring (1.92) to hold as well, we find
numerical values

y1 � 2.08, y2 � 9.61, η � 116.7 (1.93)

corresponding to ν1 � 126 and ν2 � 1005.
At the Hopf bifurcation point, the period of oscillation is

Ti � 2π
ωi

� 2π√
η(1+ σ2)

� 2π√
ηyi
. (1.94)

For the numbers (1.93), we obtain a ratio of periods T1/T2 � 4.6, which is acceptably
close to the experimentally observed ratio T1/T2 � 2.7.

A typical phase portrait for the periodic solution that exists between the Hopf
bifurcation points is shown in Fig. 1.8, and the concentrations of the two species are
shown as functions of time in Fig. 1.9.

1.4 Appendix: Math Background

It is certain that some of the mathematical concepts and tools that we routinely in-
voke here are not familiar to all of our readers. In this first chapter alone, we have
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Figure 1.9 Solution of the Goldbeter–
Lefever model with ν � 200, η �
120.

used nondimensionalization, phase-plane analysis, linear stability analysis, bifurca-
tion theory, and asymptotic analysis, all the while assuming that these are familiar to
the reader.

The purpose of this appendix is to give a brief guide to those techniques that are
a basic part of the applied mathematician’s toolbox but that may not be familiar to all
our readers.
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1.4.1 Basic Techniques

In any problem, there are a number of parameters that are dictated by the problem.
However, it often happens that not all parameters are independent; that is, different
variations in different parameters may lead to identical changes in the behavior of the
model. Second, there may be parameters whose influence on a behavior is negligible
and can be safely ignored for a given context.

The way to identify independent parameters and to determine their relative magni-
tudes is to nondimensionalize the problem. Unfortunately, having said that, we cannot
describe a unique algorithm for nondimensionalization, because one does not exist;
nondimensionalization is as much art as it is science.

There are, however, rules of thumb to apply. In any system of equations, there are
a number of independent variables (time, space, etc.), dependent variables (concen-
trations, etc.) and parameters (rates of reaction, sizes of containers, etc.). Nondimen-
sionalization begins by rescaling the independent and dependent variables by “typical”
units, rendering them thereby dimensionless. One goal may be to ensure that the di-
mensionless variables remain of a fixed order of magnitude, not becoming too large or
negligibly small. This usually requires some a priori knowledge about the solution, as it
can be difficult to choose typical scales unless something is already known about typical
solutions. Time and space scales can be vastly different depending on the context.

Once this selection of scales has been made, the governing equations are written
in terms of the rescaled variables and dimensionless combinations of the remaining
parameters are identified. The number of remaining free dimensionless parameters is
usually less than the original number of physical parameters. The primary difficulty
(at least to understand and apply the process) is that there is not necessarily a single
way to scale and nondimensionalize the equations. Some scalings may highlight cer-
tain features of the solution, while other scalings may emphasize others. Nonetheless,
nondimensionalization often provides a good starting point for the analysis of a model
system.

An excellent discussion of scaling and nondimensionalization can be found in Lin
and Segel (1988, Chapter 6). A great deal of more advanced work has also been done
on this subject, particularly its application to the quasi-steady-state approximation, by
Segel and his collaborators (Segel, 1988; Segel and Slemrod, 1989; Segel and Perelson,
1992; Segel and Goldbeter, 1994; Borghans et al., 1996; see also Frenzen and Maini,
1988).

Phase-plane analysis and linear stability analysis are standard fare in introductory
courses on differential equations. A nice introduction to these topics for the biologically
inclined can be found in Edelstein-Keshet (1988, Chapter 5) or Braun (1993, Chapter
4). A large number of books discuss the qualitative theory of differential equations,
for example, Boyce and Diprima (1997), or at a more advanced level, Hale and Koçak
(1991), or Hirsch and Smale (1974).

Bifurcation theory is a topic that is gradually finding its way into introductory liter-
ature. The most important terms to understand are those of steady-state bifurcations,
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Hopf bifurcations, homoclinic bifurcations, and saddle-node bifurcations, all of which
appear in this book. An excellent introduction to these concepts is found in Strogatz
(1994, Chapters 3, 6, 7, 8). More advanced treatments include those in Guckenheimer
and Holmes (1983), or Arnold (1983).

1.4.2 Asymptotic Analysis

Applied mathematicians love small parameters, because of the hope that the solution
of a problemwith a small parameter might be approximated by an asymptotic represen-
tation. A commonplace notation has emerged in which ε is often the small parameter.
An asymptotic representation has a precise mathematical meaning. Suppose that G(ε)
is claimed to be an asymptotic representation of g(ε), expressed as

g(ε) � G(ε)+O(φ(ε)). (1.95)

The precise meaning of this statement is that there is a constant A such that∣∣∣∣g(ε)−G(ε)
φ(ε)

∣∣∣∣ ≤ A (1.96)

for all ε with |ε| ≤ ε0 and ε > 0. The function φ(ε) is called a gauge function, a typical
example of which is a power of ε.

Perturbation Expansions
It is often the case that an asymptotic representation can be found as a development in
powers of the small parameter ε. Such representations are called perturbation expan-
sions. Usually, a few terms of this power series representation suffice to give a good
approximation to the solution. It should be kept in mind that under no circumstances
does this power series development imply that a complete power series (with an infinite
number of terms) exists or is convergent. Terminating the series at one or two terms is
deliberate.

However, there are times when a full power series could be found and would be
convergent in some nontrivial ε domain. Such problems are called regular perturbation
problems because their solutions are regular, or analytic, in the parameter ε.

There are numerous examples of regular perturbation problems, including all of
those related to bifurcation theory. These problems are regular because their solutions
can be developed in a convergent power series of some parameter.

There are, however, many problems with small parameters whose solutions are
not regular, called singular perturbation problems. Singular perturbation problems are
characterized by the fact that their dependence on the small parameter is not regular,
but singular, and their convergence as a function of ε is not uniform.

Singular problems come in two basic varieties. Characteristic of the first type is a
small region of width ε somewhere in the domain of interest (either space or time) in
which the solution changes rapidly. For example, the solution of the boundary value
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problem

εu′′ + u′ + u � 0 (1.97)

subject to boundary conditions u(0) � u(1) � 1 is approximated by the asymptotic
representation

u(x; ε) � (1− e)e−x/ε + e1−x +O(ε). (1.98)

Notice the nonuniform nature of this solution, as

e � lim
x→0+

( lim
ε→0+

u(x; ε)) �� lim
ε→0+

( lim
x→0+

u(x; ε)) � 1. (1.99)

Here the term e−x/ε is a boundary layer correction, as it is important only in a small
region near the boundary at x � 0.

Other terms that are typical in singular perturbation problems are interior layers
or transition layers, typified by expressions of the form tan( x−x0

ε
), and corner layers,

locations where the derivative changes rapidly but the solution itself changes little.
Transition layers are of great significance in the study of excitable systems (Chapter 4).
While corner layers show up in this book, we do not study or use them in any detail.

Singular problems of this type can often be identified by the fact that the order of
the system decreases if ε is set to zero. An example that we have already seen is the
quasi-steady-state analysis used to simplify reaction schemes in which some reactions
are significantly faster than others. Setting ε to zero in these examples reduces the
order of the system of equations, signaling a possible problem. Indeed, solutions of
these equations typically have initial layers near time t � 0. We take a closer look at
this example below.

The second class of singular perturbation problems is that in which there are two
scales in operation everywhere in the domain of interest. Problems of this type show
up throughout this book. For example, action potential propagation in cardiac tissue
is through a cellular medium whose detailed structure varies rapidly compared to the
length scale of the action potential wave front. Physical properties of the cochlear
membrane in the inner ear vary slowly compared to the wavelength of waves that
propagate along it. For problems of this type, onemustmake explicit the dependence on
multiple scales, and so solutions are often expressed as functions of two variables, say
x and x/ε, which are treated as independent variables. Solution techniques that exploit
the multiple-scale nature of the solution are called multiscale methods or averaging
methods.

Detailed discussions of these asymptotic methods may be found in Murray (1984),
Kevorkian and Cole (1996), and Holmes (1995).

1.4.3 Enzyme Kinetics and Singular Perturbation Theory

In most of the examples of enzyme kinetics discussed in this chapter, extensive use was
made of the quasi-steady-state approximation (1.19), according to which the concen-
tration of the complex remains constant during the course of the reaction. Although this
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assumption gives the right answers (which, some might argue, is justification enough),
mathematicians have sought for ways to justify this approximation rigorously. Bowen
et al. (1963) andHeineken et al. (1967) were the first to show that the quasi-steady-state
approximation can be derived as the lowest-order term in an asymptotic expansion of
the solution. This has since become one of the standard examples of the application
of singular perturbation theory to biological systems, and it is discussed in detail by
Rubinow (1973), Lin and Segel (1988), and Murray (1989), among others.

First, note that the quasi-steady-state assumption cannot be correct for all times
if one starts the reaction from arbitrary initial concentrations. This is apparent with
the Michaelis–Menten kinetics, for example, because the single first-order differential
equation (1.18) describes the rate of conversion of substrate into product, but for this to
be valid the quasi-steady-state approximation is assumed to hold. Theremust therefore
be a brief period of time at the start of the reaction during which the quasi-steady-state
equilibrium does not hold. During this initial time period the enzyme is “filling up”
with substrate, until the concentration of complexed enzyme reaches the value given
by the quasi-steady-state approximation. Since there is little enzyme compared to the
total amount of substrate, the concentration of substrate remains essentially constant
during this period.

For most biochemical reactions this transition to the quasi-steady-state happens
so fast that it is not physiologically important, but for mathematical reasons, it is
interesting to understand these kinetics for early times as well. To see how the reaction
runs for early times from arbitrary initial conditions, we make a change of time scale,
η � τ/ε. This change of variables expands the time scale onwhichwe look at the reaction
and allows us to study events that happen on a fast time scale. In the new time scale,
the dimensionless reaction equations (1.14)–(1.15) become

dσ

dη
� ε(−σ + x(σ + α)), (1.100)

dx

dη
� σ − x(σ + κ). (1.101)

For small ε, these equations are well approximated by the simplification

dσ

dη
� 0, (1.102)

dx

dη
� σ − x(σ + κ). (1.103)

Simply stated, this means that on this time scale the variable σ does not change,
so that σ � 1. Furthermore, we can solve for x as

x � 1
1+ κ

+
(
x0 − 1

1+ κ

)
e−(1+κ)η. (1.104)
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If [E] � e0 at time t � 0, then x0 � 0. In terms of the original time variable τ, this
solution is

x(τ) � 1
1+ κ

(1− e−(1+κ)
τ
ε ), (1.105)

and it is valid only for times of order ε. The exponential term is significant only when τ
is small of order ε. Thus, this simple analysis shows that if the reaction is started from
arbitrary initial conditions, there is first a time span during which the enzyme products
rapidly equilibrate, consuming little substrate, and after this initial “layer” the reaction
proceeds according to Michaelis–Menten kinetics along the quasi-steady-state curve.

In this problem the analysis of the initial layer is relatively easy and not particularly
revealing. However, this type of analysis will be of much greater importance later when
we discuss the behavior of excitable systems.

1.5 Exercises
1. Consider an enzymatic reaction in which an enzyme can be activated or inactivated by the

same chemical substance, as follows:

E+X
k1
−→
←−
k−1

E1, (1.106)

E1 +X
k2
−→
←−
k−2

E2, (1.107)

E1 + S k3−→ P+Q+ E. (1.108)

Suppose further that X is supplied at a constant rate and removed at a rate proportional
to its concentration. Use quasi-steady-state analysis to find the nondimensional equation
describing the degradation of X,

dx

dt
� γ − x− βxy

1+ x+ y+ α

δ
x2
. (1.109)

Identify all the parameters and variables.

2. Using the quasi-steady-state approximation, show that the velocity of the reaction for an
enzyme with an allosteric inhibitor (Section 1.2.3) is given by

V �
(
VmaxK3

i+ K3

)(
s(k−1 + k3i+ k1s+ k−3)

k1(s+ K1)2 + (s+ K1)(k3i+ k−3 + k2)+ k2k−3/k1

)
, (1.110)

where K3 � k−3/k3 and K1 � k−1/k1.

3. (a) Derive the expression (1.51) for the fraction of occupied sites in a Monod–Wyman–
Changeux model with n binding sites.

(b) The principle of detailed balance says that in order for a system of reactions to be in
thermal equilibrium (as opposed to merely at a steady state), each individual reaction
must be at equilibrium. Thus, for example, for the cycle of reactions

A
k1
−→
←−
k−1

B
k2
−→
←−
k−2

C
k3
−→
←−
k−3

A (1.111)
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to be in thermal equilibrium, we must have [A] � K1[B], [B] � K2[C], and [C] � K3[A],
where Ki � k−i/ki, i � 1,2,3. Hence, for this reaction cycle, detailed balance implies
the relation k1k2k3 � k−1k−2k−3.
Modify the Monod–Wyman–Changeux model shown in Fig. 1.3 to include transitions
between states R1 and T1, and between states R2 and T2. Use the principle of detailed
balance to derive an expression for the equilibrium constant of each of these tran-
sitions. Do these transitions change the expression for Y , the fraction of occupied
sites?

4. Suppose that a substrate can be broken down by two different enzymes with different
kinetics. (This happens, for example, in the case of cAMP or cGMP,which can be hydrolyzed
by two different forms of phosphodiesterase—see Chapter 22).

(a) Write down the reaction scheme and differential equations, and nondimensionalize,
to get a system of equations of the form

dσ

dt
� −σ(1+ α)+ x(σ + µ1)+ αy(σ + µ2), (1.112)

ε
dx

dt
� σ(1− x)− λ1x, (1.113)

ε
dy

dt
� α[σ(1− y)− λ2y], (1.114)

where x and y are the nondimensionalized concentrations of the two complexes and
α, µ1, µ2, λ1, and λ2 are positive constants.

(b) Apply the quasi-steady-state approximation to solve for σ, x, and y.

(c) Rescale time and find the inner solution to lowest order in ε. Construct a solution that
is valid for all times.

5. For the system in the previous question, show that the solution can never leave the first
quadrant σ, x, y ≥ 0. By showing that σ+εx+εy is always decreasing, show that the solution
approaches the origin for large time.

6. For some enzyme reactions (for example, the hydrolysis of cAMP by phosphodiesterase in
vertebrate retinal cones) the enzyme is present in large quantities, so that e0/s0 is not a small
number. Show that when this is the case, the quasi-steady-state approximation may still be
used, provided that k−1/k1 is much larger than e0 or s0, in which case the concentration of
the complex is small compared to the total amount of substrate (Segel, 1988; Frenzen and
Maini, 1988; Segel and Slemrod, 1989; Sneyd and Tranchina, 1989).

7. ATP is known to inhibit its own dephosphorylation. One possible way for this to occur is if
ATP binds with the enzyme, holding it in an inactive state, via

S1 + E
k5
−→
←−
k−5

S1E.

Add this reaction to the Sel’kov model for glycolysis and derive the equations governing
glycolysis of the form (1.68)–(1.69). Explain from the model why this additional reaction is
inhibitory.

8. The following reaction scheme is a simplified version of the Goldbeter–Lefever reaction
scheme:

R0
k1
−→
←−
k−1

T0,
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S1 +Rj
k2
−→
←−
k−2

Cj
k−→Rj + S2, j � 0,1,2,

S2 +R0
2k3
−→
←−
k−3

R1, S2 +R1
k3
−→
←−
2k−3

R2.

Show that, under appropriate assumptions about the ratios k1/k−1 and
k−2+k3
k2

the equations
describing this reaction are of the form (1.68)–(1.69) with f (σ1, σ2) given by (1.85).

9. Use the law of mass action and the quasi-steady-state assumption for the enzymatic reac-
tions to derive a system of equations of the form (1.68)–(1.69) for the Goldbeter–Lefever
model. Verify (1.84).

10. When much of the ATP is depleted in a cell, a considerable amount of cAMP is formed
as a product of ATP degradation. This cAMP activates an enzyme phophorylase that splits
glycogen, releasing glucose that is rapidly metabolized, replenishing the ATP supply.
Devise a model for this control loop and determine conditions under which the production
of ATP is oscillatory.

11. By looking for solutions to (1.14) and (1.15) of the form

σ � σ0 + εσ1 + ε2σ2 + · · · , (1.115)

x � x0 + εx1 + ε2x2 + · · · , (1.116)

show that σ0 and x0 satisfy the quasi-steady-state approximation. Thus, the quasi-steady-
state approximation is the lowest-order term in an asymptotic expansion for the solution.
Typical initial conditions are σ � 1, x � 0. Does the lowest-order solution satisfy the initial
conditions? Find σ1 and x1 and plot the solution to first order in ε. The variables σ and x are
called the outer solution, as they are valid for times outside some boundary layer around
τ � 0. Now rescale time by ε, and use the same procedure to construct an asymptotic
solution to (1.100) and (1.101), the so-called inner solution. Show that the inner solution
satisfies the initial conditions. How can one construct a solution that satisfies the initial
conditions and is valid for all times?
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Cellular Homeostasis

2.1 The Cell Membrane

The cell membrane provides a boundary separating the internal workings of the cell
from its external environment.More importantly, it is selectively permeable, permitting
the free passage of some materials and restricting the passage of others, thus regulat-
ing the passage of materials into and out of the cell. It consists of a double layer (a
bilayer) of phospholipid molecules about 7.5 nm (=75 Å) thick (Fig. 2.1). The term lipid
is used to specify a category of water-insoluble, energy rich macromolecules, typical
of fats, waxes, and oils. Irregularly dispersed throughout the phospholipid bilayer are
aggregates of globular proteins, which are apparently free to move within the layer,
giving the membrane a fluid-like appearance. The membrane also contains water-filled
pores with diameters of about 0.8 nm, as well as protein-lined pores, called channels,
which allow passage of specific molecules. Both the intracellular and extracellular en-
vironments consist of, amongmany other things, a dilute aqueous solution of dissolved
salts, primarily NaCl and KCl, which dissociate into Na+, K+, and Cl− ions. The cell
membrane acts as a barrier to the free flow of these ions and maintains concentration
differences of these ions. In addition, the cell membrane acts as a barrier to the flow
of water.

Molecules can be transported across the cell membrane by passive or active pro-
cesses. An active process is one that requires the expenditure of energy, while a passive
process results solely from the inherent, random movement of molecules. There are
three passive transportmechanisms to transportmolecules through the cellmembrane.
Osmosis is the process by which water is transported through the cell membrane.
Simple diffusion accounts for the passage of smallmolecules throughpores andof lipid-
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Figure 2.1 Schematic diagram of the cell membrane. (Davis et al., 1985, Fig. 3-1, p. 41.)

soluble molecules through the bilipid layer. For example, water, urea (a nitrogenous
waste product of metabolism), and hydrated chloride ions diffuse through membrane
pores. Oxygen and carbon dioxide diffuse through the membrane readily because they
are soluble in lipids. Sodium and potassium ions pass through ion-specific channels,
driven by diffusion and electrical forces. Some other mechanism must account for the
transport of larger sugar molecules such as galactose, glucose, and sucrose, as they are
too large to pass through membrane pores (Fig. 2.2). Carrier-mediated diffusion occurs
when a molecule is bound to a carrier molecule that moves readily through the mem-
brane. For example, the transport of glucose and amino acids across the cell membrane
is believed to be by a carrier-mediated process.

Concentration differences are set up and maintained by active mechanisms that
use energy to pump ions against their concentration gradient. One of the most im-
portant of these pumps is the Na+–K+ pump, which uses the energy stored in ATP
molecules to pump Na+ out of the cell and K+ in. Another pump, the Ca2+ ATPase,
pumps Ca2+ out of the cell or into the endoplasmic reticulum. There are also a variety
of exchange pumps that use the energy inherent in the concentration gradient of one
ion type to pump another ion type against its concentration gradient. For example,
the Na+–Ca2+ exchanger removes Ca2+ from the cell at the expense of Na+ entry, and
similarly for the Na+–H+ exchanger. Typical values for intracellular and extracellular
ionic concentrations are given in Table 2.1.

Differences in ionic concentrations create a potential difference across the cell
membrane that drives ionic currents. Water is also absorbed into the cell because of
concentration differences of these ions and also because of other large molecules con-
tained in the cell, whose presence provides an osmotic pressure for the absorption
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Figure 2.2 Schematic diagram of the cell membrane containing a protein carrier and a protein-
lined ionic channel. (Davis et al., 1985, Fig. 3-7, p. 45.)

Table 2.1 Typical values for intracellular and extracellular ionic concentrations, from three
different cell types. Concentrations are given in units of mM, and potentials are in units of
mV. Extracellular concentrations for the squid giant axon are for seawater, while those for frog
muscle and red blood cells are for plasma. Later in this chapter we discuss Nernst potentials
and resting potentials. (Adapted from Mountcastle, 1974, Table 1-1.)

Squid Frog Human
Giant Sartorius Red Blood
Axon Muscle Cell

Intracellular
concentrations

Na+ 50 13 19
K+ 397 138 136
Cl− 40 3 78

Mg2+ 80 14 5.5
Extracellular

concentrations
Na+ 437 110 155
K+ 20 2.5 5
Cl− 556 90 112

Mg2+ 53 1 2.2
Nernst

potentials
VNa +56 +55 +55
VK −77 −101 −86
VCl −68 −86 −9

Resting
potentials −65 −99 −6 to −10
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of water. It is the balance of these forces that regulates both the cell volume and the
membrane potential.

2.2 Diffusion

To keep track of a chemical concentration or any other measurable entity, we must
track where it comes from and where it goes; that is, we must write a conservation law.
If u is the amount of some chemical species, then the appropriate conservation law
takes the following form (in words):

rate of change of u=local production of u + accumulation of u due to transport.

If 6 is a region of space, then this conservation law can be written symbolically as

d

dt

∫
6

udV �
∫
6

f dV −
∫
∂6

J · n dA, (2.1)

where ∂6 is the boundary of the region6, n is the outward unit normal to the boundary
of 6, f represents the local production of u per unit volume, and J is the flux of u.
According to the divergence theorem, if J is sufficiently smooth, then∫

∂6

J · n dA �
∫
6

∇ · J dV, (2.2)

so that if the volume in which u is being measured is fixed but arbitrary, the integrals
can be dropped, with the result that

∂u

∂t
� f − ∇ · J. (2.3)

This, being a conservation law, is inviolable. However, there are many ways in which
the production term f and the flux J can vary. Indeed,much of our study here is involved
in determining appropriate models for production and flux.

2.2.1 Fick’s Law

The simplest description of the flux of a chemical species is

J � −D∇u. (2.4)

Equation (2.4) is called a constitutive relationship, and for chemical species it is called
Fick’s law. The scalar D is the diffusion coefficient and is characteristic of the solute
and the fluid in which it is dissolved. If u represents the heat content of the volume,
(2.4) is called Newton’s law of cooling. Fick’s law is not really a law, but is a reasonable
approximation to reality if the concentration of the chemical species is not too high.
When Fick’s law applies, the conservation equation becomes the reaction–diffusion
equation

∂u

∂t
� ∇ · (D∇u)+ f, (2.5)
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Figure 2.3 Schematic diagram of the cell membrane containing a Na+ − K+ pump. (Davis, et
al., 1985, Fig. 3-11, p. 49.)

or, if D is a constant,

∂u

∂t
� D∇2u+ f. (2.6)

2.2.2 Diffusion Coefficients

A quantitative understanding of diffusion was given by Einstein (1906) in his theory of
Brownian motion. He showed that if a spherical solute molecule is large compared to
the solvent molecule, then

D � kT

6πµa
, (2.7)

where k is Boltzmann’s constant, T is the absolute temperature of the solution, µ is the
coefficient of viscosity for the solute, and a is the radius of the solute molecule. For
nonspherical molecules, Einstein’s formula generalizes to

D � kT

f
, (2.8)

where f is the Stokes frictional coefficient of the particle and f � 6πµa for a sphere.
The molecular weight of a spherical molecule is

M � 4
3
πa3ρ, (2.9)
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where ρ is the molecular density, so that in terms of molecular weight,

D � kT

3µ

( ρ

6π2M

)1/3
. (2.10)

The density of most large protein molecules is nearly constant (about 1.3 − 1.4
g/cm3), so that DM1/3 is nearly the same for spherical molecules at a fixed tempera-
ture. The diffusion of small molecules, such as the respiratory gases, is different, being
proportional toM−1/2.

2.2.3 Diffusion Through a Membrane: Ohm’s Law

We can use Fick’s law to derive the chemical analogue of Ohm’s law for a membrane
of thickness L. Suppose that a membrane separates two large reservoirs of a dilute
chemical, with concentration cl on the left (at x � 0), and concentration cr on the right
(at x � L). According to the diffusion equation, in the membrane (assuming that the
only gradients are transverse to the membrane)

∂c

∂t
� D

∂2c

∂x2
, (2.11)

subject to boundary conditions c(0, t) � cl, c(L, t) � cr.
The full time-dependent solution can be found using separation of variables, but for

our purposes here, the steady-state solution is sufficient. At steady state, ∂c
∂t

� 0, so that
∂J
∂x

� −D∂2c
∂x2

� 0, from which it follows that J � −D∂c
∂x

� constant, or that c(x) � ax+ b,
for some constants a and b. Applying the boundary conditions, we find

c(x) � cl + (cr − cl)
x

L
. (2.12)

From Fick’s law it follows that the flux of chemical is constant, independent of x, and
is given by

J � D

L
(cl − cr). (2.13)

Note that a flux from left to right is counted as a positive flux. The ratio L/D is the effec-
tive “resistance” (per unit area) of the membrane, and so D/L is called the conductance,
or permeability, per unit area.

2.3 Facilitated Diffusion

It is often the case that reactants in an enzymatic reaction (as in Chapter 1) are free
to diffuse, so that one must keep track of the effects of both diffusion and reaction.
Such problems, called reaction–diffusion systems, are of fundamental significance in
physiology and are also important and difficult mathematically.
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An important example in which both diffusion and reaction play a role is known as
facilitated diffusion. Facilitated diffusion occurs when the flux of a chemical is ampli-
fied by a reaction that takes place in the diffusing medium. An example of facilitated
diffusion occurs with the flux of oxygen in muscle fibers. In muscle fibers, oxygen is
bound to myoglobin and is transported as oxymyoglobin, and this transport is greatly
enhanced above the flow of oxygen in the absence of myoglobin.

This well-documented observation needs further explanation, because at first
glance it seems counterintuitive. Myoglobin molecules are much larger (molecular
weight M=16,890) than oxygenmolecules (molecular weight M=32) and therefore have
a much smaller diffusion coefficient (D � 4.4×10−7 and D � 1.2×10−5cm2/s for myo-
globin and oxygen, respectively). The diffusion of oxymyoglobin would therefore seem
to be much slower than the diffusion of free oxygen.

A simple model of this phenomenon is as follows. Suppose we have a slab reactor
containing diffusing myoglobin. On the left (at x � 0) the oxygen concentration is held
fixed at s0, and on the right (at x � L) it is held at sL, which is assumed to be less than
s0.

If f is the rate of uptake of oxygen into oxymyoglobin, then equations governing
the concentrations of s � [O2], e � [Mb], c � [MbO2] are

∂s

∂t
� Ds

∂2s

∂x2
− f, (2.14)

∂e

∂t
� De

∂2e

∂x2
− f, (2.15)

∂c

∂t
� Dc

∂2c

∂x2
+ f. (2.16)

It is reasonable to takeDe � Dc, sincemyoglobin and oxymyoglobin are nearly identical
in molecular weight and structure. Since myoglobin and oxymyoglobin remain inside
the slab, it is also reasonable to specify the boundary conditions ∂e/∂x � ∂c/∂x � 0
at x � 0 and x � L. Because it reproduces the oxygen saturation curve (discussed in
Chapter 16), we assume that the reaction of oxygen with myoglobin is governed by the
elementary reaction

O2 +Mb
k+−→←−
k−
MbO2,

so that (from the law of mass action) f � −k−c+ k+se. The total amount of myoglobin
is conserved by the reaction, so that at steady state e+ c � e0 and (2.15) is superfluous.

At steady state,

0 � st + ct � Dssxx +Dccxx, (2.17)

and thus there is a second conserved quantity, namely

Ds
ds

dx
+Dc

dc

dx
� −J, (2.18)
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which follows by integrating (2.17) once with respect to x. The constant J (which is yet
to be determined) is the sum of the flux of free oxygen and the flux of oxygen in the
complex oxymyoglobin, and therefore represents the total flux of oxygen. Integrating
(2.18) with respect to x between x � 0 and x � L, we can express the total flux J in
terms of boundary values of the two concentrations as

J � Ds

L
(s0 − sL)+ Dc

L
(c0 − cL), (2.19)

although the values c0 and cL are as yet unknown.
To further understand this system of equations, we introduce dimensionless

variables, σ � k+
k−
s, u � c/e0, and x � Ly, in terms of which (2.14) and (2.16) become

ε1σyy � σ(1− u)− u � −ε2uyy, (2.20)

where ε1 � Ds
e0k+L2

, ε2 � Dc
k−L2

.
Reasonable numbers for the uptake of oxygen by myoglobin (Wittenberg, 1966)

are k+ � 1.4 × 1010cm3M−1s−1, k− � 11 s−1, and L � 0.022 cm in a solution with
e0 � 1.2 × 10−5 M/cm3. (These numbers are for an experimental setup in which the
concentration of myoglobin was substantially higher than what naturally occurs in
living tissue.) With these numbers we estimate that ε1 � 1.5×10−7, and ε2 � 8.2×10−5.
Clearly, both of these numbers are small, suggesting that oxygen and myoglobin are at
quasi-steady state throughout the medium, with

c � e0
s

K + s
, (2.21)

where K � k−/k+. Now we substitute (2.21) into (2.19) to find the flux

J � Ds

L
(s0 − sL)+ Dc

L
e0

(
s0

K + s0
− sL

K + sL

)
(2.22)

� Ds

L
(s0 − sL)

(
1+ Dc

Ds

e0K

(s0 + K)(sL + K)

)
(2.23)

� Ds

L
(1+ µρ)(s0 − sL), (2.24)

where ρ � Dc
Ds

e0
K
, µ � K2

(s0+K)(sL+K) .
In terms of dimensionless variables the full solution is given by

σ(y)+ ρu(y) � y[σ(1)+ ρu(1)]+ (1− y)[σ(0)+ ρu(0)], (2.25)

u(y) � σ(y)
1+ σ(y)

. (2.26)

Now we see how diffusion can be facilitated by an enzymatic reaction. In the ab-
sence of a diffusing carrier, ρ � 0 and the flux is purely Fickian, as in (2.13). However,
in the presence of carrier, diffusion is enhanced by the factor µρ. The maximum en-
hancement possible is at zero concentration, when µ � 1. With the above numbers for
myoglobin, this maximum enhancement is substantial, being ρ � 560. If the oxygen
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supply is sufficiently high on the left side (near x � 0), then oxygen is stored as oxymyo-
globin. Moving to the right, as the total oxygen content drops, oxygen is released by
the myoglobin. Thus, even though the bound oxygen diffuses slowly compared to free
oxygen, the quantity of bound oxygen is high (provided that e0 is large compared to the
half saturation level K), so that lots of oxygen is transported. We can also understand
that to take advantage of the myoglobin-bound oxygen, the concentration of oxygen
must drop to sufficiently low levels so that myoglobin releases its stored oxygen.

To explain it another way, note from (2.22) that J is the sum of two terms, the usual
ohmic flux term and an additional term that depends on the diffusion coefficient of
MbO2. The total oxygen flux is the sum of the flux of free oxygen and the flux of oxygen
bound to myoglobin. Clearly, if myoglobin is free to diffuse, the total flux is thereby
increased.

In Fig. 2.4A are shown the dimensionless free oxygen concentration σ and the
dimensionless bound oxygen concentration u plotted as functions of position. Notice
that the free oxygen content falls at first, indicating higher free oxygen flux, and the
bound oxygen decreases more rapidly at larger y. Perhaps easier to interpret is Fig.
2.4B, where the dimensionless flux of free oxygen and the dimensionless flux of bound
oxygen are shown as functions of position. Here we can see that as the free oxygen
concentration drops, the flux of free oxygen also drops, but the flux of bound oxygen
increases. For large y, most of the flux is due to the bound oxygen. For these figures,
ρ � 10, σ(0) � 2.0, σ(1) � 0.1.

One mathematical detail that was ignored in this discussion is the validity of the
quasi-steady-state solution (2.21) as an approximation of (2.20). Usually, when one
makes an approximation to boundary value problems in which the order of the system
is reduced (as here where the order is four, and drops by two when ε1 and ε2 are
ignored), there are difficulties with the solution at the boundary, because the boundary
conditions cannot, in general, be met. Such problems, discussed briefly in Chapter 1
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Figure 2.4 A: Free oxygen content σ(y ) and bound oxygen content u(y ) as a function of y . B:
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in the context of enzyme kinetics, are called singular perturbation problems, because
the behavior of the solutions as functions of the small parameters is not regular, but
singular (certain derivatives become infinitely large as the parameters approach zero).
In this problem, however, there are no boundary layers, and the quasi-steady-state
solution is a uniformly valid approximation to the solution. This occurs because the
boundary conditions on c are of no-flux (Neumann) type, rather than of fixed (Dirichlet)
type. That is, since the value of c is not specified by the boundary conditions, c is
readily adjusted so that there are no boundary layers. Only a slight correction to the
quasi-steady-state solution is needed to meet the no-flux boundary conditions, but this
correction affects only the derivative, not the value, of c in a small region near the
boundaries.

2.3.1 Facilitated Diffusion in Muscle Respiration

Even at rest, muscle fibers consume oxygen. This is because ATP is constantly con-
sumed to maintain a nonzero membrane potential across a muscle cell wall, and this
consumption of energy requires the constant metabolizing of sugar, which consumes
oxygen. Although sugar can be metabolized anaerobically, the waste product of this
reaction is lactic acid, which is toxic to the cell. In humans, the oxygen consumption
of live muscle tissue at rest is about 5× 10−8 mol/cm3s, and the concentration of myo-
globin is about 2.8×10−7 mol/cm3. Thus, whenmyoglobin is fully saturated, it contains
only about a 5 s supply of oxygen. Further, the oxygen at the exterior of the muscle cell
must penetrate to the center of the cell to prevent the oxygen concentration at the
center falling to zero, a condition called oxygen debt.

To explain how myoglobin aids in providing oxygen to a muscle cell and helps to
prevent oxygen debt, we examine a model of oxygen consumption that includes the
effects of diffusion of oxygen and myoglobin. We suppose that a muscle fiber is a long
circular cylinder (radius a � 2.5× 10−3 cm) and that diffusion takes place only in the
radial direction. We suppose that the oxygen concentration at the boundary of the fiber
is a fixed constant and that the distribution of chemical species is radially symmetric.
With these assumptions, the steady-state equations governing the diffusion of oxygen
and oxymyoglobin are

Ds
1
r

d

dr

(
r
ds

dr

)
− f − g � 0, (2.27)

Dc
1
r

d

dr

(
r
dc

dr

)
+ f � 0, (2.28)

where, as before, s � [O2], c � [MbO2], and f � −k−c + k+se. The coordinate r is in
the radial direction. The new term in these equations is the constant g, corresponding
to the constant consumption of oxygen. The boundary conditions are s � sa, dc/dr � 0
at r � a, and ds/dr � dc/dr � 0 at r � 0. For muscle, sa is typically 3.5× 10−8 mol/cm3

(corresponding to the partial pressure 20mmHg). Numerical values for the parameters
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in this model are difficult to obtain, but reasonable numbers are Ds � 10−5 cm2/s, Dc �
5× 10−7 cm2/s, k+ � 2.4× 1010 cm3/mol · s, and k− � 65/s (Wyman, 1966).

Introducing nondimensional variables σ � k+
k−
s, u � c/e0, and r � ay, we obtain the

differential equations

ε1
1
y

d

dy

(
y
dσ

dy

)
− γ � σ(1− u)− u � −ε2 1

y

d

dy

(
y
du

dy

)
, (2.29)

where ε1 � Ds
e0k+a2

, ε2 � Dc
k−a2

, γ � g/k−. Using the parameters appropriate for muscle, we
estimate that ε1 � 2.3× 10−4, ε2 � 1.2× 10−3, γ � 3.3× 10−3. While these numbers are
not as small as for the experimental slab described earlier, they are still small enough
to warrant the approximation that the quasi-steady state (2.21) holds in the interior of
the muscle fiber.

It also follows from (2.29) that

ε1
1
y

d

dy

(
y
dσ

dy

)
+ ε2

1
y

d

dy

(
y
du

dy

)
� γ. (2.30)

We integrate (2.30) twice with respect to y to find

ε1σ + ε2u � A ln y+ B+ γ

4
y2. (2.31)

The constants A and B are determined by boundary conditions. Since we want the
solution to be bounded at the origin, A � 0, and B is related to the concentration at the
origin.

Now suppose that there is just enough oxygen at the boundary to prevent oxygen
debt. In this model, oxygen debt occurs if σ falls to zero. Marginal oxygen debt occurs
if σ � u � 0 at y � 0. For this boundary condition, we take A � B � 0. Then the
concentration at the boundary must be at least as large as σ0, where, using the quasi-
steady state σ(1− u) � u,

σ0 + ρ
σ0

σ0 + 1 � γ

4ε1
, (2.32)

and where ρ � ε2/ε1. Otherwise, the center of the muscle is in oxygen debt. Note also
that σ0 is a decreasing function of ρ, indicating a reduced need for external oxygen
because of facilitated diffusion.

A plot of this critical concentration σ0 as a function of the scaled consumption
γ

4ε1
is shown in Fig. 2.5. For this plot ρ � 5, which is a reasonable estimate for muscle. The
dashed curve is the critical concentration when there is no facilitated diffusion (ρ � 0).
The easy lesson from this plot is that facilitated diffusion decreases the likelihood of
oxygen debt, since the external oxygen concentration necessary to prevent oxygen debt
is smaller in the presence of myoglobin than without.

A similar lesson comes from Fig. 2.6, where the internal free oxygen content σ is
shown, plotted as a function of radius y. The solid curves show the internal free oxy-
gen with facilitated diffusion, and the dashed curve is without. The smaller of the two
solid curves and the dashed curve have exactly the critical external oxygen concentra-
tion, showing clearly that in the presence of myoglobin, oxygen debt is less likely at a
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tion at the critical external concentration
level.

given external oxygen concentration. The larger of the two solid curves has the same
external oxygen concentration as the dashed curve, showing again the contribution of
facilitation toward preventing oxygen debt. For this figure, ρ � 5, γ/ε1 � 14.

2.4 Carrier-Mediated Transport

Some substances are insoluble in the cell membrane and yet pass through by a process
called carrier-mediated transport. It is also called facilitated diffusion inmany physiology
books, although we prefer to reserve this expression for the process described in the
previous section. Carrier-mediated transport is the means by which some sugars cross
the cell membrane to provide an energy source for the cell. For example, glucose, the
most important of the sugars, combines with a carrier protein at the outer boundary
of the membrane, and by means of a conformational change is released from the inner
boundary of the membrane.

There are three types of carrier-mediated transport. Carrier proteins that transport
a single solute from one side of the membrane to the other are called uniports. Other
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proteins function as coupled transporters by which the simultaneous transport of two
solute molecules is accomplished, either in the same direction (called a symport) or in
the opposite direction (called an antiport).

2.4.1 Glucose Transport

Although the details are not certain, the transport of glucose across the lipid bilayer of
the cell membrane is thought to occur when the carrier molecule alternately exposes
the solute binding site first on one side and then on the other side of the membrane. It
is considered highly unlikely that the carrier molecule actually diffuses back and forth
through the membrane.

We can model the process of glucose transport as follows: We suppose that the
population of enzymatic carrier proteins C has two conformational states, Ci and Ce,
with its glucose binding site exposed on the cell interior (subscript i) or exterior (sub-
script e) of the membrane, respectively. The glucose substrate on the interior Si can
bind with Ci and the glucose substrate on the exterior can bind with enzyme Ce to form
the complex Pi or Pe, respectively. Finally, a conformational change transforms Pi into
Pe and vice versa. These statements are summarized in

Si + Ci
k+
−→←−
k−

Pi
k

−→←−
k

Pe
k−
−→←−
k+

Se + Ce, (2.33)

Ci
k

−→←−
k

Ce. (2.34)

We further suppose that the glucose is supplied at the constant rate J on the exterior
and taken away at the same rate from the interior.

Following mass action kinetics, the differential equations describing these kinetics
are

dsi

dt
� k−pi − k+sici − J, (2.35)

dse

dt
� k−pe − k+sece + J, (2.36)

dpi

dt
� kpe − kpi + k+sici − k−pi, (2.37)

dpe

dt
� kpi − kpe + k+sece − k−pe, (2.38)

dci

dt
� kce − kci + k−pi − k+sici, (2.39)

dce

dt
� kci − kce + k−pe − k+sece. (2.40)

where si � [Si], pi � [Pi], etc. There are two degeneracies in these equations; first,
the total amount of receptor is conserved, and thus pi + pe + ci + ce � c0, where c0 is a
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constant, and second, the total amount of glucose is conserved, and thus si+se+pi+pe �
constant.

In steady state there are six equations with seven undetermined quantities, where
the flow rate J is considered unknown. However, notice that the steady-state versions of
equations (2.36)–(2.39) and the conservation law pi+pe+ci+ce � c0 constitute a linear
system for the five unknowns pi, pe, ci, ce, and J. Thus, J can be found as a function of
si and se to be

J � 1
2
KdKk+C0

se − si

(si + K + Kd)(se + K + Kd)− K2
d

, (2.41)

where K � k−/k+ and Kd � k/k+. Since k is the rate at which conformational change
takes place, it acts like a diffusion coefficient in that it reflects the effect of random
thermal activity at the molecular level.

In this model we have assumed that the two conformational states of the carrier
molecule are equally likely, because otherwise energy would be required to run the
exchanger, and that the affinity of the glucose binding site is unchanged by the confor-
mational change. We have also assumed that it is impossible for glucose to cross the
membrane by simple diffusion.

The nondimensional flux is

j � σe − σi

(σi + 1+ κ)(σe + 1+ κ)− κ2
, (2.42)

where σi � si/K, σe � se/K, κ � Kd/K. A plot of this nondimensional flux is shown in Fig.
2.7, plotted as a function of extracellular glucose σe, with fixed intracellular glucose and
fixed κ. We can see that the rate of transport is limited by saturation of the enzyme ki-
netics (this saturation is observed experimentally) and thermal conformational change
is crucial to the transport process, as transport J drops to zero if Kd � 0. The bind-
ing affinity of the carrier protein for glucose (k+), and hence the flux of glucose, is
controlled by insulin.

Models for symport and antiport transporters follow in similar fashion. For a sym-
port or antiport, the protein carrier has multiple binding sites, which can be exposed
to the intracellular or extracellular space. A change of conformation exchanges the
location of all of the participating binding sites, from inside to outside, or vice versa.
An example of an antiport is the sodium–calcium exchanger in muscle cells and nerve
cells, which exchanges one calcium ion for three sodium ions. Presumably, the sodium–
calcium exchanger has three sodium binding sites and one calcium binding site, which
are always on opposite sides of the membrane. An example of a symport is the sodium-
driven glucose symport that transports glucose and sodium from the lumen of the gut to
the intestinal epithelium. A similar process occurs in epithelial cells lining the proximal
tubules in the kidney, to remove glucose and amino acids from the filtrate (discussed
in Chapter 20). Five different amino acid cotransporters have been identified.

If there are k binding sites that participate in the exchange, then there are 2k pos-
sible combinations of bound and unbound sites. The key assumption that makes this
model of transport work is that only the completely unbound or completely bound
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Figure 2.7 Plot of the (nondimensional) flux of glucose as a function of extracellular glucose,
for fixed intracellular glucose, with κ � Kd /K � 0.5.

carrier participates in a conformational change. Thus, there is a carrier molecule, say
C, with two conformations, Ci and Ce, and a fully bound complex P, also with two
conformations, Pi and Pe, and possible transformation between the two conformations,

Ci
kc

−→←−
k−c

Ce, Pi
kp

−→←−
k−p

Pe. (2.43)

In addition, there are 2k possible combinations of binding and unbinding in each
of the two conformations. For example, with two substrates S and T, and one binding
site for each, we have the complexes C, SC, CT, and SCT � P. The possible reactions
are summarized in Fig. 2.8.

Unfortunately, the analysis of this fully general reaction scheme is quite compli-
cated. However, it simplifies significantly if we assume that the intermediates can be

C

CT SC

SCT
Figure 2.8 States and possible transitions of a
transporter with two substrates, S and T, and one
binding site for each.
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safely ignored and postulate the reaction scheme

mS+ nT+ C
k+
−→←−
k−

P. (2.44)

Now the result for a symport is strikingly similar to the uniport flux, with

J � 1
2
KdKk+C0

sme t
n
e − smi t

n
i

(smi t
n
i + K + Kd)(sme tne + K + Kd)− K2

d

, (2.45)

where the flux of s ismJ and the flux of t is nJ. Here we have set kc � k−c � kp � k−p � k

and then K � k−/k+ and Kd � k/k+.
For an antiport, the subscripts on one of the substances must be exchanged, to give

J � 1
2
KdKk+C0

sme t
n
i − smi t

n
e

(smi t
n
e + K + Kd)(sme t

n
i + K + Kd)− K2

d

. (2.46)

Antiports and symports are passive pumps because no chemical energy is con-
sumed by them, although they are often described as secondarily active pumps because
they exploit a chemical gradient that requires energy to establish. Thus, for example,
the sodium–calcium exchanger uses the sodium gradient to pump calcium against its
gradient, although energy is required to establish the sodium gradient in the first place.

The efficiency of this type of exchanger is determined by the coefficients m and n.
Consider, for example, the sodium–calcium exchanger, taking S to be sodium and T to
be calcium, with m � 3 and n � 1. For this exchanger, flux is positive (sodium flows
inward and calcium flows outward) if

ti

te
>

(
si

se

)3
. (2.47)

Observe that the curve y � x3 is smaller than the curve y � x on the interval 0 < x < 1.
It follows that a sodium exchanger with m � 3 is better able to act as a pump than a
(hypothetical) sodium exchanger with m � 1, because with si/se < 1 fixed, it is able to
function at lower values of ti/te.

While this answer is interesting, the analysis is flawed because of the assumption
that the rates of conformational change kc, k−c, kp, and k−p are identical. For ionic
cotransporters this is not correct because with each exchange there is a net flux of
charge. If there is a difference of potential across the membrane (which, as we will
see, is typical), then the exchange of an ion is resisted by a potential increase, so the
forward and backward conformational changes cannot take place at the same rates.
Wewill revisit this problem in Chapter 3 after the problem of ion flow across a potential
difference has been addressed.

2.5 Active Transport

The carrier-mediated transport described above is always down electrochemical gra-
dients, and so is identified with diffusion. Any process that works against gradients
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requires the expenditure of energy. Perhaps the most important example of active
(energy-consuming) transport is the sodium–potassium pump. This pump acts as an
antiport, actively pumping sodium ions out of the cell against its steep electrochemical
gradient and pumping potassium ions in. As we will see later in this chapter, this pump
is used to regulate the cell volume and to maintain a membrane potential. Indeed, al-
most a third of the energy requirement of a typical animal cell is consumed in fueling
this pump; in electrically active nerve cells, this figure approaches two-thirds of the
cell’s energy requirement.

This pumping activity uses energy by the dephosphorylation of ATP into ADP
through the overall reaction scheme

ATP+ 3Na+
i + 2K+

e −→ ADP+ Pi + 3Na+
e + 2K+

i , (2.48)

with subscript e or i denoting extracellular or intracellular concentrations respectively.
The details of the sodium–potassium pump (or Na+–K+ ATPase) are thought to be as
follows. In its dephosphorylated state, sodium binding sites are exposed to the intracel-
lular space. When sodium ions are bound, the carrier protein is phosphorylated by the
hydrolysis of ATP (step 1; see Fig. 2.9). This induces a change of conformation, expos-
ing the sodium binding sites to the extracellular space and reducing the binding affinity
of these sites, thereby causing the release of the bound sodium. Simultaneously, the
potassium binding sites are exposed to the extracellular medium, so that potassium is
bound (step 2).Whenpotassium is bound, the carrier is dephosphorylated, inducing the
reverse conformational change and exposing the potassium binding site to the cytosol
(step 3). Potassium is released to the cytosol when the binding affinity for potassium
decreases (step 4). Some estimates for the affinities are shown in Table 2.2.

To illustrate how to turn this verbal description into a mathematical model, we
consider a simplified case in which there is a single binding site for sodium and potas-
sium, leading to a one-for-one exchange, rather than the three-for-two exchange that
actually occurs. We denote the carrier molecule by C, and assume the reactions

Na+
i + C

k1
−→←−
k−1

NaC −→
ATP↗↘ADP

NaCP
k2

−→←−
k−2

Na+
e + CP, (2.49)

CP+K+
e

k3
−→←−
k−3

KCP
k4

−→←−
k−4

P+KC, (2.50)

Table 2.2 Some estimated equilibrium constants for the sodium–potassium pump.

Ion Kd (mM)
Na+ 1.3 Inside
K+ 12 Inside
Na+ 32 Outside
K+ 0.14 Outside
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Na+•C K+•C
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Inside the cell
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K+ Na+

Step 1
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Step 4
ATP

Figure 2.9 Schematic diagram of reactions for the sodium–potassium pump.

KC
k5

−→←−
k−5

K+
i + C. (2.51)

We apply the law of mass action to these kinetics, assume that intracellular sodium
and extracellular potassium are supplied at the constant rate J and that intracellular
potassium and extracellular sodium are also removed at the constant rate J, and then
find that in steady state the flow of ions through the pump is given by

J � C0
[Na+

i ][K
+
e ]K1K2 − [Na+

e ][K
+
i ]K−1K−2[P]

([K+
e ]K2 + [K+

i ]K−2)Kn + ([Na+
i ]K1 + [Na+

e ]K−1)Kk
, (2.52)

where K1 � k1k2kp, K−1 � k−1k−2k−p, K2 � k3k4k5, K−2 � k−3k−4k−5, Kn � k−1k−p +
k2k−1 + k2kp, and Kk � k−3k−4[P]+ k−3k5 + k4k5. The rate constants kp and k−p are the
forward and backward rate constants for the hydrolysis of ATP. As before, the total
concentration of carrier molecule is denoted by C0.

Because ATP is much more energetic than ADP, we expect the reverse reaction
rate k−p to be small compared to the forward reaction rate kp. If we ignore the reverse
reaction (take K−1 � 0), we find

J � C0K1K2
[Na+

i ][K
+
e ]

([K+
e ]K2 + [K+

i ]K−2)Kn + [Na+
i ]K1Kk

, (2.53)

which is independent of the extracellular sodium concentration. As expected, this flux
exhibits the features of an enzymatic reaction, being nearly linear at small concentra-
tions of intracellular sodium and saturating at large concentrations. However, if we
include the effects of the reverse reactions, we see that it should be possible to run the
pump backward by maintaining sufficiently high levels of extracellular sodium and in-
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tracellular potassium, so that the energy stored in the electrochemical gradients can be
extracted. Indeed, when this is the case experimentally, ATP is synthesized from ADP.

Other important pumps are Ca2+ ATPases and transporters that keep the intracel-
lular concentration of Ca2+ low. Calcium is extremely important to the operation of
cells (as will be discussed in Chapter 5). Internal free calcium is maintained at low con-
centrations (10−7 M) compared to high concentrations of extracellular calcium (10−3

M). The flow of Ca2+ down its steep concentration gradient in response to extracellu-
lar signals is one means of transmitting signals rapidly across the plasma membrane.
The Ca2+ gradient is maintained in part by Ca2+ pumps in the membrane that actively
transport Ca2+ out of the cell. One of these is an ATPase, while the other is a passive an-
tiporter that is driven by the Na+ electrochemical gradient. The best-understood Ca2+

pump is an ATPase in the sarcoplasmic reticulum ofmuscle cells (Exercise 9). This Ca2+

pump has been found to function in a way similar to the sodium–potassium pump. In
fact, the carriers for these two are known from DNA sequencing to be homologous
proteins.

2.6 The Membrane Potential

The principal function of the active transport processes described above is to regu-
late the intracellular ionic composition of the cell. For example, the operation of the
Na+–K+ pump results in high intracellular K+ concentrations and low intracellular
Na+ concentrations. As we will see, this is necessary for a cell’s survival, as without
such regulation, cells could not control their volume. However, before we consider
models for cell volume regulation, we consider the effects of ionic separation. It is a
consequence of the control of cell volume by ionic transport that the cell develops a
potential difference across its membrane.

2.6.1 The Nernst Equilibrium Potential

One of themost important equations in electrophysiology is theNernst equation, which
describes how a difference in ionic concentration between two phases can result in a
potential difference between the phases.We do not derive theNernst equation fromfirst
principles, but give a nonrigorous derivation in Section 2.6.2. Derivations of the Nernst
equation using the theory of chemical equilibrium thermodynamics can be found in
standard physical chemistry textbooks (for example, Levine, 1978; Denbigh, 1981).

Suppose we have two reservoirs containing the same ion S, but at different con-
centrations, as shown schematically in Fig. 2.10. The reservoirs are separated by a
semipermeable membrane. The solutions on each side of the membrane are assumed
to be electrically neutral (at least initially), and thus each ion S is balanced by another
ion, S′, with opposite sign. For example, S could be Na+, while S′ could be Cl−. Because
we ultimately wish to apply the Nernst equation to cellular membranes, we call the left
of the membrane the inside and the right the outside.
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S but not to S'.

[S]e = [S' ]e
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Figure 2.10 Schematic diagram of a mem-
brane separating two solutions with different
ionic concentrations.

If themembrane is permeable to S but not to S′, the concentration difference across
the membrane results in a flow of S from one side to another, say, from left to right.
However, because S′ cannot diffuse through the membrane, the diffusion of S causes
a buildup of charge across the membrane. This charge imbalance, in turn, sets up an
electric field that opposes the further diffusion of S through themembrane.Equilibrium
is reached when the electric field exactly balances the diffusion of S. Note that at steady
state there will bemore S ions on one side than on the other, and thus neither side of the
membrane is exactly electrically neutral. However, although the diffusion of S causes
an electric potential to develop, it is important to realize that only a small amount of
S moves across the membrane. To a good approximation the concentrations of S on
either side of the membrane remain unchanged, the solutions on either side of the
membrane remain electrically neutral, and the small excess charge accumulates near
the interface.

At equilibrium the potential difference, VS, across the membrane is given by the
Nernst potential,

VS � RT

zF
ln
(
[S]e
[S]i

)
� kT

zq
ln
(
[S]e
[S]i

)
, (2.54)

where subscripts i and e denote internal and external concentrations respectively. R is
the universal gas constant, T is the absolute temperature, F is Faraday’s constant, k is
Boltzmann’s constant, q is the charge on a proton, and z is the charge on the ion S.
Values of these constants, and their units, are given in the Appendix. One particularly
important relationship is

k � R

NA
, (2.55)

where NA is Avogadro’s number. Because of this, the Nernst equation can be written in
the two equivalent forms shown above. Throughout this book we follow the standard
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convention and define the potential difference across the cell membrane as

V � Vi − Ve, (2.56)

i.e., the intracellular minus the extracellular potential. When V � VS, there is no net
current of S between the phases, as the diffusion of S is exactly balanced by the electric
potential difference.

Typical concentrations (in this case, for squid axon) are 397, 50, and 40 mM for
potassium, sodium, and chloride, respectively, in the intracellular space, and 20, 437,
and 556mM in the extracellular space.With these concentrations, theNernst potentials
for squid nerve axon are VNa � 56mV, VK � −77mV, VCl � −68mV (usingRT/F � 25.8
mV at 27◦C. See Table 2.1).

The Nernst equation is independent of how the ions move through the membrane
and is dependent only on the concentration difference. In this sense, it is a “univer-
sal” law. Any equation that expresses the transmembrane current of S in terms of the
membrane potential, no matter what its form, must have a reversal potential of VS;
i.e., the current must be zero at the Nernst potential V � VS. However, although this
is true when only a single ion species crosses the membrane, the situation is consider-
ably more complicated when more than one type of ion can cross the membrane. In
this case, themembrane potential that generates zero total current does not necessarily
have no net current for each individual ion. For example, a current of S in one direction
might be balanced by a current of S′ in the same direction. Hence, when multiple ion
types can diffuse through themembrane, the phases are not, in general, at equilibrium,
even when there is no total current. Therefore, the arguments of chemical equilibrium
used to derive the Nernst equation cannot be used, and there is no universal expression
for the reversal potential in the multiple ion case. In this case, the reversal potential
depends on the model used to describe the individual transmembrane ionic flows (see
Chapter 3).

2.6.2 Electrodiffusion: The Goldman–Hodgkin–Katz Equations

In general, the flow of ions through the membrane is driven by concentration gradients
and also by the electric field. The contribution to the flow from the electric field is given
by Planck’s equation

J � −u z|z|c∇φ, (2.57)

where u is the mobility of the ion, defined as the velocity of the ion under a constant
unit electric field; z is the valence of the ion, so that z/|z| is the sign of the force on
the ion; c is the concentration of S; and φ is the electrical potential, so that −∇φ is the
electrical field.

There is a relationship, determined by Einstein, between the ionic mobility u and
Fick’s diffusion constant:

D � uRT

|z|F . (2.58)
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When the effects of concentration gradients and electrical gradients are combined,
we obtain the Nernst–Planck equation

J � −D
(
∇c+ zF

RT
c∇φ

)
. (2.59)

If the flow of ions and the electric field are transverse to the membrane, we can
view (2.59) as the one-dimensional relation

J � −D
(
dc

dx
+ zF

RT
c
dφ

dx

)
. (2.60)

The Nernst equation
The Nernst equation can be derived from the Nernst–Planck electrodiffusion equation
(2.60). When the flux J is zero, we find

−D

(
dc

dx
+ zF

RT
c
dφ

dx

)
� 0, (2.61)

so that

1
c

dc

dx
+ zF

RT

dφ

dx
� 0. (2.62)

Now suppose that the cell membrane extends from x � 0 (the inside) to x � L (the
outside), and let subscripts i and e denote internal and external quantities respectively.
Then, integrating from x � 0 to x � L we get

ln(c)
∣∣ce
ci

� zF

RT
(φi − φe), (2.63)

and thus the potential difference across the membrane, V � φi − φe, is given by

V � RT

zF
ln
(
ce

ci

)
, (2.64)

which is the Nernst equation.
This derivation of the Nernst equation relies on the Nernst–Planck electrodiffusion

equation, and so is not a derivation from first principles. The derivation from first
principles can be given, but it is beyond the scope of this text. The interested reader is
referred to Levine (1978) or Denbigh (1981) for the details.

The constant field approximation
In general, the electric potential φ is determined by the local charge density, and so
J must be found by solving a coupled system of equations (this is discussed in detail
in Chapter 3). However, a useful result is obtained by assuming that the electric field
in the membrane is constant, and thus decoupled from the effects of charges moving
through themembrane. Suppose we have two reservoirs separated by a semipermeable
membrane of thickness L, such that the potential difference across the membrane is
V . On the left of the membrane (the inside) [S] � ci, and on the right (the outside)
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[S] � ce. If the electric field is constant through the membrane, we have ∂φ/∂x � −V/L,
where V � φ(0)− φ(L) is the membrane potential.

At steady state and with no production of ions, the flux must be constant. In this
case, the Nernst–Planck equation (2.59) is an ordinary differential equation for the
concentration c,

dc

dx
− zFV

RTL
c+ J

D
� 0, (2.65)

whose solution is

exp
(−zVFx
RTL

)
c(x) � − JRTL

DzVF

[
exp

(−zVFx
RTL

)
− 1

]
+ ci, (2.66)

where we have used the left boundary condition c(0) � ci. To satisfy the boundary
condition c(L) � ce, it must be that

J � D

L

zFV

RT

ci − ce exp
(−zVF
RT

)
1− exp (−zVF

RT

) , (2.67)

where J is the flux density with units (typically) ofmoles per area per unit time. This flux
density becomes an electrical current density (current per unit area) when multiplied
by zF, the number of charges carried per mole, and thus

IS � PS
z2F2

RT
V
ci − ce exp

(−zFV
RT

)
1− exp (−zFV

RT

) , (2.68)

where PS � D/L is the permeability of themembrane to S. This is the famous Goldman–
Hodgkin–Katz (GHK) current equation. It plays an important role in models of cellular
electrical activity.

This flow is zero if the diffusively driven flow and the electrically driven flow are in
balance, which occurs, provided that z �� 0, if

V � VS � RT

zF
ln
(
ce

ci

)
, (2.69)

which is, as expected, the Nernst potential.
If there are several ions that are separated by the same membrane, then the flow of

each of these is governed separately by its own current–voltage relationship. In general
there is no potential at which these currents are all zero. However, the potential at
which the net electrical current is zero is called the Goldman–Hodgkin–Katz potential.
For a collection of ions all with valence z � ±1, we can calculate the GHK potential
directly. For zero net electrical current, it must be that

0 �
∑
z�1

Pj
c
j

i − c
j
e exp

(−VF
RT

)
1− exp (−VF

RT

) +
∑
z�−1

Pj
c
j

i − c
j
e exp

(
VF
RT

)
1− exp ( VF

RT

) , (2.70)
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where Pj � Dj/L. This expression can be solved for V , to get

V � −RT
F
ln

(∑
z�−1 Pjc

j
e +

∑
z�1 Pjc

j

i∑
z�−1 Pjc

j

i +
∑

z�1 Pjc
j
e

)
. (2.71)

For example, if the membrane separates sodium (Na+, z � 1), potassium (K+, z � 1),
and chloride (Cl−, z � −1) ions, then the GHK potential is

Vr � −RT
F
ln

(
PNa[Na+]i + PK[K+]i + PCl[Cl

−]e
PNa[Na+]e + PK[K+]e + PCl[Cl

−]i

)
. (2.72)

It is important to emphasize that neither the GHK potential nor the GHK current
equation are universal expressions like the Nernst equation. Both depend on the as-
sumption of a constant electric field, and other models give different expressions for
the transmembrane current and reversal potential. In Chapter 3 we present a detailed
discussion of other models of ionic current and compare them to the GHK equations.
However, the importance of the GHK equations is so great, and their use sowidespread,
that their separate presentation here is justified.

2.6.3 Electrical Circuit Model of the Cell Membrane

Since the cell membrane separates charge, it can be viewed as a capacitor. The capac-
itance of any insulator is defined as the ratio of the charge across the capacitor to the
voltage potential necessary to hold that charge, and is denoted by

Cm � Q

V
. (2.73)

From standard electrostatics (Coulomb’s law), one can derive the fact that for two
parallel conducting plates separated by an insulator of thickness d, the capacitance is

Cm � kε0

d
, (2.74)

where k is the dielectric constant for the insulator and ε0 is the permittivity of free
space. The capacitance of cell membrane is typically found to be 1.0 µF/cm2. Using
that ε0 � (10−9/(36π))F/m, we calculate that the dielectric constant for cell membrane
is about 8.5, compared to k � 3 for oil.

A simple electrical circuit model of the cell membrane is shown in Fig. 2.11. It is
assumed that the membrane acts like a capacitor in parallel with a resistor (although
not necessarily ohmic). Since the current is defined by dQ/dt, it follows from (2.73)
that the capacitive current is CmdV/dt, provided that Cm is constant. Since there can
be no net buildup of charge on either side of the membrane, the sum of the ionic and
capacitive currents must be zero, and so

Cm
dV

dt
+ Iion � 0, (2.75)

where V � Vi − Ve.



2.6: The Membrane Potential 57

C

Outside

Inside

Iion C   dV/dtmm

Figure 2.11 Electrical circuit model of the cell membrane.

We will meet this equation many times in this book, as it is the basis for much of
theoretical electrophysiology. A significant challenge is to determine the form of Iion.
We have already derived one possible choice, the GHK current equation (2.68), and
others will be discussed in Chapter 3.

Another commonmodel describes Iion as a linear function of the membrane poten-
tial. In Chapter 3 we will see how a linear I–V curve can be derived frommore realistic
models; however, because it is used so widely, we present a brief, heuristic, derivation
here. Consider the movement of an ion S across a membrane. We assume that the po-
tential drop across the membrane has two components. First, the potential drop due
to concentration differences is given by the Nernst equation

VS � RT

zF
ln
(
[S]e
[S]i

)
, (2.76)

and, second, the potential drop due to an electrical current is rIS (if the channel is
ohmic), where r is the channel resistance and IS is the transmembrane current (positive
outward) of S. Summing these two contributions we find

V � rIS + VS, (2.77)

and solving for the current, we get the current–voltage relationship

IS � g(V − VS), (2.78)

where g � 1/r is the membrane conductance. The current IS and conductance g are
usually specified per unit area of membrane, being the product of the single channel
conductance times the number of channels per unit area of membrane.
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2.7 Osmosis

Suppose two chambers of water are separated by a rigid porous membrane. Because it
is porous, water can flow between the two chambers. If the two chambers are topped
by pistons, then water can be driven between the two chambers by applying differ-
ent pressures to the two pistons. In general there is a linear relationship between the
pressure difference and the flux of water through the membrane, given by

rQ � P1 − P2, (2.79)

where Q is the flux (volume per unit time) of water from chamber one to chamber two,
P1 and P2 are the applied pressures for chambers one and two, respectively, and r is
the flow resistance of the membrane (not the same as the resistance to flow of ions).
The expression (2.79) is actually a definition of the flow resistance r, and this linear
relationship is analogous to Ohm’s law relating current and voltage in a conductor, and
therefore it is useful but not universally true.

Now suppose that a solute is added to chamber one, say. In standard chemistry
texts, it is shown that the presence of a solute lowers the chemical potential of the
solvent, thus lowering its effective pressure. If πs is the effective pressure due to the
presence of the dissolved molecules, then the flow rate is modified by the solute via

rQ � P1 − πs − P2, (2.80)

where

πs � kcT. (2.81)

Here, k is Boltzmann’s constant, c is the concentration of the solute (in molecules per
unit volume), and T is the absolute temperature. Note that if c is expressed in the more
usual units of moles per volume, the expression for the osmotic pressure then becomes

πs � RcT, (2.82)

where R � kNA is the universal gas constant, and NA is Avogadro’s number. Using that
c � n/ν, where ν is the volume, we find that (2.81) becomes

πsν � nkT, (2.83)

which is the same as the ideal gas law. The quantity πs is known as the osmotic pressure,
and the flux of water due to osmotic pressure is called osmosis. If P1 � P2, the effect
of the osmotic pressure is to draw water into chamber one, causing an increase in its
volume.

Osmotic pressure is determined by the number of particles per unit volume of fluid,
and not the mass of the particles. The unit that expresses the concentration in terms
of number of particles is called the osmole. One osmole is 1 gram molecular weight
(a mole) of an undissociated solute. Thus, 180 grams of glucose (1 gram molecular
weight) is 1 osmole of glucose, since glucose does not dissociate in water. On the other
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hand, 1 gram molecular weight of sodium chloride, 58.5 grams, is 2 osmoles, since it
dissociates into 2 moles of osmotically active ions in water.

A solution with 1 osmole of solute dissolved in a kilogram of water is said to have
osmolality of 1 osmole per kilogram. Since it is difficult to measure the amount of
water in a solution, a more common unit of measure is osmolarity, which is the os-
moles per liter of aqueous solution. In dilute conditions, such as in the human body,
osmolarity and osmolality differ by less than one percent. At body temperature, 37◦ C, a
concentration of 1 osmole per liter of water has an osmotic pressure of 19,300 mmHg.

Suppose two columns (of equal cross-section) of water are separated at the bottom
by a rigid porous membrane. If n molecules of sugar are dissolved in column one,
what will be the height difference between the two columns after they achieve steady
state? At steady state there is no flux between the two columns, so at the level of the
membrane, P1−πs � P2. Now, P1 and P2 are related to the height of the column of water
through P � ρgh, where ρ is the density of the fluid, g is the gravitational constant, and
h is the height of the column. We suppose that the density of the two columns is the
same, unaffected by the presence of the dissolved molecule, so we have

ρgh2 � ρgh1 − nkT

h1A
, (2.84)

where A is the cross-sectional area of the columns. Since fluid is conserved, h1 + h2 �
2h0, where h0 is the height of the two columns of water before the sugar was added.
From these, we find a single quadratic equation for h1:

h21 − h0h1 − nkT

2ρgA
� 0. (2.85)

The positive root of this equation is h1 � h0/2+ 1
2

√
h20 + 2nkT

ρgA
, so that

h1 − h2 �
√
h20 + 2nkT

ρgA
− h0. (2.86)

2.8 Control of Cell Volume

The principal function of the ionic pumps is to set up and maintain concentration
differences across the cell membrane, concentration differences that are necessary for
the cell to control its volume. In this section we justify these statements by means of a
simple model in which the volume of the cell is regulated by the balance between ionic
pumping and ionic flow down concentration gradients (Tosteson and Hoffman, 1960;
Jakobsson, 1980; Hoppensteadt and Peskin, 1992).

Because the cell membrane is a thin lipid bilayer, it is incapable of withstanding any
hydrostatic pressure differences. This is a potentially fatal weakness. If the intracellular
concentrations of various ions and larger molecules become too large, osmotic forces
cause the entry of water into the cell, causing it to swell and burst (this is what happens
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to many cells when their pumping machinery is disabled). Thus, for cells to survive,
they must regulate their intracellular ionic composition precisely (Macknight, 1988;
Reuss, 1988).

An even more difficult problem for some cells is to transport large quantities of
water, ions, or other molecules while maintaining a steady volume. For example, Na+-
transporting epithelial cells, found (among other places) in the urinary bladder, the
colon, and nephrons of the kidney, are designed to transport large quantities of Na+

from the lumen of the gut or the nephron to the blood. Indeed, these cells can transport
an amount of Na+ equal to their entire intracellular contents in one minute. However,
the rate of transport varies widely, depending on the concentration of Na+ on the
mucosal side. Thus, these cellsmust regulate their volume and ionic composition under
a wide variety of conditions and transport rates (Schultz, 1981).

2.8.1 A Pump–Leak Model

We begin by modeling the active and passive transport of ionic species across the cell
membrane. We have already derived two equations for ionic current as a function
of membrane potential: the GHK current equation (2.68) and the linear relationship
(2.78). For our present purposes it is convenient to use the linear expression for ionic
currents. Active transport of Na+ and K+ is performed, by and large, by the Na+–K+

pump, which pumps three sodium ions out of the cell in exchange for the entry of two
potassium ions.

Combining the expressions for active and passive ion transport, we find that the
Na+, K+, and Cl− currents are given by

INa � gNa

[
V − RT

F
ln
(
[Na+]e
[Na+]i

)]
+ 3pq, (2.87)

IK � gK

[
V − RT

F
ln
(
[K+]e
[K+]i

)]
− 2pq, (2.88)

3 Na+

2 K+

X

Cl-

Figure 2.12 Schematic diagram of the pump–leak
model.
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ICl � gCl

[
V + RT

F
ln

(
[Cl−]e
[Cl−]i

)]
, (2.89)

where p is the rate at which the ion exchange pump works and q is the charge of a
single ion.

We can express these current–voltage equations as differential equations by noting
that an outward ionic current of ion Az+ affects the intracellular concentration of that
ion through

IA � − d

dt
(zqw[Az+]), (2.90)

with w denoting the cell volume. Thus we have

− d

dt
(qw[Na+]i) � gNa

[
V − RT

F
ln
(
[Na+]e
[Na+]i

)]
+ 3pq, (2.91)

− d

dt
(qw[K+]i) � gK

[
V − RT

F
ln
(
[K+]e
[K+]i

)]
− 2pq, (2.92)

d

dt
(qw[Cl−]i) � gCl

[
V + RT

F
ln

(
[Cl−]e
[Cl−]i

)]
. (2.93)

The total charge across the membrane is

CmSV � qw([Na+]i + [K+]i − [Cl−]i)− qwe([Na+]e + [K+]e − [Cl−]e)+ zxqX. (2.94)

Here we represents the extracellular volume for one cell, Cm is the capacitance per
unit area of the cell membrane, X represents the number of large negatively charged
molecules (with valence zx ≤ −1) that are trapped inside the cell, and S is the surface
area of the cell.

Finally, there is a flow of water across the membrane driven by osmotic pressure,
given by

r
dw

dt
� RT

(
[Na+]i − [Na+]e + [K+]i − [K+]e + [Cl−]i − [Cl−]e + X

w

)
. (2.95)

Here we have assumed that the mechanical pressure difference across the membrane
is zero, and we have also assumed that the elastic restoring force for the membrane is
negligible.

Before we analyze this system of equations, it is valuable to make a few physical
observations. First, both the extracellular and intracellular media are nearly in elec-
troneutrality; that is, they have zero net charge. If this were not so, there would be
extremely large electrostatic forces, which would quickly restore zero net charge. The
only place where electroneutrality is violated is in a thin region near the membrane,
and the amount of charge here is so small, relatively speaking, that it does not affect the
overall assumption of electroneutrality. To see that this stored charge is quite small,
consider a cylindrical piece of squid axon of typical radius 500 µm. With a capaci-
tance of 1 µF/cm2 and a typical membrane potential of 100 mV, the total charge is
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Q � CmV � π × 10−8 C/cm. In comparison, the charge associated with intracellular
potassium ions at 400 mM is about 0.1 π C/cm, showing a relative charge deflection of
about 10−7. Anotherway to see that the relative charge deflection from electroneutrality
must be quite small is to write (2.94) in dimensionless variables and then observe that
the dimensionless capacitance c � CmRTS

w[Cl−]iFq
is small, on the order of 10−8 for a spherical

cell of radius 50 microns. A capacitance this small can be neglected with impunity in
(2.94).

For this model, we assume that sodium, potassium, and chloride are in elec-
troneutrality in the extracellular region. In view of the numbers for squid axon, this
assumption is not quite correct, indicating that there must be other ions around to
maintain electrical balance. In the intracellular region, sodium, potassium, and chlo-
ride are not even close to being in electrical balance, but here, electroneutrality is
maintained by the large negatively charged proteins trapped within the cell’s interior.

With the assumption of electroneutrality, (2.94) reduces to two separate equations:

[Na+]e + [K+]e − [Cl−]e � 0, (2.96)

[Na+]i + [K+]i − [Cl−]i + zx
X

w
� 0. (2.97)

It is also convenient to assume that the cell is in an infinite bath, so that ionic currents
do not change the external concentrations, and therefore the external concentrations
are assumed to be fixed and known.

The differential equations (2.91), (2.92), (2.93), and (2.95) together with the electro-
static balance laws (2.97) describe the changes of cell volume and membrane potential
as functions of time. Even though we formulated this model as a system of differential
equations, we are interested, for the moment, only in their steady-state solution. Time-
dependent currents and potentials become important in Chapter 4 for the discussion
of excitability.

To understand these equations, we first introduce the nondimensional variables
v � FV

RT
, P � pFq

RTgNa
, µ � w

X
[Cl−]e and set y � e−v. Then the equation of intracellular

electroneutrality becomes

αy− 1
y

+ zx

µ
� 0, (2.98)

and the equation of osmotic pressure balance becomes

αy+ 1
y

+ 1
µ

− 2 � 0, (2.99)

where α � [Na+]ee−3P+[K+]ee2Pγ
[Na+]e+[K+]e

and γ � gNa/gK. In terms of these nondimensional variables,
we find the ion concentrations to be

[Na+]i
[Na+]e

� e−3Py, (2.100)

[K+]i
[K+]e

� e2Pγy, (2.101)
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[Cl−]i
[Cl−]e

� 1
y
. (2.102)

Solving (2.98) for its unique positive root, we obtain

y � −zx +√
z2x + 4αµ2
2αµ

, (2.103)

and when we substitute for y back into (2.99), we find the quadratic equation for µ:

4(1− α)µ2 − 4µ+ 1− z2x � 0. (2.104)

For zx ≤ −1, this quadratic equation has one positive root if and only if α < 1. Expressed
in terms of concentrations, the condition α < 1 is

ρ(P) � [Na+]ee−3P + [K+]ee2Pγ

[Na+]e + [K+]e
< 1. (2.105)

One can easily see that ρ(0) � 1 and that for large P, ρ(P) is exponentially large and
positive. Thus, the only hope for ρ(P) to be less than one is if ρ′(0) < 0. This occurs if
and only if

3[Na+]e
gNa

>
2[K+]e
gK

, (2.106)

in which case there is a range of values of P for which a finite, positive cell volume is
possible and for which there is a corresponding nontrivial membrane potential.

To decide if this condition is ever satisfied we must determine “typical” values
for gNa and gK. This is difficult to do, because, as we will see, excitability of nerve
tissue depends strongly on the fact that conductances are voltage dependent and can
vary rapidly over a large range of values. However, at rest, in squid axon, reasonable
values are gK � 0.367 mS/cm2 and gNa � 0.01 mS/cm2. For these values, and at the
extracellular concentrations of 437 and 20mM for sodium and potassium, respectively,
the condition (2.106) is readily met.

One important property of the model is that the resting value of V is equal to the
Nernst potential of Cl−, as can be seen from (2.93) or (2.102). Thus, the membrane po-
tential is set by the activity of theNa+–K+ pump, and the intracellular Cl− concentration
is set by the membrane potential.

In Figs. 2.13 and 2.14 the volume µ and the potential V (assuming RT/F=25.8 mV)
are plotted as functions of the pump rate P. In addition, in Fig. 2.14 are shown the
sodium and potassium equilibrium potentials. For these plots, γ was chosen to be
0.11, and zx � −1. Then, at P � 1.6, the sodium and potassium equilibrium potentials
and the membrane potentials are close to their observed values for squid axon, of 56,
−77 and −68 mV, respectively.

From these plots we can see the effect of changing pump rate on cell volume and
membrane potential. At zero pump rate, the membrane potential is zero and the cell
volume is infinite (dead cells swell). As the pump rate increases from zero, the cell
volume and membrane potential rapidly decrease to their minimal values and then
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Figure 2.14 Membrane potential, sodium equilibrium potential, and potassium equilibrium
potential as functions of the pump rate.

gradually increase until at some upper limit for pump rate, the volume and potential
become infinite. The potassium equilibrium potential is seen to decrease rapidly as
a function of pump rate until it reaches a plateau at a minimum value. The sodium
equilibrium potential increases monotonically.

Physically realistic values of the membrane potential are achieved fairly close to
the local minimum. Clearly, there is little advantage for a higher pump rate, and since
the pump rate is proportional to energy expenditure, it would seem that the pump
rate is chosen approximately to minimize cell volume, membrane potential, and en-
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Table 2.3 Resting potentials in some typical excitable cells.

Cell Type Resting Potential (mV)
Neuron −70
Skeletal muscle (mammalian) −80
Skeletal muscle (frog) −90
Cardiac muscle (atrial and ventricular) −80
Cardiac Purkinje fiber −90
Atrioventricular nodal cell −65
Sinoatrial nodal cell −55
Smooth muscle cell −55

ergy expenditure. However, no mechanism for the regulation of energy expenditure is
suggested.

Generalizations
While the above model for control of volume and membrane potential is useful and
gives some insight into the control mechanisms, as with most models there are im-
portant features that have been ignored but that might lead to substantially different
behavior.

There are (at least) two significant simplifications in the model presented here.
First, the conductances gNa and gK were treated as constants. In Chapter 4 we will see
that the ability of cells to generate an electrical signal results from voltage and time
dependence of the conductances. In fact, the discovery that ion channels have differing
properties of voltage sensitivitywas of fundamental importance to the understanding of
neurons. The second simplification relates to the operation of the ion exchange pump.
Figure 2.14 suggests that the minimal membrane potential is achieved at a particular
pump rate and suggests the need for a tight control of pump rate that maintains the
potential near this minimum. If indeed, such a tight control is required, it is natural to
ask what that control mechanism might be.

A different model of the pump activity might be beneficial. Recall from (2.48)
that with each “stroke” of the ion exchange pump, three intracellular sodium ions
are exchanged for two extracellular potassium ions. The analysis of the Na+–K+ pump
suggests that at low internal sodium concentrations, the pump rate can be represented
in nondimensional variables as

P � ρu3, (2.107)

where u � [Na+]i/[Na+]e. This representation is appropriate at high pump rates, where
effects of saturation are of no concern. Notice that P is proportional to the rate of ATP
hydrolysis, and hence to energy consumption. Thus, asu decreases, so also does the rate
of energy consumption. With this change, the equation for the sodium concentration
becomes

u exp(3ρu3) � y, (2.108)
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Figure 2.15 Membrane potential, sodium equilibrium potential, and potassium equilibrium
potential as functions of the pump rate.

and this must be solved together with the quadratic polynomials (2.98) and (2.99)
(replacing (2.87) for y and µ).

In Fig. 2.15 are shown the membrane potential, and the sodium and potassium
equilibrium potentials, plotted as functions of the nondimensional reaction rate ρ.
Here we see something qualitatively different from what is depicted in Fig. 2.14. There
the membrane potential had a noticeable local minimum and was sensitive to changes
in pump rate. In this modified model, the membrane potential is insensitive to changes
in the pump rate. The reason for this difference is clear. Since the effectiveness of
the pump depends on the internal sodium concentration, increasing the speed of the
pumping rate has little effect when the internal sodium is depleted, because of the
diminished number of sodium ions available to be pumped.

While the pump rate is certainly ATP dependent, there are a number of drugs and
hormones that affect the pump rate. Catecholamines rapidly increase the activity of
the pump in skeletal muscle, thereby preserving proper K+ during strenuous exercise.
Within minutes, insulin stimulates pump activity in the liver, muscle, and fat tissues,
whereas over a period of hours, aldosterone and corticosterones increase activity in
the intestine.

On the other hand, digitalis (clinically known as digoxin) is known to suppress
pump activity. Digitalis is an important drug used in the treatment of congestive
heart failure and during the 1980s was the fourth most widely prescribed drug in the
United States. At therapeutic concentrations, digitalis inhibits amoderate fraction (say,
30–40%) of the Na+–K+ ATPase, by binding with the sodium binding site on the extra-
cellular side. This causes an increase in internal sodium, which has an inhibitory effect
on the sodium–calcium antiport exchanger, slowing down the rate by which calcium
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Figure 2.16 Schematic diagram of the model of a Na+-transporting epithelial cell, based on
the model of Koefoed-Johnsen and Ussing (1958).

exits the cells. Increased levels of calcium result in increased myocardial contractility,
a positive and useful effect. However, it is also clear that at higher levels, the effect of
digitalis is toxic.

2.8.2 Volume Regulation and Ionic Transport

Many cells have a more difficult problem to solve, that of maintaining their cell volume
in widely varying conditions, while transporting large quantities of ions through the
cell. Here we present a simplified model for transport and volume regulation in a Na+-
transporting epithelial cell.

As are virtually all models of transporting epithelia, the model is based on that
of Koefoed-Johnsen and Ussing (1958), the so-called KJU model. In the KJU model,
an epithelial cell is modeled as a single cell layer separating a mucosal solution from
the serosal solution (Fig. 2.16). (The mucosal side of an epithelial cell is that side
on which mucus is secreted and from which various chemicals are withdrawn, for
example, from the stomach. The serosal side is the side of the epithelial cell facing
the interstitium, wherein lie capillaries, etc.) Na+ transport is achieved by separating
the Na+ pumping machinery from the channels that allow Na+ entry into the cell.
Thus, the mucosal membrane contains Na+ channels that allow Na+ to diffuse down
its concentration gradient into the cell, while the serosal membrane contains the Na+–
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K+ ATPases, which remove Na+ from the cell. The overall result is the transport of Na+

from the mucosal side of the cell to the serosal side. The important question is whether
the cell can maintain a steady volume under widely varying concentrations of Na+ on
the mucosal side.

We begin by letting N, K, and C denote Na+, K+, and Cl− concentrations respec-
tively, and letting subscripts m, i, and s denote mucosal, intracellular and serosal
concentrations. Thus, for example, Ni is the intracellular Na+ concentration, and Nm
is the mucosal Na+ concentration. We now write down the conservation equations for
Na+, K+, and Cl− at steady state. The conservation equations are the same as those
of the pump–leak model with some minor exceptions. First, instead of the linear I–V
curve used in the pump–leakmodel, we use the GHK formulation to represent the ionic
currents. This makes little qualitative change to the results and is more convenient be-
cause it simplifies the analysis that follows. Second, we assume that the rate of the
Na+–K+ pump is proportional to the intracellular Na+ concentration, Ni, rather than
N3i , as was assumed in the generalized version of the pump–leak model. Thus,

PNav
Ni −Nme

−v

1− e−v
+ 3qpNi � 0, (2.109)

PKv
Ki − Kse

−v

1− e−v
− 2qpNi � 0, (2.110)

PClv
Ci − Cse

v

1− ev
� 0. (2.111)

Note that the voltage, v, has been scaled byF/(RT) and that the rate of theNa+–K+ pump
is pNi. Also note that the inward Na+ current is assumed to enter from the mucosal
side, and thus Nm appears in the GHK current expression, but that no other ions enter
from the mucosa. Here the membrane potential is assumed to be the same across the
lumenal membrane and across the basal membrane. This is not quite correct, as the
potential across the lumenal membrane is typically −67 mV while across the basal
membrane it is about −70 mV.

There are two further equations to describe the electroneutrality of the intracellular
space and the osmotic balance. In steady state, these are, respectively,

w(Ni + Ki − Ci)+ zxX � 0, (2.112)

Ni + Ki + Ci + X

w
� Ns + Ks + Cs, (2.113)

where X is the number of moles of protein, each with a charge of zx ≤ −1, that are
trapped inside the cell, andw is the cell volume. Finally, the serosal solution is assumed
to be electrically neutral, and so in specifying Ns,Ks, and Cs we must ensure that

Ns + Ks � Cs. (2.114)

Since the mucosal and serosal concentrations are assumed to be known, we now have
a system of 5 equations to solve for the 5 unknowns, Ni, Ki, Ci, v, and µ � w/X . First,
notice that (2.109), (2.110), and (2.111) can be solved for Ni, Ki, and Ci, respectively, to



2.8: Control of Cell Volume 69

get

Ni(v) � vNme
−v

v+ 3ρn(1− e−v)
, (2.115)

Ki(v) � 2ρkNi(v)
1− e−v

v
+ Kse

−v, (2.116)

Ci(v) � Cse
v, (2.117)

where ρn � pq/PNa and ρk � pq/PK.
Next, eliminating Ni + Ki between (2.112) and (2.113), we find that

2µ(Ci − Cs) � zx − 1. (2.118)

We now use (2.117) to find that

zx − 1 � 2µCs(ev − 1), (2.119)

and thus, using (2.119) to eliminate µ from (2.112), we get

Ni(v)+ Ki(v) � Cs

1− zx
[−2zx + ev(1+ zx)] ≡ φ(v). (2.120)

Since zx − 1 < 0, it must be (from (2.119)) that v < 0, and as v → 0, the cell volume
becomes infinite. Thus, we wish to find a negative solution of (2.120), with Ni(v) and
Ki(v) specified by (2.115) and (2.116).

It is instructive to consider when solutions for v (with v < 0) exist. First, notice that
φ(0) � Cs. Further, since zx ≤ −1, φ is a decreasing function of v, bounded above, with
decreasing slope (i.e., concave down), as sketched in Fig. 2.17. Next, from (2.115) and
(2.116) we determine that Ni(v) + Ki(v) is a decreasing function of v that approaches
∞ as v → −∞ and approaches zero as v → ∞. It follows that a negative solution for v
exists if Ni(0)+ Ki(0) < Cs, i.e., if

Nm

1+ 3ρn + 2ρkNm
1+ 3ρn + Ks < Cs. (2.121)

Since Ks +Ns � Cs, this becomes

Nm

Ns
<
1+ 3ρn
1+ 2ρk

. (2.122)

This condition is sufficient for the existence of a solution, but not necessary. That is,
if this condition is satisfied, we are assured that a solution exists, but if this condition
fails to hold, it is not certain that a solution fails to exist. The problem, of course, is that
negative solutions are not necessarily unique, nor is it guaranteed that increasing Nm
throughNs

1+3ρn
1+2ρk causes a negative solution to disappear. It is apparent from (2.115) and

(2.116) that Ni(v) and Ki(v) are monotone increasing functions of the parameter Nm,
so that no negative solutions exist for Nm sufficiently large. However, for Nm � Ns

1+3ρn
1+2ρk

to be the value at which the cell bursts by increasing Nm, it must also be true that

N′
i(0)+ K ′

i(0) < φ
′(0), (2.123)
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Figure 2.17 Sketch (not to scale)
of the function φ(v ), defined as the
right-hand side of (2.120), and of
Ni (v ) + Ki (v ), where Ni and Ki are
defined by (2.115) and (2.116). φ(v )
is sketched for zx < −1.

or that

4(1+ 3ρn)Cs +Ns(1− zx)
3ρn − 2ρk
1+ 2ρk

> 0. (2.124)

For the remainder of this discussion we assume that this condition holds, so that the
failure of (2.122) also implies that the cell bursts.

According to (2.122), a transporting epithelial cell canmaintain its cell volume, pro-
vided that the ratio of mucosal to serosal concentrations is not too large. When Nm/Ns
becomes too large, µ becomes unbounded, and the cell bursts. Typical solutions for the
cell volume and membrane potential, as functions of the mucosal Na+ concentration,
are shown in Fig. 2.18.

Obviously, this state of affairs is unsatisfactory. In fact, some epithelial cells, such as
those in the loop ofHenle in the nephron (Chapter 20),must work in environmentswith
extremely high mucosal sodium concentrations. To do so, these Na+-transporting ep-
ithelial cells have mechanisms to allow operation over a much wider range of mucosal
Na+ concentrations than suggested by this simple model.

From (2.122) we can suggest some mechanisms by which a cell might avoid
bursting at high mucosal concentrations. For example, the possibility of bursting is
decreased if ρn is increased or if ρk is decreased. The reasons for this are apparent from
(2.115) and (2.116), since Ni(v)+Ki(v) is a decreasing function of ρn and an increasing
function of ρk. From a physical perspective, increasing Nm causes an increase in Ni,
which increases the osmotic pressure, inducing swelling. Decreasing the conductance
of sodium ions from the mucosal side helps to control this swelling. Similarly, increas-
ing the conductance of potassium ions allows more potassium ions to flow out of the
cell, thereby decreasing the osmotic pressure from potassium ions and counteracting
the tendency to swell.

It has been conjectured for some time that epithelial cells use both of these mecha-
nisms to control their volume (Schultz, 1981; Dawson and Richards, 1990; Beck et al.,
1994). There is evidence that as Ni increases, epithelial cells decrease the Na+ conduc-
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Figure 2.18 Numerical solutions of
the model for epithelial cell volume
regulation and Na+ transport. The
membrane potential V , the scaled cell
volume µ, and the intracellular Na+

concentration [Na+]i are plotted as
functions of the mucosal Na+ con-
centration. The solid lines are the
solutions of the simpler version of
the model, where PNa and PK are as-
sumed to be constant. The dashed
lines are the solutions of the model
when PNa is assumed to be a decreas-
ing function of Ni , and PK is assumed
to be an increasing function of w , as
described in the text. Parameter val-
ues are Ks � 2.5, Ns � 120, Cs �
122.5, P � 2, γ � 0.3, zx � −2. All
concentrations are in mM.

tance on the mucosal side of the cell, thus restricting Na+ entry. There is also evidence
that as the cell swells, the K+ conductance is increased, possibly by means of stretch-
activated K+ channels (Ussing, 1982. This assumption was used in the modeling work
of Strieter et al., 1990).

To investigate the effects of these mechanisms in our simple model, we replace PNa
by PNa20/Ni (20 is a scale factor, so that when Ni � 20 mM, PNa has the same value as
in the original version of the model) and replace PK by PKw/w0, wherew0 is the volume
of the cell when Nm � 100 mM. As before, we can solve for v and µ as functions of Nm,
and the results are shown in Fig. 2.18. Clearly the incorporation of these mechanisms
decreases the variation of cell volume and allows the cell to survive over a much wider
range of mucosal Na+ concentrations.

The model for control of ion conductance used here is extremely simplistic, as
for example, there is no parametric control of sensitivity, and the model is heuristic,
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not mechanistic. More realistic and mechanistic models have been constructed and
analyzed in detail (Lew et al., 1979; Civan and Bookman, 1982; Strieter et al., 1990;
Weinstein, 1992, 1994, 1996; Tang and Stephenson, 1996).

2.9 Exercises
1. Find the maximal enhancement for diffusion of carbon dioxide via binding with myoglobin

using Ds � 9×10−4 cm2/s, k+ � 2×108 cm3/M · s, k− � 1.7×10−2σ. Compare the amount of
facilitation of carbon dioxide transport with that of oxygen at similar concentration levels.
(Hint: For oxygen ρ � 14, whereas for carbon dioxide, ρ � 2.)

2. Devise a model to determine the rate of production of product for a spherical enzyme
capsule of radius R0 in a bath of substrate at concentration S0. Assume that the enzyme
cannot diffuse within the capsule but that the substrate and product can freely diffuse into,
within, and out of the capsule. Show that spheres of small radius have a larger rate of
production than spheres of large radius.
Hint: Reduce the problem to the nondimensional boundary value problem

1
y2
(y2σ ′)′ − α2

σ

σ + 1 � 0, (2.125)

σ ′(0) � 0, (2.126)

σ(1) � σ0, (2.127)

and solve numerically as a function of α. How does the radius of the sphere enter the
parameter α?

3. Suppose a membrane that contains water-filled pores separates two solutions.

(a) Suppose that the solution on either side of the membrane contains an impermeant
solute. Show that the hydrostatic pressure of the water within the pores must be less
than the hydrostatic pressure of the solutions on either side of the membrane.

(b) Show that if the solute can permeate the pore freely, no such drop in hydrostatic
pressure exists.

(c) Show that if the solution on one side of the membrane contains both permeant and
impermeant solutes, while the solution on the other side contains only the perme-
ant solute, it is possible for water to flow against its chemical potential gradient
(at least temporarily). This problem of wrong-way water flow has been observed
experimentally, and it is discussed in detail by Dawson (1992).

4. Red blood cells have a passive exchanger that exchanges a single Cl− ion for a bicarbonate
(HCO−

3 ) ion. Develop a model for this exchanger and find the flux.

5. Modify (2.52) to take into account the fact that the concentration of ATP affects the rate of
reaction (since pumping should stop if there is no ATP).

6. Generalize (2.53) to account for the fact that with each turn of the sodium–potassium pump
three sodium ions are exchanged for two potassium ions.

7. Almost immediately upon entering a cell, glucose is phosphorylated in the first reaction
step of glycolysis. How does this rapid and nearly unidirectional reaction affect the trans-
membrane flux of glucose as represented by (2.41)? How is this reaction affected by the
concentration of ATP?
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8. How does the concentration of ATP affect the rate of the sodium–potassium pump?

9. The process by which calcium is taken up into the sarcoplasmic reticulum (SR) in muscle
and cardiac cells is similar to the sodium–potassium ATPase, but simpler. Two intracellular
calcium ions bind with a carrier protein with high affinity for calcium. ATP is dephospho-
rylated, with the phosphate bound to the carrier. There is a conformational change of the
carrier protein that exposes the calcium to the interior of the SR and reduces the affinity of
the binding sites, thereby releasing the two ions of calcium. The phosphate is released and
the conformation changed so that the calcium binding sites are once again exposed to the
intracellular space.
Formalize this reaction and find the rate of calcium uptake by this pump.

10. A 1.5 oz bag of potato chips (a typical single serving) contains about 200 mg of sodium.
When eaten and absorbed into the body, how many osmoles does this bag of potato chips
represent?

11. Generalize formula (2.86) to take into account that the two fluids have different densities
and to allow the columns to have different cross-sectional areas.

12. Two columns with cross-sectional area 1 cm2 are initially filled to a height of one meter
with water at T � 300K. Suppose 1 gm of sugar is dissolved in one of the two columns.
How high will the sugary column be when equilibrium is reached? Hint: The weight of a
sugar molecule is 3× 10−22 gm, and the force of gravity on 1cm3 of water is 980 dynes.

13. Suppose an otherwise normal cell is placed in a bath of high extracellular potassium. What
happens to the cell volume and resting potentials?

14. Based on what you know about glycolysis from Chapter 1, how would you expect anoxia
(insufficient oxygen) to affect the volume of the cell? Howmight you incorporate this into a
model of cell volume? Hint: Lactic acid does not diffuse out of a cell as does carbon dioxide.

15. Suppose 90% of the sodium in the bath of a squid axon is replaced by inert choline,
preserving electroneutrality. What happens to the equilibrium potentials and membrane
potentials?

16. Determine the effect of temperature (through the Nernst equation) on cell volume and
membrane potential.

17. Write and analyze the balance equations for a cell in a finite bath. Hint: In a finite bath the
total volume is conserved as are the total number of sodium, potassium, and chloride ions.

18. Simulate the time-dependent differential equations governing cell volume and ionic
concentrations.

19. Many animal cells swell and burst when treatedwith the drug ouabain.Why?Hint: Ouabain
competes with K+ for external potassium binding sites of the Na+–K+ ATPase. How would
you include this effect in a model of cell volume control?



C H A P T E R 3

Membrane Ion Channels

Every cell membrane contains ion channels, macromolecular pores that allow specific
ions to travel through the channels by a passive process, driven by their concentration
gradient and the membrane potential. One of the most extensively studied problems in
physiology is the regulation of such ionic currents. Indeed, in practically every chapter
of this book we see examples of how the control of ionic current is vital for cellular
function. Already we have seen how the cell membrane uses ion channels and pumps
to maintain an intracellular environment that is different from the extracellular envi-
ronment, and we have seen how such ionic separation results in amembrane potential.
In subsequent chapters we will see that modulation of the membrane potential is one
of the most important ways in which cells control their behavior or communicate with
other cells. However, to understand the role played by ion channels in the control of
membrane potential, it is first necessary to understand how membrane ionic currents
depend on the voltage and ionic concentrations.

There is a vast literature, both theoretical and experimental, on the properties of ion
channels. One of the best books on the subject is that ofHille (1992), towhich the reader
is referred for amore detailed presentation than that given here. The bibliography given
there will also serve as a starting point for more detailed studies.

3.1 Current–Voltage Relations

Before we discuss specific models for ion channels, we emphasize an important fact
that can be a source of confusion to the novice. Although the Nernst equation (2.54)
for the equilibrium voltage generated by ionic separation can be derived from ther-
modynamic considerations and is thus universally applicable, there is no universal



3.1: Current–Voltage Relations 75

expression for the ionic current. An expression for, say, the Na+ current cannot be de-
rived from thermodynamic first principles and depends on the particularmodel used to
describe membrane Na+ channels. Already we have seen two different models for ionic
currents. In the previous chapter we discussed two common models for Na+ current
as a function of the membrane potential and the internal and external Na+ concentra-
tions. In the simplermodel, we assumed that the Na+ current across the cell membrane
was a linear function of the membrane potential, with a driving force given by the Na+

Nernst potential. Thus,

INa � gNa(V − VNa), (3.1)

where VNa � (RT/F) ln([Na+]e/[Na+]i) is the Nernst potential of Na+. (As usual, a sub-
script e denotes the external concentration, while a subscript i denotes the internal
concentration.) Note that the Na+ current is zero when V is the Nernst potential, as
must be the case. However, we also discussed an alternative model, where integra-
tion of the Nernst–Planck equation (2.59), assuming a constant electric field, gave the
Goldman–Hodgkin–Katz (GHK), or constant-field, current equation:

INa � PNa
F2

RT
V

[
[Na+]i − [Na+]e exp

(−VF
RT

)
1− exp (−VF

RT

)
]
. (3.2)

As before, the Na+ current is zero when V equals the Nernst potential, but here the
current is a nonlinear function of the voltage. In Fig. 3.1A we compare the linear and
GHK I–V curves when there is only a single ion present.

There is no one “correct” expression for the Na+ current, or any other ionic current
for that matter. Different cells have different types of ion channels, each of which may
have a current–voltage relation different from the rest. The challenge is to determine
the current–voltage, or I–V , curve for a given ion channel and relate it to underlying
biophysical mechanisms.

Our choice of these two models as examples was not coincidental, as they are the
two most commonly used in theoretical models of cellular electrical activity. Not only
are they relatively simple (at least compared to some of the other models we discuss
later in this chapter), they also provide good quantitative descriptions of many ion
channels. For example, the I–V curves of open Na+ and K+ channels in the squid giant
axon are approximately linear, and thus the linear model was used by Hodgkin and
Huxley in their classic model of the squid giant axon (discussed in detail in Chapter 4).
However, the I–V curves of open Na+ and K+ channels in vertebrate axons are better
described by the GHK equation, and so nonlinear I–V curves are used for vertebrate
models (Frankenhaeuser, 1960a,b, 1963; Campbell and Hille, 1976).

Because of the importance of these twomodels, we illustrate another way in which
they differ. This also serves to illustrate the fact that although the Nernst potential is
universal when there is only one ion present, the situation is more complicated when
two or more species of ion can pass through the membrane. If both Na+ and K+ ions
are present and both obey the GHK current equation, we showed in (2.72) that the
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reversal potential Vr at which there is no net current flow is given by

Vr � RT

F
ln
(
PNa[Na+]e + PK[K+]e
PNa[Na+]i + PK[K+]i

)
. (3.3)

However, if we assume instead that the I–V curves for Na+ and K+ are linear, then the
reversal potential is given by

Vr � gNaVNa + gKVK

gNa + gK
, (3.4)

where VK is the Nernst potential of K+. Clearly, the reversal potential is model-
dependent. This is due to the fact that at the reversal potential the net current flow
is zero, but the individual Na+ and K+ currents are not. Thus, the equilibrium argu-
ments used to derive the Nernst equation do not apply, and a universal form for the
reversal potential does not exist. As an illustration of this, in Fig. 3.1B we plot the re-
versal potentials Vr from (3.3) and (3.4) as functions of [K+]e. Although the linear and
GHK I–V curves predict different reversal potentials, the overall qualitative behavior
is similar, making it difficult to distinguish between a linear and a GHK I–V curve on
the basis of reversal potential measurements alone.

3.1.1 Steady-State and Instantaneous Current–Voltage Relations

Measurement of I–V curves is complicated by the fact that ion channels can open or
close in response to changes in the membrane potential. Suppose that in a population
of ion channels, I increases as V increases. This increase could be the result of two
different factors. One possibility is that more channels open as V increases while the
current through an individual channel remains unchanged. It is also possible that the
same number of channels remain open but the current through each one increases. To
understand how each channel operates, it is necessary to separate these two factors to
determine the I–V curve of a single open channel. This has motivated the definition of
steady-state and instantaneous I–V curves.

If channels open or close in response to a change in voltage, but this response is
slower than the change in current in an already open channel, it should be possible to
measure the I–V curve of a single open channel by changing the voltage quickly and
measuring the channel current soon after the change. Presumably, if the measurement
is performed fast enough, no channels in the population have time to open or close
in response to the voltage change, and thus the observed current change reflects the
current change through the open channels. Of course, this relies on the assumption
that the current through each open channel changes instantaneously. The I–V curve
measured in this way (at least in principle) is called the instantaneous I–V curve and
reflects properties of the individual open channels. If the current measurement is per-
formed after channels have had time to open or close, then the current change reflects
the I–V curve of a single channel as well as the proportion of open channels. In this
way one obtains a steady-state I–V curve.
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Figure 3.1 A: I–V curves of the lin-
ear and GHK models for Na+ flux
through a membrane. Both curves
have the same reversal potential as
expected, but the GHK model (dashed
curve) gives a nonlinear I–V curve.
Typical concentrations and conduc-
tances of the squid axon were used:
[Na+]i � 50 mM, [Na+]e � 437 mM,
and gNa � 0.01 mS/cm2. PNa was
chosen so that the GHK I–V curve in-
tersects the linear I–V curve at V � 0.
B: Reversal potentials of the linear and
GHK models as functions of [K+]e . The
membrane is permeable to both Na+

and K+. The same parameters as A,
with [K+]i � 397 mM and gK � 0.367
mS/cm2. PK was chosen so that the
GHK I–V curve for K+, with [K+]e �
20 mM, intersects the linear I–V curve
for K+ at V � 0.

There are two basic types of model that are used to describe ion flow through
open channels, and we discuss simple versions of each. In the first type of model, the
channel is described as a continuous medium, and the ionic current is determined by
the Nernst–Planck electrodiffusion equation, coupled to the electric field by means of
the Poisson equation. In more complex models of this type, channel geometry and the
effects of induced charge on the channel wall are incorporated. In the second type of
model the channel is modeled as a sequence of binding sites, separated by barriers that
impede the ion’s progress: the passage of an ion through the channel is described as a
process of “hopping” over barriers from one binding site to another. The height of each
barrier is determined by the properties of the channel, as well as by the membrane
potential. Thus, the rate at which an ion traverses the channel is a function both of the
membrane potential and of the channel type. An excellent summary of the advantages
and disadvantages of the two model types is given by Dani and Levitt (1990).

Finally, we discuss simple models for the kinetics of channel gating. These models
will be of fundamental importance in Chapter 4, where we use an early model for
the voltage-dependent gating of ion channels proposed by Hodgkin and Huxley as
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part of their model for the action potential in the squid giant axon. More detailed
recent models for channel gating are not discussed at any length. The interested reader
is referred to Hille (1992), Armstrong (1981), Armstrong and Bezanilla (1973, 1974,
1977), Aldrich et al. (1983), and Finkelstein and Peskin (1984) for a selection of models
of how channels can open and close in response to changes in membrane potential.
An important question that we do not consider here is how channels can discriminate
between different ions. Detailed discussions of this and related issues are inHille (1992)
and the references therein.

3.2 Independence, Saturation, and the Ussing Flux Ratio

One of themost fundamental questions to be answered about an ion channel is whether
the passage of an ion through the channel is independent of other ions. If so, the channel
is said to obey the independence principle.

Suppose a membrane separates two solutions containing an ion species S with
external concentration ce and internal concentration ci. If the independence principle
is satisfied, the flow of S is proportional to its local concentration, independent of the
concentration on the opposite side of the membrane, and thus the flux from outside to
inside, Jin, is

Jin � kece, (3.5)

for some constant ke. Similarly, the outward flux is given by

Jout � kici, (3.6)

where in general, ke �� ki. We let VS denote the Nernst potential of the ion S, and let V
denote the potential difference across themembrane. Nowwe introduce a hypothetical
concentration c∗e defined as that external concentration necessary to maintain a Nernst
potential V . Thus

ce

ci
� exp

(
VSF

RT

)
, (3.7)

and

c∗e
ci

� exp
(
VF

RT

)
. (3.8)

When the external concentration is c∗e and the internal concentration is ci, then the
voltage is V , and there is no net flux across the membrane; i.e., the outward flux equals
the inward flux, and so

kec
∗
e � kici. (3.9)
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It follows that the flux ratio is given by

Jin

Jout
� kece

kici

� kece

kec∗e

� ce

c∗e

� exp
(
VSF

RT

)
exp

(
VF
RT

)
� exp

[
(VS − V)F

RT

]
. (3.10)

This expression for the ratio of the inward to the outward flux is usually called the
Ussing flux ratio. It was first derived by Ussing (1949), although the derivation given
here is due to Hodgkin and Huxley (1952a). Alternatively, the Ussing flux ratio can be
written as

Jin

Jout
� ce

ci
exp

(−VF
RT

)
. (3.11)

Note that when V � 0, the ratio of the fluxes is equal to the ratio of the concentrations,
as might be expected intuitively.

As an illustration of the application of theUssing flux ratio, suppose theNa+ current
is measured when the cell is immersed in a high Na+ solution and then compared to
the Na+ current measured in a low Na+ solution. The membrane potential and the
internal Na+ concentration are assumed to be the same in both cases. We let a prime
denote quantities measured in the high Na+ solution, and then

I′Na
INa

� J′out − J′in
Jout − Jin

. (3.12)

Since the internal concentrations are the same, it follows from (3.6) that Jout � J′out,
and from (3.5) we find J′in/Jin � [Na+]′e/[Na

+]e. Substituting these into (3.12) and using
the Ussing flux ratio, we find

I′Na
INa

� ([Na+]′e/[Na
+]e) exp[ (VNa−V)FRT

]− 1
exp[ (VNa−V)F

RT
]− 1

. (3.13)

Alternatively, this can be written as

I′Na
INa

� [Na+]i − [Na+]′e exp(
−VF
RT
)

[Na+]i − [Na+]e exp(−VFRT
)
. (3.14)

By measuring the current ratio as a function of membrane potential, the Na+ channel
can thus conveniently be tested for independence.

Althoughmany ion channels follow the independence principle approximately over
a range of ionic concentrations, most show deviations from independence when the
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ionic concentrations are sufficiently large. This hasmotivated the development ofmod-
els that show saturation at high ionic concentrations. For example, one could assume
that ion flow through the channel can be described by a barrier-type model, in which
the ion jumps from one binding site to another as it moves through the channel. If
there are only a limited number of binding sites available for ion passage through the
channel, and each binding site can bind only one ion, then as the ionic concentration
increases there are fewer binding sites available, and so the flux is not proportional to
the concentration. Equivalently, one could say that each channel has a single binding
site for ion transfer, but there are only a limited number of channels. However, in many
of these models the Ussing flux ratio is still obeyed, even though independence is not.
Hence, although any ion channel obeying the independence principle must also satisfy
the Ussing flux ratio, the converse is not true. We discuss saturating models later in
this chapter.

Another way in which channels show deviations from independence is in flux-
coupling. If ions can interact within a channel so that, for example, a group of ions
must move through the channel together, then the Ussing flux ratio is not satisfied. The
most common type of model used to describe such behavior is the so-called multi-ion
model, in which it is assumed that there are a number of binding sites within a single
channel and that the channel can bind multiple ions at the same time. The consequent
interactions between the ions in the channel can result in deviations from the Ussing
flux ratio. A more detailed consideration of multi-ion models is given later in this
chapter. However, it is instructive to consider how the Ussing flux ratio is modified by a
simple multi-ion channel mechanism in which the ions progress through the channel
in single file (Hodgkin and Keynes, 1955).

Suppose a membrane separates two solutions, the external one (on the right) con-
taining an ion S at concentration ce, and the internal one (on the left) at concentration
ci. To keep track of where each S ion has come from, all the S ions on the left are labeled
A, while those on the right are labeled B. Suppose also that the membrane contains
n binding sites and that S ions traverse the membrane by binding sequentially to the
binding sites and moving across in single file. For simplicity we assume that there are
no vacancies in the chain of binding sites. It follows that the possible configurations of
the chain of binding sites are [Ar,Bn−r], for r � 0, . . . , n, where [Ar,Bn−r] denotes the
configuration such that the r leftmost sites are occupied by A ions, while the rightmost
n − r sites are occupied by B ions. Notice that the only configuration that can result
in the transfer of an A ion to the right-hand side is [AnB0], i.e., if the chain of binding
sites is completely filled with A ions.

Now we let α denote the total rate at which S ions are transferred from left to right.
Since α denotes the total rate, irrespective of labeling, it does not take into account
whether an A ion or a B ion is moved out of the channel from left to right. For this
reason, α is not the same as the flux of labeled ions. Similarly, let β denote the total flux
of S ions, irrespective of labeling, from right to left. It follows that the rate at which
[ArBn−r] is converted to [Ar+1Bn−r−1] is α[ArBn−r], and the rate of the reverse conversion
is β[Ar+1Bn−r−1]. According to Hodgkin and Keynes, it is reasonable to assume that if
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there is a potential difference V across the membrane, then the total flux ratio obeys
the Ussing flux ratio,

α

β
� ce

ci
exp

(−VF
RT

)
. (3.15)

This assumption is justified by the fact that a flux of one ion involves the movement of
a single charge through the membrane (as in the independent case treated above) and
thus should have the same voltage dependence. We emphasize that α/β is not the flux
ratio of labeled ions, but the total flux ratio.

To obtain the flux ratio of labeled ions, notice that the rate at which A ions are
transferred to the right-hand side isα[AnB0], and the rate atwhichB ions are transferred
to the left hand side is β[A0Bn]. Thus, the flux ratio of labeled ions is

Jin

Jout
� α

β

[AnB0]
[A0Bn]

. (3.16)

At steady state there can be no net change in the distribution of configurations, so that

[Ar+1Bn−r−1]
[ArBn−r]

� α

β
. (3.17)

Thus,

Jin

Jout
� α

β

[AnB0]
[A0Bn]

�
(
α

β

)2 [An−1B1]
[A0Bn]

� · · · �
(
α

β

)n+1
, (3.18)

so that

Jin

Jout
�
[
ce

ci
exp

(−VF
RT

)]n+1
. (3.19)

A similar argument, taking into account the fact that occasional vacancies in the chain
arise when ions at the two ends dissociate and that these vacancies propagate through
the chain, gives

Jin

Jout
�
[
ce

ci
exp

(−VF
RT

)]n
. (3.20)

Experimental data confirm this theoretical prediction (although historically, the
theory was motivated by the experimental result, as is often the case). Hodgkin and
Keynes (1955) showed that flux ratios in the K+ channel of the Sepia giant axon could
be described by the Ussing flux ratio raised to the power 2.5. Their result, as presented
in modified form by Hille (1992), is shown in Fig. 3.2. Unidirectional K+ fluxes were
measured with radioactive K+, and the ratio of the outward to the inward flux was
plotted as a function of V − VK. The best-fit line on a semilogarithmic plot has a slope
of 2.5, which suggests that at least 2 K+ ions traverse the K+ channel simultaneously.
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Figure 3.2 K+ flux ratios as measured by Hodgkin and Keynes (1955), Fig. 7. Slightly modified
into modern conventions by Hille (1992), page 375. Ko is the external K+ concentration, and n′

is the flux-ratio exponent, denoted by n in (3.20). (Hille, 1992, Fig. 7, p. 375.)

3.3 Electrodiffusion Models

Most early work on ion channels was based on the theory of electrodiffusion. We saw
in Chapter 2 that the movement of ions in response to a concentration gradient and an
electric field is described by the Nernst–Planck equation,

J � −D
(
dc

dx
+ zF

RT
c
dφ

dx

)
, (3.21)

where J denotes the flux density, c is the concentration of the ion under consideration,
and φ is the electrical potential. If we make the simplifying assumption that the field
dφ/dx is constant through themembrane, then (3.21) can be solved to give theGoldman–
Hodgkin–Katz current and voltage equations (2.68) and (2.71). However, in general
there is no reason to believe that the potential has a constant gradient in themembrane.
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x=0 x=L

[S1
+] = [S2

-] = ci
[S1

+] = [S2
-] = ce

S1

S2

Inside Outside

φ (0) = V φ (L) = 0

cell membrane

Figure 3.3 Schematic diagram of the electrodiffusion model for current through an ionic chan-
nel. Each side of the channel is electrically neutral, and both ion types can diffuse through the
channel.

Ions moving through the channel affect the local electric field, and this local field in
turn affects ionic fluxes. Thus, to determine the electric field and consequent ionic
fluxes, one must solve a coupled problem.

3.3.1 Multi-ion Flux: The Poisson–Nernst–Planck Equations

Suppose we have two types of ions, S1 and S2, with concentrations c1 and c2, passing
through an ion channel, as shown schematically in Fig. 3.3. For conveniencewe assume
that the valence of the first ion is 1 and that of the second is −1. Then the potential in
the channel φ(x) must satisfy Poisson’s equation,

d2φ

dx2
� −q

ε
(c1 − c2), (3.22)

where q is the unit electric charge and ε is the dielectric constant of the channelmedium
(usually assumed to be an aqueous solution). The flux densities J1 and J2 of S1 and S2
satisfy the Nernst–Planck equation, and at steady state dJ1/dx and dJ2/dx must both
be zero to prevent any charge buildup within the channel. Hence, the steady-state flux
through the channel is described by (3.22) coupled with

J1 � −D1
(
dc1

dx
+ F

RT
c1
dφ

dx

)
, (3.23)

J2 � −D2
(
dc2

dx
− F

RT
c2
dφ

dx

)
, (3.24)

where J1 and J2 are constants. To complete the specification of the problem, it is neces-
sary to specify boundary conditions for c1, c2, and φ. We assume that the channel has
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length L, and that x � 0 denotes the left border, or inside, of the membrane. Then,

c1(0) � ci, c1(L) � ce,

c2(0) � ci, c2(L) � ce, (3.25)

φ(0) � V, φ(L) � 0.

Note that we have specified that the solutions on both sides of the membrane are
electrically neutral.V is the potential difference across themembrane, defined, as usual,
as the internal potential minus the external potential. While at first glance it might
appear that there are too many boundary conditions for the differential equations, this
is in fact not so, as the constants J1 and J2 are additional unknowns to be determined.

In general, it is not possible to obtain an exact solution to the Poisson–Nernst–
Planck (PNP) equations (3.22)–(3.25). However, some simplified cases can be solved
approximately. A great deal of work on the PNP equations has been done by Eisenberg
and his colleagues (Chen, Barcilon, and Eisenberg, 1992; Barcilon, 1992; Barcilon,
Chen, and Eisenberg, 1992; Chen and Eisenberg, 1993). Here we present simplified
versions of their models, ignoring, for example, the charge induced on the channel
wall by the presence of ions in the channel, and considering only the movement of
two ion types, rather than three, through the channel. Similar models have also been
discussed by Peskin (1991).

It is convenient first to nondimensionalize the PNP equations. We let x∗ � x/L,
φ∗ � φF/RT, v � VF/RT, c∗1 � c1/c̃, and similarly for c2, ci, and ce, where c̃ � ce + ci.
Substituting into (3.22)–(3.24) and dropping the stars, we find

−J̄1 � dc1

dx
+ c1

dφ

dx
, (3.26)

−J̄2 � dc2

dx
− c2

dφ

dx
, (3.27)

d2φ

dx2
� −λ2(c1 − c2), (3.28)

where λ2 � L2qFc̃/(εRT), J̄1 � J1L/(c̃D1), and similarly for J̄2. The boundary conditions
are

c1(0) � ci, c1(1)� ce,

c2(0) � ci, c2(1)� ce,

φ(0) � v, φ(1) � 0.

The short-channel or low concentration limit
If the channel is short or the ionic concentrations on either side of the membrane are
small, so that λ � 1, we can find an approximate solution to the PNP equations by
setting λ � 0. This gives

d2φ

dx2
� 0, (3.29)
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and thus

dφ

dx
� −v. (3.30)

Hence, λ ≈ 0 implies that the electric potential has a constant gradient in the mem-
brane, which is exactly the constant field assumption that was made in the derivation
of the GHK equations (Chapter 2). The equation for c1 is then

dc1

dx
− vc1 � −J̄1, (3.31)

and thus

c1 � J̄1

v
+ K1e

vx. (3.32)

From the boundary conditions c1(0) � ci, c1(1) � ce it follows that

J̄1 � v · ci − cee
−v

1− e−v
. (3.33)

In dimensional form, this is

I1 � FJ1 � D1

L

F2

RT
· V ·

(
ci − ce exp(−VFRT

)

1− exp(−VF
RT
)

)
, (3.34)

which is, as expected, the GHK current equation. Graphs of the concentration and
voltage profiles through the membrane are shown in Fig. 3.4. It is reassuring that the
widely used GHK equation for the ionic flux can be derived as a limiting case of a more
general model.

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0
x

φ

c1

Figure 3.4 Graphs of the concen-
tration and potential profiles for the
short-channel limit of the Poisson–
Nernst–Planck equations. Dimension-
less parameters were set arbitrarily at
ci � 50/550 � 0.091, ce � 500/550 �
0.909, v � 1. In this limit the electric
field is constant through the channel
(the potential has a constant slope),
the concentration profile is nonlinear,
and the GHK I–V curve is obtained.
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The long-channel limit
Another interesting limit is obtained by letting the length of the channel go to infinity.
If we let η � 1/λ denote a small parameter, the model equations are

−J̄1 � dc1

dx
+ c1

dφ

dx
, (3.35)

−J̄2 � dc2

dx
− c2

dφ

dx
, (3.36)

−η2 d
2φ

dx2
� (c1 − c2). (3.37)

Since there is a small parameter multiplying the highest derivative, this is a singular
perturbation problem. The solution obtained by setting η � 0 does not, in general,
satisfy all the boundary conditions, as the degree of the differential equation has been
reduced, resulting in an overdetermined system. In the present case, however, this
reduction of order is not a problem.

Setting η � 0 in (3.37) gives c1 � c2, which happens to satisfy both the left and right
boundary conditions. Thus, c1 and c2 are identically equal throughout the channel.
From (3.35) and (3.36) it follows that

d

dx
(c1 + c2) � −J̄1 − J̄2. (3.38)

Since both J̄1 and J̄2 are constants, it follows that dc1/dx is a constant, and hence, from
the boundary conditions,

c1 � c2 � ci + (ce − ci)x. (3.39)

We are now able to solve for φ. Subtracting (3.37) from (3.36) gives

2c1
dφ

dx
� 2J̃, (3.40)

where 2J̃ � J̄2 − J̄1, and hence

φ � J̃

ce − ci
ln[ci + (ce − ci)x]+ K, (3.41)

for some other constant K. Applying the boundary conditions φ(0) � v, φ(1) � 0 we
determine J̃ and K, with the result that

φ � − v

v1
ln
[
ci

ce
+
(
1− ci

ce

)
x

]
, (3.42)

where v1 � ln(ce/ci) is the dimensionless Nernst potential of ion S1. The flux density
of one of the ions, say S1, is obtained by substituting the expressions for c1 and φ into
(3.35) to get

J̄1 � ce − ci

v1
(v− v1), (3.43)
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c1

Figure 3.5 Graphs of the concen-
tration and potential profiles for the
long-channel limit of the Poisson–
Nernst–Planck equations. Dimension-
less parameters were set arbitrarily at
ci � 50/550 � 0.091, ce � 500/550 �
0.909, v � 1. In this limit the concen-
tration profile has a constant slope, the
potential profile is nonlinear, and the
linear I–V curve is obtained.

which is the linear I–V curve that we met previously. Graphs of the corresponding
concentration and voltage profiles through the channel are shown in Fig. 3.5.

In summary, by taking two different limits of the PNP equations we obtain either
the GHK I–V curve or a linear I–V curve. In the short-channel limit, φ has a constant
gradient through the membrane, but the concentration does not. In the long-channel
limit the reverse is true, with a constant gradient for the concentration through the
channel, but not for the potential. It is left as an exercise to prove that although the
GHK equation obeys the independence principle and the Ussing flux ratio, the linear
I–V curve obeys neither. Given the above derivation of the linear curve, this is not
surprising. A linear I–V curve is obtained when either the channel is very long or the
ionic concentrations on either side of the channel are very high. In either case, one
does not expect the movement of each ion through the channel to be independent of
other ions, and so one expects the independence principle to fail. Conversely, the GHK
equation is obtained in the limit of low ionic concentrations or short channels, in which
case the independent movement of ions is not unexpected.

3.4 Barrier Models

The second type of model that has been widely used to describe ion channels is based
on the assumption that the movement of an ion through the channel can be modeled
as the jumping of an ion over a discrete number of free-energy barriers (Eyring et al.,
1949; Woodbury, 1971; Läuger, 1973). It is assumed that the potential energy of an ion
passing through a channel is described by a potential energy profile of the general form
shown in Fig. 3.6. The peaks of the potential energy profile correspond to barriers that
impede the ion flow, while the local minima correspond to binding sites within the
channel.

To traverse the channel the ion must hop from one binding site to another. Accord-
ing to the theory of chemical reaction rates, the rate at which an ion jumps from one
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c0

c2

c3

c1

Inside Outside

∆G1

∆G-1

k0

k-1

k1

k-2

Figure 3.6 General potential energy profile for barrier models. The local minima correspond
to binding sites within the channel, and the local maxima are barriers that impede the ion flow.
An ion progresses through the channel by hopping over the barriers from one binding site to
another.

binding site to the next is an exponential function of the height of the potential energy
barrier that it must cross. Thus, in the notation of the diagram,

kj � κ exp
(−HGj
RT

)
, (3.44)

for some factor κ with units of 1/time. One of the most difficult questions in the use
of this expression is deciding on the precise form of the factor. According to Eyring
rate theory (as used in this context by Hille (1992), for example), κ � kT/h, where k is
Boltzmann’s constant, T is the temperature, and h is Planck’s constant. The derivation
of this expression for κ relies on the quantization of the energy levels of the ion in
some transition state as it binds to the channel binding sites. However, it is not clear
whether at room temperature energy quantization has an important effect on ionic
flows. Using methods from nonequilibrium statistical thermodynamics, an alternative
form of the factor has been derived by Kramers (1940), and discussions of this, and
other, alternatives may be found in McQuarrie (1967) and Laidler (1969). We do not
enter this debate here, as it is unnecessary for our purposes. All we require is some
factor, of plausible value, that can be used to fit the rate expressions to experimental
data.

For simplicity, we assume that each local maximum occurs halfway between the
local minima on each side. Barriers with this property are called symmetrical. An elec-
tric field in the channel also affects the rate constants. If the potential difference across
the cell membrane is positive (so that the inside is more positive than the outside), it
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is easier for positive ions to cross the barriers in the outward direction but more diffi-
cult for positive ions to enter the cell. Thus, the heights of the barriers in the outward
direction are reduced, while the heights in the inward direction are increased. If there
is a potential difference of HVj over the jth barrier, then

kj � κ exp
[
1
RT

(−HGj + zFHVj+1/2)
]
, (3.45)

k−j � κ exp
[
1
RT

(−HG−j − zFHVj/2)
]
. (3.46)

The factor 2 appears because the barriers are assumed to be symmetrical, so that the
maxima are lowered by zFHVj/2. A simple illustration of this is given in Fig. 3.7A and
B and is discussed in detail in the next section.

In addition to symmetry, the barriers are assumed to have another important prop-
erty, namely, that in the absence of an electric field the ends of the energy profile are at
the same height, and thus

n−1∑
j�0
HGj −

n∑
j�1
HG−j � 0. (3.47)

If this were not so, then in the absence of an electric field andwith equal concentrations
on either side of the membrane, there would be a nonzero flux through the membrane,
a situation that is clearly unphysiological.

A number of different models have been constructed along these general lines.
First, we consider the simplest type of barrier model, in which the ionic concentration
in the channel can become arbitrarily large, i.e., the channel does not saturate. This
is similar to the continuous models discussed above and can be thought of as a dis-
crete approximation to the constant fieldmodel. Because of this, nonsaturatingmodels
give the GHK I–V curve in the limit of a homogeneous membrane. We then discuss
saturating barrier models and multi-ion models. Before we do so, however, it is impor-
tant to note that although barrier models can provide good quantitative descriptions
of some experimental data, they are phenomenological. In other words, apart from the
agreement between theory and experiment, there is often no reason to suppose that the
potential energy barrier used to describe the channel corresponds in any way to phys-
ical properties of the channel. Thus, although their relative simplicity has led to their
widespread use, mechanistic interpretations of the models should be made only with
considerable caution. Of course, this does not imply that barrier models are inferior
to continuous models such as the constant field model or the Poisson–Nernst–Planck
equations, which suffer from their own disadvantages (Dani and Levitt, 1990).

3.4.1 Nonsaturating Barrier Models

In the simplest barriermodel (Eyring et al., 1949;Woodbury, 1971), the potential energy
barrier has the general form shown in Fig. 3.7A, and it is assumed that the movement
of an ion S over a barrier is independent of the ionic concentrations at the neighboring
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λ λ λ

Inside Outside∆G0

No electric field

λ

FV

With a potential difference
of V across the membrane (z =1)

Inside Outside

∆G0 - FV/(2n)

A

B

Figure 3.7 The potential energy diagram used in the nonsaturating model of Woodbury (1971).
There is an equal distance between the binding sites, and the barriers are symmetrical. A. In
the absence of an electric field the barrier height decreases linearly through the membrane.
B. The presence of a constant electric field skews the energy profile, bringing the outside end
down relative to the inside. This increases the rate at which positive ions traverse the channel
from inside to out and decreases their rate of entry.

barriers. This is equivalent to assuming that the concentration of S at any particular
binding site can be arbitrarily large.

The internal concentration of S is denoted by c0, while the external concentration
is denoted by cn. There are n− 1 binding sites (and thus n barriers) in the membrane,
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and the concentration of S at the jth binding site is denoted by cj. Note the slight change
in notation from above. Instead of using ce and ci to denote the external and internal
concentrations of S, we use cn and c0. This allows the labeling of the concentrations
on either side of the membrane to be consistent with the labeling of the concentra-
tions at the binding sites. There is an equal voltage drop across each barrier, and thus
the electrical distance between each binding site, denoted by λ, is the same. For con-
venience, we assume the stronger condition, that the physical distance between the
binding sites is the same also, which is equivalent to assuming a constant electric field
in the membrane. In the absence of an electric field, we assume that the heights of the
energy barriers decrease linearly through the membrane, as in Fig. 3.7, with

HGj � HG0 − jδG, (3.48)

for some constant increment δG. Finally, it is assumed that the flux from left to right, say,
across the jth barrier, is proportional to cj−1, and similarly for the flux in the opposite
direction. Thus, the flux over the jth barrier, J, is given by

J � λ(kj−1cj−1 − k−jcj). (3.49)

Note that the units of J are concentration × distance/time, or moles per unit area per
time, so J is a flux density. As usual, a flux from inside to outside (i.e., left to right) is
defined as a positive flux.

At steady state the flux over each barrier must be the same, in which case we get a
system of linear equations,

k0c0 − k−1c1 � k1c1 − k−2c2 � · · · � kn−1cn−1 − k−ncn � M, (3.50)

where M � J/λ is a constant. Hence

k0c0 � (k1 + k−1)c1 − k−2c2, (3.51)

k1c1 � (k2 + k−2)c2 − k−3c3, (3.52)

k2c2 � (k3 + k−3)c3 − k−4c4, (3.53)

...

Eventually, we need to determine J in terms of the concentrations on either side of the
membrane, c0 and cn. Solving (3.52) for c1 and substituting into (3.51) gives

k0c0 � c2k2

(
1+ k−1

k1
+ k−1k−2

k1k2

)
− c3k−3

(
1+ k−1

k1

)
, (3.54)

and then solving (3.53) for c2 and substituting into (3.54) gives

k0c0 � c3k3

(
1+ k−1

k1
+ k−1k−2

k1k2
+ k−1k−2k−3

k1k2k3

)
− c4k−4

(
1+ k−1

k1
+ k−1k−2

k1k2

)
. (3.55)

Repeating this process of sequential substitutions, and letting

φn � 1+ k−1
k1

+ k−1k−2
k1k2

+ · · · + k−1 · · · k−n
k1 · · · kn , (3.56)
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we find that

k0c0 � kn−1cn−1φn−1 − cnk−nφn−2. (3.57)

Since

cn−1 � M+ k−ncn
kn−1

, (3.58)

it follows that

k0c0 � φn−1(M+ k−ncn)− cnk−nφn−2, (3.59)

and hence

J � λM �
λk0

(
c0 − cn

k−1···k−n
k0···kn−1

)
1+ k−1

k1
+ k−1k−2

k1k2
+ · · · + k−1···k−(n−1)

k1···kn−1
. (3.60)

It remains to express the rate constants in terms of themembrane potential. If there
is a potential difference V across the membrane (as shown in Fig. 3.7B), the constant
electric field adds FzV/(2n) to the barrier whenmoving from right to left, and−FzV/(2n)
when moving in the opposite direction. Hence

HGj � HG0 − jδG− FzV

2n
, (3.61)

HG−j � HG0 − (j− 1)δG+ FzV

2n
. (3.62)

Now we use (3.44) to get

k−j
kj−1

� exp(−v/n), k−j
kj

� exp(−g− v/n), (3.63)

where g � δG/(RT) and v � FzV/(RT). Hence

J � k0λ(c0 − cne
−v)

1+ e−(g+v/n) + e−2(g+v/n) + · · · + e−(n−1)(g+v/n)
,

� k0λ(c0 − cne
−v)

e−(g+v/n) − 1
e−n(g+v/n) − 1 . (3.64)

As expected, (3.64) satisfies both the independence principle and the Ussing flux ratio.
Also, the flux is zero when v is the Nernst potential of the ion.

The homogeneous membrane simplification
One useful simplification of the nonsaturating barriermodel is obtained if it is assumed
that the membrane is homogeneous. We model a homogeneous membrane by setting
g � δG/(RT) � 0 and letting n → ∞. Thus, there is no increase in barrier height through
the membrane, and the number of barriers approaches infinity. In this limit, keeping
nλ � L fixed,

J � k00λ
2

L
· v · c0 − cne

−v

1− e−v
, (3.65)
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where k00 is the value of k0 at V � 0, L is the width of the membrane, and k00λ2 is the
diffusion coefficient of the ion over the first barrier in the absence of an electric field.

It follows that in the homogeneous membrane case,

J � DS

L
· v · c0 − cne

−v

1− e−v
,

� PS · v · c0 − cne
−v

1− e−v
, (3.66)

which is exactly the GHK current equation (2.67) derived previously.

3.4.2 Saturating Barrier Models: One-Ion Pores

If an ion channel satisfies the independence principle, the flux of S is proportional to [S],
even when [S] gets large. However, this is not usually found to be true experimentally.
It is more common for the flux to saturate as [S] increases, reaching some maximum
value as [S] gets large. This has motivated the development of models in which the flux
is not proportional to [S] but is a nonlinear, saturating, function of [S]. As we will see,
equations for such models are similar to those of enzyme kinetics.

The basic assumptions behind saturating barrier models are that to pass through
the channel, ions must bind to binding sites in the channel, but that each binding site
can hold only a single ion (Läuger, 1973; Hille, 1992). Hence, if all the binding sites are
full, an increase in ionic concentration does not increase the ionic flux—the channel
is saturated. Saturating barrier models can be further subdivided into one-ion pore
models, in which each channel can bind only a single ion at any one time, and multi-
ion pore models, in which each channel can bind multiple ions simultaneously. The
theory of one-ion pores is considerably simpler than that of multi-ion pores, and so we
discuss those models first.

The simplest one-ion saturating model
We begin by considering the simplest one-ion pore model, with a single binding site. If
we let Se denote the ion outside, Si the ion inside, and X the binding site, the passage
of an ion through the channel can be described by the kinetic scheme

X + Si
k0

−→←−
k−1

XS
k1

−→←−
k−2

X + Se. (3.67)

Essentially, the binding site acts like an enzyme that transfers the ion from one side of
the membrane to the other, such as was encountered in Chapter 2 for the transport of
glucose across a membrane. Following the notation of the previous section, we let c0
denote [Si] and c2 denote [Se]. However, instead of using c1 to denote the concentration
of S at the binding site, it is more convenient to let c1 denote the probability that the
binding site is occupied. (In a population of channels, c1 denotes the proportion of
channels that have an occupied binding site.) Then, at steady state,

k0c0x− k−1c1 � k1c1 − k−2c2x, (3.68)
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where x denotes the probability that the binding site is empty. Note that (3.68) is sim-
ilar to the corresponding equation for the nonsaturating pore, (3.50), with the only
difference that x appears in the saturating model. In addition, we have a conservation
equation for x,

x+ c1 � 1. (3.69)

Solution of (3.68) and (3.69) gives the flux J as

J � k0c0x− k−1c1 � k0k1c0 − k−1k−2c2
k0c0 + k−2c2 + k−1 + k1

. (3.70)

It is important to note that J, as defined by (3.70), does not have the same units (con-
centration × distance/time) as we used previously, but instead has units of number of
ions crossing themembrane per unit time. The corresponding transmembrane current,
I, is given by I � zqJ, where q is the unit charge, and has the usual units of number of
charges crossing the membrane per unit time. A plot of J as a function of c0 is shown in
Fig. 3.8. When c0 is small, J is approximately a linear function of c0, but as c0 increases,
J saturates at the maximum value k1.

We nowuse (3.44) to express the rate constants in terms of themembrane potential.
As before, we assume that the localmaxima of the energy profile occurmidway between
the local minima; i.e., we assume that the barriers are symmetrical. However, we no
longer assume that the barriers are equally spaced through the channel. If the local
minimum occurs at an electrical distance δ from the left-hand side, it follows that

k0 � κ exp
[
1
RT

(−HG0 + δFV/2)

]
, (3.71)
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Figure 3.8 Plot of J against c0 for the simplest saturating model with one binding site. When c0

is small, the flux is approximately a linear function of c0, but as c0 increases, the flux saturates
to a maximum value.
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k1 � κ exp
[
1
RT

(−HG1 + (1− δ)FV/2)

]
, (3.72)

k−1 � κ exp
[
1
RT

(−HG−1 − δFV/2)

]
, (3.73)

k−2 � κ exp
[
1
RT

(−HG−2 − (1− δ)FV/2)

]
. (3.74)

Because δ denotes an electrical, not a physical, distance, it is not necessary to assume
that the electric field in the membrane is constant, only that there is a drop of δV
over the first barrier and (1− δ)V over the second. In general, the energy profile of any
particular channel is unknown. However, the number and positions of the binding sites
and the values of the local maxima andminima can, in principle at least, be determined
by fitting to experimental data. We consider an example of this procedure (for a slightly
more complicated model) below.

The Ussing flux ratio
Earlier in this chapter we stated that it is possible for a model to obey the Ussing flux
ratio but not the independence principle. Single-ion saturatingmodels provide a simple
example of this. First, note that they cannot obey the independence principle, since the
flux is not linearly proportional to the ionic concentration. This nonlinear saturation
effect is illustrated in Fig. 3.8.

To see that the model obeys the Ussing flux ratio, it is necessary to set up the model
in a slightly different form. Suppose we have two isotopes, S and S̄, similar enough so
that they have identical energy profiles in the channel. Then, we suppose that a channel
has only S on the left-hand side and only S̄ on the right. We let c denote [S] and c̄ denote
[S̄]. Since S and S̄ have identical energy profiles in the channel, the rate constants for
the passage of S̄ through the channel are the same as those for S. From the kinetic
schemes for S and S̄ we get

k0c0x− k−1c1 � k1c1 − k−2c2x � JS, (3.75)

k0c̄0x− k−1c̄1 � k1c̄1 − k−2c̄2x � JS̄, (3.76)

but here the conservation equation for x is

x+ c̄1 + c1 � 1. (3.77)

To calculate the individual fluxes of S and S̄ it is necessary to eliminate x from (3.75)
and (3.76) using the conservation equation (3.77). However, to calculate the flux ratio
this is not necessary. Solving (3.75) for JS in terms of x, c0, and c2, we find

JS � x



k0c0 − k−1k−2

k1
c2

1+ k−1/k1


 , (3.78)
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and similarly,

JS̄ � x



k0c̄0 − k−1k−2

k1
c̄2

1+ k−1/k1


 . (3.79)

The variable x cancels when we calculate the flux ratio, and so we do not need to use
the conservation equation. If S is present only on the left-hand side and S̄ only on the
right, we then have c2 � 0 and c̄0 � 0, in which case

JS

JS̄
� − k0k1

k−1k−2
· c0
c̄2
. (3.80)

The minus sign on the right-hand side appears because the fluxes are in different direc-
tions. Nowwe substitute for the rate constants, (3.71) to (3.74), and use the fact that the
ends of the energy profile are at the same height (and thusHG0+HG1−HG−1−HG−2 �
0) to find ∣∣∣∣JSJS̄

∣∣∣∣ � exp
(
VF

RT

)
· c0
c̄2
, (3.81)

which is the Ussing flux ratio, as proposed.

Multiple binding sites
When there are multiple binding sites within the channel, the analysis is essentially the
same as the simpler case discussed above, but the details are more complicated. When
there are n barriers in the membrane (and thus n − 1 binding sites), the steady-state
equations are

k0c0x− k−1c1 � k1c1 − k−2c2 � · · · � kn−1cn−1 − k−ncnx � J, (3.82)

where x is the probability that all of the binding sites are empty and cj is the probability
that the ion is bound to the jth binding site. Because the channel must be in either state
x or one of the states c1, . . . , cn−1 (since there is only one ion in the channel at a time),
it follows that

x � 1−
n−1∑
i�1

ci. (3.83)

For convenience we define

πj � k−1 · · · k−j
k1 · · · kj , π0 � 1, (3.84)

φj �
j∑
i�0

πi. (3.85)
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Note that this definition for φj is the same as that given in (3.56). It is left as an exercise
to show that

J � k0c0 − k−ncnπn−1
φn−1 + βk0c0 + k−ncn(αφn−1 − βφn−2)

, (3.86)

where

α �
n−1∑
j�1

φn−2 − φj−1
kjπj

, (3.87)

β �
n−1∑
j�1

φn−1 − φj−1
kjπj

. (3.88)

Equation (3.86) does not satisfy the independence principle, but it does satisfy the
Ussing flux ratio. However, the details are left as an exercise (Exercise 5).

A model for sodium channels
Saturable one-ion barrier models have been used by a large number of authors to
describe ion channels that show deviations from the independence principle (see, for
example, Hille, 1975; Ciani and Ribalet, 1988; Robello et al., 1987). Here we focus our
attention on the model of Hille (1975).

An example of Hille’s experimental results is given in Fig. 3.9. A frog myelinated
nerve was voltage clamped, held at −80 mV, and then depolarized in brief steps. The
peak of the Na+ current is plotted as a function of the voltage. If the Na+ channels

Figure 3.9 Peak current plotted against voltage, for a range of external Na+ concentrations
(given in mM in the legend). For the model calculations, the internal Na+ concentration was
assumed to be 11.2 mM. A: The smooth curves are the predictions from the independence
relation. B: the smooth curves are the predictions from the Hille four-barrier model, showing
saturation of the flux at high Na+ concentrations. (Hille, 1975, Fig. 5.)
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Figure 3.10 Schematic diagram of the potential energy profile of the Hille four-barrier model
of the Na+ channel.

obeyed the independence principle, the resultant currents would then be predicted by
(3.14). Thus, if the external Na+ concentration is changed from [Na+]e to [Na+]′e while
keeping the same internal [Na+]i, we expect

I′Na
INa

� [Na+]i − [Na+]′e exp(
−VF
RT
)

[Na+]i − [Na+]e exp(−VFRT
)
. (3.89)

The smooth curves in Fig. 3.9A are drawn from this relation, using the curve for
[Na+]e � 14.5 mM as a reference curve. It is necessary to use one of the curves as
a reference curve, because (3.89) determines only the ratio of the currents, not their
absolute values. Clearly, the curves predicted from the independence principle agree
with the data at low Na+ concentrations, but do not agree with the data at high [Na+].
In the latter case the observed Na+ currents are smaller than predicted, suggesting that
the Na+ channel is saturated.

To explain the observed deviation from independence, Hille proposed a 4-barrier,
3 binding site model, sketched schematically in Fig. 3.10. As usual, each rate constant
is described in terms of the free-energy profile and the voltage drop across the barrier,
as in (3.71)–(3.74). For example,

k0 � κ exp
[
1
RT

(−HG0 + δ1FV/2)
]
, (3.90)

k1 � κ exp
[
1
RT

(−HG1 + δ2FV/2)
]
, (3.91)
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Table 3.1 Standard parameter set for the Hille model of the Na+ channel (Hille, 1975). The &Gi

and &G−i are in units of RT . Note that
∑4

i�1(&Gi−1 − &G−i ) � 0, since the ends of the energy
profile are at the same level, arbitrarily set to be G � 0. Also,

∑4
i�1 δi � 1, since δi represents

the fraction of the total voltage drop over the i th barrier. To determine these parameters, it was
assumed that κ � kT/h, where k is Boltzmann’s constant, and h is Planck’s constant.

&G0 � 7 &G−1 � 6.5 δ1 � 0.25

&G1 � 6.5 &G−2 � 6.5 δ2 � 0.25

&G2 � 8.5 &G−3 � 10 δ3 � 0.23

&G3 � 7 &G−4 � 6 δ4 � 0.27

k−1 � κ exp
[
1
RT

(−HG−1 − δ1FV/2)
]
, (3.92)

k−2 � κ exp
[
1
RT

(−HG−2 − δ2FV/2)
]
, (3.93)

and similarly for the other rate constants. The model is completely specified by the
parameters HGi, HG−i, and δi. All but two of these parameters were fixed at reasonable
values, and the values of HG3 and HG−3 were varied to obtain agreement with experi-
mental data. The standard parameter set used to plot the curves in Figs. 3.9B and 3.11
is given in Table 3.1.

With these parameters, the channel flux and current ratios are calculated using
the methods of the previous two sections. Plotting the current ratio against the voltage
gives the smooth curves shown in Fig. 3.9B. Clearly, the saturating model shows better
agreement with the experimental data at high [Na+].

A typical I–V curve of the model with the standard parameter set is shown in Fig.
3.11. A linear I–V curve and the GHK current equation are also given for the sake of
comparison. The I–V curve of the Hille model has characteristics reminiscent of both
the linear and the GHK curves. At large negative voltages the Hille model is similar to
the GHK curve, but at large positive voltages it is more similar to the linear I–V curve.
All three curves have the same reversal potential, as indeed they must, since the Nernst
potential is model-independent.

3.4.3 Saturating Barrier Models: Multi-Ion Pores

We showed above that single-ion models obey the Ussing flux ratio, even though they
do not obey the independence principle. This means that to model the type of channel
described in Fig. 3.2 it is necessary to use models that show flux coupling as predicted
by Hodgkin and Keynes (1955). Such flux coupling arises in models in which more
than one ion can be in the channel at any one time. Although the equations for such
multi-ion models are essentially the same as the equations for the single-ion models
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Figure 3.11 The I–V curve of the Hille model (open circles), compared to a linear I–V curve
(labeled Ohm), and the GHK I–V curve. The current scale marks correspond to 4–5 pA per
channel. (Hille, 1975, Fig. 4.)

described in the previous section, the analysis is complicated considerably by the fact
that there are manymore possible channel states. Hence, numerical techniques are the
most efficient for studying such models. A great deal has been written about multi-ion
models (e.g., Hille and Schwartz, 1978; Begenisich and Cahalan, 1980; Schumaker and
MacKinnon, 1990; Urban and Hladky, 1979; Kohler and Heckmann, 1979). We do not
have space for a detailed discussion of the properties of these models, but present only
a brief discussion of the simplest model. Hille and Schwarz (1978) and Hille (1992)
give more detailed discussions.

Multi-ionmodels are based on assumptions similar to one-ionmodels. It is assumed
that the passage of an ion through the channel can be described as the jumping of an ion
over energy barriers, from one binding site to another. In one-ion models each binding
site can either have an ion bound or not, and thus a channel with n binding sites can
be in one of n independent states (i.e., the ion can be bound to any one of the binding
sites). Hence, the steady-state ion distribution is found by solving a system of n linear
equations, treating the concentrations on either side of the membrane as known. If
more than one ion can be present simultaneously in the channel, the situation is more
complicated. Each binding site can be in one of two states: binding an ion or empty.
Therefore, a channel with n binding sites can be in any of 2n states (at least; more states
are possible if there is more than one ion type passing through the channel), and the
steady-state probability distribution must be found by solving a large system of linear
equations.

The simplest possiblemulti-ionmodel has three barriers and two binding sites, and
so the channel can be in one of 4 possible states (Fig. 3.12). Arbitrary movements from
one state to another are not possible. For example, the state OO (where both binding
sites are empty) can change to OS or SO but cannot change to SS in a single step,
as this would require two ions entering the channel simultaneously. We number the
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Figure 3.12 State diagram for a multi-ion barrier
model with two binding sites and a single ion.

states as in Fig. 3.12 and let kij denote the rate of conversion of state i to state j. Also,
let Pj denote the probability that the channel is in the jth state, and let ce and ci denote
the external and internal ion concentrations, respectively. Then, the equations for the
probabilities follow from the law of mass action; they are

dP1

dt
� −(k12 + k14)P1 + k21ceP2 + k41ciP4, (3.94)

dP2

dt
� −(k21ce + k23 + k24)P2 + k12P1 + cik32P3 + k42P4, (3.95)

dP3

dt
� −(cik32 + cek34)P3 + k43P4 + k23P2, (3.96)

dP4

dt
� −(k41ci + k42 + k43)P4 + k14P1 + k24P2 + cek34P3. (3.97)

The probabilities must also satisfy the conservation equation

4∑
i�1

Pi � 1. (3.98)

Using the conservation equation in place of the equation for P4, the steady-state
probability distribution is given by the linear system


−k12 − k14 k21 0 k41

k12 −k21 − k23 − k24 cek32 k42

0 k23 −cek32 − cik34 k43

1 1 1 1






P1

P2

P3

P4


 �



0

0

0

1


 . (3.99)

Since each rate constant is determined as a function of the voltage in the same way
as one-ion models (as in, for example, (3.90)–(3.93)), solution of (3.98) gives each P
as a function of voltage and the ionic concentrations on each side of the membrane.
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Finally, the membrane fluxes are calculated as the net rate of ions crossing any one
barrier, and so, choosing the middle barrier arbitrarily, we have

J � P2k24 − P4k42. (3.100)

Although it is possible to solve such linear systems exactly (particularly with the
help of symbolic manipulators such as Maple or Mathematica), it is often as useful to
solve the equations numerically for a given energy profile. It is left as an exercise to
show that the Ussing flux ratio is not obeyed by a multi-ion model with two binding
sites and to compare the I–V curves of multi-ion and one-ion models.

3.4.4 Protein Ion Exchangers

We are now ready to examine the effect that the membrane potential has on ion ex-
changers. In Chapter 2 it was suggested that a protein ion exchanger could be modeled
by the reaction mechanism

Si + Ci
k+
−→←−
k−

Pi
k
p
+−→←−
k
p
−

Pe
k−
−→←−
k+

Se + Ce, (3.101)

Ci
kc+−→←−
kc−

Ce. (3.102)

where C is the carrier protein, P is the complex of carrier protein and the ion to be
transported. Subscripts e and i denote extracellular and intracellular concentrations,
respectively.

A conformational change of the protein requires that a free-energy barrier be
crossed. Thus,

kα+ � κ exp
[
1
RT

(−HG+ + zαFV/2)
]
, (3.103)

kα− � κ exp
[
1
RT

(−HG− − zαFV/2)
]
, (3.104)

where V is the membrane potential, the superscript α can take on values p or c, and
zc and zp are the charges on the protein and the complexed protein, respectively. Since
the transported quantity is an ion, zp � zc + z, where z is the charge on the ion.

The analysis of this reaction is identical to that of a uniport given in Chapter 2,
except that here we do not assume that the rates kp± and kc± are identical. The result of
the calculation is that the flux of the ion through the port is given by

J � k+k−C0
k
p
−kc+[Se]− kc−k

p
+[Si]

[Si][Se]Kei + [Se]Ke + [Si]Ki + K
, (3.105)

where C0 is the total amount of the carrier protein, Kei � k2+(k
p
− + kp+), Ke � k+(k

p
−(kc+ +

k−)+kc+(kp++k−)), Ki � k+(kc−(k
p
−+k−)+kp+(kc−+k−)), andK � k−(kc−+kc+)(k−+kp++kp−).

The important feature of this expression is that it is voltage dependent since the rates
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of conformational change are voltage-dependent. Specifically, the flux is inward (J > 0)
whenever

[Se]
[Si]

> exp
(
zVF

RT

)
. (3.106)

Notice that if z > 0 and if the membrane potential V is negative, then it is possible to
drive ions against their gradient. The term exp( zVF

RT
) is the driving force of the port.

To apply these ideas to a specific example, consider the sodium–calcium exchanger.
This exchanger exchanges three ions of sodium for one of calcium, a net current with
z � 1. We find the flux of the exchanger by replacing Se in (3.105) with [Na+]3e [Ca

2+]i
and Si with [Na+]3i [Ca

2+]e. Notice that there is a positive flux (sodium moving inward
and calcium moving outward) whenever

[Ca2+]i
[Ca2+]e

>

(
[Na+]i
[Na+]e

)3
exp

(
VF

RT

)
. (3.107)

For a cell with a resting potential of −70 mV, extracellular sodium of 440 mM, and
intracellular sodiumof 50mM, this pump extracts calcium, provided that [Ca

2+]i
[Ca2+]e

> 10−4.
The advantage of having a net current with z � 1 is that the ability of the exchanger to
extract calcium is improved by a factor of about 15 compared to an exchanger with no
net current flow.

3.5 Channel Gating

So far in this chapter we have discussed how the current through a single open channel
depends on the membrane potential and the ionic concentrations on either side of
the membrane. However, it is probably of equally great interest to determine how
ionic channels open and close in response to voltage. As we will see in Chapter 4,
the opening and closing of ionic channels in response to changes in the membrane
potential is the basis for electrical excitability and is thus of fundamental significance
in neurophysiology.

Recall that there is an important difference between the instantaneous and steady-
state I–V curves. In general, the current through a population of channels is the product
of two terms,

I � g(V, t)φ(V), (3.108)

where φ(V) is the I–V curve of a single open channel and g(V, t) is the proportion of
open channels in the population. In the previous sections we discussed electrodiffusion
and barrier models for φ(V); in this section we discuss models for the dependence of g
on voltage and time.

Consider, for example, the curves in Fig. 3.13, which show typical responses of
populations of Na+ and K+ channels. When the voltage is stepped from −65 mV to
−9 mV, and held fixed at the new level, the K+ conductance (gK) slowly increases to a
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Figure 3.13 Na+ and K+ conductances as a function of time after a step change in voltage
from −65 mV to −9 mV. The dashed line shows how after repolarization gNa recovers quickly,
and gK recovers more slowly. (Hille, 1992, Fig. 11, p. 40.)

new level, while the Na+ conductance (gNa) first increases and then decreases. From
this data we can draw the following conclusions. First, as the voltage increases, the
proportion of open K+ channels increases. Second, although the proportion of open
Na+ channels initially increases, a second process is significant at longer times, as the
Na+ channel moves to an inactivated state. Thus, Na+ channels first activate and then
inactivate.

3.5.1 A Two-State K+ Channel

The simplest model for the K+ channel assumes that the channel can exist in either a
closed state, C, or an open state, O, and that the rate of conversion from one state to
another is dependent on the voltage. Thus,

C
α(V)

−→←−
β(V)

O. (3.109)

Letting g denote the proportion of channels in the open state, we can write the
differential equation for the rate of change of g as

dg

dt
� α(V)(1− g)− β(V)g, (3.110)

where we have used the fact that because channels are conserved, the proportion of
closed channels is 1−g. Under voltage-clamp conditions (i.e., where the voltage is held
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fixed, as in Fig. 3.13), α and β are constants, and thus we can readily solve for g as a
function of time. It is often convenient to write (3.110) as

τg(V)
dg

dt
� g∞(V)− g, (3.111)

where g∞(V) � α/(α+ β) is the steady-state value of g, and τg(V) � 1/(α+ β) is the time
constant of approach to the steady state. From experimental data, such as that shown
in Fig. 3.13, one can obtain values for g∞ and τg, and thus α and β can be unambiguously
determined.

3.5.2 Multiple Subunits

An important generalization of the two-state model occurs when the channel is as-
sumed to consist of multiple identical subunits, each of which can be in either the
closed or open state. For example, suppose that the channel consists of two identical
subunits, each of which can be closed or open. Then, the channel can take any of four
possible states, S00,S10,S01, or S11, where the subscripts denote the different subunits,
with 1 and 0 denoting open and closed subunits, respectively. A general model for this
channel involves three differential equations (although there is a differential equation
for each of the four variables, one equation is superfluous because of the conservation
equation S00 + S10 + S01 + S11 � 1), but we can simplify the model by grouping the
channel states with the same number of closed and open subunits. For example, be-
cause the subunits are identical, there should be no difference between S10 and S01,
and thus they are amalgamated into a single variable.

So, we let Si denote the group of channels with exactly i open subunits. Then,
conversions between channel groups are governed by the reaction scheme

S0
2α

−→←−
β

S1
α

−→←−
2β

S2. (3.112)

The corresponding differential equations are

dx0

dt
� βx1 − 2αx0, (3.113)

dx2

dt
� αx1 − 2βx2, (3.114)

where xi denotes the proportion of channels in state Si, and x0 + x1 + x2 � 1. We make
the change of variables x2 � n2, where n satisfies the differential equation

dn

dt
� α(1− n)− βn. (3.115)

A simple substitution then shows that (3.113) and (3.114) are satisfied by x0 � (1− n)2
and x1 � 2n(1 − n). Thus, (3.113) and (3.114) are equivalent to x0 � (1 − n)2, x1 �
2n(1− n), x2 � n2, where n satisfies (3.115).
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In fact, we can derive a stronger result. We let

x0 � (1− n)2 + y0, (3.116)

x2 � n2 + y2, (3.117)

so that of necessity, x1 � 2n(1− n)− y0 − y2. It follows that

dy0

dt
� −2αy0 − β(y0 + y2), (3.118)

dy2

dt
� −α(y0 + y2)− 2βy2. (3.119)

This is a linear system of equations with eigenvalues −(α+ β),−2(α+ β), and so y0, y2
go exponentially to zero. This means that x0 � (1 − n)2, x2 � n2 is an invariant stable
manifold for the original system of equations; the solutions cannot leave this manifold,
and with arbitrary initial data, the flow approaches this manifold exponentially. Notice
that this is a stable invariant manifold even if α and β are functions of time (so they
can depend on voltage or other concentrations).

This argument generalizes to the case of k identical independent binding siteswhere
the invariant manifold for the flow is the binomial distribution with probability n sat-
isfying (3.115) (see Exercise 16). Thus, the channel conductance is proportional to nk,
where n satisfies the simple equation (3.115). This multiple subunit model for chan-
nel gating provides the basis for the model of excitability that we examine in the next
chapter.

3.5.3 The Sodium Channel

A more complex model is needed to explain the behavior of the Na+ channel, which
both activates and inactivates. The simplest approach is to extend the above analysis to
the case of multiple subunits of two different types, m and h, say, where each subunit
can be either closed or open. To illustrate, we assume that the channel has one h subunit
and twom subunits. The reaction diagram of such a channel is shown in Fig. 3.14. We
let Sij denote the channel with i open m subunits and j open h subunits, and we let xij
denote the fraction of channels in state Sij. As above, a simple substitution shows that
the reaction scheme is equivalent to

x21 � m2h, (3.120)

dm

dt
� α(1−m)− βm, (3.121)

dh

dt
� γ(1− h)− δh, (3.122)

where the other variables are given by x00 � (1 −m)2(1 − h), x10 � 2m(1 −m)(1 − h),
x20 � m2(1 − h), x01 � (1 −m)2h, and x11 � 2m(1 −m)h. Furthermore, the invariant
manifold is again stable. A model of this type was used by Hodgkin and Huxley in their
model of the nerve axon, which is discussed in detail in Chapter 4.
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Figure 3.14 Diagram of the possible states in a
model of the Na+ channel.
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Figure 3.15 A: Schematic diagram of the states of the Na+ channel. C, O, and I denote the
closed, open, and inactivated states, respectively. B: Time-independent transition probability
diagram.

In an alternate model of the Na+ channel (Aldrich et al., 1983; Peskin, 1991), it
is assumed that the Na+ channel can exist in three states, closed (C), open (O), or
inactivated (I), and that once the channel is inactivated, it cannot return to either the
closed or the open state (Fig. 3.15A). Transitions between states are described by

C
α

−→←−
β

O, O
γ−→ I, C

δ−→ I. (3.123)

Thus, the state I is absorbing. While this is clearly not true in general, it is a reasonable
approximation at high depolarizations. As before, we let g denote the proportion of
open channels and let c denote the proportion of closed channels. Then,

dc

dt
� −(α+ δ)c+ βg, (3.124)

dg

dt
� αc− (β + γ)g, (3.125)

where as before, we have used the conservation of channels to eliminate the proportion
of channels in the inactivated state. Initial conditions are c(0) � 1, g(0) � 0, i.e., all the
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channels are initially closed. By differentiating the equation for s we eliminate c to get

d2g

dt2
+ (α+ β + γ + δ)

dg

dt
+ [(α+ δ)(β + γ)− αβ]g � 0, (3.126)

which now has the initial conditions g(0) � 0, g′(0) � α. This can be solved directly to
give

g � a(eλ1t − eλ2t), (3.127)

where λ2 < λ1 < 0 are the roots of

λ2 + (α+ β + γ + δ)λ+ (α+ δ)(β + γ)− αβ � 0, (3.128)

and where

α � a(λ1 − λ2) > 0. (3.129)

As in the simple two-statemodel, a, λ1, and λ2 can be determined from experimental
data. However, the rate constants cannot be determined uniquely. For since λ1 and λ2
are the roots of (3.128), it follows that

α+ β + γ + δ � −λ1 − λ2, (3.130)

(α+ δ)(β + γ)− αβ � λ1λ2. (3.131)

Here we have only three equations for the four unknowns, α, β, γ, and δ, so the sys-
tem is underdetermined (see Exercise 18). This problem cannot be resolved using the
macroscopic data that has been discussed so far, but requires data collected from a
single channel, as described in the next section.

Single-channel recordings
Since the late 1970s, the development of patch-clamp recording techniques has allowed
the measurement of ionic current through a small piece of cell membrane, containing
only a few, or even a single, ionic channel (Hamill et al., 1981; Sakmann and Neher,
1983; Neher and Sakmann received the 1991 Nobel Prize in physiology for their devel-
opment of the patch-clamp technique). An example of an experimental record is given
in Fig. 3.16. The current through an individual channel is stochastic (panel A) and can-
not be predicted as a deterministic process. Nevertheless, the ensemble average over
many experiments (panel B) is deterministic and reproduces the same properties that
are seen in the macroscopic measurements of Fig. 3.13. However, the single-channel
recordings contain more information than does the ensemble average.

To describe a channel with n possible states (open, closed, inactivated, etc.), we
introduce a stochastic variable S(t) ∈ 1,2, . . . , n such that S(t) � i if the channel is in
state i at time t. Further, if kij (independent of time) is the rate constant for transitions
from state i to state j, then the probability that the channel changes from state i to state
j in the time interval (t, t+ dt) is kijdt. In more condensed notation we write

P[S(t+ dt) � j|S(t) � i] � kijdt. (3.132)
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Figure 3.16 A: Na+ currents from a single channel (or possibly two in the first trace) following a
voltage step from −80 mV to −40 mV. B: Average open probability of the Na+ channel, obtained
by averaging over many traces of the type shown in A. (Hille, 1992, Fig. 6, p. 68.)

Note that this is valid only approximately and for small dt, since for large dt and kij
fixed, this probability will exceed 1. Here, P[x|y] is a conditional probability, meaning
the probability of x given y. Also, the probability that the channel does not change state
in the time interval (t, t+ dt) is given by

P[S(t+ dt) � i|S(t) � i] � 1− Kidt, (3.133)

where Ki �
∑n

j�1,j ��i kij.
We now calculate the probability that the channel stays in state i for time t. Let

Mi(t) be the logical random variable {S(τ) � i,0 < τ < t}. If the interval (0, t) is divided
into m subintervals, each of length t/m, then the channel stays in state i only if it does
not change state during any of the subintervals. Therefore,

P[Mi(t)|S(0) � i] �
(
1− Kit

m

)m
. (3.134)

Taking the limit m → ∞, we find
P[Mi(t)|S(0) � i] � e−Kit. (3.135)
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To apply this theory to the determination of channel kinetics, we consider the prob-
ability diagram for the channel states (Fig. 3.15B).HereAdenotes the time-independent
probability that a channel in the closed state moves to the open state (rather than to
the inactivated state), and B denotes the probability that a channel in the open state
moves to the closed state. Comparing Fig. 3.15A with Fig. 3.15B, we see that

A � α

α+ δ
, B � β

β + γ
. (3.136)

The probability 1 − A is easily determined experimentally, as it is the probability that
a channel in the closed state inactivates without ever opening. Thus, 1 − A can be
estimated by the proportion of experimental records in which no current is observed,
even after the depolarizing stimulus was maintained for a long time.

Now let T denote the time to first opening of the channel, often called the latency
of the channel. T is easily measured experimentally. Then,

P[T > t] � P[First transition is to state I]

+ P[First transition is to state O and T > t]

� 1− A+ P[the transition is to state O] · P[no transitions for time t]
� 1− A+ A · e−(α+δ)t. (3.137)

Thus, P[T > t] is a decreasing exponential, and so 1 − A and α + δ can be determined
by fitting an exponential to the experimental measurements of P[T > t]. Hence, α and
δ are unambiguously determined from the latency of the channel.

To determine the remaining two rate constants, let N be the number of times the
channel opens before it finally inactivates and determine the probability distribution
for N. Clearly, P[N � 0] � 1− A. Furthermore,

P[N � k] � P[N � k and channel enters I from O]

+ P[N � k and channel enters I from C]

� AkBk−1(1− B)+ AkBk(1− A)

� (AB)k
(
1− AB

B

)
. (3.138)

Since A can be determined from the latency, B can be determined from an experimental
plot of P[N � k] vs. k. Finally, the distribution of open times is given by exp[−(β+ γ)t],
and so β + γ can be determined from the open time distribution of the channel. This
completes the characterization of the channel rate constants.

Since the work of Hodgkin and Huxley (described in Chapter 4), the traditional
view of a Na+ channel has been that it activates quickly and inactivates slowly. Ac-
cording to this view, the decreasing portion of the gNa curve in Fig. 3.13 is due entirely
to inactivation of the channel. However, single-channel analysis has shown that this
interpretation of macroscopic data is not always correct. It turns out that the rate of
inactivation of somemammalian Na+ channels is faster than the rate of activation. For
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example, Aldrich et al. (1983) found α � 1/ms, β � 0.4/ms, γ � 1.6/ms and δ � 1/ms at
V � 0 for channels in a neuroblastoma cell line and a pituitary cell line. Although this
reversal of activation and inactivation rates is not correct for all Na+ channels in all
species, the result does overturn some traditional ideas of how Na+ channels work.

3.5.4 Drugs and Toxins

Many drugs act by blocking a specific ion channel. There are numerous specific chan-
nel blockers, such as sodium channel blockers, potassium channel blockers, calcium
channel blockers, and so on. In fact, the discovery of site-specific and channel-specific
blockers has been of tremendous benefit to the experimental study of ion channels. Ex-
amples of important channel blockers include verapamil (calcium-channel blocker),
quinidine, sotolol, nicotine, DDT, various barbiturates (potassium-channel blockers),
tetrodotoxin (TTX, the primary ingredient of puffer fish toxin), and scorpion toxins
(sodium-channel blockers).

To include the effects of a drug or toxin like TTX in amodel of a sodium channel is a
relatively simplematter. We assume that a population P of sodium channels is available
for ionic conduction and that a population B is blocked because they are bound by the
toxin. Thus,

P+D
k+
−→←−
k−

B, (3.139)

where D represents the concentration of the drug. Clearly, P+ B � P0, so that

dP

dt
� k−(P0 − P)− k+DP, (3.140)

and the original channel conductance must be modified by multiplying by the
percentage of unbound channels, P/P0.

In steady state, we have

P

P0
� Kd

Kd +D
. (3.141)

The remarkable potency of TTX is reflected by its small equilibrium constant Kd, as
Kd ≈ 1–5 nM for sodium channels in nerve cells, andKd ≈ 1–10µMfor sodium channels
in cardiac cells. By contrast, verapamil has Kd ≈140–940 µM.

Other important drugs, such as lidocaine, flecainide, and encainide are so-called
use-dependent sodium-channel blockers, in that they interfere with the sodium chan-
nel only when it is open. Thus, the more the channel is used, the more likely it will
be blocked. Lidocaine is an important drug used in the treatment of cardiac arrhyth-
mias. The folklore explanation of why it is useful is that because it is use-dependent,
it helps prevent high-frequency firing of cardiac cells, which is commonly associated
with cardiac arrhythmias. In fact, lidocaine, flecainide, and encainide are officially
classified as antiarrhythmic drugs, even though it is now known that flecainide and
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encainide are proarrhythmic in certain postinfarction (after a heart attack) patients. A
full explanation of this behavior is not known.

To keep track of the effect of a use-dependent drug on a two-state channel, we
suppose that there are four classes of channels, those that are closed but unbound by
the drug (C), those that are open and unbound by the drug (O), those that are closed
and bound by the drug (CB), and those that are open and bound by the drug (OB) (but
unable to pass a current). For this four-state model a reasonable reaction mechanism
is

C
α

−→←−
β

O, CB
α

−→←−
β

OB (3.142)

CB
k+−→ C+D, O+D

k+
−→←−
k−

OB. (3.143)

Notice that we have assumed that the drug does not interfere with the process of open-
ing and closing, onlywith the actual flowof ionic current, and that the drug can bind the
channel only when it is open. It is now a straightforward matter to find the differential
equations governing these four states, and we leave this as an exercise.

This is not the only way that drugs might interfere with a channel. For example,
for a channel with multiple subunits, the drug may bind only when certain of the
subunits are in specific states. Indeed, the binding of drugs with channels can occur in
many ways, and there are numerous unresolved questions concerning this complicated
process.

3.6 Exercises
1. Derive the extended independence principle. Assume that there are more than one species

of ion present, all with the same valence, and assume that the reversal potential is given by
the GHK potential. Show that

I′

I
�
∑

j Pj[Sj]
′
i −

∑
j Pj[Sj]

′
e exp(

−VF
RT
)∑

j Pj[Sj]i −
∑

j Pj[Sj]e exp(
−VF
RT
)
, (3.144)

where the sum over j is over all the ionic species. Subscripts i and e denote internal and
external concentrations, respectively.

2. Show that the GHK equation (3.2) satisfies both the independence principle and the Ussing
flux ratio, but that the linear I–V curve (3.1) satisfies neither.

3. In Section 3.3.1weused the PNPequations to derive I–V curveswhen two ionswith opposite
valence are allowed to move through a channel. Extend this analysis by assuming that two
types of ions with positive valence and one type of ion with negative valence are allowed to
move through the channel. Show that in the high concentration limit, although the negative
ion still obeys a linear I–V curve, the two positive ions do not. Details can be found in Chen,
Barcilon, and Eisenberg (1992), equations (43)–(45).

4. (a) Show that (3.64) satisfies the independence principle and the Ussing flux ratio.
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(b) Show that (3.64) can be made approximately linear by choosing g such that

ng � ln
(
cn

c0

)
. (3.145)

Although we know that a linear I–V curve does not satisfy the independence principle,
why does this result not contradict part (a)?

5. Show that (3.86) does not satisfy the independence principle, but does obey the Ussing flux
ratio.

6. Derive (3.86) by solving the steady-state equations (3.82) and (3.83). First show that

J � x · k0c0 − k−ncnπn−1
φn−1

. (3.146)

Then show that

k0c0x � kn−1cn−1φn−1 − xk−ncnφn−2, (3.147)

kjcj � kn−1cn−1
πj

· (φn−1 − φj−1)− k−ncnx
πj

· (φn−2 − φj−1), (3.148)

for j � 1, . . . , n − 1. Substitute these expressions into the conservation equation and solve
for x.

7. Numerically plot some I–V curves of the Hille Na+ channel model for a selection of values
for [Na+]e and [Na

+]i and for a range of parameter values, not only those in Table 3.1.
Compare to the linear and GHK I–V curves.

8. By making a guess at the shape of the curve for
[
Na+] � 14.5 mM in Fig. 3.9A, repeat the

calculations to obtain the smooth curves in A and B of that figure. In other words, take
an arbitrary curve of approximately the same shape as the

[
Na+] � 14.5 mM curve and

calculate the other smooth curves, first by using the independence principle, and second,
by using the Hille model. (This is best done numerically.)

9. Write down state diagrams showing the channel states and the allowed transitions for a
multi-ion model with two binding sites when the membrane is bathed with a solution
containing:

(a) Only ion S on the left and only ion S′ on the right.

(b) Ion S on both sides and ion S′ only on the right.

(c) Ions S and S′ on both the left and right.

In each case write down the corresponding system of linear equations that determine the
steady-state ionic concentrations at the channel binding sites.

10. By using an arbitrary symmetric energy profile with two binding sites, show numerically
that the Ussing flux ratio is not obeyed by a multi-ion model with two binding sites. (Note
that since unidirectional fluxes must be calculated, it is necessary to treat the ions on each
side of the membrane differently. Thus, an 8-state channel diagrammust be used.) Hodgkin
and Keynes predicted that the actual flux ratio is the Ussing ratio raised to the (n + 1)st
power (cf. (3.19)). How does n depend on the ionic concentrations on either side of the
membrane, and on the energy profile?

11. Choose an arbitrary symmetric energy profile with two binding sites, and compare the I–V
curves of the one-ion and multi-ion models. Assume that the same ionic species is present
on both sides of the membrane, so that only a 4-state multi-ion model is needed.
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12. Suppose the sodium Nernst potential of a cell is 56 mV, its resting potential is −70 mV, and
the extracellular calcium concentration is 1 mM. At what intracellular calcium concentra-
tion is the flux of a three-for-one sodium–calcium exchanger zero? (Use that RT/F � 25.8
mV at 27◦C.)

13. Modify the pump–leak model of Chapter 2 to include a calcium current and the 3-for-1
sodium–calcium exchanger. What effect does this modification have on the relationship
between pump rate and membrane potential?

14. Because there is a net current, the sodium–potassium pump current must be voltage
dependent. Determine this dependence by including voltage dependence in the rates of
conformational change in expression (2.53). How does voltage dependence affect the
pump–leak model of Chapter 2?

15. Intestinal epithelial cells have a glucose–sodium symport that transports one sodium ion
and one glucose molecule from the intestine into the cell. Model this transport process. Is
the transport of glucose aided or hindered by the cell’s negative membrane potential?

16. Suppose that a channel consists of k identical, independent subunits, each of which can be
open or closed, and that a current can pass through the channel only if all units are open.

(a) Let Sj denote the state inwhich j subunits are open. Show that the conversions between
states are governed by the reaction scheme

S0
kα

−→
←−
β

S1, . . . ,Sk−1
α

−→
←−
kβ

Sk. (3.149)

(b) Derive the differential equation for xj, the proportion of channels in state j.

(c) Show that xj �
(
k

j

)
nj(1 − n)k−j, where

(
k

j

)
� k!

j!(k−j)! is the binomial coefficient, is a

stable invariant manifold for the system of differential equations, provided that

dn

dt
� α(1− n)− βn. (3.150)

17. Consider the model of the Na+ channel shown in Fig. 3.14. Show that if α and β are large
compared to γ and δ, then x21 is given (approximately) by

x21 �
(

α

α+ β

)2
h, (3.151)

dh

dt
� γ(1− h)− δh, (3.152)

while conversely, if γ and δ are large compared to α and β, then (approximately)

x21 � m2

(
γ

γ + δ

)
, (3.153)

dm

dt
� α(1−m)− βm. (3.154)

18. Show that (3.128) has two negative real roots. Show that when β � 0 and a ≤ −λ1
λ1−λ2 , then

(3.129)–(3.131) have two possible solutions, one with α+ δ � −λ1, γ � −λ2, the other with
α + δ � −λ2, γ � −λ1. In the first solution inactivation is faster than activation, while the
reverse is true for the second solution.
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19. Write a computer program to simulate the response of a stochastic three-state Na+ channel
(Fig. 3.15A) to a voltage step. Take the ensemble average of many runs to reproduce the
macroscopic behavior of Fig. 3.13. Using the data from simulations, reconstruct the open-
time distribution, the latency distribution, and the distribution of N, the number of times
the channel opens. From these distributions calculate the rate constants of the simulation.

20. Find the differential equations describing the interaction of a two-state channel with a
use-dependent blocker.
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Excitability

We have seen in previous chapters how the control of cell volume results in a potential
difference across the cell membrane, and how this potential difference causes ionic
currents to flow through channels in the cell membrane. Regulation of this membrane
potential by control of the ionic channels is one of the most important cellular func-
tions. Many cells, such as neurons and muscle cells, use the membrane potential as a
signal, and thus the operation of the nervous system and muscle contraction (to name
but two examples) are both dependent on the generation and propagation of electrical
signals.

To understand electrical signaling in cells, it is helpful (and not too inaccurate) to
divide all cell types into two groups: excitable cells and nonexcitable cells. Many cells
maintain a stable equilibrium potential. For some, if currents are applied to the cell
for a short period of time, the potential returns directly to its equilibrium value after
the applied current is removed. Such cells are called nonexcitable, typical examples
of which are the epithelial cells that line the walls of the gut. Photoreceptors are also
nonexcitable, although in their case, membrane potential plays an extremely important
signaling role nonetheless.

However, there are cells for which, if the applied current is sufficiently strong,
the membrane potential goes through a large excursion, called an action potential,
before eventually returning to rest. Such cells are called excitable. Excitable cells include
cardiac cells, smooth and skeletal muscle cells, secretory cells, and most neurons. The
most obvious advantage of excitability is that an excitable cell either responds in full
to a stimulus or not at all, and thus a stimulus of sufficient amplitude may be reliably
distinguished from background noise. In this way, noise is filtered out, and a signal is
reliably transmitted.
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There are many examples of excitability that occur in nature. A simple example of
an excitable system is a householdmatch. The chemical components of thematch head
are stable to small fluctuations in temperature, but a sufficiently large temperature
fluctuation, caused, for example, by friction between the head and a rough surface,
triggers the abrupt oxidation of these chemicals with a dramatic release of heat and
light. The fuse of a stick of dynamite is a one-dimensional continuous version of an
excitable medium, and a field of dry grass is its two-dimensional version. Both of these
spatially extended systems admit the possibility of wave propagation. The field of grass
has one additional feature that the match and dynamite fuse fail to have, and that is
recovery. While it is not very rapid by physiological standards, given a few months of
growth, a burned-over field of grass will regrow enough fuel so that another fire may
spread across it.

Although the generation and propagation of signals have been extensively stud-
ied by physiologists for at least the past 100 years, the most important landmark in
these studies is the work of Alan Hodgkin and Andrew Huxley, who developed the first
quantitative model of the propagation of an electrical signal along a squid giant axon
(deemed “giant” because of the size of the axon, not the size of the squid). Their model
was originally used to explain the action potential in the long giant axon of a squid nerve
cell, but the ideas have since been extended and applied to a wide variety of excitable
cells. Hodgkin–Huxley theory is remarkable, not only for its influence on electrophysi-
ology, but also for its influence, after some filtering, on applied mathematics. FitzHugh
(in particular) showed how the essentials of the excitable process could be distilled
into a simpler model upon which mathematical analysis could make some progress.
Because this simplifiedmodel turned out to be of such great theoretical interest, it con-
tributed enormously to the formation of a new field of applied mathematics, the study
of excitable systems, a field that continues to stimulate a vast amount of research.

Because of the central importance of cellular electrical activity in physiology, be-
cause of the importance of theHodgkin–Huxleymodel in the study of electrical activity,
and because it forms the basis for the study of excitability, it is no exaggeration to say
that the Hodgkin–Huxley model is the most important model in all of the physiological
literature.

4.1 The Hodgkin–Huxley Model

In Chapter 2 we described how the cell membrane can be modeled as a capacitor in
parallel with an ionic current, resulting in the equation

Cm
dV

dt
+ Iion(V, t) � 0, (4.1)

whereV , as usual, denotes the internalminus the external potential (V � Vi−Ve). In the
squid giant axon, as in many neural cells, the principal ionic currents are the sodium
current and the potassium current. Although there are other ionic currents, primarily
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Figure 4.1 The infamous giant squid, having nothing to do with the work of Hodgkin and
Huxley on squid giant axon. From Dangerous Sea Creatures, © 1976, 1977 Time-Life Films, Inc.

the chloride current, in theHodgkin–Huxley theory they are small and lumped together
into one current called the leakage current. Since the instantaneous I–V curves of open
Na+ and K+ channels in the squid giant axon are approximately linear, (4.1) becomes

Cm
dV

dt
� −gNa(V − VNa)− gK(V − VK)− gL(V − VL)+ Iapp, (4.2)

where Iapp is the applied current. During an action potential there is a measured influx
of 3.7 pmoles/cm2 of sodium and a subsequent efflux of 4.3 pmoles/cm2 of potassium.
These amounts are so small that it is realistic to assume that the ionic concentrations,
and hence the equilibrium potentials, are constant and unaffected by an action po-
tential. It is important to emphasize that our choice of linear I–V curves for the three
different channel types is dictated largely by experimental data. Axons in other species
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(such as vertebrates) have ionic channels that are better described by other I–V curves,
such as the GHK current equation (2.68). However, the qualitative nature of the results
remains largely unaffected, and so the discussion in this chapter, which is mostly of
a qualitative nature, remains correct for models that use more complex I–V curves to
describe the ionic currents.

Equation (4.2) is a first-order ordinary differential equation and can be rewritten
in the form

Cm
dV

dt
� −geff(V − Veq)+ Iapp, (4.3)

where geff � gNa + gK + gL and Veq � (gNaVNa + gKVK + gLVL)/geff . Veq is the membrane
resting potential and is a balance between the reversal potentials for the three ionic
currents. In fact, at rest, the sodium and leakage conductances are small compared
to the potassium conductance, so that the resting potential is close to the potassium
equilibrium potential.

The quantity Rm � 1/geff , the passive membrane resistance, is on the order of 1000
6cm2. The time constant for this equation is

τm � CmRm, (4.4)

on the order of 1 msec. It follows that with a steady applied current, the membrane
potential should equilibrate quickly to

V � Veq + RmIapp. (4.5)

For sufficiently small applied currents, this is indeed what happens. However, for
larger applied currents, the response is quite different. Assuming that the model (4.2)
is correct, the only possible explanation for these differences is that the conductances
are not constant but depend in some way on the voltage. Historically, the key step to
determining the conductances was being able to measure the individual ionic currents
and from this to deduce the changes in conductances. Thiswas brilliantly accomplished
by Hodgkin and Huxley in 1952.

4.1.1 History of the Hodgkin–Huxley Equations

(This section is adapted from Rinzel, 1990.) In a series of five articles that appeared
in the Journal of Physiology in 1952, Alan Lloyd Hodgkin and Andrew Fielding Huxley,
along with Bernard Katz, who was a coauthor of the lead paper and a collaborator in
several related studies, unraveled the dynamic ionic conductances that generate the
nerve action potential (Hodgkin et al., 1952; Hodgkin and Huxley, 1952a,b,c,d). They
were awarded the 1963 Nobel Prize in physiology and medicine (shared with John C.
Eccles, for his work on potentials and conductances at motorneuron synapses).

Before about 1939, the membrane potential was believed to play an important role
in the membrane’s state, but there was no way to measure it. It was known that a
cell’s membrane separated different ionic concentrations inside and outside the cell.
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Applying the Nernst equation, Bernstein (1902) was led to suggest that the resting
membrane was semipermeable to potassium, implying that at rest, V should be around
−70 mV. He believed that during activity there was a breakdown in the membrane’s
resistance to all ionic fluxes, and potential differences would disappear, i.e., V would
approach zero.

In 1940, Cole and Curtis, using careful electrode placement coupled with biophysi-
cal and mathematical analysis, obtained the first convincing evidence for a substantial
transient increase in membrane conductivity during passage of the action potential.
While they estimated a large conductance increase, it was not infinite, so without a
direct measurement of membrane potential it was not possible to confirm or nullify
Bernstein’s hypothesis. During a postdoctoral year in the U.S. in 1937–1938, Hodgkin
established connectionswith Cole’s group at Columbia andworkedwith them atWoods
Hole in the summer. He and Curtis nearly succeeded in measuring V directly by tun-
neling along the giant axon with a glass micropipette. When each succeeded later
(separately, with other collaborators), they found, surprisingly, that V rose transiently
toward zero, but with a substantial overshoot. This finding brought into serious ques-
tion the hypothesis of Bernstein and provided much food for thought during World
War II, when Hodgkin, Huxley, and many other scientists were involved in the war
effort.

By the time postwar experimental work was resuming in England, Cole and Mar-
mont had developed the space clamp technique. This method allowed one to measure
directly the total transmembrane current, uniform through a known area, rather than
spatially nonuniform as generated by a capillary electrode. To achieve current control
with space clamping, the axon was threaded with a metallic conductor (like a thin sil-
ver wire) to provide low axial resistance and thereby eliminate voltage gradients along
the length of the axon. Under these conditions the membrane potential is no longer a
function of distance along the axon, only of time. In addition, during the 1947 squid sea-
son, Cole and company made substantial progress toward controlling the membrane
potential as well.

In 1948, Hodgkin went to visit Cole (then at Chicago) to learn directly of theirmeth-
ods. With some further developments of their own, Hodgkin, Huxley, and Katz applied
the techniques with great success to record transient ionic fluxes over the physiological
ranges of voltages. Working diligently, they collected most of the data for their papers
in the summer of 1949. Next came the step of identifying the individual contributions
of the different ion species. Explicit evidence that both sodium and potassium were
important came from the work of Hodgkin and Katz (1949). This also explained the
earlier puzzling observations that V overshoots zero during an action potential, op-
posing the suggestion of Bernstein. Instead of supposing that there was a transient
increase in permeability identical for all ions, Hodgkin and Katz realized that different
changes in permeabilities for different ions could account for the V time course, as V
would approach the Nernst potential for the ion to which the membrane was predom-
inantly permeable, and this dominance could change with time. For example, at rest
the membrane is most permeable to K+, so that V is close to VK. However, if gK were
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to decrease and gNa were to increase, then V would be pushed toward VNa, which is
positive, thus depolarizing the cell.

The question of how the changes in permeability were dynamically linked to V was
not completely stated until the papers of 1952. In fact, the substantial delay from data
collection in 1949 until final publication in 1952 can be attributed to the considerable
time devoted to data analysis, model formulation, and testing. Computer downtime
was also a factor, as some of the solutions of the Hodgkin–Huxley equations were
computed on a desktop, hand-cranked calculator. As Hodgkin notes, “The propagated
action potential took about three weeks to complete and must have been an enormous
labour for Andrew [Huxley]” (Hodgkin, 1976, p. 19).

The final paper of the 1952 series is a masterpiece of the scientific art. Therein they
present their elegant experimental data, a comprehensive theoretical hypothesis, a fit
of the model to the experimental data (obtained for fixed values of the membrane po-
tential), and then, presto, a prediction (from their numerical computations) of the time
course of the propagated action potential. In biology, where quantitatively predictive
theories are rare, this work stands out as one of the most successful combinations of
experiment and theory.

4.1.2 Voltage and Time Dependence of Conductances

The key step to sorting out the dynamics of the conductances came from the develop-
ment of the voltage clamp. A voltage clamp fixes the membrane potential, usually by
a rapid step from one voltage to another, and then measures the current that must be
supplied in order to hold the voltage constant. Since the supplied current must equal
the transmembrane current, the voltage clamp provides a way to measure the tran-
sient transmembrane current that results. The crucial point is that the voltage can be
stepped from one constant level to another, and so the ionic currents can be measured
at a constant, known, voltage. Thus, even when the conductances are functions of the
voltage (as is actually the case), a voltage clamp eliminates any voltage changes and
permits measurement of the conductances as functions of time only.

Hodgkin and Huxley found that when the voltage was stepped up and held fixed
at a higher level, the total ionic current was initially inward, but at later times an
outward current developed (Fig. 4.2). For a number of reasons, not discussed here,
they argued that the initial inward current is carried almost entirely by Na+ ions,
while the outward current that develops later is carried largely by K+ ions. With these
assumptions, Hodgkin and Huxley were able to use a clever trick to separate the total
ionic current into its constituent ionic parts. They replaced 90% of the extracellular
sodium in the normal seawater bath with choline (a viscous liquid vitamin B complex
found in many animal and vegetable tissues), which rendered the axon nonexcitable
but changed the resting potential only slightly. Since it is assumed that immediately
after the voltage has been stepped up, the ionic current is all carried by Na+, it is
possible to measure the initial Na+ currents in response to a voltage step. Note that
although the Na+ currents can bemeasured directly immediately after the voltage step,
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Figure 4.2 Experimental results describing the total mem-
brane current in response to a step depolarization. The
numbers on the left give the final value of the membrane
potential, in mV. The interval between dots on the horizon-
tal scale is 1 ms, while one division on the vertical scale
represents 0.5 mA/cm2. (Hodgkin and Huxley, 1952a, Fig. 2a.)

they cannot be measured directly over a longer time period, as the total ionic current
begins to include a contribution from the K+ current. If we denote the Na+ currents
for the two cases of normal extracellular Na+ and zero extracellular Na+ by I1Na and I

2
Na

respectively, then the ratio of the two currents,

I1Na/I
2
Na � K, (4.6)

say, can be measured directly from the experimental data.
Next, Hodgkin and Huxley made two further assumptions. First, they assumed

that the sodium current ratio K is independent of time and is thus constant over the
course of each voltage clamp experiment. In other words, the amplitude and direction
of the Na+ current may be affected by the low extracellular Na+ solution, but its time
course is not. Second, they assumed that the potassium channels are unaffected by
the change in extracellular sodium concentration. There is considerable evidence that
the sodium and potassium channels are independent. Tetrodotoxin (TTX) is known to
block sodium currents while leaving the potassium currents almost unaffected, while
tetraethylammonium (TEA) has the opposite effect of blocking the potassium current
but not the sodium current. To complete the argument, since Iion � INa + IK, and
I1K � I2K, it follows that I

1
ion − I1Na � I2ion − I2Na, and thus

I1Na � K

K − 1(I
1
ion − I2ion), (4.7)

IK � I1ion − KI2ion

1− K
. (4.8)
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Hence, given measurements of the total ionic currents in the two cases, and given the
ratio K of the Na+ currents, it is possible to determine the complete time courses of
both the Na+ and K+ currents.

Finally, from knowledge of the individual currents, one obtains the conductances
as

gNa � INa

V − VNa
, gK � IK

V − VK
. (4.9)

Note that this result relies on the specific (linear) model used to describe the I–V curve
of the Na+ and K+ channels, but, as we discussed above, we assume throughout that
the instantaneous I–V curves of the Na+ and K+ channels are linear.

Samples of Hodgkin and Huxley’s data are shown in Fig. 4.3. The plots show ionic
conductances as functions of time following a step increase or decrease in the mem-
brane potential. The important observation is thatwith voltages fixed, the conductances
are time dependent. For example, when V is stepped up and held fixed at a higher level,
gK does not increase instantaneously, but instead increases over time to a final steady
level. Both the time constant of the increase and the final value of gK are dependent on
the value to which the voltage is stepped. Further, gK increases in a sigmoidal fashion,
with a slope that first increases and then decreases (Fig. 4.3A and B). Following a step
decrease in the voltage, gK falls in a simple exponential fashion (Fig. 4.3A). This par-
ticular feature of gK — a sigmoidal increase coupled with an exponential decrease —
will be important when we model gK. The behavior of gNa is more complex. Following
a step increase in voltage, gNa first increases, but then decreases again, all at the same
fixed voltage (Fig. 4.3C). Hence, the time dependence of gNa requires a more complex
model than for that of gK.

The potassium conductance
From the experimental data shown in Fig. 4.3A and B, it is reasonable to expect that
gK obeys some differential equation,

dgK

dt
� f (v, t), (4.10)

say, where v � V−Veq; i.e., v is the difference between the membrane potential and the
resting potential. (Of course, since Veq is a constant, dv/dt � dV/dt.) However, for gK to
have the required sigmoidal increase and exponential decrease, Hodgkin and Huxley
realized that it would be easier to write gK as some power of a different variable, n say,
where n satisfies a first-order differential equation. Thus, they wrote

gK � ḡKn
4, (4.11)

for some constant ḡK. The fourth power was chosen not for physiological reasons,
but because it was the smallest exponent that gave acceptable agreement with the
experimental data. The secondary variable n obeys the differential equation

τn(v)
dn

dt
� n∞(v)− n, (4.12)
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Figure 4.3 Conductance changes as a function of time at different voltage clamps. A: The
response of gK to a step increase in V and then a step decrease. B: Responses of gK to step
increases in V of varying magnitudes. The number on each curve gives the depolarization
in mV, and the smooth curves are calculated from solution of (4.11) and (4.12), with the initial
condition gK(t � 0) � 0.24 mS/cm2. The vertical scale is the same in curves A–J, but is increased
by a factor of four in the lower two curves. For clarity, the baseline of each curve has been shifted
up. C: Responses of gNa to step increases in V of magnitudes given by the numbers on the left,
in mV. The smooth curves are the model solutions. The vertical scales on the right are in units
of mS/cm2. (Hodgkin and Huxley, 1952d, Figs. 2, 3, and 6.)

for some functions τn(v) and n∞(v) that must be determined from the experimental
data in a manner that we describe soon. Equation (4.12) is often written in the form

dn

dt
� αn(v)(1− n)− βn(v)n, (4.13)
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where

n∞(v) � αn(v)
αn(v)+ βn(v)

, (4.14)

τn(v) � 1
αn(v)+ βn(v)

. (4.15)

At elevated potentials n(t) increases monotonically and exponentially toward its rest-
ing value, thereby turning on, or activating, the potassium current. Since the Nernst
potential is below the resting potential, the potassium current is an outward current
at potentials greater than rest. The function n(t) is called the potassium activation.

It is instructive to consider in detail how such a formulation for gK results in the
required sigmoidal increase and exponential decrease. Suppose that at time t � 0, v
is increased from 0 to v0 and then held constant, and suppose further that n(0) � 0.
Solving (4.12) then gives

n(t) � n∞(v0)
[
1− exp

( −t
τn(v0)

)]
, (4.16)

which is an increasing curve (with monotonically decreasing slope) that approaches
its maximum at n∞(v0). Raising n to the fourth power gives a sigmoidally increasing
curve as required. Higher powers of n result in curves with a greater maximum slope at
the point of inflection. In response to a step decrease in v, from v0 to 0 say, the solution
for n is

n(t) � n∞(v0) exp
( −t
τn(v0)

)
, (4.17)

in which case n4 is exponentially decreasing, with no inflection point.
It remains to describe how the functions n∞ and τn are determined from the ex-

perimental data. For any given voltage step, the time constant τn, and the final value
of n, namely n∞, can be determined by fitting (4.16) to the experimental data. By this
procedure one can determine τn and n∞ at a discrete set of values for v, i.e., those values
used experimentally. Typical data points for n∞ are shown in Fig. 4.4 as symbols. To
obtain a complete description of gK, valid for all voltages and not only those used in
the experiments, Hodgkin and Huxley fitted a smooth curve through the data points.
The functional form of the smooth curve has no physiological significance, but is a
convenient way of providing a continuous description of n∞. A similar procedure is
followed for τn. The continuous descriptions of n∞ and τn (expressed in terms of αn
and βn) are given in (4.28) and (4.29) below.

The sodium conductance
The time dependence for the sodium conductance is more difficult to unravel. From
the experimental data it is suggested that there are two processes at work, one that
turns on the sodium current and one that turns it off. Hodgkin and Huxley proposed
that the sodium conductance is of the form

gNa(v) � ḡNam
3h, (4.18)
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Figure 4.4 Data points (symbols) of n∞, determined by fitting (4.16) to the experimental time
courses. The smooth curve through the symbols provides a continuous description of n∞, and
its functional form has no physiological significance. (Hodgkin and Huxley, 1952d, Fig. 5.)

and they fit the time-dependent behavior of m and h to exponentials with dynamics

dw

dt
� αw(1−w)− βww, (4.19)

where w � m or h. Becausem is small at rest and first increases, it is called the sodium
activation, and because h shuts down, or inactivates, the sodium current, it is called the
sodium inactivation. When h � 0, the sodium current is completely inactivated. The
overall procedure is similar to that used in the specification of gK. For any fixed voltage
step, the unknown functions αw and βw are determined by fitting to the experimental
curves (Fig. 4.3C), and then smooth curves, with arbitrary functional forms, are fitted
through the data points for αw and βw.

Summary of the equations
In summary, the Hodgkin–Huxley equations for the space clamped axon are

Cm
dv

dt
� −ḡKn4(v− vK)− ḡNam

3h(v− vNa)− ḡL(v− vL)+ Iapp, (4.20)

dm

dt
� αm(1−m)− βmm, (4.21)

dn

dt
� αn(1− n)− βnn, (4.22)

dh

dt
� αh(1− h)− βhh. (4.23)
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The specific functions α and β proposed byHodgkin andHuxleywere, in units of (ms)−1,

αm � 0.1
25− v

exp
( 25−v
10

)− 1 , (4.24)

βm � 4 exp
(−v
18

)
, (4.25)

αh � 0.07 exp
(−v
20

)
, (4.26)

βh � 1

exp(30−v10 )+ 1
, (4.27)

αn � 0.01
10− v

exp(10−v10 )− 1
, (4.28)

βn � 0.125 exp
(−v
80

)
. (4.29)

For these expressions, the potential v is the deviation from rest (V � Veq+v), measured
in units of mV, current density is in units of µA/cm2, conductances are in units of
mS/cm2, and capacitance is in units of µF/cm2. The remaining constants are

ḡNa � 120, ḡK � 36, ḡL � 0.3, (4.30)

with (adjusted) equilibrium potentials vNa � 115, vK � −12, and vL � 10.6. In Fig. 4.5
are shown the steady-state functions, and the time constants are shown in Fig. 4.6.

In Chapter 3 we discussed simple models for the gating of Na+ and K+ channels
and showed how the rate constants in simple kinetic schemes could be determined
fromwhole-cell or single-channel data.We also showed howmodels of the form (4.20)–
(4.23) can be derived bymodeling the ionic channels as consisting ofmultiple subunits,
each of which obeys a simple two-state model. In the Hodgkin–Huxley equations, it is
assumed that the Na+ channel consists of three “m” gates and one “h” gate, each of
which can be either closed or open. If the gates operate independently, then the fraction
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Figure 4.5 Steady-state functions m∞(v ),
n∞(v ) and h∞(v ).
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of openNa+ channels ism3h, wherem and h obey the equation of the two-state channel
model. Similarly, if there are four “n” gates per potassium channel, all of which must
be open for potassium to flow, then the fraction of open K+ channels is n4.

Now comes the most interesting challenge facing these equations. Having incorpo-
rated the measurements of conductance found from voltage-clamp experiments, one
wonders whether these equations reproduce a realistic action potential, and if so, by
whatmechanism is the action potential produced?We can describe in qualitative terms
how the Hodgkin–Huxley equations should work. If small currents are applied to a cell
for a short period of time, the potential returns rapidly to its equilibrium v � 0 after the
applied current is removed. The equilibrium potential is close to the potassium Nernst
potential vK � −12, because at rest, the sodium and leakage conductances are small.
There is always competition among the three ionic currents to drive the potential to the
corresponding resting potential. For example, if the potassium and leakage currents
could be blocked or the sodium conductance dramatically increased, then the term
gNa(V − VNa) should dominate (4.2), and as long as v is below vNa, an inward sodium
current will drive the potential toward vNa. Similarly, while v is above vK, the potassium
current is outward in an attempt to drive v toward vK. Notice that since vK < vL < vNa,
v is necessarily restricted to lie in the range vK < v < vNa.

If gNa and gK were constant, that would be the end of the story. The equilibrium at
v � 0 would be a stable equilibrium, and following any stimulus, the potential would
return exponentially to rest. But since gNa and gK can change, the different currents can
exert their respective influences. The actual sequence of events is determined by the
dynamics ofm,n, and h. The most important observation for the moment is that τm(v)
is much smaller than either τn(v) or τh(v), so that m(t) responds much more quickly
to changes in v than either n or h. We can now understand why the Hodgkin–Huxley
system is an excitable system. As noted before, if the potential v is raised slightly by a
small stimulating current, the system returns to its stable equilibrium.However, during
the period of time that the potential v is elevated, the sodium activation m is tracking
m∞(v). If the stimulating current is large enough to raise the potential and therefore
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m∞(v) to a high enough level (above its threshold), then before the system can return
to rest,m will increase sufficiently to change the sign of the net current, resulting in an
autocatalytic inward sodium current. Now, as the potential rises, m continues to rise,
and the inward sodium current is increased, further adding to the rise of the potential.

If nothing further were to happen, the potential would be driven to a new equilib-
rium at vNa. However, here is where the difference in time constants plays an important
role.When the potential is at rest, the sodium inactivation h is positive, about 0.6. As the
potential increases, h∞ decreases toward zero, and as h approaches zero, the sodium
current is inactivated because gNa approaches zero. However, because the time con-
stant τh(v) is much larger than τm(v), there is a considerable delay between turning
on the sodium current when m increases and turning off the sodium current when h
decreases. The net effect of the two different time scales onm and h is that the sodium
current is at first turned on and later turned off, and this is seen as an initial increase
of the potential, followed by a decrease toward rest.

At about the same time that the sodium current is inactivated, the outward potas-
sium current is activated. This is because of the similarity of the time constants τn(v)
and τh(v). Activation of the potassium current drives the potential below rest toward
vK. When v is negative, n declines, and the potential eventually returns to rest, and the
whole process can start again. In Fig. 4.7 is shown a plot of the potential v(t) during
an action potential following a superthreshold stimulus. In Fig. 4.8,m(t), n(t), and h(t)
during the same action potential are shown.

There are four recognizable phases of an action potential: the upstroke, excited,
refractory, and recovery phases. The refractory period is the period following the excited
phasewhen additional stimuli evoke no substantial response, even though the potential
is below or close to its resting value. There can be no response, since the sodium
channels are still inactivated because h is small. As h gradually returns to its resting
value, further responses once again become possible.

There are two ways that the Hodgkin–Huxley system can be made into an au-
tonomous oscillator. The first is to inject a steady current of sufficient strength. Such
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during an action potential.

a current raises the resting potential above the threshold for an action potential, so
that after the axon has recovered from an action potential, the potential rises to a
superthreshold level at which another action potential is evoked.

Immersing the axon in a bath of high extracellular potassium has the same effect
through a slightly different mechanism. An increase of extracellular potassium has the
effect of increasing the potassiumNernst potential, effectively raising the rest potential
(since the rest potential is close to the potassium Nernst potential). If this increase
of the potassium Nernst potential is sufficiently large, the resting potential becomes
superthreshold, and autonomous oscillations result. This mechanism of creating an
autonomous oscillator out of normally excitable but nonoscillatory cells is important
for certain cardiac arrhythmias.

4.1.3 Qualitative Analysis

FitzHugh (1960, 1961, 1969) has given a particularly elegant qualitative description
of the Hodgkin–Huxley equations that allows a better understanding of the model’s
behavior. More detailed analyses have also been given by Rinzel (1978), Troy (1978),
Cole et al. (1955), and Sabah and Spangler (1970). FitzHugh’s approach is based on
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the fact that some of the model variables have fast kinetics, while others are much
slower. In particular,m and v are fast variables (i.e., the Na+ channel activates quickly,
and the membrane potential changes quickly), while n and h are slow variables (i.e.,
Na+ channels are inactivated slowly, and the K+ channels are activated slowly). Thus,
during the initial stages of the action potential, n and h remain essentially constant
while m and v vary. This allows the full 4-dimensional phase space to be broken into
smaller pieces by fixing the slow variables and considering the behavior of themodel as
a function only of the two fast variables. Although this description is accurate only for
the initial stages of the action potential, it provides a useful way to study the process
of excitation.

The fast phase-plane
Thus motivated, we fix the slow variables n and h at their respective resting states,
which we call n0 and h0, and consider howm and v behave in response to stimulation.
The differential equations for the fast phase-plane are

Cm
dv

dt
� −ḡKn40(v− vK)− ḡNam

3h0(v− vNa)− ḡL(v− vL), (4.31)

dm

dt
� αm(1−m)− βmm, (4.32)

or, equivalently,

τm
dm

dt
� m∞ −m. (4.33)

This is now a two-dimensional system and can be most easily studied in the (m, v)
phase-plane, a plot of which is given in Fig. 4.10. The curves defined by dv/dt � 0
and dm/dt � 0 are the v and m nullclines, respectively. The m nullcline is the curve
m � m∞(v), which we have seen before (in Fig. 4.5), while the v nullcline is defined by

v � ḡNam
3h0vNa + ḡKn

4
0vK + ḡLvL

ḡNam3h0 + ḡKn
4
0 + ḡL

. (4.34)

For the parameters of the Hodgkin–Huxley model, the m and v nullclines intersect in
three places, corresponding to three steady states of the fast equations. Note that these
three intersections are not steady states of the full model, only of the fast subsystem,
and, to be precise, should be called pseudo-steady states. However, in the context of
the fast phase-plane we continue to call them steady states. We label the three steady
states vr, vs, and ve (for resting, saddle, and excited).

It is left as an exercise to show that vr and ve are stable steady states of the fast sub-
system, while vs is a saddle point. Since vs is a saddle point, it has a one-dimensional
stable manifold. This stable manifold divides the (m, v) plane into two regions: any
trajectory starting to the left of the stable manifold is prevented from reaching ve and
must eventually return to the resting state, vr. However, any trajectory starting to the
right of the stable manifold is prevented from returning to the resting state and must
eventually end up at the excited state, ve. Hence, the stable manifold, in combination
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Figure 4.10 The Hodgkin–Huxley fast phase-plane, showing the nullclines dv/dt � 0 and
dm/dt � 0 (with h0 � 0.596, n0 � 0.3176), two sample trajectories and the stable manifold
of the saddle point vs .
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Figure 4.11 The Hodgkin–Huxley fast
phase-plane as a function of the slow
variables, showing the m nullcline
(dashed) and the movement of the v

nullcline (solid) and the disappearance
of the steady states. For these curves,
parameter values are (1) h0 � 0.596,
n0 � 0.3176; (2) h0 � 0.4, n0 � 0.5; (3)
h0 � 0.2, n0 � 0.7; and (4) h0 � 0.1,
n0 � 0.8.

with the two stable steady states, causes a threshold phenomenon. Any perturbation
from the resting state that is not large enough to cross the stable manifold eventually
dies away, but a perturbation that crosses the stable manifold results in a large ex-
cursion in the voltage, up to the excited state. Sample trajectories are sketched in Fig.
4.10.

Ifm and vwere the only variables in the model, then vwould stay at ve indefinitely.
However, as pointed out before, ve is not a steady state of the full model. Thus, to see
what happens on a longer time scale, we must consider how slow variations in n and
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Figure 4.12 Schematic diagram of a complete action potential. A: Superthreshold stimulus
causes a fast increase of v to the excited state. B: v is sitting at the excited state, ve , decreasing
slowly as n increases and h decreases, i.e., as ve moves toward vs . C: ve and vs disappear at
a saddle-node bifurcation, and so, D: The solution must return to the resting state vr . E: n and
h slowly return to their resting states, and as they do so, vr slowly increases until the steady
state of the full four-dimensional system is reached.

h affect the qualitative nature of the fast phase-plane. First note that since ve > vr, it
follows that h∞(ve) < h∞(vr) and n∞(ve) > n∞(vr). Hence, while v is at the excited state,
h begins to decrease thus inactivating the Na+ conductance, and n starts to increase
thus activating the K+ conductance. Next note that although them nullcline in the fast
phase-plane is independent of n and h, the v nullcline is not. In Fig. 4.10 the nullclines
were drawn using the steady-state values for n and h: different values of n and h change
the shape of the v nullcline. As n increases and h decreases, the v nullcline moves to
the left and up, as illustrated in Fig. 4.11. As the v nullcline moves up and to the left,
ve and vs move towards each other, while vr moves to the left. During this phase the
voltage is at ve and thus decreases slowly. Eventually, ve and vs coalesce and disappear
in a saddle-node bifurcation. When this happens vr is the only remaining steady state,
and so the solution must return to the resting state. Note that since the v nullcline has
moved up and to the left, vr is not a steady state of the full system. However, when v
decreases to vr, n and h both return to their steady states and as they do so, vr slowly
increases until the steady state of the full system is reached and the action potential is
complete. A schematic diagram of a complete action potential is shown in Fig. 4.12,
and the important points are labeled for comparison with the phase-plane.

The fast–slow phase-plane
In the above analysis, we simplified the four-dimensional phase space by taking a series
of two-dimensional cross-sections, those with various fixed values of n and h. However,
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by taking a different cross-section we can highlight other aspects of the action poten-
tial. In particular, by taking a cross-section involving one fast variable and one slow
variable we obtain a description of the Hodgkin–Huxley model that has proven to be
extraordinarily useful.

We extract a single fast variable by assuming that m is an instantaneous function
of v, and thus m � m∞(v) at all times. This is equivalent to assuming that activation
of the Na+ conductance acts on a time scale even faster than that of the voltage. Next,
FitzHugh noticed that during the course of an action potential, h+ n ≈ 0.8 (notice the
approximate symmetry of n(t) and h(t) in Fig. 4.8), and thus h can be eliminated by
setting h � 0.8 − n. With these simplifications, the Hodgkin–Huxley model contains
one fast variable v and one slow variable n, and can be written as

−Cmdv
dt

� ḡKn
4(v− vK)+ ḡNam

3
∞(v)(0.8− n)(v− vNa)+ ḡL(v− vL), (4.35)

dn

dt
� αn(1− n)− βnn. (4.36)

For convenience we let f (v, n) denote the right-hand side of (4.35), i.e.,

− f (v, n) � ḡKn
4(v− vK)+ ḡNam

3
∞(v)(0.8− n)(v− vNa)+ ḡL(v− vL). (4.37)

A plot of the nullclines of the fast–slow subsystem is given in Fig. 4.13. The v
nullcline is defined by f (v, n) � 0 and has a cubic shape, while the n nullcline is n∞(v)
and is monotonically increasing. There is a single intersection (at least for the given
parameter values) and thus a single steady state. Because v is a fast variable and n is a
slow one, the solution trajectories are almost horizontal except where f (v, n) ≈ 0. The
curve f (v, n) � 0 is called the “slow manifold.” Along the slow manifold the solution
moves slowly in the direction determined by the sign of dn/dt, but away from the
slow manifold the solution moves quickly in a horizontal direction. From the sign
of dv/dt it follows that the solution trajectories move away from the middle branch of
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Figure 4.13 Fast–slow phase-plane of the
Hodgkin–Huxley model.
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model.

the slow manifold and toward the left and right branches. Thus, the middle branch
is termed the unstable branch of the slow manifold. This unstable branch acts as a
threshold. Suppose a perturbation from the steady state is small enough so that v does
not cross the unstable manifold. Then, the trajectory moves horizontally towards the
left and returns to the steady state. However, if the perturbation is large enough so
that v crosses the unstable manifold, then the trajectory moves to the right until it
reaches the right branch of the slow manifold, which corresponds to the excited state.
On this right branch dn/dt > 0, and so the solution moves slowly up the slow manifold
until the turning point is reached. At the turning point, n cannot increase any further,
as the right branch of the slow manifold ceases to exist, and so the solution moves
over to the left branch of the slow manifold. On this left branch dn/dt < 0, and so the
solution moves down the left branch until the steady state is reached, completing the
action potential (Fig. 4.13). A plot of the potential as a function of time is shown in
Fig. 4.14.

The variables v and n are usually called the excitation and recovery variables,
respectively: excitation because it governs the rise to the excited state, and recovery
because it causes the return to the steady state. In the absence of n the solution would
stay at the excited state indefinitely.

There is a close relationship between the fast phase-plane and the fast–slow phase-
plane. Recall that in the fast phase-plane, the v andm nullclines have three intersection
points when n � n0 and h � h0. These three intersections correspond to the three
branches of the curve f (v, n0) � 0. In other words, when n is fixed at n0, the equation
f (v, n0) � 0 has three possible solutions, corresponding to vr, vs and ve in the fast
phase-plane. However, consideration of Fig. 4.13 shows that, as n increases, the two
rightmost branches of the slow manifold coalesce and disappear. This is analogous to
the merging and disappearance of ve and vs seen in the fast phase-plane. The fast–slow
phase-plane is a convenient way of summarizing how vr, vs, and ve depend on the slow
variables.
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This representation of the Hodgkin–Huxley model in terms of two variables, one
fast and one slow, is the basis of the FitzHugh–Nagumo model for excitability, and we
discuss models of this generic type in some detail throughout this book.

4.2 Two-Variable Models

There is considerable value in studying systems of equations that are simpler than the
Hodgkin–Huxley equations but that retain many of their qualitative features. This is
the motivation for the FitzHugh–Nagumo equations and their variants. Basically, the
FitzHugh–Nagumo model extracts the essential behavior of the Hodgkin–Huxley fast–
slow phase-plane and presents it in a simplified form. Thus, the FitzHugh–Nagumo
model has two variables, one fast (v) and one slow (w). The fast variable has a cubic
nullcline and is called the excitation variable, while the slow variable is called the
recovery variable and has a nullcline that is monotonically increasing. The nullclines
have a single intersection point, which, without loss of generality, may be assumed to
be at the origin. A schematic diagram of the phase-plane is given in Fig. 4.15, where
we introduce some of the notation used later in this section.

The FitzHugh–Nagumo model can be derived from a simplified model of the cell
membrane (Fig. 4.16). Here the cell (ormembrane patch) consists of three components,
a capacitor representing themembrane capacitance, a nonlinear current–voltage device
for the fast current, and a resistor, inductor, and battery in series for the recovery
current. In the 1960s Nagumo, a Japanese electrical engineer, built this circuit using

v

w

V-(w) V0(w) V+(w)

f(v,w) = 0

g(v,w) = 0

W
*

W*

Figure 4.15 Schematic diagram of the generalized FitzHugh–Nagumo phase-plane.
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Figure 4.16 Circuit diagram for the Fitz-
Hugh–Nagumo equations.

a tunnel diode as the nonlinear element (Nagumo et al., 1964), thereby attaching his
name to this system.

Using Kirchhoff’s laws, we can write down equations for the behavior of this
membrane circuit diagram. We find

Cm
dV

dτ
+ F(V)+ i � −I0, (4.38)

L
di

dτ
+ Ri � V − V0, (4.39)

where I0 is the applied external current, i is the current through the resistor–inductor,
V � Vi − Ve is the membrane potential, and V0 is the potential gain across the battery.
Here τ is used to represent dimensional time because we will shortly introduce t as
a dimensionless time variable. The function F(V) is assumed to be of “cubic” shape,
having three zeros, of which the smallest V � 0 and largest V � V1 are stable solutions
of the differential equation dV/dτ � −F(V). We take R1 to be the “passive” resistance
of the nonlinear element, R1 � 1/F′(0). Now we introduce the dimensionless variables
v � V/V1, w � R1i/V1, f (v) � −R1F(V1v)/V1, and t � Lτ/R1. Then (4.38) and (4.39)
become

ε
dv

dt
� f (v)−w−w0, (4.40)

dw

dt
� v− γw− v0, (4.41)

where ε � R21Cm/L,w0 � R1I0/V1, v0 � V0/V1, and γ � R/R1.
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At this point we must specify f (v). As we discussed above, the only requirement
is that it have the general shape shown in Fig. 4.15. The classic choice is the cubic
polynomial

f (v) � Av(v− α)(1− v) with 0 < α < 1, (4.42)

which gives the FitzHugh–Nagumo model. Other choices include the McKean model
(McKean, 1970), for which

f (v) � H(v− α)− v, (4.43)

where H is the Heaviside function. This choice recommends itself because then the
model is piecewise linear, allowing explicit solutions of many interesting problems.
Another piecewise linear model (also proposed by McKean, 1970) has

f (v) �




−v, for v < α/2,

v− α, for
α

2
< v <

1+ α

2
,

1− v, for v >
1+ α

2
.

(4.44)

A third piecewise linear model that has found widespread usage is the “Pushchino”
model, so named because of its development in Pushchino (about 70 miles south of
Moscow), by Krinksy, Panfilov, Pertsov, Zykov, and their coworkers. The details of the
Pushchino model are described in Exercise 13.

An important variant of the FitzHugh–Nagumo equations is the van der Pol oscilla-
tor. An electrical engineer, van der Pol built the circuit using triodes because it exhibits
stable oscillations. As there was little interest in oscillatory circuits at the time, he pro-
posed his circuit as a model of an oscillatory cardiac pacemaker (van der Pol and van
derMark, 1928). Since then it has become a classic example of a systemwith limit cycle
behavior and relaxation oscillations, included in almost every textbook on oscillations
(see, for example, Stoker, 1950, or Minorsky, 1962).

If we eliminate the resistor R from the circuit (Fig. 4.16), differentiate (4.38), and
eliminate the current i, we get the second-order differential equation

Cm
d2V

dτ2
+ F′(V)

dV

dτ
+ V

L
� V0

L
. (4.45)

Following rescaling, and setting F(v) � A(v3/3−v), we arrive at the van der Pol equation
v′′ + a(v2 − 1)v′ + v � 0. (4.46)

From now on, by the generalized FitzHugh–Nagumo equations we mean the system
of equations

ε
dv

dt
� f (v,w)+ I, (4.47)

dw

dt
� g(v,w), (4.48)



4.2: Two-Variable Models 139

where the nullcline f (v,w) � 0 is of “cubic” shape. By this we mean that for a finite
range of values of w, there are three solutions v � v(w) of the equation f (v,w) � 0.
These we will denote by v � V−(w), v � V0(w), and v � V+(w), and where comparison
is possible (since these functions need not all exist for the same range of w),

V−(w) ≤ V0(w) ≤ V+(w). (4.49)

We denote the minimal value of w for which V−(w) exists by W∗, and the maximal
value of w for which V+(w) exists by W∗. For values of w above the nullcline f (v,w) �
0, f (v,w) < 0, and below the nullcline, f (v,w) > 0 (in other words, fw(v,w) < 0).

The nullcline g(v,w) � 0 is assumed to have precisely one intersection with the
curve f (v,w) � 0. Increasing v beyond the curve g(v,w) � 0 makes g(v,w) positive (i.e.,
gv(v,w) > 0), and decreasing w below the curve g(v,w) � 0 increases g(v,w) (hence
gw(v,w) < 0). The nullclines f and g are illustrated in Fig. 4.15.

4.2.1 Phase-Plane Behavior

One attractive feature of the FitzHugh–Nagumo model is that because it is a two-
variable system, it can be studied using phase-plane techniques. (For an example of a
different approach, see Troy, 1976.) There are two characteristic phase portraits pos-
sible (shown in Figs. 4.17 and 4.19). By assumption, there is only one steady state,
at v � v∗, w � w∗, with f (v∗, w∗) � g(v∗, w∗) � 0. Without loss of generality, we may
assume that this steady state occurs at the origin, as this involves only a shift of the
variables. Furthermore, it is typical that the parameter ε is a small number. For small
ε, if the steady state lies on either the left or right solution branch of f (v,w) � 0, i.e.,
the curves v � V±(w), it is linearly stable. Somewhere on the middle solution branch
v � V0(w), near the extremal values of the curve f (v,w) � 0, there is a Hopf bifur-
cation point. That is, if parameters are varied so that the steady state passes through
this point, a periodic orbit arises as a continuous solution branch and bifurcates into
a stable limit cycle oscillation.

When the steady state is on the leftmost branch, but close to the minimum (Fig.
4.17), the system is excitable. This is because even though the steady state is linearly
stable, a sufficiently large perturbation from the steady state sends the state variable
on a trajectory that runs away from the steady state before eventually returning to rest.
Such a trajectory goes rapidly to the rightmost branch, which it hugs as it gradually
creeps upward, whence upon reaching the maximum, it goes rapidly to the leftmost
branch and then gradually returns to rest, staying close to this branch as it does. Plots
of the variables v and w are shown as functions of time in Fig. 4.18.

The mathematical description of these events follows from singular perturbation
theory. With ε � 1, the variable v is a fast variable and the variablew is a slow variable.
This means that if possible, v is adjusted rapidly to maintain a pseudo-equilibrium at
f (v,w) � 0. In other words, if possible, v clings to the stable branches of f (v,w) � 0,
namely v � V±(w). Along these branches the dynamics ofw are governed by the reduced
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Figure 4.17 Phase portrait for a Fitz-
Hugh–Nagumo system with f (v, w ) �
v (v −0.1)(1−v )−w , g(v, w ) � v −0.5w ,
ε � 0.01. For these parameter values the
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Figure 4.18 Solutions of a FitzHugh–
Nagumo system with f (v, w ) � v (v −
0.1)(1 − v ) − w , g(v, w ) � v − 0.5w , ε �
0.01.

dynamics

dw

dt
� g(V±(w), w) � G±(w). (4.50)

When it is not possible for v to be in quasi-equilibrium, the motion is governed
approximately by the differential equations,

dv

dτ
� f (v,w),

dw

dτ
� 0, (4.51)

found by making the change of variables to the fast time scale t � ετ , and then setting
ε � 0. On this time scale, w is constant, while v equilibrates to a stable solution of
f (v,w) � 0.

The evolution of v and w starting from specified initial conditions v0 and w0 can
now be described. Suppose v0 is greater than the rest value v∗. If v0 < V0(w), then v
returns directly to the steady state. If v0 > V0(w), then v goes rapidly to the upper branch
V+(w) withw remaining nearly constant atw0. The curve v � V0(w) is a threshold curve.
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While v remains on the upper branch, w increases according to

dw

dt
� G+(w) (4.52)

as long as possible. However, in the finite time

Te �
∫ W∗

w0

dw

G+(w)
, (4.53)

w reaches the “knee” of the nullcline f (v,w) � 0. This period of time constitutes the
excited phase of the action potential.

When w reaches W∗ it is no longer possible for v to stay on the excited branch, so
it must return to the lower branch V−(w). Once on this branch, w decreases following
the dynamics

dw

dt
� G−(w). (4.54)

If the rest point lies on the lower branch, then G−(w∗) � 0, and w gradually returns to
rest on the lower branch.

If the rest point lies on themiddle branchV0(w) (depicted in Fig. 4.19), it is unstable.
Instead of returning to rest after one excursion on the excited branch, the trajectory
alternates periodically between the upper and lower branches, withw varying between
W∗ and W∗. This periodic limit cycle behavior (with the solution plotted as a function
of time shown in Fig. 4.20) is called a relaxation oscillation. The period of the oscillation
is approximately

T �
∫ W∗

W∗

(
1

G+(w)
− 1
G−(w)

)
dw. (4.55)

This number is finite because G+(w) > 0, and G−(w) < 0 for all appropriate w.
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Figure 4.19 Phase portrait for a Fitz-
Hugh–Nagumo system with f (v, w ) �
v (v +0.1) (1−v )−w , g(v, w ) � v −0.5w ,
ε � 0.01. For these parameter values,
the unique rest point is unstable and
there is a globally stable periodic orbit.
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Figure 4.20 Solutions of a FitzHugh–Nagumo system with f (v, w ) � v (v + 0.1)(1 − v ) − w ,
g(v, w ) � v − 0.5w , ε � 0.01.

4.3 Appendix: Cardiac Cells

Excitable cells come in many varieties. Some excitable cells that have been subjected
to a substantial amount of study are the cardiac cells. The primary cell types of cardiac
cells are nodal cells (the sinoatrial (SA) and atrioventricular (AV) nodes), Purkinje fiber
cells, and myocardial cells, each with a slightly different function. For an introduction
to the cardiac conduction system, see Chapter 11.

The primary function of SA nodal cells is to provide a pacemaker signal for the rest
of the heart. AV nodal cells transmit the electrical signal from atria to ventricles with a
delay. Purkinje fiber cells are primarily for fast conduction, to activate themyocardium,
andmyocardial cells, both atrial and ventricular, are muscle cells and so are contractile
as well as excitable.

Because of these different functions, these cell types have slightly different action
potential shapes. The action potential for SA nodal cells is the shortest, similar to
the Hodgkin–Huxley action potential, while both Purkinje fiber cells and myocardial
cells have substantially prolonged action potentials, facilitating muscular contraction.
Typical action potentials for these are shown in Figs. 4.21, 4.22, and 4.24, and typical
ionic concentrations are given in Table 4.1.

Subsequent to the work of Hodgkin and Huxley, there was substantial work done
to apply their model to many different cell types, including cardiac cells. The quan-
titative models of cardiac cells are distinctively of Hodgkin–Huxley type, serving the
purpose of reproducing the details of the action potential shape (which they do quite
well) while attempting to give reasonable mechanistic explanations (via ionic channels
and currents) of their behavior. The primary difficulty with cardiac cells is that there
are many different cell types and many different types of ionic channels. Even within a
single cell type, there is substantial variation. For example, in the ventricles, epicardial,
midmyocardial, and endocardial cells have noticeable differences in action potential
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duration. AV nodal cells vary substantially, to the extent that they are sometimes clas-
sified into several different subtypes. In many ways, the squid giant axon worked on
by Hodgkin and Huxley was an ideal first candidate because the number and types of
channels are so few. One wonders whether they would have been as successful if they
had begun instead with a cardiac cell.

Because of this increased complexity of cardiac cell structure, the models of their
behavior, even though quantitative, are far from complete, and they retain a qualitative
sense. That is, the details are not nearly as precise as one is led to believe. Indeed, these
models reflect the artistry (or lack thereof) of modeling, in that some effects are re-
tained, others are discarded, and still others are averaged together into conglomerates.
There is continual competition between two forces, the one that would like all channels
and all effects to be specified with great detail, and the other that recognizes that some
details are inconsequential to the final behavior of the model.

The purpose of this appendix is to give a brief overview of the most important mod-
els of cardiac cell behavior and to give some (albeit limited) insight into the primary
differences between cell types. This material is in an appendix because while the quan-
titative details of the models vary, there are no substantially new ideas used to develop
the models.

4.3.1 Purkinje Fibers

A phenomenological approach
The first model describing the action potential of a cardiac cell was proposed by Noble
(1962) for Purkinje fiber cells. The primary purpose of the model was to show that
the action potential of a Purkinje fiber cell, which is noticeably different from a squid
axon action potential, could be captured by a model of Hodgkin–Huxley type. The
Purkinje fiber cell is self-oscillatory, with a sharp upstroke that overshoots and returns
to a prolonged plateau (300–400 ms compared to 3 ms for the squid axon) before
recovering.

The Noble model is of Hodgkin–Huxley type, expressed in terms of ionic currents
and conductances. In this model there are three currents, identified as an inward
sodium current, an outward potassium current, and a chloride leak current, all of

Table 4.1 Ion concentrations in most cardiac cells.

Extracellular Intracellular Nernst Potential
Ion (mM) (mM) (mV)
Na+ 145 15 60
Cl− 100 5 −80
K+ 4.5 160 −95
Ca2+ 1.8 0.0001 130
H+ 0.0001 0.0002 −18



144 4: Excitability

which are assumed to satisfy a linear instantaneous I–V relation,

I � g(V − Veq). (4.56)

For the Noble model, all changes in conductances that were measured in sodium-
deficient solutions were assumed to be for currents carried by potassium ions and are
therefore called potassium currents (thus, the chloride current is taken to be zero).
There is no certainty that these are indeed carried by potassium, but the nomenclature
is convenient.

Following the usual Hodgkin–Huxley formulation, the balance of transmembrane
currents is expressed by the conservation law

Cm
dV

dt
+ gNa(V − VNa)+ (gK1 + gK2)(V − VK)+ gan(V − Van) � Iapp, (4.57)

where gan � 0 and Van � −60 are the conductance and equilibrium potential, respec-
tively, for the anion current of the chloride ion (which therefore is not needed). In
addition, VNa � 40 and VK � −100.

The Noble model assumes two different types of potassium channels, an in-
stantaneous, voltage-dependent, channel, and a time-dependent channel. The time-
dependent potassium channel has a similar form to the Hodgkin–Huxley potassium
channel, except that it is about 100 times slower in its response, in order to prolong the
action potential plateau. This current is sometimes called the delayed rectifier current,
because it is delayed and because it is primarily an outward (rectified) current. The
conductance for this channel, gK2, depends on a time-dependent potassium activation
variable n through

gK2 � 1.2n4. (4.58)

The conductance for the instantaneous channel is described empirically by

gK1 � 1.2 exp
(
−V + 90

50

)
+ 0.015 exp

(
V + 90
60

)
. (4.59)

The sodium conductance for the Noble model is of a form similar to the Hodgkin–
Huxley model, being

gNa � 400m3h+ gi, (4.60)

where gi � 0.14,with the fixed inward bias from gi enabling a prolonged action potential
without necessitating major reworking of the dynamics of h and m.

The time dependence of the variables m,n, and h is of the form

dw

dt
� αw(1−w)− βww, (4.61)

with w � m,n, or h, where αw and βw are all of the form

C1exp(
V−V0
C2
)+ C3(V − V0)

1+ C4 exp(
V−V0
C5
)

. (4.62)
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Table 4.2 Defining values for rate constants α and β for the Noble model.

C1 C2 C3 C4 C5 V0

αm 0 — 0.1 −1 −15 −48
βm 0 — −0.12 −1 5 −8
αh 0.17 −20 0 0 — −90
βh 1 ∞ 0 1 −10 −42
αn 0 — 0.0001 −1 −10 −50
βn 0.002 −80 0 0 — −90

The constants C1, . . . , C5 and V0 are displayed in Table 4.2.
In the Noble model, Cm � 12, which is unrealistically large. This value was used

because it gives a correct time scale for the length of the action potential. The choice
was justified by arguing that the effective capacitance for a small bundle of cylindrical
cells, for which the data were obtained, should be larger than for a single cylindrical
cell, the surface area of which is only a small fraction of the total cell membrane area.

Numerical simulations show that the Noble model produces an action potential
that has correct features, seen in Fig. 4.21. The sharp upstroke comes from a large, fast,
inward sodium current, and the plateau is maintained by a continued inward sodium
current (with conductance gi), which nearly counterbalances the instantaneous out-
ward potassium current. Gradually, the slow outward potassium current is activated,
causing repolarization. A small inward sodium leak, called the pacemaker current, also
allows the potential to creep upward, eventually initiating another action potential.

Because of the sharp spike at the beginning of the action potential, it is not possible
to reproduce the Purkinje fiber action potential with a two-variable FitzHugh–Nagumo
model. However, by setting m � m∞(V), the Noble model can be reduced to a three-
variable model that retains the primary qualitative features of the original model.

A physiological approach
While the Noblemodel succeeds in reproducing the Purkinje fiber action potential with
a model of Hodgkin–Huxley type, the underlying physiology is incorrect, primarily
because the model was constructed before data on the ionic currents were available.
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Figure 4.21 Action potential for the
Noble model.
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This lack of data was mostly because the voltage-clamp technique was not successfully
applied to cardiac membrane until 1964.

The weakness of the physiology in the Noble model is exemplified by the fact that
there is no current identified with calcium ions, and the inward sodium current was
given the dual role of generating the upstroke and maintaining the plateau.

In 1975, McAllister, Noble, and Tsien (MNT) presented an improved model for the
action potential of Purkinje fibers. This model is based on a “mosaic of experimental
results,” because unlike the Hodgkin–Huxley model, the required information was not
obtained from a single experimental preparation. Furthermore, the model is known to
have an inadequate description of the sodium current, so that the upstroke velocity is
not accurate.

The MNTmodel is similar to the Noble model in that it is based on a description of
transmembrane ionic currents. It is substantially more complicated than most other
models, having 9 ionic currents and 9 gating variables. There are two inward currents,
INa and Isi (called the “slow inward” current). The current INa resembles the Hodgkin–
Huxley sodium current and is represented as

INa � gNam
3h(V − VNa), (4.63)

wherem and h are activation and inactivation gating variables, respectively, and VNa =
40mV. The inward current Isi has slower kinetics than INa and is carried, at least partly,
by calcium ions. This current Isi has two components and is given by

Isi � (0.8df + 0.04d′)(V − Vsi), (4.64)

whereVsi = 70mV. The variables d and f are time-dependent activation and inactivation
variables, respectively, while d′ is only voltage-dependent, being

d′ � 1
1+ exp(−0.15(V + 40)) . (4.65)

In the MNT model, there are three time-dependent outward potassium currents,
denoted by IK2 , Ix1 , and Ix2 . None of these resemble the squid potassium current from a
quantitative point of view, although all are described using an activation variable and
no inactivation variable. The current IK2 is called the pacemaker current because it is
responsible for periodically initiating an action potential, and it is given by

IK2 � 2.8IK2s, (4.66)

where

IK2 � exp(0.04(V + 110))− 1
exp(0.08(V + 60))+ exp(0.04(V + 60)) . (4.67)

The currents Ix1 and Ix2 are called plateau currents and are governed by

Ix1 � 1.2x1
exp(0.04(V + 95))− 1
exp(0.04(V + 45)) , (4.68)

Ix2 � x2(25+ 0.385V). (4.69)
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There is also a time-dependent outward current ICl carried by chloride ions, which is
described by

ICl � 2.5qr(V − VCl), (4.70)

where q and r are activation and inactivation variables, and VCl � −70 mV.
Finally, there are several background (leak) currents that are time independent.

There is an outward background current of potassium ions, described by

IK1 � IK2 + 0.2 V + 30
1− exp(−0.04(V + 30)) , (4.71)

where IK2 is given by (4.67). There is an inward background sodium current described
by

INa,b � 0.105(V − 40), (4.72)

and, finally, a background chloride current, given by

ICl,b � 0.01(V + 70). (4.73)

All of the conductances are specified in units of mS/cm2, and voltage is in mV. The 9
gating variablesm,d, s, x1, x2, q, h, f, and r all satisfy first-order differential equations of
the form (4.61), where αw and βw are of the form (4.62). The constants C1, . . . , C5 and
V0 are listed in Table 4.3.

The action potential for theMNTmodel is essentially the same as that for the Noble
model, so the advantage of the MNT model is that it better isolates and depicts the

Table 4.3 Defining values for α and β for the MNT model.

C1 C2 C3 C4 C5 V0

αm 0 — 1 −1 −10 −47
βm 40 −17.86 0 0 — −72
αh 0.0085 −5.43 0 0 — −71
βh 2.5 ∞ 0 1 −12.2 −10
αd 0 — 0.002 −1 −10 −40
βd 0.02 −11.26 0 0 — −40
αf 0.000987 −25 0 0 — −60
βf 1 ∞ 0 1 −11.49 −26
αq 0 — 0.008 −1 −10 0
βq 0.08 −11.26 0 0 — 0
αr 0.00018 −25 0 0 — −80
βr 0.02 ∞ 0 1 −11.49 −26
αs 0 — 0.001 −1 −5 −52
βs 5.0 × 10−5 −14.93 0 0 — −52
αx1 0.0005 12.1 0 1 17.5 −50
βx1 0.0013 −16.67 0 1 −25 −20
αx2 1.27 × 10−4 ∞ 0 1 −5 −19
βx2 0.0003 −16.67 0 1 −25 −20
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activity of different channels during an action potential. Of course, because it is much
more complicated than theNoblemodel, it is alsomuchharder to understand themodel
from a qualitative perspective. It therefore illustrates nicely the modeler’s dilemma,
the constant struggle to balance the demand for quantitative detail and qualitative
understanding.

4.3.2 Sinoatrial Node

The primary function of SA nodal cells is to initiate a regular heartbeat. They have
little contractile function and therefore little calcium. The most widely used model of
action potential behavior for SA nodal cells is due to Yanagihara et al. (1980). Aswith all
cardiac cell models, the YNImodel is of Hodgkin–Huxley type. The YNImodel includes
four time-dependent currents. These are the sodium current INa, which is a fast inward
current, and the potassium current IK, both ofwhich are similar to theHodgkin–Huxley
currents, as well as a slow inward current Is, and a delayed inward current activated
by hyperpolarization Ih. Finally, there is a time-independent leak current Il.

The conservation of transmembrane current takes the form

Cm
dV

dt
+ INa + IK + Il + Is + Ih � Iapp, (4.74)

where

INa � 0.5m3h(V − 30), (4.75)

IK � 0.7p
exp(0.0277(V + 90))− 1
exp(0.0277(V + 40)) , (4.76)

Il � 0.8
(
1− exp

(
−V + 60

20

))
, (4.77)

Is � 12.5(0.95d+ 0.05)(0.95f + 0.05)
(
exp

(
V − 10
15

)
− 1

)
, (4.78)

Ih � 0.4q(V + 45). (4.79)

As usual, the 6 gating variables m,h, p, d, f , and q satisfy first-order differential
equations of the form (4.61). Some of the constants αw and βw can be written in the
form (4.62) with constant values as shown in Table 4.4. Those that do not fit this form
are

αp � 9× 10−3 1

1+ exp(−V+3.8
9.71 )

+ 6× 10−4, (4.80)

αq � 3.4× 10−4 (V + 100)
exp(V+100

4.4 )− 1 + 4.95× 10−5, (4.81)

βq � 5× 10−4 (V + 40)
1− exp(−V+40

6 )
+ 8.45× 10−5, (4.82)

αd � 1.045× 10−2 (V + 35)
1− exp(−V+35

2.5 )
+ 3.125× 10−2 V

1− exp(− V
4.8 )

, (4.83)
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Table 4.4 Defining values for α and β for the YNI model.

C1 C2 C3 C4 C5 V0

αm 0 — 1 −1 −10 −37
βm 40 −17.8 0 0 — −62
αh 1.209 × 10−3 −6.534 0 0 — −20
βh 1 ∞ 0 1 −10 −30
βp 0 — −2.25 × 10−4 −1 13.3 −40
βd 0 — −4.21 × 10−3 −1 2.5 5
αf 0 — −3.55 × 10−4 −1 5.633 −20

-60

-40

-20

0

20

P
ot

en
tia

l (
m

V
)

10008006004002000
Time (ms)

Figure 4.22 Membrane potential for
the YNI model of SA nodal behavior.

βf � 9.44× 10−4 (V + 60)
1+ exp(−V+29.5

4.16 )
. (4.84)

The behavior of the YNI equations is depicted in Fig. 4.22. The action potential is
shaped similarly to the Hodgkin–Huxley action potential but is periodic in time and
slower. The sodium current is a fast current, and there is little loss in accuracy in
replacing m(t) with m∞(V). The most significant current in the YNI model is the slow
inward current Is. Not only does this current provide for most of the upstroke, it is also
responsible for the oscillation, in that after repolarization by the potassium current,
the slow inward current gradually depolarizes the node until threshold is reached and
an action potential is initiated.

Because the action potential of the SA node has no initial spike, it is relatively easy
to replicate it using a two-variable FitzHugh–Nagumo model. In Fig. 4.23 is shown
the periodic activity of a cubic FitzHugh–Nagumo model with action potential spikes
similar to those of the YNI model.

4.3.3 Ventricular Cells

The Beeler–Reuter equations (Beeler and Reuter, 1977) appeared shortly after theMNT
equations and model the electrical behavior in ventricular myocardial cells. Like the
models previously described, this model is based on data obtained from voltage-clamp
experiments. The Beeler–Reuter equations are less complicated than the MNT equa-
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Figure 4.23 The potential v (t ) for
the FitzHugh–Nagumo model with
f (v, w ) � v (1−v )(v −α)−w , g(v, w ) �
w − γv , with ε � 0.02, α � −0.05,
γ � −0.6.

tions, as there are only 4 transmembrane currents that are described, two inward
currents, one fast and one slow, and two outward currents, one time independent and
one time dependent.

As usual, there is the inward sodium current

INa � (4m3hj+ 0.003)(V − 50), (4.85)

which is gated by the variablesm,h, and j. Here, Beeler and Reuter found it necessary
to include the reactivation variable j, because the reactivation process is much slower
than inactivation and cannot be accurately modeled with the single variable h. Thus,
the sodium current is activated bym, inactivated by h, and reactivated by j, the slowest
of the three variables. The functions h∞ and j∞ are identical; it is their time constants
that differ. Notice also the inclusion of a sodium leak current; a similar sodium leak
was included in the Noble and MNT models.

The potassium current has two components, a time-independent current

IK � 1.4
exp(0.04(V + 85))− 1

exp(0.08(V + 53))+ exp(0.04(V + 53))+0.07
V + 23

1.0− exp(−0.04(V + 23)) (4.86)

and a time-activated outward current

Ix � 0.8x
exp(0.04(V + 77))− 1
exp(0.04(V + 35)) . (4.87)

The pacemaker potassium current used in the MNT model is not active in myocardial
tissue, which is not spontaneously oscillatory.

The primary difference between a ventricular cell and a Purkinje or SA nodal cell
is the presence of calcium, which is needed to activate the contractile machinery. For
the Beeler–Reuter equations, the calcium influx is modeled by the slow inward current

Is � 0.09fd(V + 82.3+ 13.0287 ln[Ca]i), (4.88)

activated by d and inactivated by f . Since the reversal potential for Is is calcium
dependent, the internal calcium concentration must be tracked, via

dc

dt
� 0.07(1− c)− Is, (4.89)
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Table 4.5 Defining values for α and β for the Beeler–Reuter model.

C1 C2 C3 C4 C5 V0

αm 0 — 1 −1 −10 −47
βm 40 −17.86 0 0 — −72
αh 0.126 −4 0 0 — −77
βh 1.7 ∞ 0 1 −12.2 −22.5
αj 0.055 −4 0 1 −5 −78
βj 0.3 ∞ 0 1 −10 −32
αd 0.095 −100 0 1 −13.9 5
βd 0.07 −58.5 0 1 20 −44
αf 0.012 −125 0 1 6.67 −28
βf 0.0065 −50 0 1 −5 −30
αx 0.0005 12 0 1 17.5 −50
βx 0.0013 −16.67 0 1 −25 −20
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Figure 4.24 Action potential for the
Beeler–Reuter equations.

where c � 107[Ca]i. Since currents are taken as positive outward, the intracellular
source of calcium is −Is.

The gating variables follow dynamics (4.61) where αw and βw are of the form (4.62)
with constants as displayed in Table 4.5. For these equations, units of V are in mV,
conductances are in units of mS/cm2, and time is measured in milliseconds (ms). A
plot of the Beeler–Reuter action potential is shown in Fig. 4.24. The long plateau of
the Beeler–Reuter action potential is maintained by the slow inward (calcium) current,
and the return to the resting potential is mediated by the slow outward potassium
current Ix1 .

4.3.4 Summary

To the novice, these models may appear as a bunch of numbers and equations pulled
magically out of a hat. To summarize and help give some perspective on the structure of
these models, in Table 4.6 is presented an overview of the currents and gating variables
used in each of the four models presented above.
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Table 4.6 Summary of currents for different ionic models.

Noble Purkinje Fiber
Current Ion Gating Variables

INa Na+ m, h

IK1 K+

IK2 K+ n

IAn Cl−

MNT Purkinje fiber
Current Ion Gating Variables

INa Na+ m, h

Isi Ca2+
d, f

IK1 K+

IK2 K+ s

Ix1 K+ x1

Ix2 K+ x2

ICl Cl− q, r

INa,b Na+

ICl,b Cl−

YNI SA Nodal cells
Current Ion Gating Variables

INa Na+ m, h

Is d, f

IK K+ p

Il leak
Ih q

BR myocardial cells
Current Ion Gating Variables

INa Na+ m, h, j

Is Ca2+
d, f

IK K+

Ix K+ x

4.3.5 Further Developments

All of the foregoing models for cardiac cell electrical activity represent various ap-
proximations and simplifications. Consequently, there has been considerable activity
to improve these models to better represent the correct physiology. Here we mention
a few of these models.

Pacemaker activity
Both SA node and Purkinje fiber cells exhibit autonomous oscillatory behavior. Exam-
ples of improved ionic models that reconstruct this behavior are given by DiFrancesco
and Noble (1985) for Purkinje fiber cells and by Noble and Noble (1984) for the SA
node.
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The fast sodium current
At the time the Beeler–Reuter equations were published, it was not possible to measure
accurately the fast sodium inward current, because it activates so rapidly. As a result,
all the early models (Noble, MNT, BR) used the Hodgkin–Huxley formulation of the
sodiumcurrent.However, it is known that this does not give a sufficiently rapidupstroke
for the action potential. This has little effect on the space-clamped action potential, but
it has an important effect on the propagation speed for propagated action potentials.

Once appropriate data became available, it was possible to suggest an improved
description of the sodium current. Thus, a modification of the sodium current was
proposed by Ebihara and Johnson (1980) (EJ), which has since become the standard
for most myocardial simulations. For the EJ model, the sodium current is given by

INa � 23m3h(V − 29), (4.90)

with

αm � 0.32
V + 47.13

1− exp(−(V + 47.13)) , (4.91)

βm � exp
(
− V

11

)
, (4.92)

αh �
{
0 if V < −40,
0.135exp(−0.147(V + 80)) if V > −40, (4.93)

βh �



7.69
exp(−0.09(V + 10.66))+ 1 if V < −40,
3.56exp(0.079V)+ 3.1× 105exp(0.35V) if V > −40.

(4.94)

Calcium
The final form for a myocardial ionic model has not yet been determined, as there are
continual suggestions for improvements and modifications. A major difficulty with the
Beeler–Reuter model is with the calcium current and internal calcium concentration.
This is not unexpected, as at the time themodel was formulated, little was known about
the mechanisms of calcium release and uptake.

While the inclusion of proper calcium kinetics into a myocardial ionic model is a
topic of active research, one recent model deserves mention. This model is known as
the Luo–Rudy (LR) model (Luo and Rudy, 1994a,b). An earlier model (Luo and Rudy,
1991) was a generalization of the Beeler–Reuter model. There is still significant debate
about many of the details of the LR models, so it is unlikely that the LR models are the
final word.

4.4 Exercises
1. Show that, if k > 1, then (1− e−x)k has an inflection point, but (e−x)k does not.

2. Use the independence principle of Chapter 3 to derive an expression for K in (4.6). Show
that K is independent of time, as assumed by Hodgkin and Huxley. How can this expression
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be used to check the accuracy of the assumption that all the initial current in response to a
voltage step is carried by Na+ ions? Derive another expression for K by assuming that the
Na+ channel has a linear I–V curve (which, as we discussed in Chapter 3, does not obey the
independence principle).

3. Explain why replacing the extracellular sodium with choline has little effect on the resting
potential of an axon. Calculate the new resting potential with 90% of the extracellular
sodium removed. Why is the same not true if potassium is replaced?

4. Plot the nullclines of the Hodgkin–Huxley fast subsystem. Show that vr and ve in the
Hodgkin–Huxley fast subsystem are stable steady states, while vs is a saddle point. Com-
pute the stable manifold of the saddle point and compute sample trajectories in the fast
phase-plane, demonstrating the threshold effect.

5. Show how the Hodgkin–Huxley fast subsystem depends on the slow variables; i.e., show
how the v nullcline moves as n and h are changed, and demonstrate the saddle-node
bifurcation in which ve and vs disappear.

6. Plot the nullclines of the fast–slow Hodgkin–Huxley phase-plane and compute a complete
action potential. How does the fast–slow phase-plane behave in the presence of an applied
current? How much applied current is needed to generate oscillations?

7. Suppose that in the Hodgkin–Huxley fast–slow phase-plane, v is slowly decreased to v∗ < v0
(where v0 is the steady state), held there for a considerable time, and then released. Describe
what happens in qualitative terms, i.e., without actually computing the solution. This is
called anode break excitation (Hodgkin and Huxley, 1952d. Also see Peskin, 1991). What
happens if v is instantaneously decreased to v∗ and then released immediately? Why do
these two solutions differ?

8. Solve the full Hodgkin–Huxley systemnumerically with a variety of constant current inputs.
For what range of inputs are there self-sustained oscillations? Why should one expect self-
sustained oscillations for some current inputs?

9. The Hodgkin–Huxley equations are for the squid axon at 6.3◦C. Using that the absolute
temperature enters the equations through the Nernst equation, determine how changes in
temperature affect the behavior of the equations. In particular, simulate the equations at
0◦C and 30◦C to determine whether the equations become more or less excitable with an
increase in temperature.

10. Show that a Hopf bifurcation occurs in the generalized FitzHugh–Nagumo model when
fv(v∗, w∗) � −εgw(v∗, w∗), assuming that

fv(v∗, w∗)gw(v∗, w∗)− gv(v∗, w∗)fw(v∗, w∗) > 0.

11. Morris and Lecar (1981) proposed the following two-variable model of membrane potential
for a barnacle muscle fiber:

Cm
dV

dT
+ Iion(V,W) � Iapp, (4.95)

dW

dT
� φJ(V)[W∞(V)−W], (4.96)

where V � membrane potential, W � fraction of open K+ channels, T � time, Cm �
membrane capacitance, Iapp � externally applied current, φ � maximum rate for closing
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Table 4.7 Typical parameter values for the Morris–Lecar model.

Cm � 20 µF/cm2 Iapp � 0.06 mamp/cm2

gCa � 4.4 mS/cm2
gK � 8 mS/cm2

gL � 2 mS/cm2
φ � 0.040 (ms)−1

V1 � −1 mV V2 � 15 mV

V3 � 0 V4 � 30 mV

V 0
Ca � 100 mV V 0

K � −70 mV

VL � −50 mV

K+ channels, and

Iion(V,W) � gCaM∞(V)(V − V0Ca)+ gKW(V − V0K)+ gL(V − V0L), (4.97)

M∞(V) � 1
2

(
1+ tanh

(
V − V1

V2

))
, (4.98)

W∞(V) � 1
2

(
1+ tanh

(
V − V3

V4

))
, (4.99)

J(V) � cosh
(
V − V3

2V4

)
. (4.100)

Typical rate constants in these equations are shown in Table 4.7.

(a) Find a nondimensional representation of the Morris–Lecar equations in terms of the
variables v � V

V0Ca
, t � gKT

2Cm
, w � W.

(b) Sketch the phase portrait of the nondimensional Morris–Lecar equations. Show that
there is a unique steady state at v � −0.3173, w � 0.1076 and determine its stability.

(c) Show that the Morris–Lecar equations can be reasonably well approximated by the
cubic FitzHugh–Nagumo system

dv

dt
� −k [(v− a)(v− b)(v− c)+ α(w−ws)

]
, (4.101)

dw

dt
� φ(v− βw+ γ), (4.102)

where a � −0.317, b � −0.18, c � 0.467, ws � 0.1076, k � 10, α � 0.2, β � 0.8333, γ �
0.47, φ � 0.3.

12. Does the Morris–Lecar model exhibit anode break excitation (see Exercise 7)? If not, why
not?

13. The Pushchino model is a piecewise linear model of FitzHugh–Nagumo type proposed as
a model for the ventricular action potential. The model has

f (v,w) � F(v)−w, (4.103)

g(v,w) � 1
τ(v)

(v−w), (4.104)



156 4: Excitability

where

F(v) �




−30v, for v < v1,

γv− 0.12, for v1 < v < v2,

−30(v− 1), for v > v2,

(4.105)

τ(v) �
{
2, for v < v1,

16.6, for v > v1,
(4.106)

with v1 � 0.12/(30+ γ) and v2 � 30.12/(30+ γ).
Simulate the action potential for this model. What is the effect on the action potential of
changing τ(v)?

14. Perhaps the most important example of a nonphysiological excitable system is the
Belousov–Zhabotinsky reaction. This reaction denotes the oxidation ofmalonic acid by bro-
mate in acidic solution in the presence of a transition metal ion catalyst. Kinetic equations
describing this reaction are (Tyson and Fife, 1980)

ε
du

dt
� −fvu− q

u+ q
+ u− u2, (4.107)

dv

dt
� u− v, (4.108)

where u denotes the concentration of bromous acid and v denotes the concentration of the
oxidized catalyst metal. Typical values for parameters are ε ≈ 0.01, f � 1, q ≈ 10−4. Describe
the phase portrait for this system of equations.

15. It is not particularly difficult to build an electrical analogue of the FitzHugh–Nagumo equa-
tions with inexpensive and easily obtained electronic components. The parts list for one
“cell” (shown in Fig. 4.27) includes two op-amps (operational amplifiers), two power sup-
plies, a few resistors, and two capacitors, all readily available fromany consumer electronics
store (Keener, 1983).
The key component is an operational amplifier (Fig. 4.25). An op-amp is denoted in a circuit
diagram by a triangle with two inputs on the left and a single output from the vertex on the
right. Only three circuit connections are shown on a diagram, but two more are assumed,
being necessary to connect with the power supply to operate the op-amp. Corresponding
to the supply voltages Vs− and Vs+, there are voltages Vr− and Vr+, called the rail voltages,
which determine the operational range for the output of an op-amp. The job of an op-amp
is to compare the two input voltages v+ and v−, and if v+ > v−, to set (if possible) the
output voltage v0 to the high rail voltage Vr+, whereas if v+ < v−, then v0 is set to Vr−. With
reliable electronic components it is a good first approximation to assume that the input
draws no current, while the output v0 can supply whatever current is necessary to maintain
the required voltage level.

-

v0

v

v

+ +

-
Figure 4.25 Diagram for an operational ampli-
fier (op-amp).
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The response of an op-amp to changes in input is not instantaneous, but is described
reasonably well by the differential equation

εs
dv0

dt
� g(v+ − v−)− v0. (4.109)

The function g(v) is continuous, but quite close to the piecewise constant function

g(v) � Vr+H(v)+ Vr−H(−v), (4.110)

withH(v) the Heaviside function. The number εs is small, and is the inverse of the slew-rate,
which is typically on the order of 106–107 V/sec. For all of the following circuit analysis,
take εs → 0.

(a) Show that the simple circuit shown in Fig. 4.26 is a linear amplifier, with

v0 � R1 + R2

R2
v+, (4.111)

provided that v0 is within the range of the rail voltages.

(b) Show that if R1 � 0, R2 � ∞, then the device in Fig. 4.26 becomes a voltage follower
with v0 � v+.

(c) Find the governing equations for the circuit in Fig. 4.27, assuming that the rail voltages
for op-amp 2 are well within the range of the rail voltages for op-amp 1.
Show that

C1
dv

dt
+ i2

(
1− R4

R5

)
+ F(v)

R3
+ v− vg

R5
� 0, (4.112)

C2R4R5
di2

dt
+ R4i2 � v− vg, (4.113)

+

-

R R
 12

v

+

-

v0

v

Figure 4.26 Linear amplifier using an op-amp.
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Figure 4.27 FitzHugh–Nagumo circuit using op-amps.

where F(v) is the piecewise linear function

F(v) �



v− Vr+ , for v > αVr+ ,

−R1
R2
v, for αVr− ≤ v ≤ αVr+ ,

v− Vr− , for v < αVr− ,

(4.114)

and α � R2
R1+R2 .

(d) Sketch the phase portrait for these circuit equations. Show that this is a piecewise
linear FitzHugh–Nagumo system.

(e) Use the singular perturbation approximation (4.55) to estimate the period of
oscillation for the piecewise linear analog FitzHugh–Nagumo circuit in Fig. 4.27.

16. Simulate the Noble equations with different values of gan � 0.0,0.075,0.18,0.4 mS/cm2.
Explain the results in qualitative terms.

Table 4.8 Parts list for the FitzHugh–Nagumo analog circuit.

2 LM 741 op-amps (National Semiconductor)
R1 � R2 � 100k4 R3 � 2.44

R4 � 1k4 R5 � 10k4

C1 � 0.01µF C2 � 0.5µF
Power supplies:
±15V for op-amp #1 ±12V for op-amp #2
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17. Simulate the MNT equations, and explain why the currents Isi, IK2 , Ix1 , and Ix2 are called the
slow inward, pacemaker, and plateau currents, respectively.

18. Simulate the YNI model for the SA nodal action potential. Find parameter values for the
FitzHugh–Nagumo cubic model that duplicate this behavior as best possible.

19. (a) Simulate the Beeler–Reuter equations and plot each of the currents and the calcium
concentration. What terms are mostly responsible for the prolongation of the action
potential?

(b) Do the Beeler–Reuter equations exhibit anode break excitation?
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Calcium Dynamics

Calcium is critically important for a vast array of cellular functions, as can be seen by a
quick look through any physiology book. For example, in this book we discuss the role
that Ca2+ plays in muscle mechanics, cardiac electrophysiology, bursting oscillations
and secretion, hair cells, and adaptation in photoreceptors, among other things. Clearly,
the mechanisms by which a cell controls its Ca2+ concentration are of central interest
in cell physiology.

There are a number of Ca2+ control mechanisms operating on different levels, all
designed to ensure that Ca2+ is present in sufficient quantity to perform its necessary
functions, but not in too great a quantity in the wrong places. Prolonged high concen-
trations of Ca2+ are toxic. For example, since calcium causes contraction of muscle
cells, failure to remove calcium can keep a muscle cell in a state of constant tension
(as in rigor mortis).

In vertebrates, the majority of body Ca2+ is stored in the bones, from where it can
be released by hormonal stimulation to maintain an extracellular Ca2+ concentration
of around 1 mM, while intracellular [Ca2+] is kept at around 0.1 µM. Since the internal
concentration is low, there is a steep concentration gradient from the outside of a
cell to the inside. This disparity has the advantage that cells are able to raise their
[Ca2+] quickly, by opening Ca2+ channels and relying on passive flow down a steep
concentration gradient, but it has the disadvantage that energy must be expended to
keep the cytosolic Ca2+ concentration low. Thus, cells have finely tuned mechanisms
to control the influx and removal of cytosolic Ca2+.

Calcium is removed from the cytoplasm in two principal ways: it is pumped out
of a cell, and it is sequestered into internal membrane-bound compartments such as
the mitochondria, the endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR),
and secretory granules. Since the Ca2+ concentration in the cytoplasm is much lower
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than either the extracellular concentration or the concentration inside the internal
compartments, both methods of Ca2+ removal require expenditure of energy. Some of
this is by a Ca2+ ATPase, similar to the Na+–K+ ATPase discussed in Chapter 2, that
uses energy stored in ATP to pumpCa2+ out of the cell or into an internal compartment.
There is also a Na+–Ca2+ exchanger in the cell membrane that uses the energy of the
Na+ electrochemical gradient to remove Ca2+ from the cell at the expense of Na+ entry
(also discussed in Chapters 2 and 3).

Calcium influx also occurs via two principal pathways: inflow from the extracellu-
lar medium through Ca2+ channels in the surface membrane and release from internal
stores. The surface membrane Ca2+ channels are of several different types: voltage-
controlled channels that open in response to depolarization of the cell membrane,
receptor-operated channels that open in response to the binding of an external ligand,
second-messenger-operated channels that open in response to the binding of a cellular
second messenger, and mechanically operated channels that open in response to me-
chanical stimulation. Voltage-controlled Ca2+ channels are of great importance in other
chapters of this book (in particular, when we consider models of bursting oscillations
or cardiac cells), and we consider them in detail there. We also omit the considera-
tion of the other surface membrane channels to concentrate on the properties of Ca2+

release from internal stores.
Calcium release from internal stores such as the ER is the second major Ca2+

influx pathway, and this is mediated principally by two types of Ca2+ channels that
are also receptors: the ryanodine receptor and the inositol (1,4,5)-trisphosphate (IP3)
receptor. The ryanodine receptor, so-called because of its sensitivity to the plant alkaloid
ryanodine, plays an integral role in excitation–contraction coupling in skeletal and
cardiac muscle cells, and is believed to underlie Ca2+-induced Ca2+ release, whereby
a small amount of Ca2+ entering the cardiac cell through voltage-gated Ca2+ channels
initiates an explosive release of Ca2+ from the sarcoplasmic reticulum (Fig. 5.1, lower
panel). Ryanodine receptors are also found in a variety of nonmuscle cells such as
neurons, pituitary cells, and sea urchin eggs. The IP3 receptor, although similar in
structure to the ryanodine receptor, is found predominantly in nonmuscle cells, and
is sensitive to the second messenger IP3. The binding of an extracellular agonist such
as a hormone or a neurotransmitter to a receptor in the surface membrane can cause,
via a G-protein link to phospholipase C (PLC), the cleavage of phosphotidylinositol
(4,5)-bisphosphate (PIP2) into diacylglycerol (DAG) and IP3 (Fig. 5.1, upper panel).
The water-soluble IP3 is free to diffuse through the cell cytoplasm and bind to IP3
receptors situated on the ER membrane, leading to the opening of these receptors
and subsequent release of Ca2+ from the ER. Similarly to ryanodine receptors, IP3
receptors aremodulated by the cytosolic Ca2+ concentration, with Ca2+ both activating
and inactivating Ca2+ release, but at different rates.

As an additional control for the cytosolic Ca2+ concentration, Ca2+ is heavily
buffered (i.e., bound) by large proteins, with estimates that approximately 99% of the
total cytoplasmic Ca2+ is bound to buffers. The Ca2+ in the internal stores is also heavily
buffered.
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Figure 5.1 Diagram of the pathways involved in the control of cytoplasmic Ca2+ concentration.
A: Via the production of IP3. B: Via the ryanodine receptor. (Clapham, 1995, Fig. 1. We thank
David Clapham for providing the original of this figure.)
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5.1 Calcium Oscillations

In response to agonists such as hormones or neurotransmitters, many cell types exhibit
oscillations in intracellular [Ca2+]. These oscillations can be grouped into two major
types: those that are dependent on periodic fluctuations of the cell membrane potential
and the associated periodic entry of Ca2+ through voltage-gated Ca2+ channels, and
those that occur in the presence of a voltage clamp. Our focus here is on the latter type,
withinwhich group further distinctions can bemade bywhether the oscillatory calcium
flux is through ryanodine or IP3 receptors. We consider models of both types here.

The period of IP3-dependent oscillations ranges from a few seconds to a few min-
utes (Fig. 5.2). There is a great deal of evidence that inmany cell types, these oscillations
occur at constant [IP3] and are therefore not driven by oscillations in [IP3]. Although
it is risky to generalize, some overall trends can be seen; as [IP3] increases, the steady
state [Ca2+] also increases, the oscillation frequency increases, and the amplitude of
the oscillations remains approximately constant. Calcium oscillations usually occur
only when [IP3] is greater than some critical value and disappear again when [IP3] gets
too large. Thus, there is an intermediate range of IP3 concentrations that generate Ca

2+

oscillations.
Although it is known that Ca2+ controls many cellular processes, the exact signifi-

cance of Ca2+ oscillations is not completely understood in most cell types. It is widely
believed that the oscillations are a frequency-encoded signal that allows a cell to use
Ca2+ as a second messenger while avoiding the toxic effects of prolonged high [Ca2+].
However, there are still relatively few examples where the signal carried by a Ca2+

oscillation has been unambiguously decoded.

5.2 The Two-Pool Model

One of the earliest models for IP3-dependent Ca
2+ release assumes the existence of

two distinct internal Ca2+ stores, one of which is sensitive to IP3, the other of which is
sensitive to Ca2+ (Kuba and Takeshita, 1981; Goldbeter et al., 1990; Goldbeter, 1996).
Agonist stimulation leads to the production of IP3, which releases Ca

2+ from the IP3-
sensitive store through IP3 receptors. The Ca

2+ that is thereby released stimulates the
release of further Ca2+ from the Ca2+-sensitive store, possibly via ryanodine receptors.
A crucial assumption of the model is that the concentration of Ca2+ in the IP3-sensitive
store remains constant, as the store is quickly refilled from the extracellular medium.
A schematic diagram of the model is given in Fig. 5.3.

Recent work by Dupont and Goldbeter (1993, 1994) has shown that the model does
not depend on the existence of two separate pools of Ca2+; the model equations can
equally well be used to describe the release of Ca2+ from a single pool, with the release
modulated by both IP3 and Ca

2+. Nevertheless, for convenience, we persist in calling
this the two-pool model.
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Figure 5.2 Typical calcium oscillations from a variety of cell types. A: Hepatoctyes stimulated
with vasopressin (VP). B: Rat parotid gland stimulated with carbachol (CCh). C: Gonadotropes
stimulated with gonadotropin-releasing hormone (GnRH). D: Hamster eggs after fertilization.
The time of fertilization is denoted by the arrow. E and F: Insulinoma cells stimulated with two
different concentrations of carbachol. (Berridge and Galione, 1988, Fig. 2.)

Let c denote the concentration of Ca2+ in the cytoplasm, and cs the concentration
of Ca2+ in the Ca2+-sensitive pool. We assume that IP3 causes a steady flux r of Ca2+

into the cytosol, and that Ca2+ is pumped out of the cytoplasm at the rate −kc. Then
dc

dτ
� r − kc− f̃ (c, cs), (5.1)
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Figure 5.3 Schematic diagram of the two-pool model of Ca2+ oscillations.

dcs

dτ
� f̃ (c, cs), (5.2)

f̃ (c, cs) � Juptake − Jrelease − kf cs, (5.3)

where

Juptake � V1c
n

Kn1 + cn
, (5.4)

Jrelease �
(

V2c
m
s

Km2 + cms

)(
cp

K
p

3 + cp

)
, (5.5)

and τ denotes time. The flux of Ca2+ from the cytoplasm into the Ca2+-sensitive pool is
given by f̃ ; Juptake is the rate at which Ca

2+ is pumped from the cytosol into the Ca2+-
sensitive pool by an active process, and Jrelease is the rate at which Ca

2+ is released from
the Ca2+-sensitive pool. Note that as c increases, so does Jrelease. Thus, Ca2+ stimulates
its own release through positive feedback, usually called Ca2+-induced Ca2+ release, or
CICR (Endo et al., 1970; Fabiato, 1983). It is this positive feedback that is central to the
model’s behavior. Finally, the rate at which Ca2+ leaks from the Ca2+-sensitive pool into
the cytosol is kf cs. In themodel, r is constant for constant [IP3] and is treated as a control
parameter. Thus, the behavior of themodel at different constant IP3 concentrations can
be studied by varying r.
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Table 5.1 Typical parameter values for the two-pool model of Ca2+ oscillations. (Goldbeter et
al., 1990.)

k � 10 s−1 K1 � 1 µM

K2 � 2 µM K3 � 0.9 µM

V1 � 65 µMs−1 V2 � 500 µMs−1

kf � 1 s−1 m � 2

n � 2 p � 4

For convenience we nondimensionalize the model equations. Let u � c/K1, t � τk,
v � cs/K2, α � K3/K1, β � V1/V2, γ � K2/K1, δ � kf K2/V2, µ � r/(kK1), and ε � kK2/V2, to
get

du

dt
� µ− u− γ

ε
f (u, v), (5.6)

dv

dt
� 1
ε
f (u, v), (5.7)

f (u, v) � β

(
un

un + 1
)

−
(

vm

vm + 1
)(

up

αp + up

)
− δv. (5.8)

If the exchange of Ca2+ between the cytosol and the Ca2+-sensitive pool is fast (i.e., V1
and V2 are large), then ε is a small parameter. A table of typical parameter values in the
model is given in Table 5.1. For these values, ε ≈ 0.04.

5.2.1 Excitability and Oscillations

The two-poolmodel can be put into the formof a generalized FitzHugh–Nagumomodel
(Chapter 4) by a simple change of variables. If we let w � u + γv, then the two-pool
model becomes

dw

dt
� µ− (w− γv), (5.9)

dv

dt
� 1
ε
f (w− γv, v) � 1

ε
F(w, v). (5.10)

The nullclines of the transformed equations are shown in Fig. 5.4, where it can be seen
that one nullcline is N-shaped, while the other is a straight line, as in the FitzHugh–
Nagumo model. Thus, the analysis of the FitzHugh–Nagumo model can be applied,
essentially without change, to the temporal behavior of the two-pool model. It is
therefore not surprising that the two-pool model is excitable and exhibits oscillatory
behavior. When µ is slightly below the lower Hopf bifurcation point (calculated be-
low), a subthreshold addition of Ca2+ gives a small response, while a superthreshold
addition causes a large transient before the return to steady state.
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Figure 5.4 Nullclines and sample trajectory of the two-pool model transformed to w, v

coordinates (Sneyd et al., 1993; Fig. 4.)

The steady state of the two-pool model, (u0, v0), is given by

u0 � µ, (5.11)

f (µ, v0) � 0, (5.12)

and the stability of the steady state is determined by the roots of the characteristic
equation

λ2 +Hλ− fv

ε
� 0, (5.13)

where

H � γfu(u0, v0)
ε

− fv(u0, v0)
ε

+ 1. (5.14)

Since fv < 0, the roots of (5.13) have negative real part (and thus the steady state is
stable) if H > 0, and they have positive real part if H < 0. At H � 0 the steady state
changes stability through a Hopf bifurcation, and at these points a branch of periodic
orbits appears. The amplitude and period of these periodic orbits as a function of the
bifurcation parameter µ can be tracked with the use of the software package AUTO
(Doedel, 1986), and the results are shown in Fig. 5.5.

As µ is increased, oscillations appear at a Hopf bifurcation and disappear in the
same manner. Both Hopf bifurcations are supercritical, and the two bifurcation points
are connected by a branch of stable periodic orbits. Oscillations occur for a constant
value of µ, i.e., constant [IP3]. Thus, the two-pool model shows that Ca

2+-induced
Ca2+ release is sufficient to produce oscillations in the absence of IP3 oscillations.
The function of IP3 is to produce a steady influx of Ca

2+ into the cytosol from the IP3-
sensitive pool, and this steady influx drives the Ca2+ oscillations. Many features of Ca2+
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Figure 5.5 Bifurcation diagram of the two-pool model, using the parameter values given in
Table 5.1. Only the maximum of u over the periodic orbit is shown here. (Sneyd et al., 1993,
Fig. 2b.)

oscillations are reproduced well by the model. For example, the amplitude of the oscil-
lations stays approximately constant (or increases slightly), and the period increases, as
[IP3] is decreased, as observed in many cell types. Furthermore, the oscillations show
pronounced spike-like behavior, again in good agreement with many experiments. A
detailed discussion of this model, and of many experimental results, can be found in
Goldbeter (1995).

5.3 The Mechanisms of Calcium Release

5.3.1 IP3 Receptors

Although the two-pool model reproduces experimental data extremely well, both quali-
tatively and quantitatively, recent experimental evidence indicates that the role of Ca2+

is more complicated than was assumed in this model. In the two-pool model Ca2+ stim-
ulates its own release (thus the term cp/(Kp3 + cp) in (5.5) ), while the flow of Ca2+ from
the internal store is terminated when the concentration of Ca2+ in the internal store
becomes too low (thus the term cms /(K

m
2 + cms )). However, it now appears that not only

does Ca2+ stimulate its own release, it also inhibits it, but on a slower time scale (Parker
and Ivorra, 1990; Finch et al., 1991; Bezprozvanny et al., 1991; Parys et al., 1992). It
is hypothesized that this sequential activation and inactivation of the IP3 receptor by
Ca2+ is the fundamental mechanism underlying IP3-dependent Ca

2+ oscillations and
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waves, and a number of models incorporating this hypothesis have appeared (reviewed
by Sneyd et al., 1995b and Tang et al., 1996).

A detailed IP3 receptor model
One approach to determining whether sequential activation and inactivation of the IP3
receptor by Ca2+ can produce Ca2+ oscillations is to construct a detailed model of the
IP3 receptor, including all the possible receptor states and transitions between them
(De Young and Keizer, 1992). To do so, we assume that the IP3 receptor consists of
three equivalent and independent subunits, all of which must be in a conducting state
before the receptor allows Ca2+ flux. Each subunit has an IP3 binding site, an activating
Ca2+ binding site, and an inactivating Ca2+ binding site, each of which can be either
occupied or unoccupied, and thus each subunit can be in one of eight states. Each state
of the subunit is labeled Sijk, where i, j, and k are equal to 0 or 1, with a 0 indicating
that the binding site is unoccupied and a 1 indicating that it is occupied. The first index
refers to the IP3 binding site, the second to the Ca

2+ activation site, and the third to
the Ca2+ inactivation site. This is illustrated in Fig. 5.6. Although a fully general model
would include 24 rate constants, we make two simplifying assumptions. First, the rate
constants are assumed to be independent of whether activating Ca2+ is bound or not.
Second, the kinetics of Ca2+ activation are assumed to be independent of IP3 binding
and Ca2+ inactivation. This leaves only 10 rate constants, k1, . . . , k5 and k−1, . . . , k−5.

The fraction of subunits in the state Sijk is denoted by xijk. The differential equations
for these are based on mass-action kinetics, and thus, for example,

dx000

dt
� −(V1 + V2 + V3), (5.15)
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Figure 5.6 The binding diagram for the IP3 receptor model. Here, c denotes [Ca2+], and p

denotes
[
IP3
]
.



170 5: Calcium Dynamics

where

V1 � k1px000 − k−1x100, (5.16)

V2 � k4cx000 − k−4x001, (5.17)

V3 � k5cx000 − k−5x010, (5.18)

where p denotes [IP3] and c denotes [Ca
2+]. V1 describes the rate at which IP3 binds to

and leaves the IP3 binding site, V2 describes the rate at which Ca
2+ binds to and leaves

the inactivating site, and similarly for V3. Since experimental data indicate that the
receptor subunits act in a cooperative fashion, the model assumes that the IP3 receptor
passes Ca2+ current only when three subunits are in the state S110 (i.e., with one IP3
and one activating Ca2+ bound), and thus the open probability of the receptor is x3110.

The set of seven differential equations for the receptor states (there are eight recep-
tor states, but only seven are independent, as the xijks must sum to one) are combined
with a differential equation for Ca2+ transport to obtain the full model

dc

dt
�

receptor flux︷ ︸︸ ︷
(r1x3110 + r2)(cs − c)−

pumping︷ ︸︸ ︷
r3c

2

c2 + k2p
, (5.19)

where cs denotes the concentration in the ER, and r1 and r2 are constants. The first term
is the Ca2+ flux through the IP3 receptor, and it is proportional to the concentration
difference between the ER and the cytoplasm. It includes an IP3-independent leak (r2)
from the ER into the cytoplasm. The second term, similar to the pump term in the
two-pool model, describes the action of the Ca2+ ATPases that pump Ca2+ from the
cytoplasm into the ER, and is based on experimental data that show that the Ca2+

ATPase is cooperative, with a Hill coefficient of 2. For simplicity, we assume that the
cell is closed, i.e., that there is no Ca2+ exchange between the inside and outside of
the cell. In this case, cs is determined by constraining the total amount of intracellular
Ca2+ to be constant, and thus

cavg � vccs + c, (5.20)

where vc is the ratio of theER volume to the cytoplasmic volume.However, this artificial
constraint can be removed without affecting model behavior greatly. If Ca2+ exchange
between the inside and the outside of the cell is much slower than exchange between
the cytoplasm and the ER, we can apply a quasi-steady-state hypothesis and assume
that [Ca2+] is constant on a fast time scale.

In Fig. 5.7 we show the open probability of the IP3 receptor as a function of [Ca
2+],

which is some of the experimental data upon which the model is based. Bezprozvanny
et al. (1991) showed that this open probability is a bell-shaped function of [Ca2+]. Thus,
at low [Ca2+], an increase in [Ca2+] increases the open probability of the receptor,
while at high [Ca2+] an increase in [Ca2+] decreases the open probability. Parameters
in the model were chosen to obtain agreement with this steady-state data. The kinetic
properties of the IP3 receptor are equally important: the receptor is activated quickly by



5.3: The Mechanisms of Calcium Release 171

Table 5.2 Parameters of the receptor model (De Young and Keizer, 1992) for Ca2+ oscillations.

k1 � 400 µM−1s−1 k−1 � 52 s−1

k2 � 0.2 µM−1s−1 k−2 � 0.21 s−1

k3 � 400 µM−1s−1 k−3 � 377.2 s−1

k4 � 0.2 µM−1s−1 k−4 � 0.029 s−1

k5 � 20 µM−1s−1 k−5 � 1.64 s−1

cavg � 2 µM r1 � 1.11 s−1

vc � 0.185 r2 � 0.02 s−1

kp � 0.1 µM r3 � 0.9 µM−1s−1

Figure 5.7 The steady-state open probability of the IP3 receptor, as a function of [Ca2+]. The
symbols are the experimental data of Bezprozvanny et al. (1991), and the smooth curves are
from the receptor model (calculated at four different IP3 concentrations). (De Young and Keizer,
1992, Fig. 2A.)

Ca2+, but inactivated by Ca2+ on a slower time scale. In the model, this is incorporated
in the magnitude of the rate constants and is the basis of a simplification of the model
that we discuss below.

As [IP3] is increased, periodic orbits appear via a supercritical Hopf bifurcation
and disappear in the same manner. For many parameters in the physiological range,
the two Hopf bifurcations are connected by a branch of periodic orbits (Fig. 5.8), and
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Figure 5.8 Oscillations in the receptor model as a function of the IP3 concentration. (De Young
and Keizer, 1992, Figs. 3A and 4A.) A: Bifurcation diagram, showing the stable steady state
(solid curve), the unstable steady state (dashed curve), and the maximum and minimum of the
oscillations (dot-dashed curve). B: A typical periodic orbit in the receptor model, calculated for[
IP3
] � 0.5 µM.

the period of the orbits is a decreasing function of [IP3], as observed experimentally.
This behavior, similar to that seen in the two-pool model, seems to be typical of many
models of Ca2+ oscillations. However, in many respects the behavior of the receptor
model does not agree as well with experimental data as does that of the two-poolmodel,
even though it is based on more realistic assumptions. For example, the amplitude of
the oscillations is not constant as [IP3] varies, and neither are the oscillations very
spike-like. The receptor model is sufficient to explain some data, but certainly not all.

Reduction of the detailed IP3 receptor model
The complexity of the receptor model (eight differential equations and numerous pa-
rameters) provides ample motivation to seek a simpler model that retains its essential
properties. Since IP3 binds quickly to its binding site and Ca

2+ binds quickly to the
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activating site, we can dispense with the transient details of these binding processes
and assume instead that the receptor is in quasi-steady state with respect to IP3 binding
and Ca2+ activation (De Young and Keizer, 1992; Keizer and De Young, 1994; Li and
Rinzel, 1994; Tang et al., 1996). Notice that this is implied by the parameter values for
the detailed receptor model shown in Table 5.2, where k1, k3, and k5 are substantially
larger than k2 and k4, and k−1, k−3, and k−5 are also larger than k−2 and k−4. The process
by which fast binding can be used to simplify a complicated model is identical in spirit
to the reductions for enzyme kinetics used in Chapter 1, and so most of the details are
left as an exercise (Exercise 5).

As shown in Fig. 5.6, the receptor states are arranged into two groups: thosewithout
Ca2+ bound to the inactivating site (S000,S010,S100, and S110, shown in the upper line
of Fig. 5.6; called group I states), and those with Ca2+ bound to the inactivating site
(S001,S011,S101, and S111, shown in the lower line of Fig. 5.6; called group II states).
Because the binding of IP3 and the binding of Ca

2+ to the activating site are assumed to
be fast processes, it follows that within each group the binding states are at quasi-steady
state with respect to transitions within the group. However, the transitions between
group I and group II (between top and bottom in Fig. 5.6), due to binding or unbinding
of the inactivating site, are slow, and so the group I states are not in equilibrium with
the group II states.

To carry out this calculation,wewrite the differential equations governing the states
in group I, say, to get

dx000

dt
� −x000(k5c+ k1p+ k4c)+ k−5x010 + k−1x100 + k−4x001, (5.21)

dx100

dt
� −x100(k5c+ k−1 + k2c)+ k−5x110 + k1px000 + k−2x101, (5.22)

dx010

dt
� −x010(k−5 + k1p+ k4c)+ k5cx000 + k−1x110 + k−4x011. (5.23)

The differential equation for the fourth receptor state, x110, is superfluous, as we have
the constraint

x000 + x010 + x100 + x110 � 1− y, (5.24)

where

y � x001 + x011 + x101 + x111. (5.25)

Themathematically “proper” way to reduce these equations is to introduce appropriate
nondimensional variables, determinewhichparameters are small and thenfind approx-
imate equations by setting the small parameters to zero. However, it is not necessary
to go through this formal procedure. Since we are assuming that the group I binding
sites are all in quasi-steady state, the quasi-steady-state equations may be obtained by
setting the fast terms on the right-hand sides of (5.21)–(5.23) to zero. Thus,

x000(k5c+ k1p) � k−5x010 + k−1x100, (5.26)

x100(k5c+ k−1) � k−5x110 + k1px000, (5.27)
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x010(k−5 + k1p) � k5cx000 + k−1x110. (5.28)

We solve these together with the constraint (5.24) to find the group I state probabilities.
This gives, for example,

x000 � K1K5(1− y)
(p+ K1)(c+ K5)

, (5.29)

where Ki � k−i/ki. An identical procedure applied to the group II receptor states gives
the quasi-steady-state equations for the group II states.

It now remains to derive a differential equation for y. Notice that y changes only
on a slow time scale, since any changes in y involve Ca2+ leaving or binding to the
inactivating site, a process that is assumed to be slow. Thus we write the differential
equations for the group II sites, taking care to include the transitions between the group
I and group II sites, add the four equations, and substitute all the quasi-steady-state
expressions to get, finally,

dy

dt
�
[
(k−4K2K1 + k−2pK4)c

K4K2(p+ K1)

]
(1− y)−

(
k−4p+ k−2K3

p+ K3

)
y. (5.30)

This can be written in the form

τy(c, p)
dy

dt
� y∞(c, p)− y, (5.31)

which is useful for comparison with other models.
It is now a relatively simple matter to show how the reduced receptor model can be

used to construct a simpler model of Ca2+ oscillations. First, recall that the equation
governing the Ca2+ dynamics is (5.19)

dc

dt
� (r1x3110 + r2)(cs − c)− r3c

2

c2 + k2p
. (5.32)

Into this equation we substitute the expression for x110,

x110 � pc(1− y)
(p+ K1)(c+ K5)

, (5.33)

and the differential equation for y, to get a model of Ca2+ oscillations consisting of two
differential equations rather than the original eight.

Note that 1 − y, which is the proportion of receptors that are not inactivated by
Ca2+, plays the role of an inactivation variable, similar in spirit to the variable h in
the Hodgkin–Huxley equations (Chapter 4). To emphasize this similarity, the reduced
model can be written in the form

x110 � pc

(p+ K1)(c+ K5)
h, (5.34)

τh(c, p)
dh

dt
� h∞(c, p)− h, (5.35)

whereh � 1−y, and τh andh∞ are readily calculated from the corresponding differential
equation for y.
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A heuristic model of the IP3 receptor
An alternative approach to modeling Ca2+ release assumes that Ca2+ inactivates the
IP3 receptor in a cooperative manner (Atri et al., 1993). We assume first that the IP3
receptor consists of three binding domains, the first of which binds IP3, the other two
binding Ca2+, and second, that the receptor passes Ca2+ current only when IP3 is bound
to domain 1, Ca2+ is bound to domain 2, but Ca2+ is not bound to domain 3. Thus, Ca2+

activates the receptor by binding to domain 2 and inactivates the receptor by binding
to domain 3. Each binding domain consists of a number of binding sites, grouped on
the basis of functionality. If p1 is the probability that IP3 is bound to domain 1, p2 is
the probability that Ca2+ is bound to domain 2, and 1− p3 is the probability that Ca2+
is bound to domain 3, then, assuming independence of the domains, it follows that the
steady-state Ca2+ flux through the IP3 receptor, Jchannel, is given by

Jchannel � kf p1p2p3, (5.36)

for some constant kf . The probabilities pi, i �1–3 are chosen such that Jchannel agrees
with the steady-state experimental data of Parys et al. (1992) from Xenopus oocytes.
Good agreement with data is obtained by choosing

p1 � µ0 + µ1p

p+ kµ
, (5.37)

p2 � b+ (1− b)c
k1 + c

, (5.38)

p3 � k22

k22 + c2
, (5.39)

where p denotes [IP3], c denotes [Ca
2+], and where µ0, µ1, b, k1, and k2 are constants.

The steady-state open probabilities of the IP3 receptor in the model and experiment
are shown in Fig. 5.9. Note that the expression for p3 assumes that Ca

2+ binds to the
inactivating domain in a cooperative manner, with Hill coefficient of 2 (cf. Chapter 1
and Exercise 8).

To complete the model, it is assumed that p1 and p2 are instantaneous functions of
[Ca2+] and [IP3], but that p3 acts on a slower time scale, so that

Jchannel � kf p1p2h, (5.40)

where h is a time-dependent inactivation variable satisfying the differential equation

τh
dh

dt
� k22

k22 + c2
− h. (5.41)

Thus,

dc

dt
�

receptor flux︷ ︸︸ ︷
kf

(
µ0 + µ1p

p+ kµ

)(
b+ (1− b)c

k1 + c

)
h−

pumping︷ ︸︸ ︷
γc

kγ + c
+β. (5.42)
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Figure 5.9 The open probability of the IP3 receptor in the heuristic model, determined by
fitting to the experimental data of Parys et al. (1992). A: The experimental data of Parys et al.
(1992) from Xenopus oocytes. B: The model results, for three different IP3 concentrations. Curves
1, 2, and 3 are in order of increasing IP3 concentration. (Atri et al., 1993, Fig. 2.)

In fashion similar to the De Young–Keizer model, the term γc/(kγ+c) represents pump-
ing of Ca2+ out of the cytoplasm, and β represents a constant leak into the cytoplasm.
The parameters of the model are given in Chapter 12, Table 12.1, when waves in the
model are discussed.
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It is important to note some features of the heuristic model. First, the model equa-
tions are of the same form as the reduced receptor model discussed above, and of
the same form as the Hodgkin–Huxley and FitzHugh–Nagumo models. Obviously, this
combination of fast variables and slow variables, with inactivation acting on a slow
time scale, is a feature common to many physiological systems. Second, the func-
tions τh and h∞ have a simpler form in the heuristic model. However, in attaining
greater simplicity, some accuracy has been lost. For example, in the heuristic model
τh is a constant, independent of c and p; the more detailed receptor model, and its
reduced version, find τh to be a function of c and p; i.e., the kinetics of receptor
inactivation are affected by the concentrations of Ca2+ and IP3. In a more realistic
model of cooperativity at the inactivating site, τh would be a nonconstant function of
Ca2+ (Exercise 8), but such complications are ignored in this model for the sake of
simplicity.

The heuristic model exhibits oscillations in a manner similar to the models dis-
cussed above. For a wide range of parameter values, two Hopf bifurcation points exist
and are connected by a branch of stable periodic orbits. This is behavior typical of
models of Ca2+ oscillations, and we have seen similar bifurcation diagrams previously
(cf. Figs. 5.5 and 5.8).

A number of other points about the heuristic model are worth noting. First, it does
not include the factor cs−c in the term describing the IP3-sensitive Ca

2+ current. Thus,
it assumes that the concentration of Ca2+ in the ER is so high, and so well buffered,
that depletion of the ER has only a negligible effect on intracellular Ca2+ dynamics
for most of the physiological regime. Because of this omission, the structure of the
heuristic model is different from the usual FitzHugh–Nagumo system, and the model
becomes unphysiological when τh is too large. Nevertheless, in the physiological regime
the heuristic model agrees well with experimental data. Also, the form of the pumping
term is different from that in the detailed receptor model, which uses a Hill equation
with coefficient 2. There is experimental evidence that the form used in the receptor
model is a more accurate description of the Ca2+ ATPase found in a variety of cell
types (Lytton et al., 1992), but it is not clear how this change in the pumping term
affects model behavior. The differences and similarities between the detailed receptor
model and the heuristic model underline the fact that there are many choices to make
in the construction of even the simplest model. The obvious question to ask is to what
extent the choice of assumptions affects the final results. In other words, how sensitive
are the model predictions to the underlying assumptions? How much complication
is vital, and how much is a waste of time and money? In general these are difficult
questions to answer, and they can be answered completely only after detailed (and time-
consuming) comparisons between the models have been made. For this reason such
comparisons are rarely performed, or at least not before experimental data indicates
that the comparison will lead to useful distinctions. Despite these difficulties however,
the similarities between these twomodels suggest strongly that fast activation and slow
inactivation of the IP3 receptor by Ca

2+ are some of the most significant mechanisms
underlying Ca2+ oscillations.
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Further complications have been introduced recently by the experimental mea-
surements of Finch et al. (1991), Parker et al. (1996), and Dufour et al. (1997), who
have shown that the value used for τh is an order of magnitude too large, at least for
Xenopus oocytes and rat brain synaptosomes. All of the models discussed above use a
value of around 2 seconds (or greater) for τh, but a more realistic value is apparently
around 0.2 seconds or less. We conclude that although there is strong evidence that
modulation of the IP3 receptor by both IP3 and Ca

2+ can explain many features of Ca2+

oscillations and waves, at least qualitatively, the properties of the IP3 receptor are not
sufficiently well understood to give a fully quantitative theory.

5.3.2 Ryanodine Receptors

The second principal way in which Ca2+ can be released from intracellular stores is
through ryanodine receptors, which are found in a variety of cells, including cardiac
cells, smooth muscle, skeletal muscle, chromaffin cells, pituitary cells, neurons, and
sea urchin eggs. Ryanodine receptors share many structural and functional similari-
ties with IP3 receptors, particularly in their sensitivity to Ca

2+. Just as Ca2+ can activate
IP3 receptors and increase the Ca

2+ flux, so too can Ca2+ trigger Ca2+-induced Ca2+

release (CICR) from the sarcoplasmic or endoplasmic reticulum through ryanodine
receptors (Endo et al., 1970; Fabiato, 1983). Calcium can also inactivate ryanodine
receptors, although the physiological significance of such inactivation is unclear. Ryan-
odine receptors are so named because of their sensitivity to ryanodine, which decreases
the open probability of the channel. On the other hand, caffeine increases the open
probability of ryanodine receptors.

Calcium oscillations in bullfrog sympathetic neurons
Sympathetic neurons respond to caffeine, or mild depolarization, with robust and re-
producible Ca2+ oscillations. Although these oscillations are dependent on external
Ca2+, they occur at a fixed membrane potential and involve the release of Ca2+ from
the ER via ryanodine receptors, as is indicated by the fact that they are abolished by
ryanodine. Typical oscillations are shown in Fig. 5.10.

A particularly simplemodel of CICR (Friel, 1995) provides an excellent quantitative
description of the behavior of these oscillations in the bullfrog sympathetic neuron.
Despite the model’s simplicity (or perhaps because of it), it is a superb example of how
theory can supplement experiment, providing an interpretation of experimental results
as well as quantitative predictions that can subsequently be tested.

Initially,we construct a linearmodel anddetermine the kinetic parameters by fitting
the model to the responses following small perturbations. A schematic diagram of the
model is given in Fig. 5.11. A single intracellular Ca2+ store exchanges Ca2+ with the
cytoplasm (with fluxes JL2 and JP2), which in turn exchanges Ca

2+ with the external
medium (JL1 and JP1). Thus,

dc

dt
� JL1 − JP1 + JL2 − JP2, (5.43)
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dcs

dt
� −JL2 + JP2, (5.44)

where c denotes [Ca2+] in the cytoplasm and cs denotes [Ca2+] in the intracellular store.
The fluxes are chosen in a simple way, as linear functions of the concentrations:

JL1 � k1(ce − c), Ca2+entry, (5.45)

JP1 � k2c, Ca2+extrusion, (5.46)

JL2 � k3(cs − c), Ca2+release, (5.47)

JP2 � k4c, Ca2+uptake, (5.48)

where ce denotes the external [Ca
2+], which is assumed to be fixed. (For instance, in

the simulations of Fig. 5.10 ce was fixed at 1, 0.5 and 0.7 mM). Depolarization induced
by the application of high external K+ can be modeled as an increase in k1, the rate
of Ca2+ entry from the outside, while the application of caffeine (which increases the
rate of Ca2+ release from the internal store) can be modeled by an increase in k3. If
these changes are small enough, the cell responds in a linear fashion, with responses
described by the exponential solutions of (5.43) and (5.44). By fitting these exponential
solutions to the data, the kinetic constants k1, . . . , k4 can be determined.

We now extend the linear model to account for the observed Ca2+ oscillations. We
model CICR in a simple way by making k3 an increasing function of c, i.e.,

k3 � κ1 + κ2c
n

Kn
d

+ cn
, (5.49)

and then, using the parameters determined from the linear fit as a starting point, de-
termine the parameters of the nonlinear model by fitting to the time course of an
oscillation (Table 5.3). A typical result is shown in Fig. 5.12.

Not only does this model provide an excellent quantitative description of the Ca2+

oscillation, it also predicts the fluxes that should be observed over the oscillatory cycle.
Subsequent measurement of these fluxes confirmed the model predictions, as seen in
the lower panel of Fig. 5.12. It thus appears that CICR (at least in bullfrog sympathetic
neurons) can be well described by a relatively simple model. It is necessary only for
the ryanodine receptors to be activated by Ca2+ to generate physiological oscillations
— inactivation by Ca2+ is not necessary.

Table 5.3 Parameters of the model of Ca2+ oscillations in sympathetic neurons, determined
by fitting to the time course of an oscillation.

k1 � 5 × 10−6 s−1 κ2 � 2.4 s−1

k2 � 0.132 s−1 Kd � 1 µM

k4 � 3.78 s−1 n � 3

κ1 � 0.054 s−1
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Figure 5.10 Caffeine-induced Ca2+ oscillations in sympathetic neurons, and their dependence
on the extracellular Ca2+ concentration. [Ca]0 stands for ce . (Friel, 1995, Fig. 5a.)

JL1

JL2
JP1

JP2

ER (cs)

cytoplasm (c)

cell membrane

Figure 5.11 Schematic diagram of the
CICR model of Ca2+ oscillations in
bullfrog sympathetic neurons.

Excitation–contraction coupling in cardiac cells
Although this simple CICR model does a good job of describing the behavior of one
cell type, the similarities between IP3 and ryanodine receptors suggest that it should be
possible to construct more detailed models of the ryanodine receptor along the lines of
the detailed model of the IP3 receptor. The goal is to explain a wider range of behaviors
than can be explained by the simpler model of CICR.

CICR is of particular importance in cardiac cells. In these cells, membrane depolar-
ization causes a small influx of Ca2+ through a voltage-sensitive membrane channel,
which, in turn, initiates the release of Ca2+ from the sarcoplasmic reticulum (SR)
through the ryanodine receptor, leading to muscle contraction. Although there is gen-
eral agreement on the outline of the process, there is little agreement on the details.
For example, it is not yet clear whether inactivation of ryanodine receptors by Ca2+

plays any role in intact cardiac cells, or how many functionally distinct intracellular
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Figure 5.12 The top panel shows an experimentally measured Ca2+ oscillation (dots) and a
model oscillation (smooth curve). The model parameters were determined by fitting the model
to the oscillation time course, which explains the excellent agreement between model and data.
The lower panel shows the predicted and measured Ca2+ fluxes. Open squares are JL1, open
diamonds are JP 1 + JP 2, solid triangles are JL2. (Adapted from Friel, 1995, Fig. 9.)

Ca2+ pools contribute to CICR. The question is complicated by the spatial positioning
of the ryanodine receptors; the release of Ca2+ into a confined space between the cell
membrane and the SR can result in a much higher local [Ca2+] than is predicted by a
spatially homogeneous model.

Onemodel of CICR in cardiac cells (Fabiato, 1992; Tang andOthmer, 1994) is based
on the assumption (similar to that made for IP3 receptors) that Ca

2+ can both activate
and inactivate the ryanodine receptor. It is assumed the ryanodine receptor can exist
in four different states (Fig. 5.13): S00, the bare ryanodine receptor; S01, the receptor
with one Ca2+ bound to an inactivating site; S10, the receptor with one Ca2+ bound to
an activating site; and S11, with two Ca

2+ bound. S10 is the open state of the receptor.



182 5: Calcium Dynamics

S00 (x1)
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S10  (x2)

S11  (x3)
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Figure 5.13 State diagram of the model of CICR
in cardiac cells.

For simplicity, we use a slightly different notation from that used for the model of
the IP3 receptor. We let x1, x2, and x3 denote the fraction of receptors in the states S00,
S10, and S11, respectively. With c denoting [Ca

2+], the equations for the receptor states
are

dx1

dt
� k−1x2 + k−2

(
1−

3∑
i�1

xi

)
− (k1 + k2)x1c, (5.50)

dx2

dt
� −k−1x2 + k−2x3 + (k1x1 − k2x2)c, (5.51)

dx3

dt
�
[
k2x2 + k1

(
1−

3∑
i�1

xi

)]
c− (k−2 + k−1)x3, (5.52)

where we have used the fact that the fraction of receptors in state S01 is 1 −∑3
i�1 xi.

It is also assumed that the rate of Ca2+ binding to the activating site is independent
of whether or not Ca2+ is already bound to the inactivating site (i.e., the rate at which
S00 → S10 is the same as the rate at which S01 → S11), and vice versa.

To these equations we add two more: one for c, and one for cs, the concentration
of Ca2+ in the sarcoplasmic reticulum. To get these equations, we assume

1. that Ca2+ leaks into the cell from the outside at the rate g2(ce − c), where ce is the
external Ca2+ concentration, c is the cytoplasmic Ca2+ concentration, and g2 is a
constant,

2. that Ca2+ leaks into the cell from the SR at the rate g1(cs − c), where cs is the
concentration of Ca2+ in the SR, and g1 is a constant,

3. that Ca2+ is pumped out of the cell at the rate q1c2/(c2 + q22),
4. that Ca2+ is pumped from the cytoplasm into the SR at a rate p1c2/(c2 + p22),
5. and finally, that the rate of Ca2+ release from the SR through ryanodine receptors
is kf x2(cs − c) for some constant kf .
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Table 5.4 Parameters of the model of CICR in cardiac cells.

k1 � 15 µM−1s−1 p1 � 1038 µM−1s−1

k−1 � 7.6 s−1 p2 � 0.12 µM

k2 � 0.8 µM−1s−1 q1 � 19 µM−1s−1

k−2 � 0.84 s−1 q2 � 0.06 µM

kf � 80 s−1 g1 � 0.4 s−1

ce � 1.5 mM g2 � 0.01 s−1

vc � 0.185

Combining these assumptions and letting vc denote the ratio of SR volume to cytoplasm
volume, we get

dc

dt
� vc

[
(kf x2 + g1)(cs − c)− p1c

2

p22 + c2

]
+ g2(ce − c)− q1c

2

q22 + c2
+ J(t), (5.53)

dcs

dt
� −(kf x2 + g1)(cs − c)+ p1c

2

p22 + c2
. (5.54)

J(t) is a specified flux that models the Ca2+ influx resulting from the opening of voltage-
gated Ca2+ channels in the sarcolemma. J is modeled as a square pulse lasting for 240
ms and with height A0. A0 is a variable parameter that determines the size of the initial
Ca2+ stimulus. The parameters of the model are given in Table 5.4.

It is worth noting some of the similarities and differences between this model and
some of the models discussed previously. First, the ryanodine receptor model assumes
that the receptor flux is proportional to x2, not x32 as was assumed for the IP3 receptor.
In this sense, the ryanodine receptor model is closer to the heuristic model of the IP3
receptor. However, the various leaks and pumps aremodeled in amore detailed fashion,
with two Ca2+ ATPases included explicitly, one pumping Ca2+ into the SR, the other
pumping Ca2+ out of the cell.

As is seen from Table 5.4, the binding of calcium to the activating site is a much
faster process than binding to the inactivating site, as k1 is much larger than k2, and k−1
is much larger than k−2. This suggests that (5.50), (5.51), and (5.52) can be reduced by
quasi-steady-state analysis to a simpler equation for the inactivation variable y. Indeed,
following standard arguments, we find that

x2 � k1c

k−1 + k1c
(1− y), (5.55)

where

dy

dt
� k2c

(
k1c

k−1 + k1c

)
(1− y)− k−2y. (5.56)
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The ryanodine receptor model agrees well with experimental data from cardiac
cells. The steady-state fraction of open channels as a function of c is a bell-shaped curve,
with a maximum at about 1 µM. This is in good qualitative agreement with the results
of Fabiato (1985), who showed that the amplitude of the tension transient in skinned
cardiac cells was a bell-shaped function of the triggering Ca2+ concentration. Further,
the model incorporates the results of Györke and Fill (1993), who showed that ryan-
odine receptors in lipid bilayers adapted to a maintained Ca2+ stimulus. In response to
a step increase in [Ca2+], the open probability of ryanodine receptors in bilayers peaks
rapidly, subsequently declining to a lower plateau. These results underline the simi-
larities between ryanodine receptors and IP3 receptors. Both have bell-shaped open
probabilities as a function of [Ca2+], and both adapt to a maintained Ca2+ stimulus. A
number of other experimental results are also reproduced by the model. First, it shows
a scaled response to a graded series of Ca2+ stimuli; as is observed experimentally, the
peak of the response increases as the stimulus increases. Second, experiments show
that under conditions where Ca2+ leakage from the outside into the cell is increased
(by damage to the sarcolemma, for example), cardiac cells can exhibit spontaneous
oscillations, with frequency dependent on the magnitude of the leak, a feature that is
also reproduced by the model. Finally, the model exhibits traveling waves that annihi-
late upon intersection and that travel at approximately 80 µms−1, in the physiological
range.

Far more complex models of CICR have been constructed, incorporating multiple
compartments and detailed descriptions of Ca2+ fluxes (for example,Wong et al., 1992).
Although they can do an excellent job of reproducing experimental data, they are too
complicated to be discussed here, and so we content ourselves with the simpler model
discussed above. A model similar to the one above has been constructed by Keizer and
Levine (1996), who study adaptation of the ryanodine receptor in detail.

Spatial effects
The above model for CICR in cardiac cells shows that many features of the ryanodine
receptor can be explained by a model that is similar to models of the IP3 receptor. Al-
though this emphasizes the behavioral similarities between the receptors, there are also
major differences. For example, inactivation of ryanodine receptors by Ca2+ has not yet
been observed in intact cells (as opposed to lipid bilayers), and there is not yet general
agreement that such inactivation is physiologically important. Another way in which
ryanodine receptors may differ from IP3 receptors is their position in the cell. There is
a close relationship between the voltage-sensitive Ca2+ channel in the sarcolemma that
lets in the initial Ca2+ influx and the ryanodine receptor in the sarcoplasmic reticulum
that initiates CICR (Stern, 1992). Thus, Ca2+ entering through the voltage-sensitive
channel may have a much greater effect on the ryanodine receptor than Ca2+ in the cy-
toplasm. Further, if Ca2+ is released from the SR into a confined space between the SR
and the sarcolemma, the ryanodine receptor could have a microenvironment radically
different from that experienced by the rest of the cell (Stern, 1992; Kargacin, 1994;
Stern et al., 1997).
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Stern (1992) has constructed a series of local control, or calcium synapse, models
that incorporate the effects of the close spatial relationship between the ryanodine
receptors and the voltage-sensitive Ca2+ channels. However, since these models are
complex, we do not discuss them in detail here. Spatial issues have also been discussed
by Peskoff et al. (1992), Langer and Peskoff (1996), Wang et al. (1996), and Peskoff and
Langer (1998).

5.4 Exercises
1. Murray (1989) discusses a simple model of CICR that has been used by a number of mod-

elers (Cheer et al., 1987; Lane et al., 1987). In the model, Ca2+ release from the ER is an
increasing sigmoidal function of Ca2+, and Ca2+ is removed from the cytoplasm with linear
kinetics. Thus,

dc

dt
� L+ k1c

2

1+ c2
− k2c,

where L is a constant leak of Ca2+ from the ER into the cytoplasm.

(a) Show that when L � 0 and k1 > 2k2, there are two positive steady states and determine
their stability. For the rest of this problem assume that k1 > 2k2.

(b) How does the nullcline dc/dt � 0 vary as the leak from the internal store increases?
Show that there is a critical value of L, Lc say, such that when L > Lc, only one positive
solution exists.

(c) Fix L < Lc and suppose the solution is initially at the lowest steady state. How does
c behave when small perturbations are applied to c? How does c behave when large
perturbations are applied? How does c behave when L is raised above Lc and then
decreased back to zero? Plot the bifurcation diagram in the L, c phase-plane, indicating
the stability (or otherwise) of the branches. Why is this behavior called a biological
switch? Is there hysteresis in this model?

2. Show that in a closed cell (i.e., one without any interaction with the extracellular
environment) the two-pool model cannot exhibit Ca2+ oscillations.

3. Test various simplifications of the two-pool model to determine whether or not oscillations
occur. Do this by looking for Hopf bifurcations analytically. For example, consider the cases

(a) n � 1,m � 1, p � 0.

(b) n � p � m � 1, with c1 � K1, c1 � K3, c2 � K2.

What is the simplest version that supports oscillations?

4. Show that in a generalmodel of intracellular Ca2+ dynamics, the resting level of intracellular
Ca2+ is independent of Ca2+ exchange with the internal pools.

5. Complete the details of the reduction of the receptor model (Section 5.3.1). First, derive the
quasi-steady-state equations,

x000

K1K5
� x010

K1c
� x100

K5p
� x110

pc
� (1− y)
(p+ K1)(c+ K5)

, (5.57)

x001

K3K5
� x011

K3c
� x101

K5p
� x111

pc
� y

(p+ K3)(c+ K5)
, (5.58)
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where Ki � k−i/ki. Next, write the differential equations for the group II sites, and add the
four equations, to get

dy

dt
� k4c(x000 + x010)+ k2c(x100 + x110)− k−4(x001 + x011)− k−2(x101 + x111). (5.59)

Finally, substitute in the quasi-steady-state solutions to get (5.30).

6. Show that (5.30) can be written in the form (5.31), and interpret the qualitative behavior
of the functions τy and y∞ in terms of the underlying physiology.

7. Write down the equations for the reduced receptor model (Section 5.3.1) when k4 � k2 and
k−4 � k−2. Let h � 1− y. What is the differential equation for h? Write it in the form

τh
dh

dt
� h∞ − h. (5.60)

Derive this simplified model directly from the state diagram in Fig. 5.6.

8. Write down a reaction scheme like that of Fig. 5.6, but assuming that 2 Ca2+ ions inactivate
the receptor in a cooperative fashion. Assume a simple model of cooperativity,

Sij0
c2k2
−→
←−
k−2

Sij1, (5.61)

for i, j � 0 or 1, and assume that the group I and group II states are each in quasi-steady
state (as was done to obtain the reduced receptor model). Derive a version of the heuristic
model (Section 5.3.1) in which τh is a function of Ca

2+.

9. Without assuming that two Ca2+ ions bind simultaneously, repeat the previous derivation.
Assume that the first Ca2+ ion binds slowly, while the second binds quickly.

10. Check that the binding diagram in Fig. 5.6 satisfies the principle of detailed balance
(Chapter 1, Exercise 3). (In fact, the model parameters were chosen to ensure this.)

11. Plot the nullclines of the heuristic model of the IP3 receptor (Section 5.3.1). Show that it
has a form different from that of the FitzHugh–Nagumo model of oscillations (Chapter 4).
Modify the model by assuming that Ca2+ release through the IP3 receptor is proportional to
cs − c, where cs is the concentration of Ca2+ in the ER. How does this change the nullclines
and the basic model structure? How do these two versions of the model behave as τh → 0?

12. Using AUTO, show that for the parameters given in Table 12.1, the bifurcation diagram of
the heuristic model of the IP3 receptor (Section 5.3.1) becomes considerably more compli-
cated as the steady-state curve folds up and breaks the branch of periodic orbits into two
separate branches (Fig. 5.14). Describe and sketch the series of bifurcations that occurs as
µ is decreased.

13. Assuming k3 to be a constant, calculate the solution to (5.43)–(5.48). Stimulation by high
external K+ can bemodeled as a step increase in k1 (as the cell depolarizes), and stimulation
by external caffeine can bemodeled as a step increase in k3. What are the solutions for these
two cases?

14. Plot the bifurcation diagram of themodel of CICR in bullfrog sympathetic neurons (Section
5.3.2) using the external Ca2+ concentration ce as the main bifurcation parameter. Verify
the behavior seen in Fig. 5.10, that the period but not the amplitude of the oscillations is
sensitive to ce.

15. Use quasi-steady-state analysis to reduce the detailed ryanodine receptor model equations
(5.50), (5.51), and (5.52) to (5.55) and (5.56).
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Figure 5.14 Typical bifurcation diagram of
the heuristic model of Ca2+ oscillations, not
drawn to scale (see Exercise 11). HB denotes
a Hopf bifurcation, SN denotes a saddle-
node bifurcation, HC denotes a homoclinic
bifurcation.

16. Calculate the steady-state fraction of open channels in the model of CICR in cardiac cells
(Section 5.3.2) and show that it is a bell-shaped function of c. Plot the bifurcation diagram
of the model. Find the Hopf bifurcations and plot some representative oscillations.
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Bursting Electrical Activity

Neurons communicate by firing and transmitting action potentials. Commonly, action
potentials occur in periodic fashion, as in response to a constant applied current of suf-
ficient magnitude. For example, in both the Hodgkin–Huxley and FitzHugh–Nagumo
models, a constant applied current can cause the repetitive firing of action potentials.
Many cell types exhibit more complex behavior, characterized by brief bursts of oscilla-
tory activity interspersed with quiescent periods during which the membrane potential
changes only slowly. This behavior is called bursting, and typical experimental results
from a number of different cell types are shown in Fig. 6.1.

Although bursting has been studied extensively formany years, most mathematical
studies are based on the pioneering work of Rinzel (1985, 1987), which was in turn
based on one of the first biophysical models of a pancreatic β-cell (Chay and Keizer,
1983). Rinzel’s interpretation of bursting in terms of nonlinear dynamics is one of the
recent success stories ofmathematical physiology and provides an excellent example of
how mathematics can be used to understand complex biological dynamical systems.
However, despite the extensive studies, there is yet no consensus on the underlying
mechanisms that cause bursting. In fact, in many cell types it is not even clear whether
bursting is caused by cellular-level processes or is generated by the coupling of many
cells into an electrical network. For example, bursting in pancreatic β-cells, one of the
classic examples of bursting, does not usually occur in isolated cells, but only in intact
islets or in groups of β-cells coupled by gap junctions. Thus, although there is an elegant
interpretation of many experimental results in terms of nonlinear dynamical systems,
the phenomenon of bursting is not completely understood.

Models for electrical bursting can be divided into two major groups (well summa-
rized by De Vries, 1995). Earlier models were generally based on the assumption that
bursting was caused by an underlying slow oscillation in the intracellular Ca2+ concen-
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Figure 6.1 Electrical bursting in a range of different cell types. A: Pancreatic β-cell. B: Dopa-
mine-containing neurons in the rat midbrain. C: Cat thalamocortical relay neuron. D: Guinea
pig inferior olivary neuron. E: Aplysia R15 neuron. F: Cat thalamic reticular neuron. G: Sepia
giant axon. H: Rat thalamic reticular neuron. I: Mouse neocortical pyramidal neuron. J: Rat
pituitarygonadotropin-releasing cell. (Wang and Rinzel, 1995, Fig. 2.)
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tration (Chay, 1986, 1987; Chay and Cook, 1988; Chay and Kang, 1987; Himmel and
Chay, 1987; Keizer and Magnus, 1989). In light of more recent experimental evidence
showing that Ca2+ is probably not the slow variable underlying bursting, more recent
models have modified this assumption, relying on alternative mechanisms to produce
the underlying slow oscillation (Keizer and Smolen, 1991; Smolen and Keizer, 1992).
In this chapter we focus our attention on two early models, discussing how they fit
into the general classification scheme proposed by Rinzel (1987). Later models, being
similar in mathematical structure to the early models, are not discussed in any detail.
We then discuss some mathematical properties of bursting models and finally show
how the important properties can be incorporated into simpler polynomial models, in
much the same way that the FitzHugh–Nagumo model provides a simplification of the
Hodgkin–Huxley model.

6.1 Bursting in the Pancreatic β-Cell

In response to glucose, β-cells of the pancreatic islet secrete insulin, which causes the
increased use or uptake of glucose in target tissues such as muscle, liver, and adipose
tissue. When blood levels of glucose decline, insulin secretion stops, and the tissues
begin to use their energy stores instead. Interruption of this control system results in
diabetes, a disease that if left uncontrolled can result in kidney failure, heart disease,
and death. It is believed that electrical bursting, a typical example of which is shown in
Fig. 6.1A, plays an important (but not exclusive) role in the release of insulin from the
cell. Other aspects of insulin secretion and the control of blood glucose are discussed
in Chapter 19. In this chapter we focus on models for the bursting electrical activity
observed in single cells and cell clusters.

One of the first models for bursting was proposed by Atwater et al. (1980).
It was based on extensive experimental data, incorporating the important cellular
mechanisms that were thought to underlie bursting, and was later developed into a
mathematical model by Chay and Keizer (1983). Although the mathematical model
includes only those processes believed to be essential to the bursting process and thus
omits many features of the cell, it is able to reproduce many of the basic properties of
bursting. The ionic currents in the model are:

1. A Ca2+-activated K+ channel with conductance an increasing function of c �
[Ca2+] of the form

gK,Ca � ḡK,Ca
c

Kd + c
, (6.1)

for some constant ḡK,Ca.
2. A voltage-gated K+ channel modeled in the same way as in the Hodgkin–Huxley
model, with

gK � ḡKn
4, (6.2)
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where n obeys the same differential equation as in the Hodgkin–Huxley model
(Chapter 4), except that the voltage is shifted by V∗, so that V in (4.28) and (4.29)
is replaced by V + V∗. For example, βn(V) � 0.125 exp[(−V − V∗)/80].

3. A voltage-gated Ca2+ channel, with conductance

gCa � ḡCam
3h, (6.3)

where again m and h satisfy Hodgkin–Huxley-type differential equations, shifted
along the voltage axis by an amount V ′. In effect, the inward Na+ current of the
Hodgkin–Huxley model is replaced by an identical inward Ca2+ current.

Combining these ionic currents and adding the usual leak current gives

Cm
dV

dt
� −(gK,Ca + gK)(V − VK)− 2gCa(V − VCa)− gL(V − VL), (6.4)

where Cm is the membrane capacitance.
To complete themodel, there is an equation for the regulation of intracellular Ca2+,

where it is assumed that glucose can regulate the removal of Ca2+ from the cytoplasm;
i.e., glucose acts by lowering [Ca2+], leading to bursting oscillations and subsequent
insulin release. Hence,

dc

dt
� f (−k1ICa − kcc), (6.5)

where the Ca2+ current is ICa � ḡCam
3h(V − VCa) and where k1 and kc are constants.

The constant f is a scale factor relating total changes in [Ca2+] to the changes in free
[Ca2+] (as discussed in the section on calcium buffering in Chapter 12) and is usually a
small number. Although kc is an increasing function of glucose concentration, the con-
centration of glucose is not a dynamic variable in the model. Thus, kc can be regarded
as fixed, and the behavior of the model can be studied for a range of values of kc.

As shown in Fig. 6.2, the model exhibits bursts that bear a qualitative resemblance
to those seen experimentally. Further, as glucose is increased (i.e., as kc is increased),
the length of the bursts increases until at the level kc � 0.06, bursting is continuous.

Consideration of the Ca2+ concentration as a function of time (Fig. 6.2) shows that
there is a slow oscillation in c underlying the bursts, with bursting occurring during the
peak of the Ca2+ oscillation. The fact that Ca2+ oscillations occur on a slower time scale
is built into the Ca2+ equation explicitly by means of the parameter f . As f becomes
smaller, the Ca2+ equation evolves more slowly, and thus the relative speeds of the
voltage and Ca2+ equations can be directly controlled. It therefore appears that there
are two oscillatory processes interacting to give bursting, with a fast oscillation in V
superimposed on a slower oscillation in c. This fact is the basis of the phase-plane
analysis that we consider next.

6.1.1 Phase-Plane Analysis

The β-cell model can be simplified by ignoring the dynamics ofm and h, thus removing
the time dependence of the Ca2+ current (Rinzel and Lee, 1986). The simplified model



192 6: Bursting Electrical Activity

-50

-40

-30

-20
V

 (
m

V
)

0.8

0.7

0.6

0.5

0.4

c 
(µ

M
)

20151050
Time (s)

Figure 6.2 Bursting oscillations in the β-cell model, calculated using the parameter values in
Table 6.1.

equations are

Cm
dV

dt
� −ICa(V)−

(
ḡKn

4 + ḡK,Cac

Kd + c

)
(V − VK)− ḡL(V − VL), (6.6)

τn(V)
dn

dt
� n∞(V)− n, (6.7)

dc

dt
� f (−k1ICa(V)− kcc), (6.8)

where ICa � ḡCam
3
∞(V)h∞(V)(V − VCa).

This separates the β-cell model into a fast subsystem (the V and n equations) and
a slow equation for c. The advantage of this simplification is that the fast subsystem
can be studied using phase-plane methods. Treating c as a constant parameter, we first
consider the bifurcation structure of the fast subsystem as a function of c. It is then
easier to see how the qualitative behavior of the fast phase-plane changes as c is varied
slowly.
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Table 6.1 Parameters of the model for electrical bursting in pancreatic β-cells.

Cm � 1 µF/cm2 ḡK,Ca � 0.02 mS/cm2

ḡK � 3 mS/cm2
ḡCa � 3.2 mS/cm2

ḡL � 0.012 mS/cm2
VK � −75 mV

VCa � 100 mV VL � −40 mV

V ∗ � 30 mV V ′ � 50 mV

Kd � 1 µM f � 0.007

k1 � 0.0275 µM cm2/nC kc � 0.02 ms−1

n

V

n

V

A B

Figure 6.3 Phase-planes of the fast subsystem of the β-cell model, for two different values of
c, both in the intermediate range. The phase-planes are sketched, not drawn to scale. Nullclines
are denoted by dashed lines, and the intersections of the nullclines show the positions of the
fixed points. For both values of c there are three fixed points, of which the middle one is a
saddle point. However, in A (with chb < c < chc; see Fig. 6.4) the unstable node is surrounded
by a stable limit cycle, while in B (corresponding to c > chc) the limit cycle has disappeared via
a homoclinic bifurcation.

When c is low, the Ca2+-activated K+ channel is not activated, and the fast sub-
system has a unique fixed point where V is high. Conversely, when c is high, the
Ca2+-activated K+ channel is fully activated, and the fast subsystem has a unique fixed
point where V is low, as the high conductance of the Ca2+-activated K+ channels pulls
the membrane potential closer to the Nernst potential of K+, which is about −75 mV.
However, for intermediate values of c there are three fixed points, and the phase-plane
is much more interesting and intricate. Phase-planes of the V, n subsystem for two
different intermediate values of c are shown in Fig. 6.3.
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Figure 6.4 A: Sketch of the bifurca-
tion diagram of the simplified β-cell
model, with c as the bifurcation pa-
rameter. Vss denotes the curve of
steady states of V as a function of
c. A solid line indicates a stable
steady state; a dashed line indicates
an unstable steady state. The two
branches of Vosc denote the maxi-
mum and minimum of V over one
oscillatory cycle. HB denotes a Hopf
bifurcation, HC denotes a homo-
clinic bifurcation, and SN denotes a
saddle-node bifurcation. B: A burst
cycle projected onto the (V, c) plane.
(Adapted from Rinzel and Lee, 1986,
Fig. 3.)

In both cases, the lower fixed point is stable, the middle fixed point is a saddle
point, and the upper fixed point is unstable. For some values of c the upper fixed
point is surrounded by a stable limit cycle, which in turn is surrounded by the stable
manifold of the saddle point (Fig 6.3A). However, as c increases (still in the intermediate
range), the limit cycle “hits” the saddle point and forms a homoclinic connection (a
homoclinic bifurcation). Increasing c further breaks the homoclinic connection, and
the stable manifold of the saddle point forms a heteroclinic connection with the upper,
unstable, critical point (Fig. 6.3B). There is now no limit cycle.

This sequence of bifurcations is easiest to understand in a bifurcation diagram,
with V plotted against the control parameter c (Fig. 6.4A). The Z-shaped curve is the
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curve of fixed points, and as usual, the stable oscillation around the upper steady state is
denoted by themaximum andminimumof V over one cycle. As c increases, oscillations
appear via a Hopf bifurcation (chb) and disappear again via a homoclinic bifurcation
(chc). For a range of values of c the fast subsystem is bistable, with a lower stable fixed
point and an upper stable periodic orbit. This bistability is crucial to the appearance
of bursting.

We now couple the dynamics of the fast subsystem to the slower dynamics of c.
Included in Fig. 6.4A is the curve defined by dc/dt � 0, i.e., the c nullcline. When
V is above the c nullcline, dc/dt > 0, and so c increases, but when V is below the c
nullcline, c decreases. Now suppose V starts on the lower fixed point for a value of
c that is greater than chc. Since V is below the c nullcline, c starts to decrease, and
V follows the lower branch of fixed points. However, when c becomes too small, this
lower branch of fixed points disappears in a saddle-node bifurcation (SN), and so V
must switch to the upper branch of the Z-shaped curve. Since this upper branch is
unstable and surrounded by a stable limit cycle, V begins to oscillate. However, since
V now lies entirely above the c nullcline, c begins to increase. Eventually, c increases
enough to cross the homoclinic bifurcation at chc, the stable limit cycles disappear,
and V switches back to the lower branch, completing the cycle. Repetition of this
process causes bursting. The quiescent phase of the bursting cycle is when V is on the
lower branch of the Z-shaped curve, and during this phase V increases slowly. A burst
of oscillations occurs when V switches to the upper branch, and disappears again
after passage through the homoclinic bifurcation. Clearly, in this scenario, bursting
relies on the coexistence of both a stable fixed point and a stable limit cycle, and the
bursting cycle is a hysteresis loop that switches between branches of the Z-shaped
curve. Bursting also relies on the c nullcline intersecting the Z-shaped curve in the
right location. For example, if the c nullcline intersects the Z-shaped curve on its lower
branch, there is a unique stable fixed point for the whole system, and bursting does
not occur. A projection of the bursting cycle on the (V, c) phase-plane is shown in Fig.
6.4B. The periods of the oscillations in the burst increase through the burst, as the limit
cycles get closer to the homoclinic trajectory, which has infinite period.

The relationship between bursting patterns and glucose concentration can also be
deduced from Fig. 6.4. Notice that the dc

dt
� 0 nullcline, given by c � − k1

kc
ICa(V), is

inversely scaled by kc. Thus, when kc is small, the nullcline intersects the lower branch
of the V nullcline. On the other hand, if kc is extremely large, the c nullcline intersects
the upper branch of the V nullcline, possibly to the left of chb. At intermediate values
of c, the c nullclines intersects the middle branch of the V nullcline.

Under the assumption that kc is related to the glucose concentration, we see that
when the glucose concentration is low, the system is at a stable rest point on the lower
V nullcline; there is no bursting. If glucose is increased so that the c nullcline intersects
themiddleV nullclinewith c < chc, there is bursting.However, the length of the bursting
phase increases and the length of the resting phase decreases with increasing glucose,
simply because calcium increases at a slower rate and decreases at a faster rate when
kc is increased. For large enough kc the bursting is sustained with no rest phase, as c
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becomes stalled below chc. Finally, at extremely high kc values, bursting is replaced by
a permanent high membrane potential, with c < chb. This scenario of the dependence
of the bursting phase on glucose is confirmed by experiments.

6.2 Parabolic Bursting

Another well-studied example of bursting is found in the Aplysia R-15 neuron (Fig.
6.1E). Analysis of a detailed model by Plant (1981) shows that the mathematical struc-
ture of this bursting oscillator is different from that in the β-cell model (Rinzel and
Lee, 1987). The β-cell model has two fast variables, one slow variable, bistability, and
a hysteresis loop. At the end of a burst, a homoclinic bifurcation is crossed, leading to
an increasing period through the burst. Plant’s model, on the other hand, has no bista-
bility, with bursting arising from the presence of two slow variables with their own
oscillation. A homoclinic bifurcation is crossed at the beginning and the end of the
burst, and so the instantaneous period of the burst oscillations starts high, decreases,
and then increases again. The fact that the period is roughly a parabolic function of
time has led to the name parabolic bursting.

Plant’s parabolic bursting model is similar in some respects to the β-cell model,
incorporating Ca2+-activated K+ channels and voltage-dependent K+ channels. How-
ever, it also includes a voltage-dependent Na+ channel that activates and inactivates in
typical Hodgkin–Huxley fashion and a slowly activating Ca2+ current. The Na+, K+,
and leak currents form the fast subsystem

Cm
dV

dt
� − ḡNam

3
∞(V)h(V − VNa)− ḡCax(V − VCa)

−
(
ḡKn

4 + ḡK,Cac

0.5+ c

)
(V − VK)− ḡL(V − VL), (6.9)

τh(V)
dh

dt
� h∞(V)− h, (6.10)

τn(V)
dn

dt
� n∞(V)− n, (6.11)

while the Ca2+ current and its activation x form the slow subsystem

τx
dx

dt
� x∞(V)− x, (6.12)

dc

dt
� f (k1x(VCa − V)− c). (6.13)

Full details of the model are specified in Exercise 3, as described in the appendix of
Rinzel and Lee (1987).

For a fixed x, the bifurcation diagram of the fast subsystem as c varies is shown
in Fig. 6.5. Note that in general, Vss is a function of both c and x, and therefore the
fast subsystem is properly described by a bifurcation surface. However, since surfaces
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are more difficult to draw and understand, we first examine a cross-section of the
bifurcation surface for fixed x and then discuss how the important points behave as
x varies. As before, chb denotes the value of c at which a Hopf bifurcation to periodic
orbits occurs, and chc denotes the value of cwhere the periodic solutions disappear in a
homoclinic bifurcation. The bifurcation diagram is similar to that of the fast subsystem
of the β-cell model (Fig. 6.4), except that the branch of periodic solutions around the
upper branch of the Z-shaped curve does not extend past the lower “knee” of the Z-
shaped curve. In fact, chc appears to coincide with the saddle-node bifurcation at the
knee of the Z-shaped curve. Hence, there is no bistability in the model, and a simple
one-variable slow subsystem is insufficient to give bursting, because it is unable to
move the fast subsystem in and out of the region where the oscillations occur, as in the
β-cell model. However, because the parabolic bursting model has two slow variables,
x and c, a slow oscillation in these variables moves c backward and forward across the
homoclinic bifurcation, leading to bursts of fast oscillations during one portion of the
slow oscillations.

In Fig. 6.6Aweplot chc and chb as x varies.Note that the curves in Fig. 6.5 correspond
to taking a cross-section of Fig. 6.6 for a fixed value of x (the dashed line). In region
Jss there is a single stable fixed point of the fast subsystem, while in region Josc the fast
subsystem has stable oscillations. Now suppose that the slow subsystem has a periodic
solution. In the parabolic bursting model, slow oscillations do not occur independently
of the fast subsystem but rely on the interaction between the fast and slow variables,

c

V HC

c hc

HB

Vss

max Vosc

min Vosc

chb

Figure 6.5 Sketch (not to scale) of the bifurcation diagram of the fast subsystem of the
parabolic bursting model, with x � 0.7. The notation is similar to that used in Fig. 6.4. Note
that the homoclinic bifurcation coincides with the lower knee of the Z-shaped curve of steady
states and that the oscillations arise via a subcritical Hopf bifurcation instead of a supercritical
one as was seen in the β-cell model.
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Figure 6.6 A: The Hopf and ho-
moclinic bifurcations in the (x, c)
plane, i.e., a projection of the bi-
furcation surface onto the (x, c)
plane. The bifurcation diagram in
the previous figure corresponds
to a cross-section of this figure
for a fixed value of x , as de-
noted by the dashed line. In the
region (labeled Josc) between the
two bifurcations, a stable limit cy-
cle exists, while to the right of the
homoclinic bifurcation (Jss) there is
a unique stable steady state. The
rightmost (unlabeled) curve corre-
sponds to where the middle branch
of the Z-shaped curve meets the
upper branch. B: Three typical slow
oscillations in x and c.

the details of which do not concern us here. Similar results are obtained when the
slow variables oscillate independently of the fast variables, acting as a periodic driver
of the fast subsystem (Kopell and Ermentrout, 1986). In any case, these oscillations
correspond to closed curves in the (x, c) phase-plane, three possible examples of which
are shown in Fig. 6.6B. In case a, the dynamics of x and c are such that the slow periodic
solution lies entirely within the region Jss; i.e., the fast subsystem “lives” entirely on the
lower branch of the Z-shaped curve and does not oscillate. In caseb, the slow oscillation
crosses the line of homoclinic bifurcations into the region Josc, in which region the
fast subsystem oscillates rapidly. In case c, the slow oscillations are so arranged that
the system spends only a small amount of time in region Josc, but not long enough
to generate a burst of oscillations. Thus, by tuning the parameters of the underlying
slow oscillation, different patterns of bursts can be obtained from one model. We have
already mentioned the parabolic nature of the period of the fast oscillations. This is
easily understood in terms of the foregoing analysis. For a burst to occur, the slow
oscillation must cross the line of homoclinic bifurcations both at the beginning and at
the end of the burst. Since the period of the limit cycle tends to infinity at the homoclinic
bifurcation, the interspike interval is large at both the beginning and end of the burst.
However, as the slow periodic orbit penetrates further into region Josc, away from the
homoclinic bifurcation, the interspike interval decreases.

6.3 A Classification Scheme for Bursting Oscillations

The above examples are only two of a range of different mechanisms that give rise to
bursting. A classification scheme for the different mechanisms was proposed by Rinzel
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Figure 6.7 A: Sketch of the bifurcation
diagram for the fast subsystem of a type
III burster. Vss denotes the curves of
steady states. The steady state loses sta-
bility at chb in a Hopf bifurcation (HB),
and a branch of unstable periodic orbits
is formed. This merges with a branch of
stable periodic orbits in a saddle node of
periodics bifurcation (SNP). B: Sketch of
a typical bursting trajectory.

(1987) and extended by Bertram et al. (1995). Originally, bursting oscillations were
grouped into three classes: type I, with bursts arising from hysteresis and bistability
as in the β-cell model; type II, with bursts arising from an underlying slow oscillation,
as in the parabolic bursting model; and type III, which arises from a subcritical Hopf
bifurcation.

6.3.1 Type III Bursting

Suppose that the fast subsystem exhibits a subcritical Hopf bifurcation at some value
of the slow variable (there need be only one slow variable for type III bursting). For
convenience, we continue to label the slow and fast variables c and V respectively, and
we denote the Hopf bifurcation point by chb as shown in Fig. 6.7A.

Immediately below chb the fast subsystem is bistable, with a stable fixed point
and a stable periodic orbit. Suppose further that on the branch of fixed points to the
left of chb, c is slowly increasing, while on the branch of stable periodic orbits the
dynamics are such that c is slowly decreasing. The burst cycle, illustrated in Fig. 6.7B,
is as follows: starting with c < chb, c increases past the Hopf bifurcation, the fixed
point loses stability, and V switches to the branch of periodic orbits (the only stable
solutions for c > chb) and begins to oscillate. On this upper branch c decreases. Once c
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has decreased far enough, V “falls off” the branch of periodic orbits, and returns to the
branch of fixed points, completing the cycle. The active period (i.e., the period where
the fast oscillations occur) ends where the branch of stable periodic solutions meets
the branch of unstable periodic solutions. Such a bifurcation point, where a stable and
an unstable periodic orbit appear, is called a saddle node of periodics, or SNP. Although
type III bursting relies on bistability and hysteresis as does type I bursting, it does not
involve passage through a homoclinic bifurcation, or a Z-shaped curve of fixed points
in the fast subsystem, leading to the different classification. One important qualitative
difference between type I and type III bursting arises from the different bifurcations
that end the active phase. In type I the active phase ends at a homoclinic bifurcation,
leading to an increase in the period of the oscillations toward the end of a burst. In
type III no such homoclinic bifurcation appears, and the active phase ends at an SNP
bifurcation. Thus, in general, the periods of the oscillations in the active phase follow
no particular pattern; the spike frequency is indeterminate.

6.3.2 Type Ib Bursting

The final type of bursting that we discuss (although there are more) is a subclass of
type I. It is important because although the models for this subclass of bursting have
a similar underlying bifurcation structure to those for type I, the bursts nevertheless
can behave quite differently.

In type Ib bursting (Fig. 6.8), the stable limit cycle surrounds all three fixed points,
and the burst cycle is similar to that of type I (which we call type Ia from now on).
When V is on the lower branch of the Z-shaped curve, c decreases, as V lies below the c
nullcline. As c decreases, the solution crosses the saddle-node bifurcation at the lower
knee of the Z-shaped curve and jumps to the branch of stable periodic orbits. Although
c does not increase monotonically during each oscillation, the average value of V is

c

V

dc/dt=0

HC

SN

chc

HB

Vss

max Vosc

min Vosc

Figure 6.8 Bifurcation diagram of
the fast subsystem for a type Ib
burster. HB denotes a Hopf bi-
furcation, HC denotes a homo-
clinic bifurcation, and SN denotes
a saddle-node bifurcation. The po-
sition of the homoclinic bifurcation
is denoted by chc. Type Ib is similar
to type Ia, with the major differ-
ence that the stable periodic orbit
surrounds all three steady states.
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Figure 6.9 Comparison of type Ia (A) and type Ib (B) bursting in the Chay–Cook model. Al-
though this model is not discussed in detail in the text, these numerical solutions of Bertram
et al. (1995) provide an excellent comparison of the two bursting types. (Bertram et al., 1995,
Fig. 3.)

high enough to cause a net increase in c over each cycle. Thus, the solution moves to
the right until the branch of periodic orbits disappears at a homoclinic bifurcation, at
which time the solution reverts to the lower branch of the Z-shaped curve, completing
the burst cycle. In Fig. 6.9 we compare type Ia and Ib bursting patterns. The numerical
simulations are from a model not discussed here (Chay and Cook, 1988), but the figure
serves as an excellent comparison of the bursting types. In type Ia, the burst pattern
is superimposed on a high-voltage baseline, forming a square-wave pattern as seen in
pancreatic β-cells. In type Ib, the minimum of the fast oscillation lies below the lower
branch of the Z-shaped curve, and thus the minimum of the fast oscillation lies below
the quiescent phase.
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6.3.3 Summary of Types I, II, and III

For convenience, we summarize the properties of the three types of bursting.

Type I. The active phase begins at a saddle-node bifurcation, i.e., at the knee of the Z-
shaped curve, and ends at a homoclinic bifurcation. The fast subsystem is bistable,
and only one slow variable is needed. The spike period tends to increase monoton-
ically through the active phase. In types Ia and Ib, the minimum of the burst lies,
respectively, above and below the quiescent phase.

Type II. The active phase begins and ends at a homoclinic bifurcation. In the parabolic
bursting model, this homoclinic bifurcation occurs at a saddle-node bifurca-
tion. The fast subsystem is monostable, and two slow variables are necessary for
bursting. The spike period is parabolic.

Type III. The active phase begins at a Hopf bifurcation and ends at a saddle node of
periodics. The fast subsystem is bistable, and only one slow variable is needed. The
spike frequency is indeterminate.

These three types are illustrated in Fig. 6.10.

6.4 Bursting in Clusters

In the discussion so far, we have ignored the inconvenient fact that isolated pancreatic
β-cells usually do not burst in a regular fashion. It is not until several thousand cells
are grouped into an islet and electrically coupled by gap junctions that regular spiking
is seen in any cell. An isolated β-cell behaves in a much more irregular fashion, with
no discernible pattern of bursting. Indeed, blockage of gap junctions in an islet greatly
reduces insulin secretion, and thus intercellular mechanisms that control bursting are
of great physiological importance. Figure 6.11 shows how the behavior of an individual
cell changes as a function of the number of other cells to which it is coupled.

6.4.1 Channel-Sharing

In 1983, Atwater et al. proposed a qualitative mechanism to account for the difference
between the single-cell behavior and the behavior of the cell in a cluster. They proposed
that an individual cell contains a small number of calcium-sensitive K+ (K–Ca) chan-
nels each of which has a high conductance. At resting V and [Ca2+], a K–Ca channel is
open only infrequently, but the opening of a single channel passes enough current to
cause a significant perturbation of the cell membrane potential. Thus, stochastic chan-
nel opening and closing causes the observed random fluctuations in V . However, when
the cells are electrically coupled in a cluster, each K–Ca channel has a much smaller
effect on the potential of each individual cell, as the channel current is spread over the
network of cells. Each cell is integrating the effects of a large number of K–Ca channels,
each of which has only a small influence. The tighter the electrical coupling between
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Figure 6.10 A: Type I bursting in a model of bursting in pancreatic β-cells (Sherman and
Rinzel, 1992). B: Type II bursting in the parabolic bursting model (Rinzel and Lee, 1987). C: Type
III bursting in a model of bursting in cardiac ganglion cells of the lobster (Av-Ron et al., 1993).
This model is not discussed in the text, but is used here for purposes of comparison. (Bertram
et al., 1995, Fig. 1.)

cells, the better each cell is able to integrate the effects of all the K–Ca channels in the
cluster, and the more regular and deterministic is the overall behavior.

We can use this qualitative explanation as the basis for a quantitative model (Sher-
man et al., 1988; Chay and Kang, 1988). Initially, we assume infinitely tight coupling
of the cells in the cluster, calling the cluster a “supercell,” and show how the bursting
becomes more regular as the size of the cluster increases.
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Figure 6.11 Bursting in clusters of β-cells, compared to the electrical activity of an isolated
β-cell (Sherman et al., 1988, Fig. 1). A: Recording from a β-cell in an intact cluster (Atwater
and Rinzel, 1986), B: Recording from a cluster of β-cells, with a radius of 70 µm (Rorsman and
Trube, 1986, Fig. 1a). C: Recording from an isolated β-cell (Rorsman and Trube, 1986, Fig. 2c).

The equations of the supercell model are similar to those of the β-cell model. Recall
that in the β-cell model the conductance of the K–Ca channel, gK,Ca, is given by

gK,Ca � ḡK,Ca
c

Kd + c
, (6.14)

where c, as usual, denotes [Ca2+]. This can be derived from a simple channel model in
which the channel has one closed state and one open state, switching from closed to
open upon the binding of a single Ca2+ ion. Thus

C+ Ca2+
k+
−→←−
k−

O, (6.15)

where C is a closed channel and O is an open one. If the rate constants k+ and k− are
both large compared to the other kinetic parameters of the model, then

[O] � k+[Ca2+]
k−

[C] (6.16)

� [Ca2+]
Kd

(1− [O]), (6.17)

where Kd � k−/k+. Hence [O] � [Ca2+]/(Kd + [Ca2+]), from which (6.14) follows.
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In the supercell model, (6.15) is interpreted as aMarkov rather than a deterministic
process, with k+ denoting the probability per unit time that the closed channel switches
to the open state, and similarly for k−. Thus, the mean open and closed times are,
respectively, 1/k− and 1/k+. If we let 〈No〉 and 〈Nc〉 denote the mean number of open
channels or closed channels respectively, then at equilibrium we have

〈No〉
〈Nc〉 � k+

k−
. (6.18)

To incorporate the Ca2+ dependence of the channel we make

k+
k−

� [Ca2+]
Kd

, (6.19)

which gives the steady-state mean proportion of open channels as

〈p〉 � 〈No〉
〈No〉 + 〈Nc〉 � [Ca2+]

Kd + [Ca2+] � c

Kd + c
. (6.20)

The associated stochastic model is similar to (6.6)–(6.8), with the major difference
being that the Ca2+-sensitive K+ current is governed by the above stochastic process.
In other words, p is a random variable denoting the proportion of open channels in
a single cell, and is calculated (as a function of time) by numerical simulation of the
Markov process described by (6.15). Thus,

Cm
dV

dt
� −ICa − IK − ḡK,Cap(V − VK), (6.21)

τn(V)
dn

dt
� λ(n∞(V)− n), (6.22)

dc

dt
� f (−αICa − kcc), (6.23)

where ICa � ḡCam∞(V)h(V)(V − VCa) and IK � ḡKn(V − VK). The functions appearing
in the supercell model are

m∞(V) � 1

1+ exp [ 4−V14 ] , (6.24)

n∞(V) � 1

1+ exp [−15−V
5.6

] , (6.25)

τn(V) � τ̄n

exp
[
V+75
65

]+ exp [−V−75
20

] , (6.26)

h(V) � 1

1+ exp [V+10
10

] . (6.27)

The other parameters of themodel are summarized in Table 6.2. Note that although the
form of the model is similar to that of the β-cell model, the details have been changed
to agree with more recent experimental data. In particular,m∞ appears only to the first
power instead of the third, while n also appears to the first power. Further, the I–V
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Table 6.2 Parameters of the supercell model for electrical bursting in clusters of pancreatic
β-cells.

Cm � 5.3 pF ḡK,Ca � 30 nS

ḡK � 2.5 nS ḡCa � 1.4 nS

VCa � 110 mV VK � −75 mV

kc � 0.03 ms−1 f � 0.001

α � 4.5 µM/C Kd � 100 µM

τ̄n � 60 ms

Figure 6.12 Behavior of an isolated cell in the supercell stochastic model. Because of the
stochastic nature of each high-conductance K–Ca channel, and because there are few channels
in a single cell, no organized bursting appears. (Sherman et al., 1988, Fig. 6).

curve of the open Ca2+ channel is assumed to be of the form h(V)(V −VCa), and h(V) is
chosen to fit the experimentally observed I–V curve. This has an effect similar to that
of the function h∞(V) that was used in the β-cell model.

One of the most important features of the stochastic model is that the conductance
of a single K–Ca channel is an order of magnitude greater than the conductances of
the other two channels (Table 6.2). However, each cell contains only a small number
of K–Ca channels. Thus, the opening of a single K–Ca channel in an isolated cell has
a disproportionately large effect on the membrane potential of the cell; the stochastic
nature of each K–Ca channel then causes seemingly random fluctuations in membrane
potential (Fig. 6.12).

However, when identical cells are coupled by gap junctions with zero resistance,
different behavior emerges. First, since the gap junctions are assumed to have zero
resistance, and thus the entire group of cells has the same membrane potential, it is
not necessary to treat each cell explicitly. Second, the membrane capacitance and the
ionic currents depend on the surface area of the cluster and are therefore proportional
to the number of cells in the cluster, Ncell. Finally, the total number of K–Ca channels is
proportional to the total number of cells in the cluster, but the effect of each individual
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channel on the membrane potential of the cluster is proportional to 1/Ncell. It follows
that the cluster of cells behaves in the same way as a very large single cell withmany K–
Ca channels, each with a smaller conductance. We expect the cluster of cells to behave
in the same manner as a deterministic single-cell model in the limit as Ncell −→ ∞.

To see that this is what happens, we let ĝ denote the conductance of a single K–Ca
channel and let Ni

o denote the number of open K–Ca channels in the ith cell. Then

NcellCm
dV

dt
� −Ncell(ICa + IK)− ĝ

Ncell∑
i�1

Ni
o(V − VK), (6.28)

and so

Cm
dV

dt
� −(ICa + IK)− ĝN̄

1

NcellN̄

Ncell∑
i�1

Ni
o(V − VK) (6.29)

� −(ICa + IK)− ḡK,Cap(V − VK), (6.30)

where N̄ is the number of K–Ca channels per cell, or the channel density, and where,
as before, ḡK,Ca � ĝN̄ is the total K–Ca conductance per cell. Note that in the supercell
model p � 1

NcellN̄

∑Ncell
i�1 N

i
o must be interpreted as the fraction of open channels in the

cluster, rather than the fraction of open channels in a single cell. The mean of p is the
same in both these cases, but as Ncell increases, the standard deviation of p decreases,
leading to increasingly regular behavior. As before, pmust be obtained by direct simu-
lation of the Markov process. Simulations for different numbers of cells are shown in
Fig. 6.13. Clearly, as the size of the cluster increases, bursting becomes more regular.

One obvious simplification in the supercell model is the assumption that the gap
junctions have zero resistance and thus that every cell in the cluster has the same
membrane potential. We can relax this assumption by modeling the cluster as individ-
ual cells coupled by gap junctions with finite conductance (Sherman and Rinzel, 1991).
An individual cell, cell i say, satisfies a voltage equation of the form

Cm
dVi

dt
� −ICa(Vi)− IK(Vi, ni)− ḡK,Capi(Vi − VK)− gc

∑
j

dij(Vi − Vj), (6.31)

where gc is the gap junction conductance and where dij are coupling coefficients, with
value one if cells i and j are coupled, and zero otherwise. As gc → ∞, the sum∑

j dij(Vi−
Vj) must approach zero for every cell in the cluster. If all the cells are connected by some
connecting path (so that there are no isolated cells or subclusters), then every cell must
have the same voltage (see Exercise 6). Thus, in the limit of infinite conductance,

Vi −→ V̄ � 1
Ncell

Ncell∑
j�1
Vj. (6.32)
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Figure 6.13 Numerical simulations of the supercell model for a cluster of cells ranging in
size from 5 to 167 cells. As the size of the cluster increases, more organized bursting appears.
(Sherman et al., 1988, Fig. 8.)

For large but finite coupling, Vi � V̄ +O( 1
gc
). If we now sum (6.31) over all the cells in

the cluster and divide by Ncell, we find

Cm
dV̄

dt
� −ICa(V̄)− IK(V̄ , n)− ḡK,Ca

1
Ncell

Ncell∑
j�1
pj(V̄ − VK)+O

(
1
Ncell

)
, (6.33)

� −ICa(V̄)− IK(V̄ , n)− ḡK,Cap̄(V̄ − VK)+O

(
1
Ncell

)
, (6.34)
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Figure 6.14 Numerical simulations of the multicell model, in which the cells in the cluster are
coupled by gap junctions with finite conductance. Results are shown for two cells (upper and
lower traces in each pair) from two different cluster sizes (2 × 2 × 2 cells and 5 × 5 × 5 cells)
and two different junctional conductances. (Sherman and Rinzel, 1991, Fig. 3.)

where p̄ �
∑

i pi
Ncell

�
∑

i piN̄

NcellN̄
is the proportion of open K–Ca channels in the cluster. Hence,

themodelwith finite gap-junctional conductance (themulticellmodel) turns into the su-
percell model as the gap-junctional conductance and the number of cells in the cluster
approaches infinity.

As expected, synchronized bursting appears as the number of cells in the cluster
increases and the coupling strength increases. Both strong enough coupling and a large
enough cluster size are required to achieve regular bursting. This is illustrated in Fig.
6.14, where we show numerical simulations for two different cluster sizes and two dif-
ferent coupling strengths. However, what is not expected (and is therefore particularly
interesting) is that there is a coupling strength at which the length of the burst period
is maximized. The reasons for this have been analyzed in depth in a simpler system
consisting of two coupled cells (Sherman, 1994).

6.5 Qualitative Bursting Models

To a large extent, all of the models discussed above are based on biophysical mech-
anisms, with the parameters and functions in the models derived from experimental
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data. An alternative approach is to construct a polynomial model that retains the im-
portant qualitative features but is simpler to analyze and understand (Hindmarsh and
Rose, 1984; Pernarowski, 1994). Such a model has the same relationship to the above
models as the FitzHugh–Nagumo model does to the Hodgkin–Huxley model: it is phe-
nomenological in nature and based on the fact that the underlying behavior of the
biophysical models can be distilled into a simpler model containing only polynomials.

6.5.1 A Polynomial Model

Webegin by presenting amodified version of the FitzHugh–Nagumomodel that has the
nice property of generating oscillations with a long interspike interval (Hindmarsh and
Rose, 1982, 1984). We let v denote the excitatory variable and w the recovery variable
(as in Chapter 4). Then, the model equations are

dv

dt
� α(βw− f (v)+ I), (6.35)

dw

dt
� γ(g(v)− δw), (6.36)

where I is the applied current and α, β, γ, and δ are constants. As in the FitzHugh–
Nagumo model f (v) is cubic, but unlike the FitzHugh–Nagumo model g(v) is not a
linear function. In fact, as can be seen from Fig. 6.15, the w nullcline curves around
to lie close to the v nullcline to the left of the oscillatory critical point. (Of course, this
occurs only for a range of values of the applied current I for which oscillations occur.)
As a result, between the peaks of the oscillation, the limit cycle trajectory lies close to
both nullclines, and thus both derivatives v̇ and ẇ are small over that portion of the
cycle. It follows that the intervals between the spikes are large.

With only a slight change, this modified FitzHugh–Nagumo model can be used as
a model for bursting. Following the discussions in this chapter, it should come as no
surprise to learn that bursting can arise in this model when bistability is introduced.
This can be done by deforming the ẇ � 0 nullcline so that it intersects the v̇ � 0
nullcline in three places rather than only one. Since the nullclines lie close to one

w

v

dw/dt = 0

dv/dt = 0

Figure 6.15 Sketch of typical nullclines in the
modified FitzHugh–Nagumo model.



6.5: Qualitative Bursting Models 211

another in the original model, only a slight deformation is required to create two new
critical points. With this change, the new model equations are

dv

dt
� α(βw− f (v)+ I), (6.37)

dw

dt
� γ(g(v)+ h(v)− δw), (6.38)

where h(v) is chosen such that the nullclines now intersect in three places. For conve-
nience, we scale and nondimensionalize themodel by introducing the variables T � γδt,
x � v, and y � αβw/(γδ), in which variables the model becomes

dx

dT
� y− f̃ (x), (6.39)

dy

dT
� g̃(x)− y, (6.40)

where f̃ (x) � αf (x)/(γδ) and g̃(x) � αβ[g(x)+h(x)]/(γδ2). Note that the form of the model
is the same as that of the FitzHugh–Nagumo model, although the functions appearing
in the model are different. With appropriate choices for f̃ and g̃ the model exhibits
bistability; we use the particular functions

dx

dT
� y− x3 + 3x2 + I, (6.41)

dy

dT
� 1− 5x2 − y, (6.42)

the phase-plane of which is shown in Fig. 6.16 for I � 0.
There are three critical points: a stable node to the left at x � − 1

2 (1 + √
5), (the

resting state), a saddle point in the middle at x � −1, and an unstable node to the right
at x � 1

2 (−1 + √
5), which is surrounded by a stable limit cycle. As in the models of

bursting discussed above, the stable manifold of the saddle point acts as a threshold;
if the perturbation from the resting state is large enough that the stable manifold is
crossed, the trajectory approaches the stable limit cycle. Smaller perturbations die
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Figure 6.16 Phase-plane of the polyno-
mial bursting model.
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Figure 6.17 Bursting in the polyno-
mial model, calculated numerically from
(6.43)–(6.45) for three values of the ap-
plied current. A: I � 0.4; B: I � 2; C:
I � 4.

away to the resting state. This is called triggered firing. This bistable phase-plane is
essentially the same as the phase-plane shown in Fig. 6.3A, and (6.41)–(6.42) are a
simple realization of the qualitative theory developed by Rinzel and others.

To generate bursting in addition to bistability, it is also necessary to have a slow
variable so that the voltage can be moved in and out of the bistable regime. This is
accomplished in this model by introducing a third variable that modulates the applied
current I on a slower time scale. Thus,

dx

dT
� y− x3 + 3x2 + I − z, (6.43)

dy

dT
� 1− 5x2 − y, (6.44)

dz

dT
� r[s(x− x1)− z], (6.45)

where x1 � − 1
2 (1+

√
5) is the x-coordinate of the resting state in the two-variable model

(6.41)–(6.42), and where I, as before, is the applied current. When r � 0.001 and s � 4,
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(6.43)–(6.45) exhibit type I bursting (Fig. 6.17), arising via the same mechanism as in
the Rinzel–Lee simplification of the Chay–Keizer model.

6.6 Exercises
1. (a) Numerically simulate the system of differential equations

dv

dt
� f (v)−w− gs(v− vθ), (6.46)

5
dw

dt
� w∞(v)−w, (6.47)

ds

dt
� fs(s)+ αs(x− 0.3), (6.48)

dx

dt
� βx ((1− x)H(v)− x) , (6.49)

where f (v) � 1.35v(1− 1
3v

2), fs(s) � −0.2(s−0.05)(s−0.135)(s−0.21), w∞(v) � tanh(5v),
and H(v) � 3

2 (1+ tanh(5x− 2.5)), and vθ � −2, αs � 0.002, βx � 0.00025, g � 0.73.

(b) Give a fast–slow analysis of this burster. Hint: The equations for v,w comprise the fast
subsystem, while those for s, x comprise the slow subsystem.

(c) Describe the bursting mechanism in this model. For what kind of burster might this
be a reasonable model?

2. Compute some numerical solutions of the Rinzel–Lee simplification of the Chay–Keizer β-
cell model. How does the value of kc affect the burst length? Can you find parameter values
such that the model behaves like a type Ib burster?

3. Simulate the Plant model for parabolic bursting (the differential equations (6.9)–(6.13))
using the parameter values displayed in Table 6.3. The voltage dependence of the variables
αw and βw with w � m,n, or h is of the form

C1exp(
V−V0
C2
)+ C3(V − V0)

1+ C4exp(
V−V0
C5
)

, (6.50)

in units of ms−1, and the asymptotic valuesw∞(V) and time constants τw(V) are of the form

w∞(V) � αw(Ṽ)

αw(Ṽ)+ βw(Ṽ)
(6.51)

τw(V) � 1

λ
(
αw(Ṽ)+ βw(Ṽ)

) (6.52)

for w � m, n, or h (although τm(V) is not used), with Ṽ � c1V + c2, c1 � 127/105, c2 �
8265/105. The constants C1, . . . , C5 and V0 are displayed in Table 6.4. Finally,

x∞(V) � 1
exp{−0.15(V + 50)} + 1 , (6.53)

and τx � 235 ms.

4. Determine the value of I in the Hindmarsh–Rose fast subsystem (6.41), (6.42) for which the
trajectory from the unstable node is also the saddle point separatrix.

5. (a) An equation of the form d2x

dT2
+F(x) dx

dT
+ x � 0 is called an equation in the Liénard form

(Minorsky, 1962; Stoker, 1955) and was important in the classical development of the
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Table 6.3 Parameters of the Plant model for parabolic bursting.

Cm � 1 µF/cm2 ḡK,Ca � 0.03 mS/cm2

ḡCa � 0.004 mS/cm2
VCa � 140 mV

ḡNa � 4.0 mS/cm2
VNa � 30 mV

ḡK � 0.3 mS/cm2
VK � −75 mV

ḡL � 0.003 mS/cm2
VL � −40 mV

f � 0.0003 ms−1 k1 � 0.0085 mV−1

λ � 1/12.5

Table 6.4 Defining values for rate constants α and β for the Plant parabolic bursting model.

C1 C2 C3 C4 C5 V0

αm 0 — 0.1 −1 −10 50
βm 4 −18 0 0 — 25
αh 0.07 −20 0 0 — 25
βh 1 10 0 1 10 55
αn 0 — 0.01 −1 −10 55
βn 0.125 −80 0 0 — 45

theory of nonlinear oscillators. Show that the polynomial burstingmodel (6.43)–(6.45)
can be written in the generalized Liénard form

d2x

dT2
+ F(x)

dx

dT
+G(x, z) � −εH(x, z), (6.54)

dz

dT
� εH(x, z), (6.55)

where ε is a small parameter, and where F, G, and H are the polynomial functions

F(u) � a[(u− û)2 − η2], (6.56)

G(u, c) � c+ u3 − 3(u+ 1), (6.57)

H(u, c) � β(u− ū)− c. (6.58)

(b) Construct the fast subsystem bifurcation diagram for this polynomial model for the
following three different cases with a � 0.25, β � 4, û � −0.954, and ε � 0.0025. You
may want to use a bifurcation tracking program such as AUTO (Doedel, 1986).

i. η � 0.7, û � 1.6. Show that in this case the model exhibits square-wave bursting,
of type Ia.

ii. η � 0.7, û � 2.1. Show that the model exhibits tapered bursting, resulting from
passage through a supercritical Hopf bifurcation.

iii. η � 1.2, û � 1.0. Show that the model exhibits type Ib bursting.
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Solve themodel equations numerically to confirm the predictions from the bifurcation
diagrams. A detailed analysis of this model has been performed by Pernarowski (1994)
and de Vries (1995), with a perturbation analysis given by (Pernarowski et al., 1991,
1992).

6. Prove that ifD is an irreducible matrix with nonnegative entries dij, then the only nontrivial
solution of the system of equations

∑n

j�1 dij(Vi −Vj) � 0, i � 1, . . . , N, is the constant vector.
Remark: An irreducible nonnegative matrix is one for which some power of the matrix has
no zero elements. To understand irreducibility, think of the elements of the matrix D as
providing connections between nodes of a graph, and dij is positive if there is a path from
node i to node j, but zero if not. Such a matrix is irreducible if between any two points
there is a connecting path, with possibly multiple intermediate points. The smallest power
of the matrix that is strictly positive is the smallest number of connections that is certain
to connect any node with any other node.
Hint: Represent the system of equations as Av � 0 and show that some shift A + λI of
the matrix A is irreducible and has only nonnegative entries. Invoke the Perron–Frobenius
theorem (a nonnegative irreducible matrix has a unique, positive, simple eigenvector with
eigenvalue larger in magnitude than all other eigenvalues) to show that the null space of A
is one-dimensional, spanned by the constant vector.
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Intercellular Communication

Formulticellular organisms to form and operate, cellular behaviormust be vastly more
complex thanwhat is seen on the single-cell level. Cellsmust not only regulate their own
growth and behavior, they must also communicate and interact with their neighbors
to ensure the correct behavior of the entire organism. Intercellular communication
occurs in a variety of ways, ranging from hormonal communication on the level of the
entire body to localized interactions between individual cells. Our discussion in this
chapter is limited to cellular communication processes that occur between cells or over
a region of a small number of cells. Other forms of communication and control, such
as hormone feedback systems, will be studied in other chapters.

There are two primary ways that cells communicate with neighbors. Many cells
(muscle and cardiac cells for example) are connected to their immediate neighbors by
gap junctions in the cell membrane that form a relatively nonselective, low-resistance,
pore through which electrical current or chemical species can flow. Hence, a gap junc-
tion is also called an electrical synapse. The secondmeans of communication is through
a chemical synapse, in which the message is mediated by the release of a chemical from
one cell and detected by receptors on its neighbor. Electrically active cells such as
neurons typically communicate via chemical synapses, which are thus a crucial fea-
ture of the nervous system. Because chemical synapses form the basis for neuronal
communication they have been studied in considerably more detail than electrical
synapses.
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Figure 7.1 Schematic diagram of a chemical synapse. (Davis et al., 1985, Fig. 8-11, p. 135.)

7.1 Chemical Synapses

At a chemical synapse (Fig. 7.1) the nerve axon and the postsynaptic cell are in close
apposition, being separated by the synaptic cleft, which is about 500 angstroms wide.
When an action potential reaches the nerve terminal, it opens voltage-gated Ca2+ chan-
nels, leading to an influx of Ca2+ into the nerve terminal. Increased [Ca2+] causes the
release of a chemical neurotransmitter, which diffuses across the synaptic cleft, binds
to receptors on the postsynaptic cell, and initiates changes in its membrane poten-
tial. The neurotransmitter is then removed from the synaptic cleft by diffusion and
hydrolysis.

There are over 40 different types of synaptic transmitters, with differing effects on
the postsynaptic membrane. For example, acetylcholine (ACh) binds to ACh receptors,
which in skeletal muscle act as cation channels. Thus, when they open, the flow of
the cation causes a change in the membrane potential, either depolarizing or hyper-
polarizing the membrane. If the channel is a sodium channel, then the flow is inward
and depolarizing, whereas if the channel is a potassium channel, then the flow is out-
ward and hyperpolarizing. Other receptors, such as those for gamma-aminobutyric
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acid (GABA), open anion channels (mainly chloride), thus hyperpolarizing the post-
synaptic membrane, rendering it less excitable. Synapses are classified as excitatory
or inhibitory according to whether they depolarize or hyperpolarize the postsynap-
tic membrane. Other important neurotransmitters include epinephrine (adrenaline),
norepinephrine, dopamine, glycine, glutamate, and serotonin. Of these, dopamine,
glycine, and GABA are usually inhibitory, while glutamate and ACh are usually, but
not always, excitatory.

The loss of specific neurotransmitter function corresponds to certain diseases. For
example, Huntington’s disease, a hereditary disease characterized by flicking move-
ments at individual joints progressing to severe distortional movements of the entire
body, is associated with the loss of certain GABA-secreting neurons in the brain. The
resulting loss of inhibition is believed to allow spontaneous outbursts of neural activity
leading to distorted movements.

Similarly, Parkinson’s disease results from widespread destruction of dopamine-
secreting neurons in the basal ganglia. The disease is associated with rigidity of much
of the musculature of the body, involuntary tremor of involved areas, and a serious
difficulty in initiating movement. Although the causes of these abnormal motor effects
are uncertain, the loss of dopamine inhibition could lead to overexcitation of many
muscles, hence rigidity, or to lack of inhibitory control of feedback circuits with high
feedback gain, leading to oscillations, i.e., muscular tremor.

7.1.1 Quantal Nature of Synaptic Transmission

Chemical synapses are typically small and inaccessible, crowded together in very large
numbers in the brain. However, neurons also make synapses with skeletal muscle cells,
and these are usually much easier to isolate and study. For this reason, a great deal of
the early experimental and theoretical work on synaptic transmission was performed
on the neuromuscular junction, where the axon of a motorneuron forms a chemical
synapse with a skeletal muscle fiber. The response of the muscle cell to a neuronal
stimulus is called an end-plate potential, or epp.

In 1952 Fatt and Katz discovered that when the concentration of Ca2+ in the synap-
tic cleft was very low, an action potential stimulated only a small end-plate potential
(Fig. 7.2). Further, theseminiature end-plate potentials appeared to consist ofmultiples
of an underlying “minimum” epp of the same amplitude as an epp arising sponta-
neously, i.e., due to random activity other than an action potential. Their findings
suggested that an epp is made up of a large number of identical building blocks each
of which is of small amplitude.

It is now known that quantal synaptic transmission results from the packaging of
ACh into discrete vesicles. Each nerve terminal contains a large number of synaptic
vesicles that contain ACh.Upon stimulation, these vesicles fusewith the cellmembrane,
releasing their contents into the synaptic cleft. Even in the absence of stimulation,
background random activity can cause vesicles to fuse with the cell membrane and
release their contents. The epp seen in spontaneous activity results from the release of
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Figure 7.2 Miniature end-plate potentials (epps) in the frog neuromuscular junction. Each epp
has an amplitude of around 1 mV and, as described in the text, results from the independent
release of a single quantum of ACh. (Kuffler et al., 1984, p. 251, reproducing figure of Fatt and
Katz, 1952.)

the contents of a single vesicle, while the miniature epps result from the fusion of a
small integer number of vesicles, and thus appear in multiples of the spontaneous epp.

Based on their observations in frog muscle, del Castillo and Katz (1954) proposed
a probabilistic model of ACh release. Their model was later applied to mammalian
neuromuscular junctions by Boyd and Martin (1956). The model is based on the as-
sumption that the synaptic terminal of the neuron consists of a large number, say n,
of releasing units, each of which releases a fixed amount of ACh with probability p. If
each releasing site operates independently, then the number of quanta of ACh that is
released by an action potential is binomially distributed. The probability that k releas-
ing sites “fire” (i.e., release a quantum of ACh) is the probability that k sites fire and
the remaining sites do not, and so is given by pk(1− p)n−k. Since k sites can be chosen
from n total sites in n!/[(k!(n− k)!)] ways, it follows that

Probability k sites fire � P(k) � n!
k!(n− k)!

pk(1− p)n−k. (7.1)

Under normal conditions, p is large (and furthermore, the assumption of independent
release sites is probably inaccurate). However, under conditions of low external Ca2+

and highMg2+, p is small. This is because Ca2+ entry into the synapse is required for the
release of a quantum of ACh. If only a small amount of Ca2+ is able to enter (because
the external Ca2+ concentration is low), the probability of transmitter release is small.
If n is correspondingly large, while np � m remains fixed, the binomial distribution
can be approximated by a Poisson distribution. That is (Exercise 1a),

lim
n→∞P(k) � lim

n→∞

[
n!

k!(n− k)!

(m
n

)k (
1− m

n

)n−k]
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� mk

k!
lim
n→∞
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n!

nk(n− k)!

(
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n

)n−k]

� mk

k!
lim
n→∞

(
1− m

n

)n
� e−mmk

k!
, (7.2)

which is the Poisson distribution with mean, or expected value, m.
There are two ways to estimate m. First, notice that P(0) � e−m, so that

e−m � number of action potentials with no epps
total number of action potentials

. (7.3)

Second, according to the assumptions of themodel, a spontaneous epp results from the
release of a single quantum of ACh, and aminiature epp is a linear sum of spontaneous
epps. Thus, m can be calculated by dividing the mean amplitude of a miniature epp
response by the mean amplitude of a spontaneous epp, giving the mean number of
quanta in a miniature epp, which should bem. As del Castillo and Katz showed, these
two estimates of m agree very well, which confirms the model hypotheses.

The spontaneous epps are not of constant amplitude, because the amounts of ACh
released from each vesicle are not identical. In the inset to Fig. 7.4 is shown the am-
plitude distribution of spontaneous epps. To a good approximation, the amplitudes of
single-unit release, denoted by A1(x), are normally distributed (i.e., a Gaussian distribu-
tion), with mean µ and variance σ2. From this it is possible to calculate the amplitude
distribution of the miniature epps, as follows. We know that if k vesicles are released,
the amplitude distribution, denoted by Ak(x), will be normally distributed with mean
kµ and variance kσ2, being the sum of k independent, normal distributions each of
mean µ and variance σ2 (Fig. 7.3). Summing the distributions for k � 1,2,3, . . ., and
noting that the probability of Ak(x) is P(k), gives the amplitude distribution

A(x) �
∞∑
k�1

P(k)Ak(x) (7.4)

� 1√
2πσ2

∞∑
k�1

e−mmk

k!
√
k
exp

[−(x− kµ)2

2kσ2

]
, (7.5)

which is graphed in Fig. 7.4. There are clear peaks corresponding to 1, 2, or 3 released
quanta, but these peaks are smeared out and flattened by the normal distribution of
amplitudes. There is excellent agreement between the theoretical prediction and the
experimental observations, lending further support to the quantal model of synaptic
transmission (del Castillo and Katz, 1954; Boyd and Martin, 1956).

7.1.2 Presynaptic Voltage-Gated Calcium Channels

Chemical synaptic transmission begins when an action potential reaches the nerve
terminal and opens voltage-gated Ca2+ channels, leading to an influx of Ca2+ and con-
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Figure 7.3 Theoretical distributions for epps consisting of integer multiples of the sponta-
neous epp, which is the basic building block, or quantum, of the epp. Summation of these
curves for all integral numbers of quanta gives the theoretical prediction for the overall am-
plitude distribution, (7.5), which is plotted in the next figure. (Boyd and Martin, 1956, Fig.
9.)

sequent neurotransmitter release. Based on voltage clamp data from the squid giant
synapse, Llinás et al. (1976) constructed a model of the Ca2+ current and its relation
to synaptic transmission.

When the presynaptic voltage is stepped up and clamped at a constant level, the
presynaptic Ca2+ current ICa increases in a sigmoidal fashion (Fig. 7.5). To model this
data, we assume that the voltage-gated Ca2+ channel consists of n identical subunits,
each of which can be in one of two states, S and O. Only when all subunits are in the
state O does the channel admit Ca2+ current. Hence

S
k1

−→←−
k2

O, (7.6)

and the number of open channels is proportional to on where o is the number of
open channels. To incorporate the voltage dependence of the channel, the opening
and closing rate constants k1 and k2 are assumed to be functions of voltage of the form

k1 � k01 exp
(
qz1V

kT

)
, k2 � k02 exp

(
qz2V

kT

)
, (7.7)
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Figure 7.4 Amplitude distribution of miniature epps. The histogram gives the frequency of
the miniature epp as a function of its amplitude, as measured experimentally. The smooth
curve is a fit of the theoretical prediction (7.5). The inset shows the amplitude distribution of
spontaneous epps: the smooth curve is a fit of the normal distribution to the data. (Boyd and
Martin, 1956, Fig. 8.)
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Figure 7.5 Presynaptic calcium currents
in response to presynaptic voltage steps
in the squid stellate ganglion. The con-
tinuous lines are the fits from the model
described in the text. (Llinás et al., 1976,
Fig. 1E.)

where k is Boltzmann’s constant, T is the absolute temperature, V is the membrane
potential, q is the positive elementary electric charge, z1 and z2 are the number of
charges that move across the width of themembrane as S→ O and O→ S respectively,
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and k01 and k
0
2 are constants. This is the same type of expression as that for the rate

constant seen in Chapter 3 (for example, (3.45) and (3.46)). In Chapter 3, z referred
to the number of charges on each ion crossing the membrane by passing through a
channel. In this model, z1 and z2 denote charges that cross the membrane as a result
of a change in the conformation of the channel as it opens or closes. In either case,
the result of z charges crossing the membrane is the same, and we have a simple and
plausible way to incorporate voltage dependence into the rate constants.

The unknown constants k01, k
0
2, z1, z2, and n are determined by fitting to the voltage

clamp data shown in Fig. 7.5. From (7.6) it follows that, with s denoting the number
of shut channels,

do

dt
� k1s− k2o � k1(s0 − o)− k2o, (7.8)

where s0 is the total number of subunits, assumed to be conserved. We assume the
membrane potential jumps instantaneously from 0 to V at time t � 0 and that o(0) � 0.
Then we can solve the differential equation (7.8) to find that

o(t) � s0
k1

k1 + k2
(1− exp[−(k1 + k2)t]). (7.9)

Nowwe assume that the single-channel current for an open calcium channel, j, is given
by the Goldman–Hodgkin–Katz current equation (Chapters 2 and 3). Hence, if ci and
ce denote the internal and external Ca

2+ concentrations respectively, then

j � PCa · 2V
kT

· ci − ce exp(
−2qV
kT
)

1− exp(−2qV
kT
)
, (7.10)

where PCa is the permeability of the Ca
2+ channel. Finally, ICa is the product of the

number of open channels with the single-channel current, and so

ICa � j
s0

n

(
o

s0

)n
, (7.11)

since s0
n
is the total number of channels and ( o

s0
)n is the percentage of open channels.

By fitting curves of this form to the data shown in Fig. 7.5, Llinás et al. determined
that the best-fit values for the unknowns are n � 5, k01 � 2 ms−1, k02 � 1 ms−1, z1 � 1,
and z2 � 0. Other fixed parameters are ci � 0.1 µM and ce � 40 mM. These values
were used to calculate the smooth curves in Fig. 7.5. (The internal Ca2+ concentration
is much smaller than the external concentration, so that the exact number used makes
no essential difference to the result.) Hence, the best-fit parameters imply that the Ca2+

channel consists of 5 independent subunits, that the conversion ofO to S is independent
of voltage (z2 � 0), but that the conversion of S to O involves the movement of a single
charge across themembrane (z1 � 1) and is thus dependent on themembrane potential.
Because the conversion of a closed channel to an open channel involves the movement
of a charge across the cell membrane, there must be a current associated with channel
opening, i.e., a gating current. This is generally the case when the rate constants for
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conformational changes of a channel protein are voltage dependent, and these gating
currents have been measured experimentally. We do not discuss gating currents any
further; the interested reader is referred to Hille (1992) and Armstrong and Bezanilla
(1973, 1974, 1977).

Synaptic suppression
At steady state, the percentage of open channels is(

o(t � ∞)
s0

)5
�
(

k1

k1 + k2

)5
, (7.12)

which is an increasing function of V . However, the single-channel current (7.10) is
a decreasing function of V . Thus, the steady state ICa, being a product of these two
functions, is a bell-shaped function of V , as illustrated in Fig. 7.6. There are two time
scales in the model; the single channel current depends instantaneously on the volt-
age, while the number of open channels is controlled by the voltage on a slower time
scale. When the voltage is stepped up, the single-channel current decreases instanta-
neously. However, since there are so few channels open, the instantaneous decrease in
the single-channel current has little effect on the total current. On a longer time scale,
the channels gradually open in response to the increase in voltage, and this results
in the slow monotonic responses to a positive step seen in Fig. 7.5. Of course, if the
single-channel current has been reduced to zero, no increase in the current is seen as
the channels begin to open.

In response to a step decrease in voltage, the single-channel Ca2+ current increases
instantaneously, but in contrast to the previous case where there were few channels
open before the stimulus, there are nowmany open channels. Hence, the instantaneous
increase in the single-channel current results in a large and fast increase in the total
current. Over a longer time scale, the decrease in the voltage then leads to a slow
decrease in the number of open channels, and thus a slow decrease in the total current.

These responses are illustrated in Fig. 7.7. When a small positive step is turned on
and then off, the calcium current ICa responds with a monotonic increase followed by
a monotonic decrease (curve a). When the step is increased to 70 mV, the increase is
still monotonic, but the decrease is preceded by a small “bump” as the current initially
increases slightly (curve b). For a large step of 150mV, the initial response is suppressed
completely as the single-channel current is essentially zero, but when this suppression
is released, a large voltage response is seen, which finally decreases to the resting state
(curve c). This phenomenon is called synaptic suppression, and the theoretical results
agree well with experimental observations.

Response to an action potential
So far we have analytically calculated the response of the model to a voltage step.
This was possible because under voltage clamp conditions, the voltage is piecewise
constant. However, a more realistic stimulus would be a time-varying voltage corre-
sponding to an action potential at the nerve terminal. It is easiest to find the solution
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Figure 7.6 Steady-state ICa as a func-
tion of V . Symbols are experimental
data. The smooth curve is a model
simulation. (Llinás et al., 1976, Fig.
2B.)
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Figure 7.7 Numerical solutions of the
Llinás model, demonstrating synaptic
suppression of the calcium current.
(Llinás et al., 1976, Fig. 2D.)

of (7.8) numerically, and this is shown in Fig. 7.8. Given an input V(t) that looks like
an action potential, the number of open channels (curve a) and the presynaptic Ca2+

current (curve b) can be calculated. Figure 7.8 also includes theoretical predictions
of the postsynaptic current (curve c) and the postsynaptic membrane potential (curve
d). The postsynaptic current is obtained by assuming that it has the same form as
the presynaptic current, delayed by 200 ms and amplified appropriately, assumptions
that are justified by experimental evidence not discussed here. The postsynaptic mem-
brane potential is obtained by using the postsynaptic current as an input into a model
electrical circuit that we describe later.

Although the Llinás model provides a detailed description of the initial stages of
synaptic transmission and the voltage-gated Ca2+ channels, its picture of the postsyn-
aptic response is oversimplified. There are a number of steps between the presynaptic
Ca2+ current and the postsynaptic current that in this model are assumed to be linearly
related. Thus, a decrease in the postsynaptic current is the direct result of a decrease in
the presynaptic Ca2+ current, leading to a decrease in the concentration of neurotrans-
mitter in the synaptic cleft. However,more detailedmodels of neurotransmitter kinetics
show that at least at the neuromuscular junction, this is not an accurate description.



226 7: Intercellular Communication

1 msec

10
mV

a
b

c d

Figure 7.8 Theoretical responses to an action potential. Using the experimentally measured
action potential (the leftmost curve in the figure) as input, the model can be used to predict the
time courses of (a) the proportion of open channels, (b) the Ca2+ current, (c) the postsynaptic
current, and (d) the postsynaptic potential. Details of how curve d is calculated are given in the
text. Curve c is obtained by assuming that it has the same form as curve b, delayed by 200 ms
and amplified. (Llinás et al., 1976, Fig. 2C.)

7.1.3 Calcium Diffusion, Binding, and Facilitation

One of the fundamental assumptions of the above model (and of the others in this
chapter) is that neurotransmitter release is caused by the entry of Ca2+, through
voltage-sensitive channels, into the presynaptic neuron. However, although there is
much evidence in favor of this hypothesis, there is also evidence that cannot be eas-
ily reconciled with this model. This has led to considerable controversy; some favor
the calcium hypothesis, in which transmitter release is the direct result of the influx
of Ca2+ (Fogelson and Zucker, 1985; Zucker and Fogelson, 1986; Zucker and Landò,
1986; Yamada and Zucker, 1992), while others favor the calcium–voltage hypothesis,
in which transmitter release can be triggered directly by the presynaptic membrane
potential, with Ca2+ playing a regulatory role (Parnas and Segel, 1980; Parnas et al.,
1989; Aharon et al., 1994; and many other references). The major difference between
the two hypotheses is in the role played by the voltage; the first group assumes that the
only role of the voltage is to cause calcium influx, while the second group believes that
voltage also has a direct effect on neurotransmitter release.

The calcium/voltage controversy is particularly interesting because of the role
mathematical models have played. In 1985, Fogelson and Zucker proposed a model
in which the diffusion of Ca2+ from an array of single channels was used to explain the
duration of transmitter release and the decay of facilitation. This model was later used
as the basis for a large number of other modeling studies, some showing that Ca2+

diffusion could not by itself explain all the experimental data, others showing how var-
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ious refinements of the basic model could result in better agreement with experiment.
Experimental and theoretical groups alike used the model as a basis for discussion,
and thus, irrespective of the final verdict concerning its accuracy, the Fogelson–Zucker
model is an excellent example of the value and use of modeling. However, here we do
not repeat the many technical arguments both for and against the model; interested
readers should consult the original literature referenced above.

Related to this controversy is the phenomenon of facilitation, which occurs when
the amount of neurotransmitter release caused by an action potential is increased by
an earlier action potential, provided that the time interval between the action poten-
tials is not too great. One of the earliest hypotheses (Katz and Miledi, 1968) was that
facilitation is caused by the buildup of free calcium at the transmitter release site, the
so-called residual free calcium hypothesis. We consider here a more recent model that
does not rely on diffusion arguments, but rather on the binding of Ca2+ to transmitter
release sites (Bertram et al., 1996). This model is based on recent experimental results
showing that the minimum latency between Ca2+ influx and the onset of transmitter
release can be as short as 200 µs. Since the Ca2+ binding site must thus be very close to
the Ca2+ channel, it is suggested that transmitter release is the result of Ca2+ entering
through a single channel, the so-called Ca2+-domain hypothesis. If the Ca2+ channels
are far enough apart, or if only few open during each action potential, the Ca2+ do-
mains of individual channels are independent. Thus, each transmitter release site is
assumed to be located very close to a single Ca2+ channel. Our principal goal here is to
provide a plausible explanation for the intriguing experimental result that facilitation
increases in a step-like fashion as a function of the frequency of the conditioning action
potential train.

We assume that Ca2+ entering through the Ca2+ channel is immediately available
to bind to the transmitter release site, which itself consists of four independent gates,
denoted by S1 through S4. Gate Sj can be either closed (with probability Cj) or open
(with probability Oj), and thus

Ca2+ + Cj
k+j
−→←−
k−j

Oj. (7.13)

Hence,

dOj

dt
� k+jc− Oj

τj(c)
, (7.14)

where τj(c) � 1/(k+jc+ k−j), and c is the Ca2+ concentration. Finally, the probability R
that the release site is activated is

R � O1O2O3O4. (7.15)

The rate constants were chosen to give good agreement with experimental data and are
shown in Table 7.1. Note that the rates of closure of S3 and S4 are much greater than
for S1 and S2, and thus Ca

2+ remains bound to S1 and S2 for a relatively long time,
providing the possibility of facilitation.
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Table 7.1 Parameter values for the binding model of synaptic facilitation (Bertram et al., 1996).

k+1 � 3.75 × 10−3 ms−1µM−1 k−1 � 4 × 10−4 ms−1

k+2 � 2.5 × 10−3 ms−1µM−1 k−2 � 1 × 10−3 ms−1

k+3 � 5 × 10−4 ms−1µM−1 k−3 � 0.1 ms−1

k+4 � 7.5 × 10−3 ms−1µM−1 k−4 � 10 ms−1

To demonstrate how facilitation works in this model, we suppose that a train of
square pulses of Ca2+ (each of width tp and amplitude cp) arrives at the synapse. We
want to calculate the level of activation at the end of each pulse and show that this is
an increasing function of time. The reason for this increase is clear from the governing
differential equation, (7.14). If a population of gates is initially closed, then a calcium
pulse will begin to open them, but when calcium is absent, the gates will close. If the
interval between pulses is sufficiently short and the decay time constant sufficiently
large, then when the next pulse arrives, some gates are already open, so the new pulse
achieves a larger percentage of open channels than the first, and so on.

To quantify this observation we define tn to be the time at the end of the nth pulse,

tn � tp + (n− 1)T, (7.16)

where T � tp+tI is the period and tI is the interpulse interval. For any gate (temporarily
omitting the subscript j) withO(0) � 0, the open probability at the end of the first pulse
is

O(t1) � O∞(1− e−tp/τp), (7.17)

where O∞ � k+cpτp is the steady-state probability corresponding to a steady
concentration of Ca2+, cp, and τp � τ(cp) � 1/(k+cp + k−).

Suppose that O(tn−1) is the open probability at the end of the (n − 1)st calcium
pulse. During the interpulse period, O decays with rate constant τ(0). Thus, at the start
of the nth pulse,

O(tn−1 + tI) � O(tn−1)e−tI /τ(0), (7.18)

and so at the end of the nth pulse,

O(tn) � O(tn−1)e−tI /τ(0)e−tp/τp +O∞(1− e−tp/τp) (7.19)

� αO(tn−1)+O(t1), (7.20)

where α � exp(−(tI/τ(0)+tp/τp)) � exp(−k−(T+tp cpK )) andK � k−/k+. This is a geometric
series for O(tn), so that

O(tn)
O(t1)

� 1− αn

1− α
. (7.21)
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Notice that as the interpulse interval gets large (tI → ∞), α → 0, so that O(tn) is
independent of n. On the other hand, α increases if the calcium pulses are shortened
(tp is decreased).

Now we define facilitation as the ratio

Fn � R(tn)
R(t1)

(7.22)

and find that

Fn �
(
1− αn1

1− α1

)(
1− αn2

1− α2

)(
1− αn3

1− α3

)(
1− αn4

1− α4

)
, (7.23)

where αj is the α corresponding to gate j. For the numbers shown in Table 7.1, α4
is nearly zero in the physiologically relevant range of frequencies, so it can be safely
ignored. A plot of Fn against the pulse train frequency shows a step-like function, as is
observed experimentally. In Fig. 7.9 is shown the maximal facilitation,

Fmax � lim
n→∞Fn (7.24)

�
(

1
1− α1

)(
1

1− α2

)(
1

1− α3

)
, (7.25)

which also has a step-like appearance.

7.1.4 Neurotransmitter Kinetics

When the end-plate voltage is clamped and the nerve stimulated (so that the end-
plate receives a stimulus of ACh, of undetermined form), the end-plate current first
rises to a peak and then decays exponentially, with a decay time constant that is an
exponential function of the voltage. Magleby and Stevens (1972) constructed a detailed
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Figure 7.9 Facilitation as a function of stimulus frequency in the binding model for synaptic fa-
cilitation, calculated using tpcp � 200 µM ms. Here Fmax � limn→∞ Fn is the maximal facilitation
produced by a pulse train.
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model of end-plate currents in the frog neuromuscular junction that gives amechanistic
explanation of this observation and shows how a simple model of the receptor kinetics
can quantitatively reproduce the observed end-plate currents.

First, Magleby and Stevens showed that the instantaneous end-plate current–
voltage relationship is linear, and thus, for a fixed voltage, the end-plate current is
proportional to the end-plate conductance. Because of this, it is sufficient to study the
end-plate conductance rather than the end-plate current. Since the end-plate conduc-
tance is a function of the concentration of ACh, we restrict our attention to the kinetics
of ACh in the synaptic cleft.

We assume that ACh reacts with its receptor, R, in enzymatic fashion,

ACh +R
k1

−→←−
k2

ACh ·R
β

−→←−
α

ACh ·R∗, (7.26)

and that the ACh-receptor complex passes current only when it is in the open state
ACh · R∗. We let c � [ACh], y � [ACh · R], and x � [ACh · R∗], and then it follows from
the law of mass action that

dx

dt
� −αx+ βy, (7.27)

dy

dt
� αx+ k1c(N − x− y)− (β + k2)y, (7.28)

dc

dt
� f (t)− kec− k1c(N − x− y)+ k2y, (7.29)

where N is the total concentration of ACh receptor, which is assumed to be conserved,
and ACh decays by a simple first-order process at rate ke. The postsynaptic conductance
is assumed to be proportional to x, and the rate of formation of ACh is some given
function f (t). One option for f (t)would be to use the output of the single-domain/bound-
calcium model described in the previous section (Exercise 9).

The model equations, as given, are too complicated to solve analytically, and so we
proceed by making some simplifying assumptions. First, we assume that the kinetics
of ACh binding to its receptor are much faster than the other reactions in the scheme,
so that y is in instantaneous equilibrium with c. To formalize this assumption, we
introduce dimensionless variables X � x/N, Y � y/N, C � k1c/k2, and τ � αt, in terms
of which (7.28) becomes

ε
dY

dτ
� εX + C(1− X − Y )−

(
ε
β

α
+ 1

)
Y, (7.30)

where ε � α/k2 � 1. Upon setting ε to zero, we find the quasi-steady approximation

Y � C(1− X)
1+ C

, (7.31)

or in dimensioned variables,

y � c(N − x)
K + c

, (7.32)
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where K � k2/k1. Now we can eliminate y from (7.27) to obtain

dx

dt
� −αx+ β

c(N − x)
K + c

. (7.33)

Next we observe that

dx

dt
+ dy

dt
+ dc

dt
� f (t)− kec. (7.34)

In dimensionless variables this becomes

N

K

(
dX

dτ
+ dY

dτ

)
+ dC

dτ
� F(τ)− KeC, (7.35)

where F(τ) � f (t)
αK
and Ke � ke/α are assumed to be of order one. If we suppose that

N � K, then setting N/K to zero in (7.35), we find (in dimensioned variables)

dc

dt
� f (t)− kec. (7.36)

One further simplification is possible if we assume that β � α. Notice from (7.33)
that

dx

dt
< −αx+ β(N − x), (7.37)

so that

x(t) ≤ x(0)e−(α+β)t + βN

α+ β
(1− e−(α+β)t). (7.38)

Once this process has been running for some time, so that effects of initial data can be
ignored, x is of order βN

α+β . If β � α, then x � N, and (7.33) simplifies to

dx

dt
� −αx+ β

cN

K + c
. (7.39)

For any given input f (t), (7.36) can be solved for c(t), and then (7.39) can be solved
to give x(t), the postsynaptic conductance.

As mentioned above, the decay of the postsynaptic current has a time constant
that depends on the voltage. This could happen in two principal ways. First, if the
conformational changes of the receptor were much faster than the decay of ACh in the
synaptic cleft, x would be in quasi-equilibrium, and we would have

x � βc(t)N
α[K + c(t)]

. (7.40)

Thus, if c is small, xwould be approximately proportional to c. In this case an exponen-
tial decrease of c caused by the decay term−kecwould cause an exponential decrease in
the postsynaptic conductance. An alternative possibility is that ACh degrades quickly
in the synaptic cleft, so that c quickly approaches zero, but that the decay of the end-
plate current is due to conformational changes of the ACh receptor. According to this
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hypothesis, the release of ACh into the cleft causes an increase in x, which then decays
according to

dx

dt
� −αx (7.41)

(since c is nearly zero). In this case, the exponential decrease of end-plate current would
be governed by the term −αx.

Magleby and Stevens argued that the latter hypothesis is preferable. Assuming
therefore that the rate-limiting step in the decay of the end-plate current is the decay
of x, α can be estimated directly from experimental measurements of end-plate current
decay to be

α(V) � BeAV, (7.42)

where A � 0.008 mV−1 and B � 1.43 ms−1.
To calculate the complete time course of the end-plate current from (7.39), it re-

mains to determine c(t). In general this is not known, as it is not possible to measure
synaptic cleft concentrations of ACh accurately.

A method to determine c(t) from the experimental data was proposed by Magleby
and Stevens. First, suppose that β is also a function of V , as is expected, since α is a
function of V . Then (7.39) can be written as

dx

dt
� −α(V)x+ β(V)W(t), (7.43)

where W(t) � Nc(t)/[K + c(t)]. Since for any fixed voltage the time course of x can be
measured experimentally (recall that the experiments were done under voltage clamp
conditions), it follows that β(V)W(t) can be determined from

β(V)W(t) � dx

dt
+ α(V)x. (7.44)

Although this requires numerical differentiation (which is a notoriously unstable
procedure), the experimental records are smooth enough to permit a reasonable de-
termination of W from the time course of x. Since W does not depend on V , it can be
determined (up to an arbitrary scale factor) from a time course of x obtained at any
fixed voltage. Further, if the model is valid, then we expect the same result no matter
what voltage is used to obtain W. A typical result for W, shown in Fig. 7.10, rises and
falls in a way reminiscent of the responses calculated from the Llinás model described
above (Fig. 7.8).

The final unknown is β(V), the scale factor in the determination of W. Relative
values of β can be obtained by comparing time courses taken at different voltages. If
β(V1)W(t) and β(V2)W(t) are time courses obtained from (7.44) at twodifferent voltages,
the ratio β(V1)/β(V2) is obtained from the ratio of the time courses. However, because of
experimental variability or invalid model assumptions, this ratio may not be constant
as a function of time, in which case the ratio cannot be determined unambiguously.
Magleby and Stevens used the ratio of the maximum amplitudes of the time courses,
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in which case β(V1)/β(V2) can be obtained uniquely. They determined that β, like α, is
an exponential function of V ,

β(V) � beaV , (7.45)

where a � 0.00315 mV−1 and b is an arbitrary scaling factor.
Equation (7.43) can now be solved numerically to determine the time course of the

end-plate current for various voltages. Typical results are shown in Fig. 7.11. Although
the model construction guarantees the correct peak response (because that is how β

was determined) and also guarantees the correct time course at one particular voltage
(because that is howW was determined), themodel responses agreewell with the exper-
imental records over all times and voltages. This confirms the underlying assumption
thatW is independent of voltage.

Although the approach of Magleby and Stevens of determiningW(t) directly from
the data leads to excellent agreement with the experimental data, it suffers from the
disadvantage that no mechanistic rationale is given for the function W. It would be
preferable to have a derivation of the behavior of W from fundamental assumptions
about the kinetics of ACh release and degradation in the synaptic cleft, but such is not
presently available.

7.1.5 The Postsynaptic Membrane Potential

Acetylcholine acts by opening ionic channels in the postsynaptic membrane that are
permeable to Na+ and K+ ions. A schematic diagram of the electrical circuit model
of the postsynaptic membrane is given in Fig. 7.12. This model is based on the usual
assumptions (see, for example, Chapter 2) that themembrane channels can bemodeled
as ohmic resistors and that the membrane acts like a capacitor, with capacitance Cm.
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Figure 7.10 W (t ) calculated from the time course of x using (7.44). (Magleby and Stevens,
1972, Fig. 4.)
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Figure 7.11 End-plate currents from the Magleby–Stevens model. Equation (7.43) was solved
numerically, using as input the function plotted in Fig. 7.10. The functions α(V ) and β(V ) are
given in the text. The corresponding values for V are, from top to bottom, 32, 20, −30, −56,
−82, −106 and −161 mV. The wavy lines are the experimental data; the smooth curves are the
model fit. (Magleby and Stevens, 1972, Fig. 6.)
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Figure 7.12 Electrical circuit model of the postsynaptic mem-
brane.

The ACh-sensitive channels have a reversal potential Vs of about −15 mV and a
conductance that depends on the concentration of ACh. The effects of all the other
ionic channels in the membrane are summarized by a resting conductance, gr and a
resting potential Vr of about −70 mV. In the usual way, the equation for the membrane
potential V is

Cm
dV

dt
+ gr(V − Vr)+ gs(V − Vs) � 0. (7.46)
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In general, gs is a function of the number of ACh receptors with ACh bound, i.e., in
the notation of the previous section, gs � gs(x). Since x is a function of time, gs is also
a function of time. Hence,

Cm
dV

dt
+ [gr + gs(t)]V � grVr + gs(t)Vs. (7.47)

This equation can be reduced to quadratures by using an integrating factor, and
so in principle, the response of the postsynaptic membrane can be calculated from
knowledge of the time course of x.

A simple solution is obtained when gs is taken to be proportional to x and the input
f (t) to the Magleby and Stevens model is assumed to be γδ(t) for some small γ. In this
case,

gs(t) � x(t) � γβN

K(α− ke)

(
e−ket − e−αt

)
, (7.48)

as derived in Exercise 5. Using this expression for gs, we look for a solution for (7.47)
that is close to Vr, i.e., V � Vr + γV1. This gives the linear differential equation for V1,

Cm
dV1

dt
+ grV1 + gs(t)V1 � gs(t)

γ
(Vs − Vr). (7.49)

Solution of this linear equation is left as an exercise (Exercise 8).

7.1.6 Drugs and Toxins

The foregoing models are sufficient to piece together a crude model of synaptic trans-
mission. However, many features were ignored, and there are many situations that
can change the behavior of this system. Primary among these are drugs and toxins
that affect specific events in the neurotransmission process. For example, the influx of
calcium is reduced by divalent metal ions, such as Pb++, Cd++, Hg++, and Co++. By
reducing the influx of calcium, these cations depress or abolish the action-potential-
evoked transmitter release. Certain toxins, including tetanus and clostridial botulinus,
are potent inhibitors of transmitter exocytosis, an action that is essentially irreversible.
Botulinus neurotoxin is selective for cholinergic synapses and is one of the most po-
tent neuroparalytic agents known. Tetanus toxin is taken up by spinal motor nerve
terminals and transported retrogradely to the spinal cord, where it blocks release of
glycine at inhibitory synapses. Spread of the toxin throughout the brain and spinal
cord can lead to severe convulsions and death. The venom from black widow spider
contains a toxin (α-latrotoxin) that causesmassive transmitter exocytosis and depletion
of synaptic vesicles from presynaptic nerve terminals.

Agents that compete with the transmitter for receptor binding sites, thereby
preventing receptor activation, are called receptor antagonists. An example of an an-
tagonist of the ACh receptors of the skeletal neuromuscular junction is curare. By
inhibiting ACh binding at receptor sites, curare causes progressive decrease in am-
plitude and shortening of epps. In severe curare poisoning, transmission is blocked.
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Selective antagonists exist for most transmitter receptors. For example, bicuculline is
an antagonist of GABA receptors, and is a well-known convulsant.

Agents that mimic the action of natural transmitters are known as receptor ago-
nists. A well-known agonist of ACh receptors in neuromuscular junction is nicotine.
Nicotine binds to the ACh receptor and activates it in the same manner as ACh. How-
ever, nicotine causes persistent receptor activation because it is not degraded, as is ACh,
by ACh-esterase. On the other hand, diisopropylphosphofluoridate (commonly known
as nerve gas) is an example of an anticholinesterase, because it inhibits the activity of
ACh-esterase, so that ACh persists in the synaptic cleft. Similarly, one effect of cocaine
is to prolong the activity of dopamine, by blocking the uptake of dopamine from the
synaptic cleft.

Other agents interfere with receptor-gated permeabilities by interfering with the
channel itself. Thus, picrotoxin,which blocksGABA-activatedCl− channels, and strych-
nine, which blocks glycine-activated Cl− channels, are potent blockers of inhibitory
synapses and known convulsants.

7.2 Gap Junctions

Gap junctions are small nonselective channels (with diameters of about 1.2 nm) that
form direct intercellular connections through which ions or other small molecules can
flow. They are formed by the joining of two connexons, hexagonal arrays of connexin
proteinmolecules (Fig. 7.13). Despite being called electrical synapses, in this chapterwe
concentrate onmodels in whichmembrane potential plays no role, focusing instead on
the interaction between intracellular diffusion and intercellular permeability. Electrical
aspects of gap junctions are important for the function of cardiac cells and are discussed
in that context in Chapter 11. An example of how gap junctions are used for intercellular
signaling via second messengers is detailed in Chapter 12, where we discuss a model
of intercellular calcium wave propagation.

7.2.1 Effective Diffusion Coefficients

We first consider a one-dimensional situation where a species u diffuses along a line
of cells which are connected by gap junctions. Because of their relatively high resis-
tance to flow (compared to cytoplasm), the gap junctions decrease the rate at which u
diffuses along the line. Since this is a one-dimensional problem, we assume that each
intercellular membrane acts like a single resistive pore with a given permeability F.
The effect of gap-junction distribution within the intercellular membrane is discussed
later in this chapter.

We assume that Fick’s law holds and thus the flux, J, of u is proportional to the
gradient of u; i.e.,

J � −D∂u
∂x
, (7.50)
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Figure 7.13 Diagram of a region of membrane containing gap junctions, based on electron
microscope images and X-ray diffraction data. Each connexon is composed of six gap-junction
proteins, called connexins, arranged hexagonally. Connexons in apposed membranes meet in
the intercellular space to form the gap junction. (Alberts et al., 1994, Fig. 19-15.)

where D is the diffusion coefficient for the intracellular space. From the conservation
of u it follows that in the interior of each cell,

∂u

∂t
� D

∂2u

∂x2
. (7.51)

However, u need not be continuous across the intercellular boundary. In fact, if there is
a cell boundary at x � xb, the flux through the boundary is assumed to be proportional
to the concentration difference across the boundary. Then, conservation of u across
the boundary implies that

−D
∂u(x−

b
, t)

∂x
� −D∂u(x

+
b
, t)

∂x
� F[u(x−

b
, t)− u(x+

b
, t)], (7.52)

for some constant F, called the permeability coefficient, with units of distance/time. The
+ and− superscripts indicate that the function values are calculated as limits from the
right and left, respectively.

When the cells through which u diffuses are short compared to the total distance
that umoves, the movement of u can be described by an effective diffusion coefficient.
The effective diffusion coefficient is defined and is measurable experimentally by as-
suming that the analogue of Ohm’s law holds. Thus, in a preparation of N cells, each of
length L, with u � U0 at x � 0 and u � U1 at x � NL, the effective diffusion coefficient
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De is defined by

J � De

NL
(U0 −U1), (7.53)

where J is the steady-state flux of u.
To calculate De, we look for a function u(x) that satisfies uxx � 0 when x �� (j+ 1

2 )L
and satisfies (7.52) at x � (j+ 1

2 )L, j � 0, . . . , N−1. Further,we require thatu(0) � U0, and
u(NL) � U1. Note that we are assuming that the cell boundaries occur at L/2,3L/2, . . .,
and thus the boundary conditions at x � 0 and x � NL occur halfway through a cell.

A typical solution u that satisfies these conditions must be linear within each cell,
and piecewise continuous with jumps at the cell boundaries. Suppose that the slope of
u within each cell is −λ, and that the jump in u between cells is u(x+

b
) − u(x−

b
) � −H.

Then, since there areN−1 whole cells, two half cells (at the boundaries), andN interior
cell boundaries, we have

(N − 1)λL+ 2λ
(
L

2

)
+NH � U0 −U1. (7.54)

Furthermore, it follows from (7.52) that

Dλ � FH. (7.55)

We find from (7.53) and (7.54) that

Dλ � −D∂u
∂x

� J � De

NL
(U0 −U1) (7.56)

� De

L
(Lλ+H) (7.57)

� λDe

(
1+ D

FL

)
, (7.58)

from which it follows that

1
De

� 1
D

+ 1
LF
. (7.59)

7.2.2 Homogenization

The above calculation of the effective diffusion coefficient can be formalized by the
process of homogenization. Homogenization is an important technique that we will see
again in the context of cardiac propagation in Chapter 11. The point of homogenization
is that there are two spatial scales, a microscopic and a macroscopic scale, and we are
interested in knowing the behavior of the solution on the macroscopic scale while ac-
counting for influences from the microscopic scale, without calculating the full details
of the solution on the microscopic scale. An introduction to homogenization theory in
the context of asymptotic methods can be found in Holmes (1995).

Here we illustrate the technique on the one-dimensional diffusion equation with
gap junctions, but it can readily be extended to higher dimensions (see Exercise 12)
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and to nonlinear equations (Chapter 11). The basic assumption is that Fick’s law holds,
but that the resistance, R, is a rapidly varying function, so that the flux is

J � − 1
R( x

ε
)
∂u

∂x
. (7.60)

The dimensionless parameter ε is small, indicating that the variations of R are rapid
compared to other spatial scales of the problem. The resistance R is taken to be a
periodic function of period one, which is of order one in the interior of cells and large
at the gap junctions. It is important to note that since R is of order one, the diffusion
coefficient is also of order one, but periodic in x with period ε, which is small. Thus,
cells are assumed to be short compared to the diffusion length scale.

As a practice problem, we solve the heat equation

∂u

∂t
� ∂

∂x

(
1

R( x
ε
)

)
∂u

∂x
. (7.61)

To take into account that there are two space scales, we explicitly introduce two inde-
pendent spatial variables, z � x and σ � x

ε
, and then partial differentiation with respect

to x becomes

∂

∂x
� ∂

∂z
+ 1
ε

∂

∂σ
. (7.62)

In terms of these new variables, the heat equation (7.61) becomes

∂u

∂t
�
(
∂

∂z
+ 1
ε

∂

∂σ

)(
1

R(σ)

(
∂u

∂z
+ 1
ε

∂u

∂σ

))
. (7.63)

To account for the fact that we expect the solution to exhibit behavior on the two space
scales, we write the solution u as

u(x, t) � u0(z, t)+ εu1(σ, z, t)+ ε2u2(σ, z, t)+O(ε3). (7.64)

Because we want u0(z, t) to be the average, slowly varying solution, we require u1 to be
periodic and have zero mean in σ. We expand the governing equation in powers of ε
and collect like powers into a hierarchy of equations, to be solved sequentially. Thus,

∂

∂σ

(
1

R(σ)

(
∂u0

∂z
+ ∂u1

∂σ

))
� 0, (7.65)

and

∂

∂σ

(
1

R(σ)
∂u2

∂σ

)
� ∂u0

∂t
− ∂

∂σ

1
R(σ)

∂u1

∂z
− ∂

∂z

1
R(σ)

∂u1

∂σ
− 1
R(σ)

∂2u0

∂z2
. (7.66)

From (7.65) it follows that

∂u1

∂σ
+ ∂u0

∂z
� R(σ)φ(z), (7.67)
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for some function φ(z). Recalling that u1 is periodic in σ, with period 1 and mean 0, we
integrate (7.67) with respect to σ from 0 to 1 to get

∂u0

∂z
� φ(z)

∫ 1

0
R(σ)dσ � R̄φ, (7.68)

where

R̄ �
∫ 1

0
R(s)ds (7.69)

is the average resistance. It follows that

Rφ � R

R̄

∂u0

∂z
, (7.70)

so that eliminating Rφ from (7.67),

∂u1

∂σ
�
(
R

R̄
− 1

)
∂u0

∂z
. (7.71)

Integrating (7.71) with respect to σ then gives

u1 � w(σ)
∂u0

∂z
, (7.72)

where w(σ) is periodic with zero mean and satisfies the differential equation

dw

dσ
� R

R̄
− 1. (7.73)

The function w(σ) determines the small-scale structure of the solution.
The next step is to observe that (7.66) can have a periodic solution for u2 only if

the right-hand side of this equation has zero average in σ. This implies that

∂u0

∂t
� ∂

∂z

∫ 1

0

1
R(σ)

(
∂u1

∂σ
+ ∂u0

∂z

)
dσ. (7.74)

We use (7.72) to eliminate u1 from (7.74) and find that

∂u0

∂t
� De

∂2u0

∂z2
, (7.75)

where the effective diffusion coefficient is

De � 1

R̄
. (7.76)

Notice that now we are able to solve the diffusion equation (7.75) for u0 on the
macroscopic scale, yet we determine the solution on the microscopic scale through

u(x, t) � u0 + εw
(x
ε

) ∂u0
∂x

+O(ε2). (7.77)
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To apply this technique to the specific problem of gap junctions, we take R(x) �
rc + rg

∑
k δ(x − kL) to reflect the periodic occurrence of gap junctions with resistance

rg evenly spaced at the ends of cells of length L. Notice that D � 1/rc is the diffusion
coefficient for the intracellular space, while F � 1/rg is the intercellular permeability.
It follows easily that

R̄ � rc + rg

L
, (7.78)

which is the same as (7.59).

7.2.3 Measurement of Permeabilities

Although an effective diffusion coefficient is useful when the species of interest diffuses
through a large number of cells, in some experimental situations one is interested in
how a dye molecule (or a second messenger such as IP3) diffuses through a relatively
small number of cells. In this case the effective diffusion coefficient approximation
cannot always be used, and it is necessary to solve the equations with internal boundary
conditions (Brink andRamanan, 1985; Ramanan andBrink, 1990). By calculating exact
solutions to the linear diffusion equation with internal boundary conditions (using
transform methods, for example) and fitting them to experimental measurements on
themovement of fluorescent probes, it is possible to obtain estimates of the intracellular
diffusion coefficient as well as the permeability of the intercellular membrane.

The analytic solutions of Brink and Ramanan are useful only when the underlying
equations are linear. In many cases, however, the species of interest are also reacting
in a nonlinear way. This results in a system of nonlinear diffusion equations coupled
by jump conditions at the gap junctions, a system that can only be solved numerically.
Two groups have used numerical methods to study problems of this kind. Christ et
al. (1994) studied the problem of diffusion through gap junctions, assuming that the
diffusing speciesudecreases the permeability of the gap junction in anonlinear fashion.
A similar model was used by Sneyd et al. (1995a) to study the spread of a calcium wave
through a layer of cells coupled by gap junctions, and we discuss this model in Chapter
12.

7.2.4 The Role of Gap-Junction Distribution

It is not widely appreciated that the intercellular permeability is strongly influenced
by the distribution of gap junctions in the intercellular membrane, although it is a
common observation in introductory biology texts that there is a similar relationship
between the distribution of stomata on leaves and the rate of evaporation of water
through the leaf surface. Individual gap junctions are usually found in aggregates
forming larger junctional plaques, as individual gap-junction particles are not eas-
ily distinguished from other nonjunctional particles. However, numerical simulations
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show that the permeability of the intercellular membrane decreases as the gap junc-
tion particles aggregate in larger groupings. This raises the intriguing possibility that
intercellular permeability may be lowest when the gap-junctional plaques are easiest
to see. This in turn provides a possible explanation for the fact that it has been difficult
to establish a direct link between the number of recognizable gap junctions and the
intercellular permeability.

Chen and Meng (1995) constructed a cubic lattice model of a two-cell system with
a common border. A number of gap-junction particles, with varying degrees of aggre-
gation, were placed on the border lattice points. Marker particles were placed in one of
the cubes and followed a random walk over the lattice points of the cube. When they
encountered a gap-junction lattice point on the boundary, there was an assigned prob-
ability that the marker particle would move across to the other cell. By measuring the
time required for a certain percentage of marker particles to cross from one cell to the
other, Chen andMeng obtained a quantitative estimate of the efficiency of intercellular
transport as a function of gap-junction aggregation. Their results are summarized in
Fig. 7.14. When the gap junctions are clumped together in a single junctional plaque,
10,000 time steps were required for the transfer of about 10% of the marker parti-
cles. However, when the gap-junction particles were randomly scattered, only 1,000
time steps were required for the same transfer. The magnitude of this discrepancy em-
phasizes the fact that gap junction distribution can have a huge effect on the rate of
intercellular transport.

To get an analytical understanding of how the distribution of gap junctions affects
the diffusion coefficient, we solve a model problem, similar to the one-dimensional
problem solved in Section 7.2.1. We consider cells to be two-dimensional rectangles,
with a portion of their ends open for diffusive transport (the gap junctions) and the
remainder closed (Fig. 7.15A). The dashed lines in this figure are lines of symmetry
across which there is no flux in a steady-state problem, so we can reduce the cell
configuration to that shown in Fig. 7.15B.

To study diffusion in the x-coordinate direction, we assume that the vertical walls
are separated by length L and have regularly spaced openings of width 2δ with centers
separated by length 2l. The fraction of the vertical separator that is open between
cells is H � δ/l. To study how the distribution of gap junctions affects the diffusion
coefficient, we hold H fixed while varying l. When l is small, the gap junctions are
small and uniformly distributed, while when l is large, the gap junctions are clumped
together into larger aggregates; in either case the same fraction (H) of the intercellular
membrane is occupied by gap junctions.

Suppose that there are a large number of cells (say N) each of length L connected
end to end. We impose a fixed concentration gradient across the array and use the
definition (7.53) to define the effective diffusion coefficient for this array.

To find the flux, we solve Laplace’s equation subject to no-flux boundary conditions
on the horizontal lines y � 0 and y � l and on the vertical lines δ < y < l, x � pL, p �
0, . . . , N. We further divide this region into two subregions, one for y ≥ δ and one for
y ≤ δ.
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Figure 7.14 Simulation results of the cubic-lattice gap-junction model on a 50×50×50 lattice
with 1000 signal molecules in the source cell at time 0. In A, 100 gap-junction particles are
arranged in a compact junctional plaque, while in B they are scattered randomly on the inter-
cellular interface. The random scattering of gap-junction particles results in a greatly increased
intercellular transfer rate (note the different scales for the two panels). (Chen and Meng, 1995,
Fig. 1.)
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Figure 7.15 A: Sketch of a single rectangular cell with gap-junctional openings in the end
faces. B: Sketch of cell array, reduced by symmetry to a single “half-channel.”

Consider first the solution on the upper region. The solution for a single cell 0 ≤
x ≤ L can be found by separation of variables to be

u(x, y) �
∞∑
n�0

an cos
(nπx
L

)
cosh

(
nπ(y− l)

L

)
. (7.79)
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This solution satisfies no-flux boundary conditions at y � l and at x � 0, L. Notice also
that this solution is periodic, so it is a contender for the solution for any cell.

Now recall that in the one-dimensional case, the solution is piecewise linear, with
jumps at the cell boundaries, and that the slope of the solution within each cell is
the same (Section 7.2.1). This suggests that the derivative of the solution in the two-
dimensional case should be the same in each cell, or equivalently, the solution in each
cell should be the same up to an additive constant. Thus,

u(x, y) �
∞∑
n�1

An
cosh(nπ(y− l)/L)
cosh(nπ(δ− l)/L)

cos
(nπ
L
(x− pL)

)
+ αp (7.80)

for pL < x < (p + 1)L, δ < y < l, and p � 0, . . . , N − 1. We have scaled the unknown
constants by cosh(nπ(δ− l)/L) for convenience.

On the lower region, a similar process gives

u(x, t) � (U1 −U0)
x

NL
+U0 +

∞∑
n�1

cosh(2nπy/L)
cosh(2nπδ/L)

(
Cn sin

2nπx
L

)
(7.81)

for 0 < x < NL, 0 < y < δ.Notice that this solution satisfies a no-flux boundary condition
at y � 0 and has the correct overall concentration gradient.

Now, to make these into a smooth solution of Laplace’s equation we require that
u(x, y) and uy(x, y) be continuous at y � δ. This gives two conditions,

∞∑
n�1

An cos
(nπ
L
(x− pL)

)
�

∞∑
n�1

(
Cn sin

2nπx
L

)
+ (U1 −U0)

x

nL
+U0 − αp (7.82)

and

∞∑
n�1

nAn tanh
(nπ
L
(δ− l)

)
cos

(nπ
L
(x− pL)

)
�

∞∑
n�1

2n tanh
2nπδ
L

Cn sin
2nπx
L

(7.83)

on the interval pL < x < (p+ 1)L.
We now determine αp by averaging (7.82) over cell p. Integrating (7.82) from x �

(p− 1)L to x � pL gives

αp � 1
L

∫ pL

(p−1)L
(U1 −U0)

x

NL
dx+U0, (7.84)

since all the trigonometric terms integrate to zero. Hence,

αp � U0 − (U0 −U1)
p− 1/2
N

. (7.85)

Finally, for convenience, we choose U0 � N/2 and U1 � −N/2, which gives αp � p +
(1+N)/2. Since this is a linear problem, the values chosen for U0 and U1 have no effect
on the effective diffusion coefficient.
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To obtain equations for the coefficients, we project each of these onto cos kπx
L
by

multiplying by cos kπx
L
and integrating from 0 to L. We find that

Ak
L

2
� Fk +

∞∑
n�1

CnI2n,k (7.86)

and

kAk tanh
(
kπ

L
(δ− l)

)
L

2
�

∞∑
n�1

2n tanh
2nπδ
L

(
CnI2n,k

)
, (7.87)

where

Fk �
∫ L

0

(
x

L
− 1
2

)
cos

kπx

L
dx � L

n2π2
((−1)k − 1), (7.88)

In,k �
∫ L

0
sin

nπx

L
cos

kπx

L
dx � Ln

π

(
1− (−1)n+k
n2 − k2

)
. (7.89)

There is an immediate simplification. Notice that I2n,k � 0 and Fk � 0 when k is
even. Thus, Ak � 0 for all even k. Now we eliminate the coefficients Ak from (7.86) and
(7.87) to obtain

∞∑
n�1

Cn

(
2n
k

tanh 2nπl
L
H

tanh kπl
L
(1−H)

+ 1
)

n

4n2 − k2
� 1
2πk2

(7.90)

for all odd k, with H � δ/l.
In these terms, the average flux is

J � D

l

∫ δ

0

∂u

∂x

∣∣∣∣
x�0

dy � D

(
H

L
+ 1
l

∞∑
n�1

Cn tanh
2nπlH
L

)
. (7.91)

It follows that the effective diffusion coefficient is

De � D

(
L

l

∞∑
n�1

Cn tanh
2nπlH
L

+H

)
. (7.92)

Since k can take on any odd positive integer value, (7.90) is an infinite set of equa-
tions for the coefficients Cn. Since the solution of the differential equation converges,
we can truncate this system of equations and solve the resulting finite linear system
numerically. Typical results are shown in Fig. 7.16A, where the ratio De/D is shown
plotted as a function of l/L for different values of fixedH � δ/l, and in Fig. 7.16B, where
De/D is shown plotted as a function of H for fixed l/L.

There are a number of important observations that can be made. First, notice that
in the limit H → 1, or l/L → ∞, L

l
Cn tanh 2nπlH

L
→ 0. Thus,

lim
H→1

De � D, (7.93)
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and

lim
l
L
→∞

De � DH. (7.94)

Finally, from the numerical solution, it can be seen that De is a decreasing function of
l/L. Thus, clumping of gap junctions lowers the effective diffusion coefficient compared
with spreading them out uniformly.

From Fig. 7.16B we see that when gap junctions are small but uniformly spread,
there is little decrease in the effective diffusion coefficient, unlessH is quite small. Thus,
for example,withH � 0.01 (so that gap junctions comprise 1%of themembrane surface
area) and l � 0, the effective diffusion coefficient is about 86% of the cytoplasmic
diffusion. On the other hand, with only one large gap junction with H � 0.01 in the
end membrane of a square cell (l � 0.5), the effective diffusion coefficient is reduced
to about 27% of the original.

It is interesting to relate these results to the one-dimensional solution. This two-
dimensional problem becomes effectively one-dimensional in the limit l

L
→ 0, with a

piecewise linear profile in the interior of the cells and small boundary or corner layers
at the end faces. In this limit, the effective diffusion coefficient satisfies

D

De
� 1+ µ

1−H

H
, (7.95)

with µ � 0.0016. This formula was found by plotting the curve H( D
De

− 1) against
H, which, remarkably, is numerically indistinguishable from the straight line µ(1−H).
Comparing this with the one-dimensional result, we find that the end-face permeability
can be related to the fraction of gap junctions H through

F � D

L

H

µ(1−H)
. (7.96)
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7.3 Exercises

1. (a) Verify the last step of (7.2). Hint: Use Stirling’s formula n! ≈ nn+1e−n
√
2π
n
, and show

that limn→∞ ln[(1− x

n
)n] � −x.

(b) Verify that the Poisson distribution P(k) � e−mmk
k! has mean m, by verifying that 〈k〉 �∑∞

k�0 kP(k) � m.

(c) Verify that the sum of k identical Gaussian distributions with mean µ and variance σ2

is a Gaussian distribution with mean kµ and variance kσ2.

2. This question is based on themodel presented by Peskin (1991). Motivated by the smallness
of ci with respect to ce, simplify the Llinás model by setting ci ≈ 0. How much difference
does this make to the Ca2+ currents plotted in Fig. 7.5? Calculate the steady-state Ca2+

current as a function of V and show that it is bell-shaped. Solve for a general step in voltage
from V1 to V2 and demonstrate synaptic suppression.

3. Calculate the analytic solution to (7.8) when V is a given function of t.

4. Construct a simple function F(t) with the same qualitative shape as the functionW(t) used
in the Magleby and Stevens model, and calculate the analytic solution to (7.43) for that F.
Compare to the numerical solutions shown in Fig. 7.11.

5. In the Magleby and Stevens model, a simple choice for the release function f (t) results
in end-plate conductances with considerable qualitative similarity with those in Fig. 7.11.
Suppose there is a sudden release of ACh into the synaptic cleft at time t � 0. We take
f (t) � γδ(t), where δ is the Dirac delta function. Show that the resulting differential equation
is

dc

dt
� −kec, c(0) � γ, (7.97)

for t ≥ 0. Solve for c, and, assuming that γ is small, substitute this expression for c into the
differential equation for x, (7.39). Look for a solution for x of order γ, and show that

x(t) � γβN

K(α− ke)

(
e−ket − e−αt

)
, (7.98)

which is always positive. Sketch the solution.

6. Peskin (1991) presented a more complex version of the Magleby and Stevens model. His
model is based on the reaction scheme

−→ ACh, rate rT per unit volume, (7.99)

ACh +R
k1
−→
←−
k2

ACh ·R
β

−→
←−
α

ACh ·R∗, (7.100)

ACh + E
k3
−→
←−
k4

ACh · E
γ

−→ E, (7.101)

where E is some enzyme that degrades ACh in the synaptic cleft. (The assumption of en-
zymatic degradation of ACh is one of the ways in which the Peskin model differs from the
Magleby and Stevens model. The other difference is that the Peskin model does not as-
sume that the amount of ACh bound to its receptor is negligible.) Write down the equations
for the 6 dependent variables. Use conservation laws to eliminate two of the equations.
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Then assume that the reactions involving ACh with R, and ACh with E (with reaction rates
ki, i � 1,4), are fast to obtain expressions for [R] and [E] in terms of the other variables. Sub-
stitute these expressions into the differential equations for [ACh ·R∗] and [ACh]+ [R]− [E]
to end up with two differential equations in [ACh · R∗] and [ACh]. Solve these equations
when the stimulus is a small sudden release of ACh (i.e., assume that rT � εδ(t) and look
for solutions of O(ε)), and show that the solution has the same form as (7.98) but that the
exponential coefficients are given by the roots of a quadratic polynomial. What is the rate
of ACh degradation?

7. Solve the above exercise (and obtain the same solution!) by nondimensionalizing, finding a
small parameter, and then solving in terms of an asymptotic expansion. Hint: One method
is to nondimensionalize time by γ and let γ/k2 � ε be the small parameter. To lowest order
in ε one gets only three equations for four unknowns, and so to solve the lowest-order
problemcompletely it is necessary to go to the higher-order terms. Thedifferential equations
obtained at higher order must then be added in the appropriate manner (as in the previous
question) so that unwanted terms cancel.

8. Solve (7.49) and plot the solution (Peskin, 1991). What is the solution as γ → 0? What is
the slope of the solution at t � 0? Compare to the curve d in Fig. 7.8.

9. By linking the output of the Llinás model to the input of the single-domain/bound-calcium
model, and then linking this to the input of the Magleby and Stevens model (the rate
of production of ACh) construct a unified model for the synaptic cleft that connects the
presynaptic action potential to the postsynaptic voltage via the concentration of ACh in the
synaptic cleft. Solve the model numerically and compare to the simpler model presented
briefly in Fig. 7.8.

10. Incorporate the effects of nicotine into a model of ACh activation of receptors.

11. Calculate the effective diffusion coefficientDe for a periodicmediumwith periodic diffusion
coefficient D(x).
Answer:

1
De

� 1
P

∫ P

0

1
D(x)

dx, (7.102)

where the period of D(x) is P.

12. Use homogenization arguments to solve the Poisson equation

∇ ·D
(x
ε

)
∇u � f

(
x,
x

ε

)
, (7.103)

assuming that D is periodic with a basic spatial subunit 6 of total volume V . Show that
u � U(x)+ εW( x

ε
) · ∇U(x)+O(ε2), where U(x) satisfies the averaged Poisson equation

∇ ·De∇U � 1
V

∫
6

f (x, σ)dσ (7.104)

and where the effective diffusion coefficient is

De � 1
V

∫
6

D(σ)(∇σW + I)dσ. (7.105)

Show that the partial differential equation governingW(σ) is

∇σ ·D(σ)(∇σW + I) � 0, (7.106)

with σ � x/ε.
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Passive Electrical Flow in
Neurons

Neurons are among the most important and interesting cells in the body. They are the
fundamental building blocks of the central nervous system and hence responsible for
motor control, cognition, perception, and memory, among other things. Although our
understanding of how networks of neurons interact to form an intelligent system is
extremely limited, one prerequisite for an understanding of the nervous system is an
understanding of how individual nerve cells behave.

There is a great deal of experimental data indicating that parts of neurons conduct
electricity in a passive manner. Thus, there has been developed an extensive body of
theory describing the flow of electricity in neurons using the theory of electrical flow in
cables. A cable is any structure that provides a one-dimensional pathway for communi-
cation via an electrical signal. Neurons are among the most abundant cells with a cable
structure, although skeletal muscle and cardiac cells also have cable-like features.

A typical neuron consists of three principal parts: the dendrites; the cell body, or
soma; and the axon. The structure of some typical neurons is shown in Fig. 8.1. Den-
drites are the input stage of a neuron and receive synaptic input from other neurons.
The soma contains the necessary cellular machinery such as a nucleus and mitochon-
dria, and the axon is the output stage. At the end of the axon (which may also be
branched, as are the dendrites) are synapses, which are cellular junctions specialized
for the transmission of an electrical signal (Chapter 7). Thus, a single neuron may re-
ceive input along its dendrites from a large number of other neurons, which is called
convergence, andmay similarly transmit a signal along its axon to many other neurons,
called divergence.

The behaviors of the dendrites, axon, and synapse are all quite different. The spread
of electrical current in a dendritic network is (mostly) a passive process that can be
well described by the diffusion of electricity along a leaky cable. The axon, on the other
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Figure 8.1 Structure of typical neurons. The motor neuron is from a mammalian spinal cord
and was drawn by Dieters in 1869. The other cells were drawn by Ramón y Cajal. The pyramidal
cell is from mouse cortex, and the mitral cell from the olfactory bulb of a cat. (Kuffler et al.,
1984, Fig. 1, p. 10.)

hand, has an excitable membrane of the type described in Chapter 4, and thus can
propagate an electrical signal actively. At the synapse (Chapter 7), the membrane is
specialized for the release or reception of chemical neurotransmitters. In this chapter
we discuss how to model the behavior of a cable, and then focus on the passive spread
of current in a dendritic network; in the following chapter we show how an excitable
membrane can actively propagate an electrical impulse, or action potential.
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8.1 The Cable Equation

One of the first things to realize from the pictures in Fig. 8.1 is that it is unlikely that
the membrane potential is the same at each point. In some cases spatial uniformity can
be achieved experimentally (for instance, by threading a silver wire along the axon, as
did Hodgkin and Huxley), but in vivo, the intricate branched structure of the neuron
can create spatial gradients in the membrane potential. Although this seems clear to
us now, it was not until the pioneering work of Wilfrid Rall in the 1950s and 1960s that
the importance of spatial effects gained widespread acceptance.

To understand something of how spatial distribution affects the behavior of a ca-
ble, we derive the cable equation. The theory of the flow of electricity in a leaky cable
dates back to the work of Lord Kelvin in 1855, who derived the equations to study the
transatlantic telegraph cable then under construction. However, the application of the
cable equation to neuronal behavior is mainly due to Hodgkin and Rushton (1946), and
then a series of classic papers by Rall (1957, 1959, 1960, 1969; an excellent summary
of much of Rall’s work on electrical flow in neurons is given in Segev et al., 1995.)

We view the cell as a long cylindrical piece of membrane surrounding an interior
of cytoplasm (called a cable). We suppose that everywhere along its length, the po-
tential depends only on the length variable and not on radial or angular variables, so
that the cable can be viewed as one-dimensional. This assumption is called the core
conductor assumption (Rall, 1977). We now divide the cable into a number of short
pieces of isopotential membrane each of length dx. In any cable section, all currents
must balance, and there are only two types of current, namely, transmembrane cur-

Ve(x)

It dx

Cm dx
Iion dx

Vi (x)

Ie(x)

Ii(x)

It dx

Cm dx
Iion dx

Ve(x+dx)

Vi (x+dx)

Extracellular
space

Intracellular
space

Cell
membrane

re dx

ri dx

Figure 8.2 Schematic diagram of a discretized cable, with isopotential circuit elements of
length dx .
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rent and axial current (Fig. 8.2). The axial current has intracellular and extracellular
components, both of which we assume to be ohmic, i.e., linear functions of the voltage.
Hence,

Vi(x+ dx)− Vi(x) � −Ii(x)ridx, (8.1)

Ve(x+ dx)− Ve(x) � −Ie(x)redx, (8.2)

where Ii and Ie are the intracellular and extracellular axial currents respectively. The
minus sign on the right-hand side appears because of the convention that positive
current is a flow of positive charges from left to right (i.e., in the direction of increasing
x). If Vi(x + dx) > Vi(x), then positive charges flow in the direction of decreasing x,
giving a negative current. In the limit dx → 0,

Ii � − 1
ri

∂Vi

∂x
, (8.3)

Ie � − 1
re

∂Ve

∂x
. (8.4)

The numbers ri and re are the resistances per unit length of the intracellular and
extracellular media, respectively. In general,

ri � Rc

Ai
, (8.5)

where Rc is the cytoplasmic resistivity, measured in units of Ohms-length, and Ai is
the cross-sectional area of the cylindrical cable. A similar expression holds for the
extracellular space, so if the cable is in a bath with large (effectively infinite) cross-
sectional area, the extracellular resistance re is nearly zero.

Next, from Kirchhoff’s laws, any change in extracellular or intracellular axial
current must be due to a transmembrane current, and thus

Ii(x)− Ii(x+ dx) � Itdx � Ie(x+ dx)− Ie(x), (8.6)

where It is the total transmembrane current (positive outward) per unit length of
membrane. In the limit as dx → 0, this becomes

It � −∂Ii
∂x

� ∂Ie

∂x
. (8.7)

In a cable with no additional current sources, the total axial current is IT � Ii + Ie, so
using that V � Vi − Ve, we find

− IT � ri + re

rire

∂Vi

∂x
− 1
re

∂V

∂x
, (8.8)

from which it follows that

1
ri

∂Vi

∂x
� 1
ri + re

∂V

∂x
− re

ri + re
IT. (8.9)
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On substituting (8.9) into (8.7), we obtain

It � ∂

∂x

(
1

ri + re

∂V

∂x

)
, (8.10)

where we have used (8.3) and the fact that IT is constant. Finally, recall that the
transmembrane current It is a sum of the capacitive and ionic currents, and thus

It � p

(
Cm

∂V

∂t
+ Iion

)
� ∂

∂x

(
1

ri + re

∂V

∂x

)
, (8.11)

where p is the perimeter of the axon. Equation (8.11) is usually referred to as the cable
equation. Note that Cm has units of capacitance per unit area ofmembrane, and Iion has
units of current per unit area of membrane. If a current Iapplied, with units of current
per unit area, is applied across the membrane (as before, taken positive in the outward
direction), then the cable equation becomes

It � p

(
Cm

∂V

∂t
+ Iion + Iapplied

)
� ∂

∂x

(
1

ri + re

∂V

∂x

)
. (8.12)

It is useful to nondimensionalize the cable equation. To do so we define the mem-
brane resistivity Rm as the resistance of a unit square area of membrane, having units
of 6 cm2. For any fixed V0, Rm is determined by measuring the change in membrane
current when V is perturbed slightly from V0. In mathematical terms,

1
Rm

� dIion

dV

∣∣∣∣
V�V0

. (8.13)

Although the value of Rm depends on the chosen value of V0, it is typical to take V0 to
be the resting membrane potential to define Rm. Note that if the membrane is an ohmic
resistor, then Iion � V/Rm, in which case Rm is independent of the value V0.

Assuming that ri and re are constant, the cable equation (8.11) can now be written
in the form

τm
∂V

∂t
+ RmIion � λ2m

∂2V

∂x2
, (8.14)

where

λm �
√

Rm

p(ri + re)
(8.15)

has units of distance and is called the cable space constant, and where

τm � RmCm (8.16)

has units of time and is called the membrane time constant. If we ignore the
extracellular resistance, then

λm �
√
Rmd

4Rc
, (8.17)
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Table 8.1 Typical parameter values for a variety of excitable cells.

parameter d Rc Rm Cm τm λm

units 10−4 cm 4 cm 103 4 cm2 µF/cm2 ms cm

squid giant axon 500 30 1 1 1 0.65

lobster giant axon 75 60 2 1 2 0.25

crab giant axon 30 90 7 1 7 0.24

earthworm giant axon 105 200 12 0.3 3.6 0.4

marine worm giant axon 560 57 1.2 0.75 0.9 0.54

mammalian cardiac cell 20 150 7 1.2 8.4 0.15

barnacle muscle fiber 400 30 0.23 20 4.6 0.28

where d is the diameter of the axon (assuming circular cross-section). Finally, we rescale
the ionic current by defining Iion � −f (V, t)/Rm for some f , which, in general, is a
function of both voltage and time and has units of voltage, and we nondimensionalize
space and time by defining new variables X � x/λm and T � t/τm. In the new variables
the cable equation is

∂V

∂T
� ∂2V

∂X2
+ f (V, T). (8.18)

Although we write f as a function of voltage and time, in many of the simpler versions
of the cable equation, f is a function of V only (for example, (8.19) below). Typical
parameter values for a variety of cells are shown in Table 8.1.

8.2 Dendritic Conduction

To complete the description of a spatially distributed cable, we must specify how the
ionic current depends on voltage and time. In the squid giant axon, f (V, t) is a function of
m,n, h, and V as described in Chapter 4. This choice for f allows waves that propagate
along the axon at constant speed and with a fixed profile, as we will see in the next
chapter. They require the input of energy from the axon, which must expend energy
to maintain the necessary ionic concentrations, and thus they are often called active
waves.

Any electrical activity for which the approximation f � −V is valid (i.e., if the
membrane is an Ohmic resistor) is said to be passive activity. There are some cables,
primarily in neuronal dendritic networks, for which this is a good approximation in
the range of normal activity. For other cells, activity is passive only if the membrane
potential is sufficiently small. For simplicity in a passive cable, we shift V so that the
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resting potential is at V � 0. Thus,

∂V

∂T
� ∂2V

∂X2
− V, (8.19)

which is called the linear cable equation. In the linear cable equation, current flows
along the cable in a passive manner, leaking to the outside at a linear rate.

There is a vast literature on the application of the linear cable equation to dendritic
networks. In particular, the books by Jack et al. (1975) and Tuckwell (1988) are largely
devoted to this problem, and provide detailed discussions of the theory. Koch and Segev
(1989) also provides an excellent introduction. In this chapter we provide only a brief
introduction to this topic.

8.2.1 Boundary Conditions

To determine the behavior of a single dendrite, we must first specify initial and bound-
ary conditions. Usually, it is assumed that at time T � 0, the dendritic cable is in its
resting state, V � 0, and so

V(X,0) � 0. (8.20)

Boundary conditions can be specified in a number of ways. Suppose that X � Xb is a
boundary point.

1. Voltage-clamp boundary conditions: If the voltage is fixed (i.e., clamped) at X � Xb,
then the boundary condition is of Dirichlet type,

V(Xb, T) � Vb, (8.21)

where Vb is the specified voltage level.
2. Short circuit: If the ends of the cable are short-circuited, so that the extracellular
and intracellular potentials are the same at X � Xb, then

V(Xb, T) � 0. (8.22)

This is a special case of the voltage clamp condition in which Vb � 0.
3. Current injection: Suppose a current I(T) is injected at one end of the cable. Since

Ii � − 1
ri

∂Vi

∂x
� − 1

riλm

∂Vi

∂X
, (8.23)

the boundary condition (if we ignore extracellular resistance, so that the extracel-
lular potential is uniform) is

∂V(Xb, T)
∂X

� −riλmI(T). (8.24)

If Xb is at the left end, this corresponds to an inward current, while if it is on the
right end, this is an outward current.
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4. Sealed ends: If the end at X � Xb is sealed to ensure that there is no current
across the endpoint, then the boundary condition is the homogeneous Neumann
condition,

∂V(Xb, T)
∂X

� 0, (8.25)

a special case of an injected current for which I(T) � 0.

8.2.2 Input Resistance

One of the most important simple solutions of the cable equation corresponds to the
situation in which a steady current is injected at one end of a semi-infinite cable. This is
a common experimental protocol (although never with a truly semi-infinite cable) that
can be used to determine the cable parameters Rm and Rc. Suppose the cable extends
from X � 0 to X � ∞ and that a steady current I0 is injected at X � 0. Then, the
boundary condition at X � 0 is

dV(0)
dX

� −riλmI0. (8.26)

Setting ∂V/∂T � 0 and solving (8.19) subject to the boundary condition (8.19) gives

V(X) � λmriI0e
−X � V(0)e−X � V(0)e−x/λm. (8.27)

Clearly, by measuring the rate at which the voltage decays along the cable, λm can be
determined from experimental data. The input resistance Rin of the cable is defined to
be the ratio V(0)/I0 � λmri. Recall that when the extracellular resistance is ignored,

λm �
√
Rmd

4Rc
. (8.28)

Combining this with (8.5) gives

Rin � λmri �
√
4RmRc
π2

1

d
3
2

. (8.29)

Hence, the input resistance of the cable varies with the −3/2 power of the cable diam-
eter, a fact that is of importance for the behavior of the cable equation in a branching
structure. Since both the input resistance and the space constant of the cable can be
measured experimentally, Rm and Rc can be calculated from experimental data.

Some solutions to the cable equation for various types of cable and boundary condi-
tions are discussed in the exercises. Tuckwell (1988) gives the most detailed discussion
of the various types of solutions and how they are obtained.

8.2.3 Branching Structures

The property of neurons that is most obvious from Fig. 8.1 is that they are exten-
sively branched. While the procedure to find solutions on a branched cable network
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X=L1

X=L21

X=L22

Parent branch

Offspring
X=0

Figure 8.3 Diagram of the simplest possible
branched cable.

is straightforward in concept, it can be quite messy in application. Thus, in what fol-
lows, we emphasize the procedure for obtaining the solution on branching structures,
without calculating specific formulae.

The steady-state solution
It is useful first to consider the simplest branched cable, depicted in Fig. 8.3. The cable
has a single branch point, or node, at X � L1, and the two offspring branches extend
to L21 and L22, respectively. For convenience we express all lengths in nondimensional
form, with the reminder that nondimensional length does not correspond to physical
length, as the distance variable x along each branch of the cable is scaled by the length
constant λm appropriate for that branch, and each branch may have a different length
constant.

We construct the solution in three parts: V1 on cylinder 1, and V21 and V22 on the
two offspring cylinders. At steady state eachV satisfies the differential equationV ′′ � V ,
and so we can immediately write the general solution as

V1 � A1e
−X + B1e

X , (8.30)

V21 � A21e
−X + B21e

X , (8.31)

V22 � A22e
−X + B22e

X , (8.32)

where theAs andBs are unknown constants. To determine the 6 unknown constants, we
need 6 constraints, which come from the boundary and nodal conditions. For boundary
conditions, we assume that a current I0 is injected at X � 0 and that the terminal ends
(at X � L21 and X � L22) are held fixed at V � 0. Thus,

dV1(0)
dX

� −riλmI0, (8.33)

V21(L21) � V22(L22) � 0. (8.34)

The remaining three constraints come from conditions at the node. We require that V
be a continuous function and that current be conserved at the node. It follows that

V1(L1) � V21(L1) � V22(L1), (8.35)
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and

d3/21

√
π2

4RmRc

dV1(L1)
dX

� d3/221

√
π2

4RmRc

dV21(L1)
dX

+ d3/222

√
π2

4RmRc

dV22(L1)
dX

. (8.36)

If we make the natural assumption that each branch of the cable has the same
physical properties (and thus have the same Rm and Rc), although possibly differing in
diameter, the final condition for conservation of current at the node becomes

d3/21
dV1(L1)
dX

� d3/221
dV21(L1)
dX

+ d3/222
dV22(L1)
dX

. (8.37)

We thus have six linear equations for the six unknown constants; explicit solution
of this linear system is left for Exercise 6.

More general branching structures
For this method to work for more general branching networks, there must be enough
constraints to solve for the unknown constants. The following argument shows that
this is the case. First, we know that each branch of the tree contributes two unknown
constants, and thus, if there areN nodes, there are 1+2N individual cables with a total
of 2+ 4N unknown constants. Each node contributes three constraints, and there are
2+N terminal ends (including that at X � 0), each of which contributes one constraint,
thus giving a grand total of 2+4N constraints. Thus, the resulting linear system is well-
posed. Of course, a unique solution is guaranteed only if this system is invertible, which
is not known a priori.

Equivalent cylinders
One of the most important results in the theory of dendritic trees is due to Rall (1959),
who showed that under certain conditions, the equations for passive electrical flow
over a branching structure reduce to a single equation for electrical flow in a single
cylinder, the so-called equivalent cylinder.

To see this reduction in a simple setting, consider again the branching structure of
Fig. 8.3. To reduce this to an equivalent cylinder we need some additional assumptions.
We assume, first, that the two offspring branches have the same dimensionless lengths,
L21 � L22, and that their terminals have the same boundary conditions. Since V21 and
V22 obey the same differential equation on the same domain, obey the same boundary
conditions at the terminals, and are equal at the node, it follows that they must be
equal. That is,

dV21(L1)
dX

� dV22(L1)
dX

. (8.38)

Substituting (8.38) into (8.37) we then get

d3/21
dV1(L1)
dX

� (d3/221 + d3/222 )
dV21(L1)
dX

. (8.39)
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Finally (and this is the crucial assumption), if we assume that

d3/221 + d3/222 � d3/21 , (8.40)

then

dV1(L1)
dX

� dV21(L1)
dX

. (8.41)

Thus V1 and V21 have the same value and derivative at L1 and obey the same differential
equation. It follows that the composite function

V �
{
V1(X), 0 ≤ X ≤ L1,

V21(X), L1 ≤ X ≤ L21,
(8.42)

is continuous with a continuous derivative on 0 < X < L21 and obeys the cable equation
on that same interval. Thus, the simple branching structure is equivalent to a cable of
length L21 and diameter d1.

More generally, if we have a branching structure that satisfies the following
conditions:

1. Rm and Rc are the same for each branch of the cable;
2. At every node the cable diameters satisfy an equation analogous to (8.40). That is,
if d0 is the diameter of the parent branch, and d1, d2, . . . are the diameters of the
offspring, then

d3/20 � d3/21 + d3/22 + · · · ; (8.43)

3. The boundary conditions at the terminal ends are all the same;
4. Each terminal is the same dimensionless distance L from the origin of the tree (at
X � 0);

then the entire tree is equivalent to a cylinder of length L and diameter d1, where d1 is
the diameter of the cable at X � 0.

Using an inductive argument, it is not difficult to show that this is so (although a rig-
orous proof is complicated by the notation). Working from the terminal ends, one can
condense the outermost branches into equivalent cylinders, then work progressively
inwards, condensing the equivalent cylinders into other equivalent cylinders, and so
on, until only a single cylinder remains. It is left as an exercise (Exercise 7) to show
that during this process the requirements for condensing branches into an equivalent
cylinder are never violated.

8.3 The Rall Model of a Neuron

When studying a model of a neuron, the item of greatest interest is often the voltage
at the cell body, or soma. This is primarily because the voltage at the cell body can
be measured experimentally with greater ease than can the voltage in the dendritic
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A B

C

D

soma

soma

soma

equivalent cylinder

equivalent cylinder

Rs

Cs

dendritic network equivalent
cylinders

Figure 8.4 Schematic diagram of the Rall lumped-soma model of the neuron. First, it is as-
sumed that the dendritic network pictured in A is equivalent to the equivalent cylinders shown
in B, and that these cylinders are themselves equivalent to a single cylinder as in C. The soma
is assumed to be isopotential and to behave like a resistance and capacitance in parallel, as
in D.

network, and further, it is the voltage at the soma that determines whether or not the
neuron fires an action potential. Therefore, it is important to determine the solution of
the cable equation on a dendritic network when one end of the network is connected
to a soma. The most common approach to incorporating a soma into the model is due
to Rall (1960), and is called the Rall lumped-soma model.

The three basic assumptions of theRallmodel are, first, that the soma is isopotential
(i.e., that the soma membrane potential is the same at all points), second, that the
soma acts like a resistance (Rs) and a capacitance (Cs) in parallel, and, third, that the
dendritic network can be collapsed into a single equivalent cylinder. This is illustrated
in Fig. 8.4.

The potential V satisfies the cable equation on the equivalent cylinder. The bound-
ary condition must account for current flow within the soma and into the cable. Thus,
if I0 denotes an applied current at X � 0, then the boundary condition is

I0 � − 1
ri

∂V(0, t)
∂x

+ Cs
∂V(0, t)
∂t

+ V(0, t)
Rs

, (8.44)

so that

RsI0 � −γ ∂V(0, T)
∂X

+ σ
∂V(0, T)
∂T

+ V(0, T), (8.45)
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where σ � CsRs/τm � τs/τm and γ � Rs/(riλm). For convenience we assume that the time
constant of the soma is the same as the membrane time constant, so that σ � 1.

8.3.1 A Semi-Infinite Neuron with a Soma

We first calculate the steady response of a semi-infinite neuron to a current I0 injected
at X � 0, as in Section 8.2.2. As before, we set the time derivative to zero to get

d2V

dX2
� V, (8.46)

V(0)− γ
dV(0)
dX

� RsI0, (8.47)

which can easily be solved to give

V(X) � Rs

riλm + Rs
riλmI0e

−X . (8.48)

This solution is nearly the same as the steady response of the equivalent cylinder with-
out a soma to an injected current, except that V is decreased by the constant factor
Rs/(Rs + riλm) < 1. As Rs → ∞, in which limit the soma carries no current, the solution
to the lumped-soma model approaches the solution to the simple cable.

The input resistance Rin of the lumped-soma model is

Rin � V(0)
I0

� riλmRs

riλm + Rs
, (8.49)

and thus

1
Rin

� 1
riλm

+ 1
Rs
. (8.50)

Since riλm is the input resistance of the cylinder, the input conductance of the lumped-
somamodel is the sumof the input conductance of the soma and the input conductance
of the cylinder. This is as expected, since the equivalent cylinder and the soma are in
parallel.

8.3.2 A Finite Neuron and Soma

We now calculate the time-dependent response of a finite cable and lumped soma to a
delta function current input at the soma, as this is readily observed experimentally.

We assume that the equivalent cylinder has finite length L. Then the potential
satisfies

∂V

∂T
� ∂2V

∂X2
− V, 0 < X < L, T > 0, (8.51)

V(X,0) � 0, (8.52)
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with boundary conditions

∂V(L, T)
∂X

� 0, (8.53)

∂V(0, T)
∂T

+ V(0, T)− γ
∂V(0, T)
∂X

� Rsδ(T). (8.54)

Note that the boundary condition (8.54) is equivalent to

∂V(0, T)
∂T

+ V(0, T)− γ
∂V(0, T)
∂X

� 0, T > 0, (8.55)

together with the initial condition

V(0,0) � Rs. (8.56)

No single method such as Fourier series or Laplace transforms suffices to solve
these equations. However, by combining aspects of both methods, the exact solution
can be obtained (Tuckwell, 1988). We begin by finding a generalized Fourier series
expansion of the solution. Using separation of variables, we find solutions of the form

V(X, T) � φ(X)e−µ
2T, (8.57)

where φ satisfies the differential equation

φ′′ − (1− µ2)φ � 0, (8.58)

with boundary conditions (when T > 0)

φ′(L) � 0, (8.59)

φ′(0) � φ(0)
1− µ2

γ
. (8.60)

Setting λ2 � µ2 − 1, we solve for φ to get
φ � A cos(λX)+ B sin(λX), (8.61)

for some constants A and B, and then apply the boundary conditions, finding

B � −λA
γ

(8.62)

and

tan(λL) � −λ
γ
. (8.63)

The roots of (8.63) determine the eigenvalues. Although the eigenvalues cannot be
found analytically, they can be determined numerically. A graph of (8.63), showing the
location of the eigenvalues, is given in Fig. 8.5. There is an infinite number of discrete
eigenvalues, and we label them λn, with λ0 � 0. Expanding the solution in terms of the
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Figure 8.5 The eigenvalues of (8.51)–
(8.54) are determined by the intersections
of the curves tan(λL) and −λ/γ . In this
figure, L � γ � 1.

eigenfunctions, we write

V(X, T) �
∞∑
n�0

An

(
cos(λnX)− λn

γ
sin(λnX)

)
e−(1+λ

2
n)T. (8.64)

Note that if λn is an eigenvalue, so also is−λn, but the eigenfunction φn(X) � cos(λnX)−
λn
γ
sin(λnX) is an even function of λn, so it suffices to include only positive eigenvalues

in the expansion.
We now strike a problem. The usual procedure is to expand the initial condition in

terms of the eigenfunctions and thereby determine the coefficients An. However, in this
case the eigenfunctions are not mutually orthogonal, and this procedure does not work
easily. Oneway around this is to construct a nonorthogonal expansion of the initial con-
dition, an approach used by Durand (1984). Here we use a different approach (Bluman
and Tuckwell, 1987; Tuckwell, 1988) in which we calculate the Laplace transform of
the solution, and then, by matching the two forms of the solution, obtain expressions
for the unknown coefficients.

Taking the Laplace transform of (8.51)–(8.54) gives

V̄ ′′ � (s+ 1)V̄ , (8.65)

V̄ ′(L, s) � 0, (8.66)

(s+ 1)V̄(0, s)− γV̄ ′(0, s) � Rs, (8.67)

where V̄(X, s) denotes the Laplace transform of V .
It is left as an exercise (Exercise 10) to show that the solution for V̄ is

V̄(X, s) � Rs cosh[
√
s+ 1(X − L)]√

s+ 1{√s+ 1 cosh(√s+ 1L)+ γ sinh(
√
s+ 1L)} . (8.68)

It now follows that

V̄(0, s) � Rs

s+ 1+ √
s+ 1γ tanh(L√s+ 1) . (8.69)
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However, taking the Laplace transform of (8.64) we get

V̄(0, s) �
∞∑
n�0

An

1+ s+ λ2n
. (8.70)

Equating (8.69) and (8.70) gives

Rs

s+ 1+ √
s+ 1γ tanh(L√s+ 1) �

∞∑
n�0

An

1+ s+ λ2n
. (8.71)

We can calculate the coefficients An using contour integration. That is, ifCn denotes
a small circle in the complex s plane, centered at s � −1 − λ2n, then integrating (8.70)
around Cn in the counterclockwise direction and using the residue theorem gives

An � 1
2πi

∫
Cn

V̄(0, s)ds. (8.72)

Now we define

f (s) � s+ 1+ √
s+ 1γ tanh(L√s+ 1) (8.73)

and notice that f (−1−λ2n) � 0. This easily follows from the identity tanh(iλn) � i tan(λn)
and (8.63). Thus, by the residue theorem,

An � 1
2πi

∫
Cn

Rs

f (s)
ds (8.74)

� Rs

f ′(−1− λ2n)
, (8.75)

so that

1
An

� d

ds

(
1

V̄(0, s)

)∣∣∣∣
s�−1−λ2n

. (8.76)

These coefficients are easily evaluated numerically.

8.3.3 Other Compartmental Models

The methods presented above give some idea of the difficulty of calculating analytical
solutions to the cable equation on branching structures, with or without a soma termi-
nation. Since modern experimental techniques can determine the detailed structure of
a neuron (for instance, by staining with horseradish peroxidase), it is clear that more
experimental information can be obtained than can be incorporated into an analyti-
cal model (as is often the case). Thus, one common approach is to construct a large
computational model of a neuron and then determine the solution by a numerical
method.

In a numerical approach, a neuron is divided into a large number of small pieces, or
compartments, each of which is assumed to be isopotential. Within each compartment
the properties of the neuronal membrane are specified, and thus some compartments
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may have excitable kinetics, while others are purely passive. The compartments are
then connected by an axial resistance, resulting in a large system of coupled ordinary
differential equations, with the voltage specified at discrete places along the neuron.

Compartmental models, numerical methods for their solution, and software pack-
ages used for these kinds of models are discussed in detail in Koch and Segev (1989),
to which the interested reader is referred.

8.4 Appendix: Transform Methods

To follow all of the calculations and complete all the exercises in this chapter, you will
need to know about Fourier and Laplace transforms, generalized functions and the
delta function, Green’s functions, as well as some aspects of complex variable theory,
including contour integration and the residue theorem. If you have made it this far
into this book, then you are probably familiar with these classic techniques. However,
should you need a reference for these techniques, there aremany bookswith the generic
title “Advanced Engineering Mathematics,” from which to choose (see, for example,
Kreyszig (1994), O’Neill (1983), or Kaplan (1981)). At an intermediate level one might
consider Strang (1986) or Boyce and DiPrima (1997). Keener (1988) provides a more
advanced coverage of this material.

8.5 Exercises
1. Calculate the input resistance of a cable with a sealed end at X � L. Determine how the

length of the cable, and the boundary condition at X � L, affects the input resistance, and
compare to the result for a semi-infinite cable.

2. (a) Find the fundamental solution K of the linear cable equation satisfying

− d2K

dX2
+ K � δ(X − ξ), −∞ < X < ∞, (8.77)

where δ(X − ξ) denotes an inward flow of positive current at the point X � ξ.
Answer:

K(X, ξ) � 1
2
e−|X−ξ|. (8.78)

(b) Use the fundamental solution to construct a solution of the cable equation with
inhomogeneous current input

− d2V

dX2
+ V � I(X). (8.79)

Answer:

V(X) �
∫ ∞

−∞
I(ξ)K(X, ξ)dξ � 1

2

∫ ∞

−∞
I(ξ)e−|X−ξ| dξ. (8.80)

3. Solve

− d2G(X)
dx2

+G(X) � δ(X − ξ), 0 < X, ξ < L, (8.81)
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subject to (i) sealed end, and (ii) short circuit, boundary conditions. The function G is
called the time-independent Green’s function, and is similar to the fundamental solution.
The only difference between the two is that the Green’s function satisfies the given boundary
conditions, while the fundamental solution does not.

4. (a) Use Laplace transforms to find the solution of the semi-infinite (time-dependent) cable
equation with clamped voltage

V(X,0) � 0 (8.82)

and current input

∂V(0, T)
∂X

� −riλmI0H(T), (8.83)

where H is the Heaviside function.
Answer:

V(X, T) � riλmI0

2

{
e−Xerfc

(
X

2
√
T

−
√
T

)
− eXerfc

(
X

2
√
T

+
√
T

)}
, (8.84)

where erfc is the complementary error function,

erfc(x) � 2√
π

∫ ∞

x

e−y
2
dy. (8.85)

Hint: Use the identity

2

s
√
s+ 1 � 1

s+ 1− √
s+ 1 − 1

s+ 1+ √
s+ 1 , (8.86)

and then use

L−1
{

e−a
√
s

s+ b
√
s

}
� eb

2T+aberfc
(

a

2
√
T

+ b
√
T

)
, (8.87)

where L−1 denotes the inverse Laplace transform.

(b) Show that

V(X, T)→ riλmI0e
−X (8.88)

as T → ∞.
5. Calculate the time-dependent Green’s function for a finite cylinder of length L for (i) sealed

end, and (ii) short circuit, boundary conditions. These may be calculated in two different
ways, either using Fourier series or by constructing sums of fundamental solutions.

6. By solving for the unknown constants, calculate the solution of the cable equation on the
simple branching structure of Fig. 8.3. Show explicitly that this solution is the same as the
equivalent cylinder solution, as long as the necessary conditions are satisfied.

7. Show that if the conditions in Section 8.2.3 are satisfied, a branching structure can be
condensed into a single equivalent cylinder.

8. Show that
∂V

∂T
� ∂2V

∂X2
− V + δ(X)δ(T), T ≥ 0, (8.89)

with V(X, T) � 0 for T < 0, is equivalent to

∂V

∂T
� ∂2V

∂X2
− V, T > 0, (8.90)
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with initial condition

V(X,0) � δ(X). (8.91)

9. Show that as n → ∞, the eigenvalues λn of (8.63) are approximately (2n− 1)π/(2L).
10. Solve (8.65)–(8.67) for V̄(X, s).

11. Using the method of Section 8.3.2, find the Green’s function for the finite cylinder and
lumped soma; i.e., solve

∂V

∂T
� ∂2V

∂X2
− V + δ(X − ξ)δ(T), (8.92)

V(X,0) � 0, (8.93)

with boundary conditions

∂V(L, T)
∂X

� 0, (8.94)

∂V(0, T)
∂T

+ V(0, T)− γ
∂V(0, T)
∂X

� 0. (8.95)

Show that as ξ → 0 the solution approaches that found in Section 8.3.2, scaled by the factor
γ/Rs.
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Nonlinear Wave Propagation

The problem of current flow in the axon of a nerve is muchmore complicated than that
of flow in dendritic networks. We saw in Chapter 4 how the voltage dependence of the
ionic currents can lead to excitability and action potentials. In this chapter we show
that when an excitable membrane is incorporated into a nonlinear cable equation, it
can give rise to traveling waves of electrical excitation.

Indeed, this property of spatially distributed Hodgkin–Huxley theory is one of the
reasons that the Hodgkin–Huxley model is so important. In addition to producing a
realistic description of a space clamped action potential, Hodgkin and Huxley showed
that this action potential should propagate along an axon with a fixed speed, which
could be calculated. Their model spawned an entire cottage industry of nonlinear wave
propagation in excitable media.

9.1 Brief Overview of Wave Propagation

There is a vast literature on wave propagation in biological systems. In addition to the
books by Murray (1989), Britton (1986), and Grindrod (1991), there are numerous ar-
ticles in journals and books, many of which we cite in this chapter. To avoid confusion,
we emphasize at the outset that when we use the term traveling wave, we mean a solu-
tion that travels at constant velocity with fixed shape. On an infinite domain (a fictional
object, of course), a traveling wave would travel at a constant velocity indefinitely.

There are many different kinds of waves in biological systems. There are traveling
waves in excitable systems, waves that arise from the underlying excitability of the
cell. An excitable wave acts as a model for, among other things, the propagation of
an action potential along the axon of a nerve or the propagation of a grass fire on a
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Figure 9.1 Schematic diagram of A: Traveling front, B: Traveling pulse.

prairie. However, if the underlying kinetics are oscillatory but not excitable, and a large
number of individual oscillatory units are coupled by diffusion, the resulting behavior
is oscillatory waves and periodic wave trains. In this chapter we focus our attention on
waves in excitable media, and delay consideration of the theory of coupled oscillators
until later (Chapters 14 and 21).

It is also helpful to make a distinction between the two most important types of
traveling waves in excitable systems. First, there is the wave that looks like a moving
plateau. If we use v to denote the wave variable, then in front of the wave, v is steady at
some low value, and behind the wave, v is steady at a higher value (Fig. 9.1A). We call
such waves traveling fronts. The second type of wave begins and ends at the same value
of v (Fig. 9.1B) and resembles a moving bump. We call this type of wave a traveling
pulse.

These two wave types can be interpreted in the terminology of the Hodgkin–Huxley
fast–slow phase-plane discussed in Chapter 4. A traveling front depends on the exci-
tation variable v. We saw that when the recovery variable is fixed at the steady state,
the fast–slow phase-plane has two stable steady states, vr and ve (i.e., it is bistable).
Under appropriate conditions there exists a traveling front with v � vr in front of the
wave and v � ve behind the wave. Thus, the traveling front acts like a zipper, changing
the domain from the resting to the excited state. However, if the recovery variable n
is allowed to vary, the solution is eventually forced back to the resting state and the
traveling front becomes a traveling pulse. The primary difference between the traveling
front and the traveling pulse is that in the former case there is no recovery (or recovery
is static), while in the latter case there is.

One of the simplest models for biological wave propagation is Fisher’s equation.
Although this equation is used extensively in population biology and ecology, it is much
less relevant for the study of physiological waves, and so we do not discuss it here (see
Exercise 13 and Fife, 1979).
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The next level of complexity is the bistable equation. The bistable equation is so
named because it has two stable rest points, and it is related to the FitzHugh–Nagumo
model without recovery. For the bistable equation, one expects to find traveling fronts
but not usually traveling pulses. Inclusion of the recovery variable leads to a more
complex model, the spatially distributed FitzHugh–Nagumo model, for which one
expects to find traveling pulses (among other types of waves). Wave propagation in
the FitzHugh–Nagumo model is still not completely understood, especially in higher-
dimensional domains. At the highest level of complexity are the spatially distributed
models of Hodgkin–Huxley type, systems of equations that are resistant to analytical
approaches.

9.2 Traveling Fronts

9.2.1 The Bistable Equation

The bistable equation is a special version of the cable equation (8.18), namely

∂V

∂t
� ∂2V

∂x2
+ f (V), (9.1)

where f (V) has three zeros at 0, α, and 1, where 0 < α < 1. The values V � 0 and
V � 1 are stable steady solutions of the ordinary differential equation dV/dt � f (V).
Notice that the variable V may need to be rescaled so that 0 and 1 are zeros of f (V).
In the standard nondimensional form, f ′(0) � −1. (Recall from (8.13) that the passive
cable resistance was defined so that the ionic current has slope 1 at rest.) However, this
restriction is often ignored.

An example of such a function can be found in the Hodgkin–Huxley fast–slow
phase-plane. When the recovery variable n is held fixed at its steady state, the Hodgkin–
Huxley fast–slowmodel is bistable. Two other examples of functions that are often used
in this context are the cubic polynomial

f (V) � aV(V − 1)(α− V), 0 < α < 1, (9.2)

and the piecewise linear function

f (V) � −V +H(V − α), 0 < α < 1. (9.3)

where H(V) is the Heaviside function (Mckean, 1970). This piecewise linear function
is not continuous, nor does it have three zeros, yet it is useful in the study of traveling
wave solutions of the bistable equation because it is an analytically tractable model
that retains many important qualitative features.

By a traveling wave solution, we mean a translation-invariant solution of (9.1) that
provides a transition between two stable rest states (zeros of the nonlinear function
f (V)) and travels with constant speed. In particular, if the traveling wave has the form
of a traveling front, it provides a transition between two different zeros of f . That is,
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we seek a solution of (9.1) of the form

V(x, t) � U(x+ ct) � U(ξ) (9.4)

for some (yet to be determined) value of c. The new variable ξ, called the traveling
wave variable, has the property that fixed values move in space–time with fixed speed
c. When written as a function of ξ, the wave appears stationary. By substituting (9.4)
into (9.1) it can be seen that any traveling wave solution must satisfy

Uξξ − cUξ + f (U) � 0, (9.5)

and this, being an ordinary differential equation, should be easier to analyze than the
original partial differential equation. For U(ξ) to provide a transition between rest
points, it must be that f (U(ξ))→ 0 as ξ → ±∞.

To study (9.5) it is convenient to write it as two first order equations,

Uξ � W, (9.6)

Wξ � cW − f (U). (9.7)

To find traveling front solutions for the bistable equation, we look for a solution of
(9.6) and (9.7) that connects the rest points (U,W) � (0,0) and (U,W) � (1,0) in the
(U,W) phase-plane. Such a trajectory, connecting two different steady states, is called a
heteroclinic trajectory, and in this case is parametrized by ξ; the trajectory approaches
(0,0) as ξ → −∞ and approaches (1, 0) as ξ → +∞. The steady states at U � 0 and
U � 1 are both saddle points, while for the steady state U � α, the real part of both
eigenvalues have the same sign, negative if c is positive and positive if c is negative, so
that this is a node or a spiral point. Since the points at U � 0 and U � 1 are saddle
points, our goal is to determine whether the parameter c can be chosen such that the
trajectory that leaves U � 0 at ξ � −∞ can be made to connect with the saddle point
U � 1 at ξ � +∞. This mathematical procedure is called shooting, and some sample
trajectories are shown in Fig. 9.2.

First of all, we can determine the sign of c. If a monotone increasing (Uξ > 0)
connecting trajectory exists, we can multiply (9.5) by Uξ and integrate from ξ � −∞ to
ξ � ∞ with the result that

c

∫ ∞

−∞
W2dξ �

∫ 1

0
f (u)du. (9.8)

In other words, if a traveling wave solution exists, then the sign of c is the same as the
sign of the area under the curve f (u) between u � 0 and u � 1. If this area is positive,
then the traveling solutions move the state variable U from U � 0 to U � 1, and the
state at U � 1 is said to be dominant. In both of the special cases (9.2) and (9.3), the
state U � 1 is dominant if α < 1/2.

Suppose
∫ 1
0 f (u)du > 0. We will try different values of c to see what happens to the

unstable trajectory that leaves the saddle point U � 0, Uξ � 0. With c � 0, we can find
an explicit expression for this trajectory by multiplying (9.5) by Uξ and integrating to
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get

W2

2
+
∫ U

0
f (u)du � 0. (9.9)

If this trajectory were to reach U � 1 for some value ofW, we would have

W2

2
+
∫ 1

0
f (u)du � 0, (9.10)

in which case
∫ 1
0 f (u)du < 0. Since this contradicts our original assumption, we con-

clude that U cannot reach 1. Neither can this trajectory stay in the first quadrant, as
W > 0 implies that U is always increasing there. Thus, this trajectory must intersect
theW � 0 axis at some value of U < 1 (Fig. 9.2). It cannot be the connecting trajectory.

Next, suppose c is large. In the (U,W) phase-plane, the slope of the unstable tra-
jectory leaving the rest point at U � 0 is the positive root of λ2 − cλ+ f ′(0) � 0, which
is always larger than c (Exercise 1). Let K be the smallest positive number for which
f (u)/u ≤ K for all u on the interval 0 < u ≤ 1 (Exercise: How do we know K exists?),
and let σ be any fixed positive number. On the line W � σU the slope of trajectories
satisfies

dW

dU
� c− f (U)

W
� c− f (U)

σU
≥ c− K

σ
. (9.11)

By picking c large enough, we are assured that c − K/σ > σ, so that once trajectories
are above the line W � σU, they stay above it. We know that for large enough c,
the trajectory leaving the saddle point U � 0 starts out above this curve. Thus, this
trajectory always stays above the line W � σU, and therefore passes above the rest
point at (U,W) � (1,0).

Now we have two trajectories, one with c � 0, which misses the rest point at U � 1
by crossing theW � 0 axis at some point U < 1, and one with c large, which misses this
rest point by staying above it at U � 1. Since trajectories depend continuously on the
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Figure 9.2 Trajectories in the (U, W )
phase-plane leaving the rest point
U � 0, W � 0 for the equation
Uξξ − cUξ + U(U − 0.1)(1 − U) � 0,
with c � 0.0, 0.56, 0.57, and 1.0.
Dashed curve shows the connecting
heteroclinic trajectory.
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parameters of the problem, there is a continuous family of trajectories depending on
the parameter c between these two special trajectories, and therefore there is at least
one trajectory that hits the point U � 1,W � 0 exactly.

The value of c for which this heteroclinic connection occurs is unique. To verify
this statement, notice from (9.11) that the slope dW/dU of trajectories in the (U,W)
plane is a monotone increasing function of the parameter c. Suppose at some value of
c � c0 there is known to be a connecting trajectory. For any value of c that is larger
than c0, the trajectory leaving the saddle point at U � 0 must lie above the connecting
curve for c0. For the same reason, with c > c0, the trajectory approaching the saddle
point at U � 1 as ξ → ∞ must lie below the connecting curve with c � c0. A single
curve cannot simultaneously lie above and below another curve, so there cannot be a
connecting trajectory for c > c0. By a similar argument, there cannot be a connecting
trajectory for a smaller value of c, so the value c0, and hence the connecting trajectory,
is unique.

For most functions f (V), it is necessary to calculate the speed of propagation of the
traveling front solution numerically. However, in the two special cases (9.2) and (9.3)
the speed of propagation can be calculated explicitly. In the piecewise linear case (9.3)
one calculates directly that

c � 1− 2α√
α− α2

(9.12)

(see Exercise 4).
Suppose f (u) is the cubic polynomial

f (u) � −A2(u− u0)(u− u1)(u− u2), (9.13)

where the zeros of the cubic are ordered u0 < u1 < u2. We want to find a heteroclinic
connection between the smallest zero u0, and the largest zero u2, so we guess that

W � −B(U − u0)(U − u2). (9.14)

We substitute this guess into the governing equation (9.5), and find that we must have

B2(2U − u0 − u2)− cB− A2(U − u1) � 0. (9.15)

This is a linear function of U that can be made identically zero only if we choose
B � A/

√
2 and

c � A√
2
(u2 − 2u1 + u0). (9.16)

It follows from (9.14) that

U(ξ) � u0 + u2

2
+ u2 − u0

2
tanh

(
A√
2

u2 − u0

2
ξ

)
, (9.17)



274 9: Nonlinear Wave Propagation

1.0

0.8

0.6

0.4

0.2

0.0

-10 -5 0 5 10
ξ

U(ξ)

U' (ξ)

Figure 9.3 Profile of traveling wave solu-
tion of the bistable equation with f (V ) �
V (1 − V )(0.1 − V ).

which is independent of u1. In the case that u0 � 0, u1 � α, and u2 � 1, the speed
reduces to

c � A√
2
(1− 2α), (9.18)

showing that the speed is a decreasing function of α and the direction of propagation
changes at α � 1/2. The profile of the traveling wave in this case is

U(ξ) � 1
2

[
1+ tanh

(
A

2
√
2
ξ

)]
. (9.19)

A plot of this traveling wave profile is shown in Fig. 9.3.
Once the solution of the nondimensional cable equation (9.1) is known, it is a

simple matter to express the solution in terms of physical parameters as

V(x, t) � U

(
x

λm
+ c

t

τm

)
, (9.20)

where λm and τm are, respectively, the space and time constants of the cable, as
described in Chapter 8. The speed of the traveling wave is

s � cλm

τm
� c

2Cm

√
d

RmRc
, (9.21)

which shows how the wave speed depends on capacitance, membrane resistance, cyto-
plasmic resistance, and axonal diameter. The dependence of the speed on ionic channel
conductances is contained (but hidden) in c. According to empirical measurements, a
good estimate of the speed for an axon is given by

s �
√

d

10−6m
m/sec. (9.22)

Using d � 500µm for squid axon, this estimate gives s � 22.4 mm/ms, which compares
favorably to the measured value of s � 21.2 mm/ms.
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Table 9.1 Sodium channel densities in selected excitable tissues.

Tissue Channel density (channels/µm2)

Mammalian

Vagus nerve (nonmyelinated) 110

Node of Ranvier 2100

Skeletal muscle 205–560

Other animals

Squid giant axon 166–533

Frog sartorius muscle 280

Electric eel electroplax 550

Garfish olfactory nerve 35

Lobster walking leg nerve 90

Scaling arguments can also be used to find the dependence of speed on certain other
parameters. Suppose, for example, that a drug is applied to the membrane that blocks
a percentage of all ion channels, irrespective of type. If ρ is the fraction of remaining
operational channels, then the speed of propagation is reduced by the factor

√
ρ. This

follows directly by noting that the bistable equation with reduced ion channels

V ′′ − sV ′ + ρf (V) � 0 (9.23)

can be related to the original bistable equation (9.5) by taking V(ξ) � U(
√
ρξ), s � c

√
ρ.

Thresholds and stability
There are many other features of the bistable equation, the details of which are beyond
the scope of this book. Perhaps the most important of these features is that solutions of
the bistable equation satisfy a comparison property: any two solutions of the bistable
equation, say u1(x, t) and u2(x, t), that are ordered with u1(x, t0) ≤ u2(x, t0) at some time
t � t0 remain ordered for all subsequent times, i.e., u1(x, t) ≤ u2(x, t) for t ≥ t0.

With comparison arguments it is possible to prove a number of additional facts
(Aronson and Weinberger, 1975). For example, the bistable equation exhibits thresh-
old phenomena. Specifically, if initial data are sufficiently small, then the solution of the
bistable equation approaches zero in the limit t → ∞. However, there are initial func-
tions with compact support lying between 0 and 1 for which the solution approaches 1
in the limit t → ∞. Because of the comparison theorem any larger initial function also
initiates a solution that approaches 1 in the limit t → ∞. Such initial data are said to
be superthreshold.
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Furthermore, the traveling wave solution of the bistable equation is stable in a very
strong way (Fife, 1979; Fife and McLeod, 1977), as follows. Starting from any initial
data that lie between 0 and α in the limit x → −∞ and between α and 1 in the limit
x → ∞, the solution becomes arbitrarily close to some phase shift of the traveling wave
solution for sufficiently large time.

9.3 Myelination

Most nerve fibers are coated with a lipid material called myelin with periodic gaps of
exposure called nodes of Ranvier. The myelin sheath consists of a single cell, called a
Schwann cell, which is wrapped many times (roughly 100 times) around the axonal
membrane. This wrapping of the axon increases the effective membrane resistance by
a factor of about 100 and decreases the membrane capacitance by a factor of about
100. Indeed, rough data are that Rm is 103 6 cm2 for cell membrane and 105 6 cm2

for myelin sheath, and that Cm is 10−6 µF/cm2 for cell membrane and 10−8 µF/cm2 for
a myelinated fiber. The length of myelin sheath is typically 1 to 2 mm (close to 100 d,
where d is the fiber diameter), and the width of the gap is about 1 µm.

Propagation along myelinated fiber is faster than along nonmyelinated fiber. This
is presumably caused by the fact that there is little transmembrane ionic current and
little capacitive current in the myelinated section, allowing the axon to act as a simple
resistor. An action potential does not propagate along the myelinated fiber but rather
jumps from node-to-node. This node-to-node propagation is said to be saltatory (from
the Latin word saltare, to leap or dance).

The pathophysiological condition of nerve cells in which damage of the myelin
sheath impairs nerve impulse transmission in the central nervous system is calledmul-

Figure 9.4 Schematic diagram of the myelin sheath. (Guyton and Hall, 1996, Fig. 5-16, p. 69.)
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tiple sclerosis (MS). MS is a disease that usually affects young adults between the ages
of 18 and 40, occurring slightly more often in females thanmales. MS attacks the white
matter of the brain and spinal cord, causing demyelination of nerve fibers at various
locations throughout the central nervous system, although the underlying nerve axons
and cell bodies are not usually damaged. The loss ofmyelin slows or stops the transmis-
sion of action potentials, with the resultant symptoms of muscle fatigue and weakness
or extreme “heaviness.”

To model the electrical activity in a myelinated fiber we assume that the capacitive
and transmembrane ionic currents are negligible, so that along the myelin sheath the
axial currents

Ie � − 1
re

∂Ve

∂x
, Ii � − 1

ri

∂Vi

∂x
(9.24)

are constant, where we are using the same notation as in Chapter 8. We also assume
that V does not vary within each node of Ranvier (i.e., that the nodes are isopotential),
and that the voltage at the nth node is given by Vn. Then the axial currents between
node n and node n+ 1 are

Ie � − 1
Lre
(Ve,n+1 − Ve,n), Ii � − 1

Lri
(Vi,n+1 − Vi,n), (9.25)

where L is the length of the myelin sheath between nodes. The total transmembrane
current at a node is given by

µp

(
Cm

∂Vn

∂t
+ Iion

)
� Ii,n − Ii,n+1

� 1
L(ri + re)

(Vn+1 − 2Vn + Vn−1), (9.26)

where µ is the length of the node.
We can introduce dimensionless time τ � t

CmRm
� t/τm (but not dimensionless

space), to rewrite (9.26) as

dVn

dτ
� f (Vn)+D(Vn+1 − 2Vn + Vn−1), (9.27)

where D � Rm
µLp(ri+re) is the coupling coefficient. We call this equation the discrete cable

equation.

9.3.1 The Discrete Bistable Equation

The discrete bistable equation is the system of equations (9.27) where f (V) has typical
bistable form, as, for example, (9.2) or (9.3). The study of the discrete bistable equation
is substantially more difficult than that of the continuous version (9.1). While the dis-
crete bistable equation looks like a finite difference approximation of the continuous
bistable equation, solutions of the two have significantly different behavior.

It is a highly nontrivial matter to prove that traveling wave solutions of the discrete
system exist (Zinner, 1992). However, a traveling wave solution, if it exists, satisfies the
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special relationship Vn+1(τ) � Vn(τ− τd). In other words, the (n+1)st node experiences
exactly the same time course as the nth node, but with time delay τd. Furthermore, if
Vn(τ) � V(τ), it follows from (9.27) thatV(τ) must satisfy the delay differential equation

dV

dτ
� D(V(τ + τd)− 2V(τ)+ V(τ − τd))+ f (V(τ)). (9.28)

If the function V(τ) is sufficiently smooth and if τd is sufficiently small, then we can
approximate V(τ + τd) with its Taylor series V(τ + τd) �

∑
n�0

1
n!V

(n)(τ)τn
d
, so that (9.28)

is approximated by the differential equation

D

(
τ2dVττ + τ4

d

12
Vττττ

)
− Vτ + f (V) � 0, (9.29)

ignoring terms of order τ6
d
and higher.

Now we suppose that τd is small. The leading-order equation is

Dτ2dVττ − Vτ + f (V) � 0, (9.30)

which has solution V0(τ) � U(cτ), provided that Dτ2
d

� 1/c2, where U is the traveling
front solution of the bistable equation (9.5) and c is the dimensionless wave speed for
the continuous equation. The wave speed s is the internodal distance L+ µ divided by
the time delay τmτd, so that

s � L+ µ

τmτd
� (L+ µ)c

√
D

τm
. (9.31)

For myelinated nerve fiber we know that D � Rm
µLp(ri+re) . If we ignore extracellular

resistance, we find a leading order approximation for the velocity of

s � L+ µ√
µL

c

2Cm

√
d

RmRc
, (9.32)

giving a change in velocity compared to nonmyelinated fiber by the factor L+µ√
µL
. If we

estimate L � 100 d and take µ � 1 µm, this increase in velocity is by a factor of

10
√

d
10−6m , which is quite substantial. Empirically it is known that the improvement of

velocity for myelinated fiber compared to nonmyelinated fiber is by a factor of about

6
√

d
10−6m .

Higher-order approximation
We can find a higher-order approximation to the speed of propagation by using a stan-
dard regular perturbation argument. We set ε � 1/D and seek a solution of (9.29) of the
form

V(τ) � V0(τ)+ εV1(τ)+ · · · , (9.33)

τ2d � ε

c2
+ ε2τ1 + · · · . (9.34)
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We expand (9.29) into its powers of ε and set the coefficients of ε to zero. The first
equation we obtain from this procedure is (9.30), and the second equation is

L[V1] � 1
c2
V ′′
1 − V ′

1 + f ′(V0)V1 � − V ′′′′
0

12c4
− τ1V

′′
0 . (9.35)

Note that here we are using L[·] to denote a linear differential operator. The goal is to
find solutions of (9.35) that are square integrable on the infinite domain, so that the
solution is “close” to V0. The linear operator L[·] is not an invertible operator in this
space by virtue of the fact that L[V ′

0(τ)] � 0. (This follows by differentiating (9.30) once
with respect to τ.) Thus, it follows from the Fredholm alternative theorem (Keener,
1988) that a solution of (9.35) exists if and only if the right-hand side of the equation
is orthogonal to the null space of the adjoint operator L∗. Here the adjoint differential
operator is

L∗[V] � 1
c2
V ′′ + V ′ + f ′(V0)V, (9.36)

and the one element of the null space (a solution of L∗[V] � 0) is

V∗(τ) � exp
(−c2τ)V ′

0(τ). (9.37)

This leads to the solvability condition

τ1

∫ ∞

−∞
exp

(−c2τ)V ′
0(τ)V

′′
0 (τ)dτ � − 1

12c4

∫ ∞

−∞
exp

(−c2τ)V ′
0(τ)V

′′′′
0 (τ)dτ. (9.38)

As a result, τ1 can be calculated (either analytically or numerically) by evaluating two
integrals, and the speed of propagation is determined as

s � (L+ µ)
c

τm

√
D

(
1− τ1c

2

2D
+O

(
c2

D

)2)
. (9.39)

This exercise is interesting from the point of view of numerical analysis, as it shows
the effect of numerical discretization on the speed of propagation. This method can
be applied to other numerical schemes for an equation with traveling wave solutions
(Exercise 17).

Propagation failure
The most significant difference between the discrete and continuous equations is that
the discrete system has a coupling threshold for propagation, while the continuous
model allows for propagation at all coupling strengths. It is readily seen from (9.21)
that for the continuous cable equation, continuous changes in the physical parameters
lead to continuous changes in the speed of propagation, and the speed cannot be driven
to zero unless the diameter is zero or the resistances or capacitance are infinite. Such is
not the case for the discrete system, and propagationmay fail if the coupling coefficient
is too small. This is easy to understand when we realize that if the coupling strength is
very weak, so that the effective internodal resistance is large, the current flow from an
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excited node to an unexcited node may be so small that the threshold of the unexcited
node is not exceeded, and propagation cannot continue.

We seek standing (time-independent, i.e., dVn/dτ � 0) solutions of the discrete
equation (9.27). The motivation for this comes from the maximum principle and com-
parison arguments. One can show that if two sets of initial data for the discrete bistable
equation are initially ordered, the corresponding solutions remain ordered for all time.
It follows that if the discrete bistable equation has a monotone increasing stationary
front solution, then there cannot be a traveling wave front solution.

A standing front solution of the discrete bistable equation is a sequence {Vn}
satisfying the finite difference equation

0 � D(Vn+1 − 2Vn + Vn−1)+ f (Vn) (9.40)

for all integers n, for which Vn → 1 as n → ∞ and Vn → 0 as n → −∞.
One can show (Keener, 1987) that for any bistable function f , there is a number

D∗ > 0 such that for D ≤ D∗, the discrete bistable equation has a standing solution, that
is, propagation fails. To get a simple understanding of the behavior of this coupling
threshold, we solve (9.40) in the special case of piecewise linear dynamics (9.3). Since
the discrete equation with dynamics (9.3) is linear, the homogeneous solution can be
expressed as a linear combination of powers of some number λ as

Vn � Aλn + Bλ−n, (9.41)

where λ is a solution of the characteristic polynomial equation

λ2 −
(
2+ 1

D

)
λ+ 1 � 0. (9.42)

Note that this implies that

D � λ

(λ− 1)2 . (9.43)

The characteristic equation has two positive roots, one larger and one smaller than
1. Let λ be the root that is smaller than one. Then, taking the conditions at ±∞ into
account, we write the solution as

Vn �
{
1+ Aλn, for n ≥ 0,
Bλ−n, for n < 0.

(9.44)

This expression for Vn must also satisfy the piecewise linear discrete bistable
equation for n � −1,0. Thus,

D(V1 − 2V0 + V−1) � V0 − 1, (9.45)

D(V0 − 2V−1 + V−2) � V−1, (9.46)

where we have used the requirement that Vn ≥ α for all n ≥ 0, and Vn ≤ α for all n ≤ 0.
Substituting in (9.43) for D, and solving for A and B, then gives B � A+ 1 � 1

1+λ .
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Finally, this is a solution for all n, provided that V0 ≥ α. Since V0 � B � 1
1+λ , we

need 1
1+λ ≥ α, or λ ≤ 1−α

α
. However, when λ < 1, D is an increasing function of λ, and

thus λ ≤ 1−α
α
whenever

D ≤ D

(
1− α

α

)
� α(1− α)
(2α− 1)2 � D∗. (9.47)

In other words, there is a standing wave, precluding propagation, whenever the cou-
pling is small, with D ≤ D∗. Since α is a measure of the excitability of this medium,
we see that when the medium is weakly excitable (α is near 1/2), then D∗ is large and
very little resistance is needed to halt propagation. On the other hand, when α is small,
so that the medium is highly excitable, the resistance threshold is quite large, and
propagation is relatively difficult to stop.

9.4 Traveling Pulses

A traveling pulse (often called a solitary pulse) is a traveling wave solution that starts
and ends at the same steady state of the governing equations. Recall that a traveling
front solution corresponds to a heteroclinic trajectory in the (U,W) phase-plane, i.e., a
trajectory, parametrized by ξ, that connects two different steady states of the system. A
traveling pulse solution is similar, corresponding to a trajectory that begins and ends
at the same steady state in the traveling wave coordinate system. Such trajectories are
called homoclinic orbits.

There are three main approaches to finding traveling pulses for excitable systems.
First, one can approximate the nonlinear functions with piecewise linear functions,
and then find traveling pulse solutions as exact solutions of transcendental equations.
Second, one can use perturbation methods exploiting the different time scales to find
approximate analytical expressions. Finally, one can use numerical simulations to solve
the governing differential equations. We illustrate each of these techniques in turn.

9.4.1 The FitzHugh–Nagumo Equations

To understand the structure of a traveling pulse it is helpful first to study traveling pulse
solutions in the FitzHugh–Nagumo equations

ε
∂v

∂t
� ε2

∂2v

∂x2
+ f (v,w), (9.48)

∂w

∂t
� g(v,w), (9.49)

where ε is assumed to be a small positive number. Without any loss of generality, space
has been scaled so that the diffusion coefficient of v is ε2. It is important to realize that
this does not imply anything about the magnitude of the physical diffusion coefficient.
We are simply scaling the space variable so that in the new coordinate system, the wave
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front appears steep, a procedure that facilitates the study of the wave as a whole. The
variable v is spatially coupled with diffusion, but the variable w is not, owing to the
fact that v represents the membrane potential, while w represents a slow ionic current
or gating variable.

To study traveling waves, we first place the system of equations (9.48)–(9.49) in
a traveling coordinate frame of reference. We define the traveling wave coordinate
ξ � x − ct, where c > 0 is the wave speed, yet to be determined. Then the partial
differential equations (9.48)–(9.49) become the ordinary differential equations

ε2vξξ + cεvξ + f (v,w) � 0, (9.50)

cwξ + g(v,w) � 0. (9.51)

A piecewise linear model
We begin by examining the simplest case, the piecewise linear dynamics (Rinzel and
Keller, 1973)

f (v,w) � H(v− α)− v−w, (9.52)

g(v,w) � v. (9.53)

Because the dynamics are piecewise linear, the exact solution can be constructed in the
following manner. We look for solutions of the form sketched in Fig. 9.5. The position
of the wave along the ξ axis is specified by fixing v(0) � v(ξ1) � α. As yet, ξ1 is unknown,
andwill be determinedwhenwe construct the solution. Note that the place where v � α

is the place that the dynamics change (since α is the point of discontinuity of f ). Let I,
II, and III denote, respectively, the regions ξ < 0, 0 < ξ < ξ1, and ξ1 < ξ. In each region,
the differential equation is linear and so can be solved analytically. The three regional
solutions are then joined at ξ � 0 and ξ � ξ1 by stipulating that v and w be continuous
at the boundaries and that v have a continuous derivative there. These constraints are
sufficient to determine the solution unambiguously.

In regions I and III, v < α, and so the differential equation is

ε2vξξ + cεvξ − v−w � 0, (9.54)

cwξ + v � 0. (9.55)

Looking for solutions of the form v � A exp(λξ), w � B exp(λξ), we find that A and B
must satisfy (

λ2ε2 + cελ− 1 −1
1 cλ

)(
A

B

)
�
(
0

0

)
, (9.56)

which has a nontrivial solution if and only if∣∣∣∣∣ λ
2ε2 + cελ− 1 −1

1 cλ

∣∣∣∣∣ � 0. (9.57)
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Figure 9.5 Schematic diagram of the traveling pulse.

Hence, λ must be a root of the characteristic polynomial

ε2p(λ) � ε2λ3 + εcλ2 − λ+ 1/c � 0. (9.58)

There is exactly one negative root, call it λ1, and the real parts of the other two roots,
λ2 and λ3, are positive.

In region II, the differential equation is

ε2vξξ + cεvξ + 1− v−w � 0, (9.59)

cwξ + v � 0. (9.60)

The inhomogeneous solution is w � 1, v � 0, and the homogeneous solution is a sum
of exponentials of the form eλiξ.

Since we want the solution to approach zero in the limit ξ → ±∞, the traveling
pulse can be represented as the exponential eλ1ξ for large positive ξ, the sum of the two
exponentials eλ2ξ and eλ3ξ for large negative ξ, and the sum of all three exponentials for
the intermediate range of ξ for which v(ξ) > α. We take

w(ξ) �




Aeλ1ξ for ξ ≥ ξ1,

1+
3∑
i�1

Bie
λiξ for 0 ≤ ξ ≤ ξ1,

3∑
i�2

Cie
λiξ for ξ ≤ 0,

(9.61)

with v � −cwξ. Now we require that w(ξ), v(ξ), and vξ(ξ) be continuous at ξ � 0, ξ1, and
that v(0) � v(ξ1) � α.
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There are six unknown constants and two unknown parameters c and ξ1 that must
be determined from the six continuity conditions and the two constraints. Following
some calculation, we eliminate the coefficients A,Bi, and Ci, leaving the two constraints

eλ1ξ1 + ε2p′(λ1)α− 1 � 0, (9.62)

e−λ2ξ1

p′(λ2)
+ e−λ3ξ1

p′(λ3)
+ 1
p′(λ1)

+ ε2α � 0. (9.63)

There are now two unknowns, c and ξ1, and two equations. In general, (9.62) could
be solved for ξ1, and (9.63) could then be used to determine c for each fixed α and ε.
However, it is convenient to approach these equations in a slightly different manner,
by treating c as known and α as unknown, and finding α for any given c. So, we set
s � eλ1ξ1 , in which case (9.63) becomes

h(s) � 2− s+ p′(λ1)
p′(λ2)

e−λ2ln(s)/λ1 + p′(λ1)
p′(λ3)

e−λ3 ln(s)/λ1 � 0, (9.64)

where we have eliminated α using (9.62). We seek a solution of h(s) � 0 with 0 < s < 1.
We begin by calculating that h(0) � 2, h(1) � 0, h′(1) � 0, and h′′(1) � p′(λ1)/λ21 − 2.

The first of these relationships follows from the fact that the real parts of λ2 and λ3 are
of different sign from λ1, and therefore, in the limit as s → 0, the exponential terms
disappear as the real parts of the exponents approach −∞. The second relationship,
h(1) � 0, follows from the fact that 1/p′(λ1) + 1/p′(λ2) + 1/p′(λ3) � 0 (Exercise 8). The
final two relationships are similar and are left as exercises (Exercises 8, 9).

If h′′(1) < 0, then the value s � 1 is a local maximum of h(s), so for s slightly less
than 1, h(s) < 0. Since h(0) > 0, a root of h(s) � 0 in the interval 0 < s < 1 is assured.

When λ2 and λ3 are real, h(s) can have at most one inflection point in the interval
0 < s < 1. This follows because the equation h′′(s) � 0 can be written in the form
e(λ2−λ3)ξ1 � c, which can have at most one root. Thus, if h′′(1) < 0, there is precisely
one root, while if h′′(1) > 0 there can be no roots. If the roots λ2 and λ3 are complex,
uniqueness is not assured, although the condition h′′(1) < 0 guarantees that there is at
least one root.

Differentiating the defining polynomial (9.58) with respect to λ, we observe that
the condition h′′(1) < 0 is equivalent to requiring ε2λ21 + 2cελ1 − 1 < 0. Furthermore,
from the defining characteristic polynomial, we know that ε2λ21 − 1 � −cελ1 + ε2/(λ1c),
and thus it follows that h′′(1) < 0 if λ1 < − 1

c
√
ε
. Since the polynomial p(λ) is increasing

at λ1, we are assured that λ1 < − 1
c
√
ε
if p(− 1

c
√
ε
) > 0, i.e., if

c2 > ε. (9.65)

Thus, whenever c >
√
ε, a root of h(s) � 0 with 0 < s < 1 is guaranteed to exist.

Once s is known, α can be found from the relationship (9.62) whereby

α � 1− s

ε2p′(λ1)
. (9.66)
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Figure 9.6 Speed c as a function of α for the traveling pulse solution of the piecewise linear
FitzHugh–Nagumo system, shown for ε � 0.5, 0.1, 0.01. The dashed curve shows the asymptotic
limit as ε → 0, found by singular perturbation arguments.

In Fig. 9.6, we show the results of solving (9.64) numerically. Shown plotted is the
speed c against α for a sampling of values of ε. The dashed curve is the asymptotic limit
(9.12) for the curves in the limit ε → 0. The important feature to notice is that for each
value of α and ε small enough there are two traveling pulses, while for large α there
are no traveling pulses. In Fig. 9.7 is shown the fast traveling pulse, and in Fig. 9.8 is
shown the slow traveling pulse, both for α � 0.1, ε � 0.1, and with v(ξ) shown solid and
w(ξ) shown dashed.

Note that the amplitude of the slow pulse in Fig. 9.8 is substantially smaller than
that of the fast pulse in Fig. 9.7. Generally speaking, the fast pulse is stable (Jones,
1984; Yanagida, 1985), and the slow pulse is unstable (Maginu, 1985). Also note that
there is nothing in the construction of these wave solutions requiring ε to be small.

Singular perturbation theory
The next way to extract information about the traveling pulse solution of (9.48)–(9.49)
is to exploit the smallness of the parameter ε (Keener, 1980; for a different approach,
see Rauch and Smoller, 1978). One reason we expect this to be fruitful is because
of similarities with the flow for the FitzHugh–Nagumo equations without diffusion,
shown in Fig. 4.17. By analogy, we expect the solution to stay close to the nullcline
f (v,w) � 0 wherever possible, with rapid transitions between the two outer branches.

The details of this behavior follow from singular perturbation analysis. (This anal-
ysis was first given for a simplified FitzHugh–Nagumo system by Casten, Cohen, and
Lagerstrom, 1975.) The first observation follows simply from setting ε to zero in (9.48).
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Figure 9.7 Plots of v (ξ) and w (ξ) for the fast
traveling pulse (c � 2.66) for the piecewise
linear FitzHugh–Nagumo system with α �
0.1, ε � 0.1.
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Figure 9.8 Plots of v (ξ) and w (ξ) for the slow
traveling pulse (c � 0.34) for the piecewise lin-
ear FitzHugh–Nagumo system with α � 0.1, ε �
0.1.
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f (v,w) = 0
g(v,w) = 0

∂w/∂t = G+(w)

∂w/∂t = G-(w)

wave front

wave back

Figure 9.9 Sketch of the phase portrait of the fast traveling solitary pulse for FitzHugh–
Nagumo dynamics in the singular limit ε → 0.
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Doing so, we obtain the outer equations

wt � g(v,w), f (v,w) � 0. (9.67)

Because the equation f (v,w) � 0 is assumed to have three solutions for v as a function
ofw, and only two of these solutions, the upper and lower solution branches, are stable
(cf. Fig. 4.15 and the discussion in Section 4.2), the outer equations (9.67) reduce to

∂w

∂t
� G±(w). (9.68)

A region of space in which v � V+(w) is called an excited region, and a region in which
v � V−(w) is called a recovering region. The outer equation is valid whenever diffusion
is not large. However, we anticipate that there are regions of space (interfaces) where
diffusion is large and in which (9.68) cannot be correct.

To find out what happens when diffusion is large we rescale space and time. Letting
y(t) denote the position of the wave front, we set τ � t and ξ � x−y(t)

ε
, after which the

original system of equations (9.48)–(9.49) becomes

vξξ + y′(τ)vξ + f (v,w) � ε
∂v

∂τ
, (9.69)

−y′(τ)wξ � ε

(
g(v,w)− ∂w

∂τ

)
. (9.70)

Upon setting ε � 0, we find the reduced inner equations

vξξ + y′(τ)vξ + f (v,w) � 0, (9.71)

y′(τ)wξ � 0. (9.72)

Even though the inner equations (9.71)–(9.72) are partial differential equations, the
variable τ occurs only as a parameter, and so (9.71)–(9.72) can be solved as if they were
ordinary differential equations. This is because the traveling wave is stationary in the
moving coordinate system ξ, τ. It follows thatw is independent of ξ (but not necessarily
τ). Finally, since the inner equation is supposed to provide a transition layer between
regions where outer dynamics hold, we require thematching condition that f (v,w)→ 0
as ξ → ±∞. Note that here we use a more general y(t) to locate the wave front, rather
than ct as before. In general, y′(τ) is the local wave velocity.

We recognize (9.71) as a bistable equation for which there are heteroclinic orbits.
That is, for fixed w, if the equation f (v,w) � 0 has three roots, two of which are stable
as solutions of the equation dv/dt � f (v,w), then there is a number c � c(w) for which
the equation

v′′ + c(w)v′ + f (v,w) � 0 (9.73)

has a heteroclinic orbit connecting the two stable roots of f (v,w) � 0. This heteroclinic
orbit corresponds to a moving transition layer, traveling with speed c. It is crucial to
note that since the roots of f (v,w) � 0 are functions of w, c is also a function of w.
To be specific, we define c(w) to be the unique parameter value for which (9.73) has
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a solution with v → V−(w) as ξ → ∞, and v → V+(w) as ξ → −∞. In the case that
c(w) > 0, we describe this transition as an “upjump” moving to the right. If c(w) < 0,
then the transition is a “downjump” moving to the left.

We are now able to describe a general picture of wave propagation. In most of
space, outer dynamics (9.68) are satisfied. At any transition between the two types of
outer dynamics, continuity of w is maintained by a sharp transition in v that travels at
the speed y′(t) � c(w) if v � V−(w) on the right and v � V+(w) on the left, or at speed
y′(t) � −c(w) if v � V+(w) on the right and v � V−(w) on the left, wherew is the value of
the recovery variable in the interior of the transition layer. As a transition layer passes
any particular point in space, there is a switch of outer dynamics from one to the other
of the possible outer solution branches.

This singular perturbation description of wave propagation allows us to examine in
more detail the specific case of a traveling pulse. The phase portrait for a solitary pulse
is sketched in Fig. 9.9. A traveling pulse consists of a single excitation front followed by
a single recovery back. We suppose that far to the right, the medium is at rest, and that
a wave front of excitation has been initiated and is moving from left to right. Of course,
for the medium to be at rest there must be a rest point of the dynamics on the lower
branch, say G−(w+) � 0. Then, a wave that is moving from left to right has v � V−(w+)
on its right and v � V+(w+) on its left, traveling at speed y′(t) � c(w+). Necessarily, it
must be that c(w+) > 0. Following the same procedure used to derive (9.8), one can
show that

c(w) �
∫ V+(w)
V−(w)

f (v,w)dv∫∞
−∞ v2ξ dξ

, (9.74)

and thus c(w+) > 0 only if ∫ V+(w+)

V−(w+)
f (v,w+)dv > 0. (9.75)

If (9.75) fails to hold, then themedium is not sufficiently excitable to sustain a propagat-
ing pulse. It is important also to note that if f (v,w) is of generalized FitzHugh–Nagumo
form, then c(w) has a unique zero in the interval (W∗,W∗), whereW∗ andW∗ are defined
in Section 4.2.

Immediately to the left of the excitation front, the medium is excited and satisfies
the outer dynamics on the upper branch v � V+(w). Because (by assumption) G+(w) >
0, this can hold for at most a finite amount of time before the outer dynamics force
another transition layer to appear. This second transition layer provides a transition
between the excited region on the right and a recovering region on the left and travels
with speed y′(t) � −c(w), where w is the value of the recovery variable in the transition
layer. Theminus sign here is because the second transition layermust be a “downjump.”
For this to be a steadily propagating traveling pulse, the speed of the upjump and the
speed of the downjump must be identical. Thus, the value of w at the downjump, say
w−, must be such that c(w−) � −c(w+).
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It may be that the equation c(w−) � −c(w+) has no solution. In this case, the
downjump must occur exactly at the knee, and then the wave is called a “phase wave,”
since the timing of the downjump is determined solely by the timing, or phase, of the
outer dynamics, and not by any diffusive processes. That such a wave can travel at any
speed greater than some minimal speed can be shown using standard arguments. The
dynamics for phase waves are different from those for the bistable equation because
the downjumpmust be a heteroclinic connection between a saddle point and a “saddle-
node.” That is, at the knee, two of the three steady solutions of the bistable equation
are merged into one. The demonstration of the existence of traveling waves in this
situation is similar to the case of Fisher’s equation, where the nonlinearity f (v,w) in
(9.73) has two simple zeros, rather than three in the bistable case. In the phase wave
problem, however, one of the zeros of f (v,w) is not simple, but quadratic in nature, a
canonical example of which is f (v,w) � v2(1− v). We do not pursue this further except
to say that such waves exist (see Exercise 14).

In summary, from singular perturbation theory we learn that the value of w ahead
of the traveling pulse is given by the steady-state value w+, and the speed of the rising
wave front is then determined from the bistable equation (9.73) with w � w+. The
wave front switches the value of v from v � V−(w+) (ahead of the wave) to v � V+(w+)
(behind the wave front). A wave back then occurs at w � w−, where w− is determined
from c(w−) � −c(w+). The wave back switches the value of v from v � V+(w−) to
v � V−(w−). The duration of the excited phase of the traveling pulse is

Te �
∫ w−

w+

dw

G+(w)
. (9.76)

The duration of the absolute refractory period is

Tar �
∫ w0

w−

dw

G−(w)
, (9.77)

wherew0 is that value ofw for which c(w) � 0 (Exercise 10). This approximate solution
is said to be a singular solution, because derivatives of the solution become infinite (are
singular) in the limit ε → 0.

9.4.2 The Hodgkin–Huxley Equations

The traveling pulse for the Hodgkin–Huxley equations must be computed numerically
in one of two ways. The simplest way is to simulate the partial differential equation on
a long one-dimensional spatial domain, or one can use the technique of shooting. In
fact, shooting was used by Hodgkin andHuxley in their 1952 paper to demonstrate that
the Hodgkin–Huxley equations support a traveling wave solution. Shooting is also the
method by which a rigorous proof of the existence of traveling waves has been given
(Hastings, 1975; Carpenter, 1977).
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The shooting argument is as follows. We write the Hodgkin–Huxley equations in
the form

τm
∂v

∂t
� λ2m

∂2v

∂x2
+ f (v,m, n, h), (9.78)

dw

dt
� αw(v)(1−w)− βw(v)w, for w � n,m, and h. (9.79)

Nowwe look for solutions in x, t that are functions of the translating variable ξ � x/c+t,
and find the system of ordinary differential equations

λ2m

c2

d2v

dξ2
+ f (v,m, n, h)− τm

dv

dξ
� 0, (9.80)

dw

dξ
� αw(v)(1−w)− βw(v)w, for w � n,m, and h. (9.81)

Linearizing the system (9.80) and (9.81) about the resting solution at v � 0, one
finds that there are four negative eigenvalues and one positive eigenvalue. A reasonable
approximation to the unstablemanifold is found by neglecting variations in gK and gNa,
from which

v(t) � v0e
µt, (9.82)

where

λ2m

c2
µ2 − τmµ− 1 � 0

or

µ � 1
2

(
τm
c2

λ2m
+ c

λm

√
τ2m
c2

λ2m
+ 4

)
.

To implement shooting, one chooses a value of c, and initial data close to the rest
point but on the unstable manifold (9.82), and then integrates numerically until (in
all likelihood) the potential becomes very large. It could be that the potential becomes
either large positive or large negative. In fact, once values of c are found that do both,
one uses bisection to home in on the homoclinic orbit that returns to the rest point in
the limit ξ → ∞.

For the Hodgkin–Huxley equations one finds a traveling pulse for c � 3.24 λmms−1.
Using typical values for squid axon (from Table 8.1, λm � 0.65 cm), we find c �
21mm/ms, which is close to the value of 21.2mm/ms found experimentally by Hodgkin
and Huxley. Hodgkin and Huxley estimated the space constant for squid axon as
λm � 0.58 cm, fromwhich they calculated that c � 18.8mm/ms. Their calculated speeds
agreed very well with experimental data and thus their model, which was based only
on measurements of ionic conductance, was used to predict accurately macroscopic
behavior of the axon. It is rare that quantitative models can be applied so successfully.
Propagation velocities for several types of excitable tissue are listed in Table 9.2.
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Table 9.2 Propagation velocities in nerve and muscle.

Excitable Tissue velocity (m/sec)

Myelinated nerve fibers

Large diameter (16–20 µm) 100–120

Mid-diameter (10–12 µm) 60–70

Small diameter (4–6 µm) 30-50

Nonmyelinated nerve fibers

Mid-diameter (3–5 µm) 15-20

Skeletal muscle fibers 6

Heart

Purkinje fibers 1.0

Cardiac muscle 0.5

Smooth muscle 0.05

9.5 Periodic Wave Trains

Excitable systems are characterized by both excitability and refractoriness. That is,
after the systemhas responded to a superthreshold stimuluswith a large excursion from
rest, there is a period of refractoriness during which no subsequent responses can be
evoked, followed by a period of recovery duringwhich excitability is gradually restored.
Once excitability is restored, another wave of excitation can be evoked. However, the
speed at which subsequent waves of excitation travel depends strongly on the time
allowed for recovery of excitability following the last excitation wave. Generally (but
not always), the longer the period of recovery, the faster the new wave of excitation can
travel.

One might guess that a nerve axon supports, in addition to a traveling pulse, pe-
riodic wave trains of action potentials. With a periodic wave train, if recovery is a
monotonic process, one expects propagation to be slower than for a traveling pulse,
because subsequent action potentials occur before the medium is fully recovered, so
that the sodium upstroke is slower than for a traveling pulse. The relationship between
the speed and period is called the dispersion curve.

The dispersion curve for the Hodgkin–Huxley equations can be calculated numer-
ically in one of two ways. The most direct method is to construct a ring, that is, a
one-dimensional domain with periodic boundary conditions, initiate a pulse that trav-
els in one direction on the ring, and solve the equations numerically until the solution
becomes periodic in time. After recording the length of the ring and the speed of propa-
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Figure 9.10 Numerically computed dispersion curve (speed vs. frequency and speed vs. wave-
length for various temperatures) for the Hodgkin–Huxley equations. (Miller and Rinzel, 1981,
Figs. 1 and 2.)

gation, one could use the waveform as initial data for a ring of slightly different length,
and do the calculation again. While this method is relatively easy, its principal disad-
vantage is that it requires the periodic solution to be stable. Dispersion curves often
have sectionswhose periodic solutions are unstable, and thismethod cannot find those.
Of course, only the stable solutions are physically realizable, so this disadvantage may
not be so serious to the realist.

The second method is to look for periodic solutions of the equations in their
traveling wave coordinates (9.80)–(9.81), using a numerical continuation method (an
automatic continuation program such as AUTO recommends itself here). With this
method, periodic solutions are found without reference to their stability, so that the
entire dispersion curve can be calculated.

Dispersion curves for excitable systems have a typical shape, depicted in Figs. 9.10
and 9.11. Here we see a dispersion curve having two branches, one denoting fast waves,
the other slow. The two branches meet at a knee or corner at the absolute refractory
period, and for shorter periods no periodic solutions exist. The solutions on the fast
branch are typical of action potentials and are usually (but not always) stable. The
solutions on the slow branch are small amplitude oscillations and are unstable.

9.5.1 Piecewise Linear FitzHugh–Nagumo Equations

The dispersion curve in Fig. 9.11 was found for the FitzHugh–Nagumo system (9.48)–
(9.49) with piecewise linear functions (9.52) and (9.53). The calculation is similar to
that for the traveling pulse (Rinzel and Keller, 1973). Since this system is piecewise
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linear, we can express its solution as the sum of three exponentials,

w(ξ) �
3∑
i�1

Aie
λiξ, (9.83)

on the interval 0 ≤ ξ < ξ1, and as

w(ξ) � 1+
3∑
i�1

Bie
λiξ (9.84)

on the interval ξ1 ≤ ξ ≤ ξ2, where v � −cwξ. We also assume that v > α on the interval
ξ1 ≤ ξ ≤ ξ2. The numbers λi, i � 1,2,3, are roots of the characteristic polynomial (9.58).

We require that w(ξ), v(ξ), and v′(ξ) be continuous at ξ � ξ1, and that w(0) �
w(ξ2), v(0) � v(ξ2), and v′(0) � v′(ξ2) for periodicity. Finally, we require that v(0) �
v(ξ1) � α. This gives a total of eight equations in nine unknowns, A1, . . . , A3, B1, . . . , B3,
ξ1, ξ2, and c. After some calculation (Exercise 11), we find two equations for the three
unknowns ξ1, ξ2, and c given by

eλ1(P−ξ1) − 1
p′(λ1)(eλ1P − 1) + eλ2(P−ξ1) − 1

p′(λ2)(eλ2P − 1) + eλ3(P−ξ1) − 1
p′(λ3)(eλ3P − 1) + ε2α � 0, (9.85)

eλ1P − eλ1ξ1

p′(λ1)(eλ1P − 1) + eλ2P − eλ2ξ1

p′(λ2)(eλ2P − 1) + eλ3P − eλ3ξ1

p′(λ3)(eλ3P − 1) − ε2α � 0, (9.86)

where P � ξ2/c. It is important to note that since there are only two equations for
the three unknowns, (9.85) and (9.86) define a family of periodic waves, parametrized
by either the period or the wave speed. The relationship between the period and the
speed of this wave family is the dispersion curve. In Fig. 9.11 are shown examples of
the dispersion curve for a sampling of values of ε with α � 0.1. Changing α has little
qualitative effect on this plot. The dashed curve shows the limiting behavior of the
upper branch (the fast waves) in the limit ε → 0. Of significance in this plot is the fact
that there are fast and slow waves, and in the limit of large wavelength, the periodic
waves approach the solitary traveling pulses represented by Fig. 9.6 (Exercise 11). In
fact, periodic solutions look much like evenly spaced periodic repeats of (truncated)
solitary pulses.

The dispersion curve for the piecewise linear FitzHugh–Nagumo system is typical
of dispersion curves for excitable media, with a fast and slow branch meeting at a
corner. In general, the location of the corner depends on the excitability of the medium
(in this case, the parameter α) and on the ratio of time scales ε.

9.5.2 Singular Perturbation Theory

The fast branch of the dispersion curve can be found for a general FitzHugh–Nagumo
system in the limit ε → 0 using singular perturbation theory. A periodic wave consists
of an alternating series of upjumps and downjumps, separated by regions of outer
dynamics. The phase portrait for a periodic wave train is sketched in Fig. 9.12. To be
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Figure 9.11 Dispersion curves for the piecewise linear FitzHugh–Nagumo equations shown
for ε � 0.1 and 0.01. The dashed curve shows the singular perturbation approximation to the
dispersion curve.

periodic, if w+ is the value of the recovery variable in the upjump, traveling with speed
c(w+), then the value of w in the downjump must be w−, where c(w+) � −c(w−). The
amount of time spent on the excited branch is

Te �
∫ w−

w+

dw

G+(w)
, (9.87)

and the amount of time spent on the recovery branch is

Tr �
∫ w+

w−

dw

G−(w)
. (9.88)

The dispersion curve is then the relationship between speed c(w+) and period

T � Te + Tr, (9.89)

parametrized by w+. This approximate dispersion curve (calculated numerically) is
shown in Fig. 9.11 as a dashed curve.

The slow branch of the dispersion curve can also be found using perturbationmeth-
ods, although in this case since the speed is small of order ε, a regular perturbation
expansion is appropriate. The details of this expansion are beyond the scope of this
book, although the interested reader is referred to Dockery and Keener (1989). In gen-
eral, the slow periodic solutions are unstable (Maginu, 1985) and therefore are of less
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Figure 9.12 Sketch of the phase portrait for the fast traveling periodic wave train for FitzHugh–
Nagumo dynamics in the singular limit ε → 0.

physical interest than the fast solutions. Again, stability theory for the traveling wave
solutions is beyond the scope of this book.

9.5.3 Kinematics

Not all waves are periodic. There can be wave trains with action potentials that are
irregularly spaced and that travel with different velocities. A kinematic theory of wave
propagation is one that attempts to follow the progress of individual action potentials
without tracking the details of the structure of the pulse (Rinzel and Maginu, 1984).
The simplest kinematic theory is to interpret the dispersion curve in a local way. That
is, suppose we know the speed as a function of period for the stable periodic wave
trains, c � C(T). We suppose that the wave train consists of action potentials, and that
the nth action potential reaches position x at time tn(x). To keep track of time of arrival
at position x we note that

dtn

dx
� 1
c
. (9.90)

We complete the description by taking c � C(tn(x)−tn−1(x)), realizing that tn(x)−tn−1(x)
is the instantaneous period of the wave train that is felt by the medium at position x.

A more sophisticated kinematic theory can be derived from the singular solution
of the FitzHugh–Nagumo equations. For this derivation we assume that recovery is
always via a phase wave, occurring with recovery value W∗. Suppose that the front of
the nth action potential has speed c(wn), corresponding to the recovery value wn in the
transition layer. Keeping track of the time until the next action potential, we find

tn+1(x)− tn(x) � Te(x)+ Tr(x) (9.91)
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�
∫ W∗

wn

dw

G+(w)
+
∫ wn+1

W∗

dw

G−(w)
. (9.92)

Differentiating (9.92) with respect to x, we find the differential equation for wn+1(x):

1
G−(wn+1)

dwn+1
dx

� 1
G+(wn)

dwn

dx
+ 1
c(wn+1)

− 1
c(wn)

. (9.93)

With this equation one can track the variable wn+1 as a function of x given wn(x) and
from it reconstruct the speed and time of arrival of the (n+ 1)st action potential wave
front.

While this formulation is useful for FitzHugh–Nagumo models, it can be given a
more general usefulness as follows. Since there is a one-to-one relationship between the
speed of a front and the value of the recovery variablew in that front, we can represent
these functions in terms of the speeds of the fronts as

tn+1(x)− tn(x) � A(cn)+ tr(cn+1), (9.94)

where A(cn) � Te is the action potential duration (APD) since the nth upstroke, and
tr(cn+1) � Tr is the recovery time preceding the (n+1)st upstroke.Whenwe differentiate
this conservation law with respect to x, we find a differential equation for the speed of
the (n+ 1)st wave front as a function of the speed of the nth wave front, given by

t′r(cn+1)
dcn+1
dx

� 1
cn+1

− 1
cn

− A′(cn)
dcn

dx
. (9.95)

The advantage of this formulation is that the functions A and tr may be known for other
reasons, perhaps from experimental data. It is generally recognized that the action
potential duration is functionally related to the speed of the previous action potential,
and it is also reasonable that the speed of a subsequent action potential can be related
functionally to the time of recovery since the end of the last action potential. Thus,
the model (9.95) has applicability that goes beyond the FitzHugh–Nagumo context.
For an example of how this idea has been used for the Beeler–Reuter dynamics, see
Courtemanche et al. (1996).

9.6 Exercises
1. Show that the (U,W) phase-plane of the bistable equation, (9.6) and (9.7), has three steady

states, two ofwhich are saddle points.What is the nature of the third steady state? Show that
the slope of the unstablemanifold at the origin is given by the positive root of λ2−cλ+f ′(0) �
0 and is always larger than c. What is the slope of the stable manifold at (U,W) � (1,0)?
Show that the slopes of both these manifolds are increasing functions of c.

2. Use cable theory to find the speed of propagation for each of the axons listed in Table 8.1,
assuming that the ionic currents are identical and the speed of propagation for the squid
giant axon is 21 mm/ms.

3. Find the space constant for a myelinated fiber.
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4. Construct a traveling wave solution to the piecewise linear bistable equation, (9.1) and
(9.3). Show that the wave travels with speed 1−2α√

α−α2
. (Construct the solution by using the

techniques presented in Section 9.4.1.)

5. Find the shape of the traveling wave profile for (9.1) in the case that the function f (V) is

f (v) �




−v, for v < α/2,

v− α, for α/2 < v <
1+ α

2
,

1− v, for v >
1+ α

2
.

(9.96)

6. Find the speed of traveling fronts for barnacle muscle fiber using the Morris–Lecar model
(Chapter 4, (4.95)–(4.96)).
Answer: 17 cm/s .

7. Write a program to find numerically the speed of propagation for the bistable equation.
Use the program to determine the effect of sodium channel density (Table 9.1) on the speed
of propagation in various axons, assuming that all other currents are the same as for the
Hodgkin–Huxley model.

8. Show that 1/p′(λ1) + 1/p′(λ2) + 1/p′(λ3) � 0, where p is defined by (9.58). Hence, show that
h(1) � 0, where h is defined by (9.64). Show also that λ1/p′(λ1) + λ2/p

′(λ2) + λ3/p
′(λ3) � 0

and thus h′(1) � 0. Finally, show that h′′(1) � p′(λ1)/λ21 − 2.
9. The results of Exercise 8 can be generalized. Use contour integration in the complex plane

to show that for an nth order polynomial p(z) � zn + · · · with simple roots zk, k � 1, . . . , n,
n∑
k�1

z
j

k

p′(zk)
� 0, (9.97)

provided that n > j+ 1. In addition, show that
n∑
k�1

zn−1
k

p′(zk)
� 1. (9.98)

10. Show that the duration of the absolute refractory period of the traveling pulse for the
generalized FitzHugh–Nagumo model is (approximately)

Tar �
∫ w0

w−

dw

G−(w)
, (9.99)

where w0 is that value of w for which c(w) � 0.

11. Derive (9.85) and (9.86). Show that in the limit as the period approaches infinity, these
equations reduce to the equations for a solitary pulse (9.62) and (9.63).

12. Suppose a nearly singular (ε small) FitzHugh–Nagumo system has a stable periodic oscilla-
tory solutionwhen there is no diffusive coupling.Howdo the phase portraits for the spatially
independent solutions and the periodic traveling waves differ? How are these differences
reflected in the temporal behavior of the solutions?

13. (Fisher’s equation.) Suppose f (0) � f (1) � 0, f ′(0) > 0, f ′(1) < 0, and f (v) > 0 for 0 < v < 1.

(a) Show that there are values of c (for example c � 0) for which there are no trajectories
with v ≥ 0 connecting the two rest points v � 0 and v � 1.
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(b) Show that if there is a value of c for which there is no heteroclinic connection with v
positive, then there is no such connecting trajectory for any smaller value of c.

(c) Show that if there is a value of c for which there is a heteroclinic connection with v
positive, there there is a similar connecting trajectory for every larger value of c.

(d) Let µ be the smallest positive number for which f (v) ≤ µv for 0 ≤ v ≤ 1. Show that a
heteroclinic connection exists for all c > µ.

14. (Phase waves.) Suppose f (0) � f (1) � f ′(0) � 0, f ′(1) < 0 and f (v) > 0 for 0 < v < 1. Show
that all the statements of Exercise 13 hold.

(a) Show that there are values of c for which there are no trajectories connecting critical
points for the equation V ′′ + cV ′ + f (V) � 0, with f (0) � f ′(0) � f (1) � 0, and f (v) > 0
for 0 < v < 1. Hint: What is the behavior of trajectories for c � 0?

(b) Show that if a connecting trajectory exists for one value of c < 0, then it exists for all
smaller (larger in absolute value) values of c. Hint: What happens to trajectories when
c is decreased (increased in absolute value) slightly? How do trajectories for different
values of c compare?

15. Do traveling wave solutions exist for the equation vt � vxx + f (v) with v(−∞, t) � 0 and
v(+∞, t) � 1 where f (v) � 0 for 0 < v < q, f (v) > 0 for q < v < 1, and f (1) � 0? If so, find the
speed of propagation in the case that f (v) � 1− v for q < v < 1.

16. Given a dispersion curve c � C(T), use the simple kinetic theory

dtn(x)
dx

� 1
C(tn(x)− tn−1(x))

(9.100)

to determine the stability of periodic waves on a ring of length L.
Hint: On a ring of length L, tn(x) � tn−1(x − L). Suppose that T∗C(T∗) � L. Perform linear
stability analysis for the solution tn(x) � x

C(T∗) .

17. Estimate the error in the calculated speed of propagationwhenEuler’smethod (forward dif-
ferencing in time) with second-order centered differencing in space is used to approximate
the solution of the bistable equation.
Hint: Use perturbation arguments to approximate the solution of the numerical problem
with a traveling front solution of the bistable equation. (See Section 9.3.1.)

18. Generalize the kinematic theory (9.91)–(9.93) to the case in which wave backs are not phase
waves, by tracking both fronts and backs and the corresponding recovery value.
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Wave Propagation in Higher
Dimensions

Not all cellular media can be viewed as one-dimensional cables, neither is all prop-
agated activity one-dimensional. Tissues for which one-dimensional descriptions of
cellular communication are inadequate include skeletal and cardiac tissue, the retina,
and the cortex of the brain. To understand communication and signaling in thesemedia
requires more complicated mathematical analysis than for one-dimensional cables.

When beginning a study of two- or three-dimensional wave propagation, it is tempt-
ing simply to generalize the cable equation to higher dimensions by replacing first
derivatives in space with spatial gradients, and second spatial derivatives with the
Laplacian operator. Indeed, all the models in this chapter are of this type. However,
be warned that this replacement may not always be justifiable.

Some cells, such as Xenopus oocytes (frog eggs), are sufficiently large so that waves
of chemical activity can be sustained within a single cell. This is unusual, however, as
most waves in normal physiological situations serve the purpose of communication
between cells. Waves that coordinate activity within a single cell typically occur in
reproducing cells for which the division process (mitosis) must be coordinated. For
chemical waves in single cells, a reasonable first guess is that spatial coupling is by
chemical diffusion. In that case, if the local chemical dynamics are described by the
differential equation ut � kf , then with spatial coupling the dynamics are represented
by

ut � ∇ · (D∇u)+ kf, (10.1)

where D is the (scalar) diffusion coefficient of the chemical species and ∇ is the three-
dimensional gradient operator. Here we have included the time constant k (with units
time−1), so that f has the same dimensional units as u.
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Formany cell types, intercellular communication is through gap junctions between
immediate neighbors, so that diffusion is not spatially uniform. In this case, the first
guess (or hope) is that the length constant of the phenomenon to be described is much
larger than the typical cell size, and homogenization can be used to find an effective
diffusion coefficient, De, as described in Chapter 7. Then (10.1) with the effective dif-
fusion coefficient is a reasonable model. Note that there is no a priori reason to believe
that cellular coupling is isotropic or that De is a scalar quantity.

If this assumption, that the space constant of the signaling phenomenon is larger
than the size of the cell, and hence that homogenization gives a valid approxima-
tion, is not justified, then we are stuck with the unpleasant business of studying
communication between discretely coupled cells.

For electrically active cells, such as cardiac or muscle cells, the situation is com-
plicated further by the fact that the membrane potential contains the signal, so that
the intracellular and extracellular potentials must both be followed. We address this
problem in Chapter 11, where we discuss waves in myocardial tissue. For now, suffice
it to say that (10.1) is a reasonable qualitative model, but it is not certain that all the
results derived from this equation are directly applicable to cellular media.

10.1 Propagating Fronts

10.1.1 Plane Waves

The simplest wave to look for in an excitable medium is a plane wave. Suppose that
the canonical problem

U′′ + c0U
′ + f (U) � 0 (10.2)

(with dimensionless independent variable) is bistable and has a wave front solution
U(ξ) for some unique value of c0, the value of which depends on f . The behavior of this
solution was discussed in Chapter 9.

To find plane wave solutions of (10.1), we suppose that u is a function of the single
variable ξ � n ·x−ct, where n is a unit vector pointing in the forward direction of wave
front propagation. In the traveling wave coordinate ξ, the time derivative d

dt
is replaced

by −c d
dξ
, and the spatial gradient operator ∇ is replaced by n d

dξ
, so that the governing

equation reduces to the ordinary differential equation

(n ·Dn)u′′ + cu′ + kf (u) � 0. (10.3)

We compare (10.3) with the canonical equation (10.2) and note that the solution
of (10.3) can be found by a simple rescaling to be

u(x, t) � U

(
n · x − ct

J(n)

)
, (10.4)
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where c � c0kJ(n) is the (directionally dependent) speed and J(n) �
√
n·Dn
k

is the

directionally dependent space constant.

10.1.2 Waves with Curvature

Wave fronts in two- or three-dimensional media are not expected to be plane waves.
They are typically initiated at a specific location, and so might be circular in shape.
Additionally, the medium may be structurally inhomogeneous or have a nonsimple
geometry, all of which introduce curvature into the wave front.

It is known that curvature plays an important role in the propagation of a wave
front in an excitable medium. A physical explanation makes this clear. Suppose that a
circular wave front is moving inward, so that the circle is collapsing. Because different
parts of the front are working to excite the same points, we expect the region directly
in front of the wave front to be excited more quickly than if the wave were exactly
planar. Similarly, an expanding circular wave front should move more slowly than a
plane wave because the efforts of the wave to excite its neighbors are more spread out,
and excitation is slower than for a plane wave.

While these curvature effects are well known in many contexts, we are interested
here in a quantitative description of this effect. In this section we derive an equa-
tion for action-potential spread called the eikonal-curvature equation, the purpose of
which is to show the contribution of curvature towave-front velocity. Eikonal-curvature
equations have been used in a number of biological contexts, including the study of
wave-front propagation in the excitable Belousov–Zhabotinsky reagent (Foerster et al.,
1989; Keener, 1986; Keener and Tyson, 1986; Tyson andKeener, 1988; Ohta et al., 1989),
calcium waves in Xenopus oocytes (Lechleiter et al., 1991b; Sneyd and Atri, 1993; Jafri
and Keizer, 1995) and in studies of myocardial tissue (Keener, 1991a; Colli-Franzone et
al., 1990, 1993; also see Chapter 11). Eikonal-curvature equations have a long history
in other scientific fields as well, including crystal growth (Burton et al., 1951) and flame
front propagation (Frankel and Sivashinsky, 1987, 1988).

The derivation of the eikonal-curvature equation uses standardmathematical argu-
ments of singular perturbation theory, which we summarize here. The key observation
is that hidden inside (10.1) is the bistable equation (10.2), and the idea to be explored
is that in some moving coordinate system that is yet to be determined, (10.1) is well
approximated by the bistable equation (10.2).

Our goal is to rewrite equation (10.1) in termsof amoving coordinate systemchosen
so that it takes the form of (10.2). In three dimensions, we must have three spatial
coordinates, one of which is locally orthogonal to the wave front, while the other two
are coordinates describing the wave-front surface. By assumption, the function u is
approximately independent of the wave-front coordinates. We will introduce a scaling
of the variables such that the derivatives with respect to the first variable are of most
importance, and all other derivatives are less so. From this computation, we will learn
that these restrictions on the coordinate system determine how it must move in order
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to maintain itself as a wave-front coordinate system, and this law of coordinate system
motion will be the eikonal-curvature equation.

To begin, we introduce a general (as yet unknown) moving coordinate system

x � X(ξ, τ), t � τ. (10.5)

According to the chain rule,

∂

∂ξi
� ∂Xj

∂ξi

∂

∂xj
,

∂

∂τ
� ∂

∂t
+ ∂Xj

∂τ

∂

∂xj
. (10.6)

Here and in what follows, the summation convention will be followed (i.e., unless
otherwise noted, repeated indices are summed from 1 to 3). It follows that

∂

∂xi
� αij

∂

∂ξj
,

∂

∂t
� ∂

∂τ
− ∂Xj

∂τ
αjk

∂

∂ξk
, (10.7)

where the matrix with entries αij is the inverse of the matrix with entries
∂Xj

∂ξi
(the

Jacobian of the coordinate transformation (10.5)).
We identify the variable ξ1 as the coordinate normal to level surfaces of u, so ξ2 and

ξ3 are the coordinates of the moving level surfaces. Then, we define the tangent vectors
ri � ∂Xj

∂ξi
, i � 1,2,3, and the normal vectors ni � rj× rk, where i �� j, k, and j < k. Without

loss of generality we take r1 � σ(r2×r3), so that r1 is always normal to the level surfaces
of u. Here σ is an arbitrary (unspecified) scale factor. The vectors r2 and r3 are tangent
to the moving level surface, although they are not necessarily orthogonal. While one
can force the vectors r2 and r3 to be orthogonal, the actual construction of such a
coordinate description on a moving surface is generally quite difficult. Furthermore, it
is preferred to have an equation of motion that does not have additional restrictions,
since the motion should be independent of the coordinate system by which the surface
is described.

We can calculate the entries αij explicitly. It follows from Cramer’s rule (Exercise
2) that

αij � (nj)i
rj · nj (no summation), (10.8)

where by (nj)i we mean the ith component of the jth normal vector nj.
Now we can write out the full change of variables. We calculate that (treating the

coefficients αij as functions of x)

∂u

∂t
� ∂u

∂τ
− ∂Xj

∂τ
αjk
∂u

∂ξk
, (10.9)

∇2u � αipαik
∂2u

∂ξp∂ξk
+ ∂αip

∂xi

∂u

∂ξp
, (10.10)
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and rewrite (10.1) in terms of these new variables, finding (in the case that D is a
constant scalar) that

0 � Dαipαiq
∂2u

∂ξp∂ξq
+D

∂αip

∂xi

∂u

∂ξp
−
(
uτ − ∂Xj

∂τ
αjk
∂u

∂ξk

)
+ kf (u). (10.11)

There are two important assumptions that are now invoked, namely that the spatial
scale of variation in ξ1 is much shorter than the spatial scale for variations in the
variables ξ2 and ξ3. We quantify this by supposing that there is a small parameter ε and
that αj1 � O(1), while αjk � O(ε) for all j and k �� 1. In addition, we assume that to
leading order in ε, u is independent of ξ2, ξ3, and τ. Consequently, not all of the terms
in (10.11) are of equal importance. If we take into account the ε dependence of αij, then
(10.11) simplifies to

D|α|2 ∂
2u

∂ξ21
+
(
D∇ · α+ ∂X

∂τ
· α
)
∂u

∂ξ1
+ kf (u) � O(ε), (10.12)

where α is the vector with components αj1, and hence, from (10.8), proportional to the
normal vector n1. All of the terms on the left-hand side of (10.12) are large compared
to ε.

Here we see an equation that resembles the bistable equation (10.2). If the
coefficients of (10.12) are constant, we can identify (10.12) with (10.2) by setting

∂X
∂τ

· α+D∇ · α � kc0, (10.13)

while requiring D|α|2 � k.
Equation (10.13) tells us how the coordinate system should move, and since α is

proportional to n1, setting D|α|2 � k determines the scale of the coordinate normal to
the wave front, i.e., the thickness of the wave front. In reality, the coefficients of (10.12)
are not constants, and these two requirements overdetermine the full coordinate trans-
formation X(ξ, τ). To overcome this difficulty, we assume that since the wave front and
the coordinate system are slowly varying in space, we interpret (10.13) as determining
the motion of only the midline of the coordinate system, at the location of the largest
gradient of the front, rather than the entire coordinate system.

Equation (10.13) is the equation we seek that describes the motion of an action
potential front, called the eikonal-curvature equation. However, for numerical simula-
tions it is essentially useless. Numerical algorithms to simulate this equation reliably
are extremely hard to construct. Instead, it is useful to introduce a function S(x, t) that
acts as an indicator function for the fronts (think of S as determining the “shock” lo-
cation). That is, if S(x, t) > 0, the medium is activated, while if S(x, t) < 0, the medium
is in the resting state. Taking α to be in the direction of forward wave-front motion

means that α � −
√

k
D

∇S
|∇S| , where we have used the fact that |α| �

√
k/D. Since the zero

level surface of S(x, t) denotes the wave-front location, and thus S is constant along the
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wave front, it follows that 0 � ∇S · Xt + St, so that Xt · α �
√

k
D

St
|∇S| . Hence,

St � |∇S|c0
√
Dk+D|∇S|∇ ·

( ∇S
|∇S|

)
. (10.14)

The use of an indicator function S(x, t) to determine the motion of an interface is
called the level set method (Osher and Sethian, 1988), and it is both powerful and easy
to implement.

Equation (10.14) is called the eikonal-curvature equation because of the physical
interpretation of each of its terms. If we ignore the diffusive term, then we have the
eikonal equation

∂S

∂t
� |∇S|c0

√
Dk. (10.15)

If R is a level surface of the function S(x, t) and if n is the unit normal vector to that
surface at some point, then (10.15) implies that the normal velocity of the surface R,
denoted by Rt · n, satisfies

Rt · n � c0
√
Dk. (10.16)

In other words, the front moves in the normal direction n with speed c � c0
√
Dk.

Equation (10.16) is the basis of a geometrical “Huygens” construction for front
propagation, but the numerical integration of either (10.15) or (10.16) is fraught with
difficulties. In particular, cusp singularities develop, and the indicator function S(x, t)
becomes ill-defined in finite time (usually very quickly). The second term of the right-
hand side of (10.14) is a curvature correction, appropriately named because the term

∇ ·
(

∇S
|∇S|

)
is twice the mean curvature (in three-dimensional space) or the curvature (in

two-dimensional space) of the level surfaces of S (see Exercise 3). In fact, the eikonal-
curvature equation can be written as

Rt · n � c0
√
Dk−Dκ, (10.17)

or

τRt · n � c0J−J2κ, (10.18)

where κ is the curvature (in two dimensions) or twice the mean curvature (in three
dimensions) of the front, J �

√
D/k is the space constant, and τ � 1/k is the time con-

stant. Even though it usually represents only a small correction to the normal velocity
of fronts, the curvature correction is important for physical and stability reasons, to
prevent singularity formation. The sign of the curvature correction is such that a front
with ripples is gradually smoothed into a plane wave.

Experiments on the Belousov–Zhabotinsky reagent have verified this relationship
between speed and curvature of propagating fronts. For example, Foerster et al. (1988)
measured the speed and curvature at different positions of a rotating spiral wave and
at intersections of two spiral waves (thus obtaining curvatures of different signs) and
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found that the relationship between normal velocity and curvature was well approx-
imated by a straight line with slope that was the diffusion coefficient of the rapidly
reacting species.

10.2 Spatial Patterns and Spiral Waves

Now that we have some idea of how wave fronts propagate in an excitable medium, we
next wish to determine the spatial patterns that may result. The most common pattern
is created by, and spreads outward from, a single source. If the medium is sufficiently
large so that more than one wave front can exist at the same time, then these are
referred to as target patterns. Target patterns require a periodic source and so cannot
exist in a homogeneous nonoscillatory medium.

A second type of spatial pattern is a spiral wave. Spiral waves do not require a
periodic source for their existence, as they are typically self-sustained. Because they
are self-sustained, spirals usually occur only in pathophysiological situations. That is,
it is usually not a good thing for a system that relies on faithful propagation of a signal
to be taken over by a self-sustained pattern. Thus, spirals on the heart are fatal, spirals
in the cortex may lead to epileptic seizures, and spirals on the retina or visual cortex
may cause hallucinations. The most famous example of spiral waves in an excitable
medium is in the Belousov–Zhabotinsky reaction (Winfree, 1972, 1974), which we do
not discuss here.

The mathematical discussion of spiral waves centers on the nature of periodic
solutions of a system of differential equations with excitable dynamics spatially cou-
pled by diffusion. A specific example is the FitzHugh–Nagumo equations with diffusive
coupling in two spatial dimensions,

ε
∂v

∂t
� ε2∇2v+ f (v,w), (10.19)

∂w

∂t
� g(v,w). (10.20)

The leading-order singular perturbation analysis (i.e., with ε � 0) suggests that the
domain be separated into two, in which outer dynamics

∂w

∂t
� G±(w) (10.21)

hold (using the notation of Section 9.4.1). The region in which ∂w
∂t

� G+(w) is identified
as the excited region, and the region in which ∂w

∂t
� G−(w) is called the recovering

region. Separating these will be moving interfaces in which v changes rapidly (with
space and time constant ε), so that diffusion is important, while w remains essentially
constant. At any point in space the solution should be periodic in time, so at large radii,
where the wave fronts are nearly planar, the solution should lie on the dispersion curve.
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The first guess as to how the interface should move is to assume that the interface
is nearly planar and therefore has the same velocity as a plane wave, namely

Rt � c(w)n, (10.22)

where R is the position vector for the interface, n is the unit normal vector of R, and
c(w) is the plane-wave velocity as a function of w.

To see the implications of the eikonal equation, we suppose that the spiral interface
is a curve R given by

X(r, t) � r cos(θ(r)− ωt), Y (r, t) � r sin(θ(r)− ωt). (10.23)

Note that the interface is a curve parametrized by r, and so the tangent is (Xr, Yr). We
then calculate that

Rt �
(

−ωr sin(θ − ωt)

ωr cos(θ − ωt)

)
(10.24)

and √
1+ r2θ′2n �

(
− sin(θ − ωt)− rθ′ cos(θ − ωt)

cos(θ − ωt)− rθ′ sin(θ − ωt)

)
, (10.25)

so that the eikonal equation becomes

c(w)
√
1+ r2θ′2 � ωr. (10.26)

An integration then gives

θ(r) � ρ(r)− tan(ρ(r)), ρ(r) �
√
r2

r20
− 1, (10.27)

where r0 � c/ω, so that the interface is given by

X � r0 cos(s)+ r0ρ(r) sin(s), Y � r0 sin(s)− r0ρ(r) cos(s), (10.28)

where s � ρ(r)− ωt. This interface is the involute of a circle of radius r0. (The involute
of a circle is the locus of points at the end of a string that is unwrapped from a circle.)

There are significant difficulties with this as a spiral solution, the most significant
of which is that it exists only for r ≥ r0. The parameter r0 is arbitrary, but positive, so
that this spiral is rotating about some hole of finite size. The frequency of rotation is
determined by requiring consistency with the dispersion curve. Note that the spiral has
wavelength 2πr0, and period 2π

ω
, and so c � r0ω. However, since the dispersion curve

generally has a knee, and thus periodic waves do not exist for small enoughwavelength,
there is a lower bound on the radii for which this can be satisfied. Numerical studies of
spirals suggest no such lower bound on the inner core radius and also suggest that there
is a unique spiral frequency for a medium without a hole at the center. Unfortunately,
the use of the eikonal equation gives no hint of the way a unique frequency is selected,
so a different approach, using the eikonal-curvature equation, is required.
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To apply the eikonal-curvature equation to find rotating spiral waves, we assume
that the wave front is expressed in the form (10.23), so that the curvature is

κ � X ′Y ′′ − Y ′X ′′

(X ′2 + Y ′2)3/2
� ψ′

(1+ ψ2)3/2
+ ψ

r(1+ ψ2)1/2
, (10.29)

where ψ � rθ′(r) is called the shape function. Thus the eikonal-curvature equation
(10.18) becomes

r
dψ

dr
� (1+ ψ2)

[
rc(w)
ε

(1+ ψ2)1/2 − ωr2

ε
− ψ

]
. (10.30)

If we suppose that w is constant along the spiral front, then (10.30) can be solved
numerically by “shooting” from r � ∞. A portrait of sample trajectories in the (r, ψ)
plane is shown in Fig. 10.1. The trajectories of (10.30) are “stiff,” meaning that for large
r, the trajectory c(1+ ψ2)1/2 − ωr � 0 is a strong attractor. This stiffness can be readily
observed when (10.30) is written in terms of the variable φ � rψ√

1+ψ2
as

ε

r

dφ

dr
� c− ω

√
r2 − φ2, (10.31)

since ε multiplies the derivative term in (10.31).
Integrating from r � ∞, trajectories of (10.30) approach the origin by either blow-

ing up or down near the origin r � 0. Since the origin is a saddle point, if parameters
are chosen exactly right, the trajectory approaches ψ � 0. Thus, there is a unique rela-
tionship between ω and c of the form ω/ε � F(c/ε) that yields trajectories that go all the
way to the origin r � 0, ψ � 0.

Notice that the rescaling of variables r → αr, c → c/α, ω → ω/α2 leaves (10.30)
invariant, so that the relationship between ω and c for which a trajectory approaches
the saddle point at the origin must be of the form

ω

εα2
� F

( c
εα

)
. (10.32)
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Figure 10.1 Trajectories of (10.30) with
ω/ε � 2.8, 9m∗, and 3.2, and c/ε � 3.0.
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Figure 10.2 Spiral arm correspond-
ing to the trajectory of (10.30) that
approaches the origin (shown solid),
compared with the involute spiral
(shown dashed) with the same pa-
rameter values. For this plot, c/ε �
3.0.

It follows that F(c/α) � 1
α2
F(c) and thus F(x) � m∗x2, for some constant m∗, so that

ω � c2m∗

ε
. (10.33)

Numerically, one determines that m∗ � 0.330958.
An example of this spiral front is shown in Fig. 10.2, comparedwith the comparable

involute spiral (10.28), shown dashed. For this figure c/ε � 3.0.
At this pointwe have a family of possible spiral trajectories that have correct asymp-

totic (large r) behavior and approach ψ � 0 as r → 0. This family is parametrized by
the speed c. To determine which particular member of this family is the correct spiral
front, we also require that the spirals be periodic waves; that is, they must satisfy the
dispersion relationship. These two requirements uniquely determine the spiral prop-
erties. To see that this is so, in Fig. 10.3 are plotted the critical curve (10.33) and the
approximate dispersion curve (9.89). For this plot we used piecewise linear dynamics,
f (v,w) � H(v− α)− v−w, g(v,w) � v− γw with α � 0.1, γ � 0, ε � 0.05.

10.2.1 More About Spirals

This discussion of higher-dimensional waves is merely the tip of the iceberg (or tip of
the spiral), and there are many interesting unresolved questions.

While the spirals that are observed in physiological systems share certain quali-
tative similarities, their details are certainly different. The FitzHugh–Nagumo model
discussed here shows only the qualitative behavior for generic excitable systems and
so has little quantitative relevance. An analysis for the two-pool model of calcium wave
propagation (Chapter 12) is similar in style, but much more difficult in detail because
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Figure 10.3 Critical curve (10.33) and the approximate dispersion curve (9.89) using piecewise
linear dynamics f (v, w ) � H(v − α) − v − w , g(v, w ) � v − γw with α � 0.1, γ � 0, ε � 0.05.

the eikonal-curvature relationship is nonlinear and the dispersion curve is more diffi-
cult to obtain. Other physiological systems are likely governed by other dynamics. For
example, a model for spreading cortical depression in the cortex has been proposed
by Tuckwell and Miura (1978; Miura, 1981), and numerical simulations have shown
rotating spirals. However, a detailed mathematical study of these equations has not
been given.

This analytical calculation for the FitzHugh–Nagumo system is based on singular
perturbation theory and therefore is notmathematically rigorous. In fact, as yet there is
not a rigorous proof of the existence of spiral waves in an excitable medium. While the
approximate solution presented here is known to be asymptotically valid, the structure
of the core of the spiral is not correct. This problemhas been addressedbyPelce andSun
(1991) and Keener (1992) for FitzHugh–Nagumo models with a single diffusing vari-
able, and by Keener (1994) and Kessler and Kupferman (1996) for FitzHugh–Nagumo
models with two diffusing variables, relevant for chemical reaction systems.

A second issue of concern is the stability of spirals. This also is a large topic, which
is not addressed here. The interested reader should consult the work of Winfree (1991),
Jahnke andWinfree (1991), Barkley (1994), Karma (1993, 1994), Panfilov andHogeweg
(1995), Kessler and Kupferman (1996).

Because the analytical study of excitable media is so difficult, simpler models have
been sought, with the result that finite-state automata are quite popular. A finite-state
automaton divides the state space into a few discrete values (for example v = 0 or 1),
divides the spatial domain into discrete cells, and discretizes time into discrete steps.
Then, rules are devised for how the states of the cells change in time. Finite-state
automata are extremely easy to program and visualize. They give some useful insight
into the behavior of excitable media, but they are also beguiling and can give “wrong”
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answers that are not easily detected. The literature on finite-state automata is vast (see,
for instance, Moe et al., 1964; Smith and Cohen, 1984; and Gerhardt et al., 1990).

The obvious generalization of a spiral wave in a two-dimensional region to three
dimensions is called a scroll wave (Winfree, 1973, 1991; Keener and Tyson, 1992). Scroll
waves have been observed numerically (Jahnke et al., 1988; Lugosi andWinfree, 1988),
in three-dimensional BZ reagent (Gomatam and Grindrod, 1987), and in cardiac tissue
(Chen et al., 1988), although in experimental settings they are extremely difficult to
visualize. In numerical simulations it is possible to initiate scroll waves with interesting
topology, including closed scroll rings, knotted scrolls, or linked pairs of scroll rings.

The mathematical theory of scroll waves is also in its infancy. Attributes of the
topology of closed scrolls were worked out by Winfree and Strogatz (1983a,b,c; 1984),
and a general asymptotic theory for their evolution has been suggested (Keener, 1988b)
and tested against numerical experiments on circular scroll rings and helical scrolls.
There is not sufficient space here to discuss the theory of scroll waves. However, scroll
waves are mentioned again briefly in later chapters on cardiac waves and rhythmicity.

10.3 Exercises
1. What is the eikonal-curvature equation for (10.1) when the medium is anisotropic and D is

a symmetric matrix, slowly varying in space?
Hint: Generalize (10.11) by calculating ∇ · (D∇u) using components of D as dij, and use this
to generalize (10.12).

Answer: (10.14) becomes St �
√∇S ·D∇S

(
c0

√
k+ ∇ ·

(
D∇S√∇S·D∇S

))
.

2. Verify (10.8).
Hint: Use Cramer’s rule to find the inverse of a matrix with three column vectors, say t1, t2,
and t3. Use the fact that the determinant of such a matrix is t1 · (t2 × t3). Then apply this to
the transpose of the Jacobian matrix

∂Xj

∂ξi
.

3. Verify that in two spatial dimensions, ∇ ·
(

∇S
|∇S|

)
is the curvature of the level surface of the

function S.
Hint: If x � X(t), y � Y (t) is the parametric representation of a smooth level-surface curve,
then S(X(t), Y (t)) � 0. Use this and derivatives of this expression with respect to t to show

that ∇ ·
(

∇S
|∇S|

)
� ± YtXtt−YttXt

(X2t +Y2t )3/2
.

4. The following are the rules for a simple finite automaton on a rectangular grid of points:

(a) The state space consists of three states, 0, 1, and 2, 0 meaning at rest, 1 meaning
excited, and 2 meaning refractory.

(b) A point in state 1 goes to state 2 on the next time step. A point in state 2 goes to 0 on
the next step.

(c) A point in state 0 remains in state 0 unless at least one of its nearest neighbors is in
state 1, in which case it goes to state 1 on the next step.

Write a computer program that implements these rules. What initial data must be supplied
to initiate a spiral? Can you initiate a double spiral by supplying two stimuli at different
times and different points?
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5. (a) Numerically simulate spiral waves for the Pushchino model of Chapter 4, Exercise 13.

(b) Numerically simulate spiral waves for the Pushchino model with

f (V) �



C1V when V < V1,

−C2V + a when V1 < V < V2,

C3(V − 1) when V > V2,
(10.34)

and

τ(V,w) �




τ1 when V1 < V < V2

τ1 when V < V1, w > w1,

τ2 when V > V2,

τ3 when V < V1, w < w1.

Use the parameters V1 � 0.0026, V2 � 0.837, w1 � 1.8, C1 � 20, C2 � 3, C3 � 15,
a � 0.06, τ1 � 75, τ2 � 1.0, τ3 � 2.75, and k � 3. What is the difference between these
spirals and those for the previous model?
Answer: There are no stable spirals for this model, but spirals continually form and
break apart, giving a “chaotic” appearance.
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Cardiac Propagation

Cardiac cells perform two functions in that they are both excitable and contractile. They
are excitable, enabling action potentials to propagate, and the action potential causes
the cells to contract, thereby enabling the pumping of blood. The electrical activity of
the heart is initiated in a collection of cells known as the sinoatrial node (SA node)
located just below the superior vena cava on the right atrium. The cells in the SA node
are autonomous oscillators. The action potential that is generated by the SA node is
then propagated through the atria by the atrial cells.

The atria and ventricles are separated by a septum composed of nonexcitable cells,
which normally acts as an insulator, or barrier to conduction, of action potentials. There
is one pathway for the action potential to continue propagation and that is through
another collection of cells, known as the atrioventricular node (AV node), located at the
base of the atria.

Conduction through the AV node is quite slow, but when the action potential exits
the AV node, it propagates through a specialized collection of fibers called the bundle
of HIS, which is composed of Purkinje fibers. The Purkinje fiber network spreads via
tree-like branching into the left and right bundle branches throughout the interior of
the ventricles, ending on the endocardial surface of the ventricles. As action potentials
emerge from the Purkinje fiber–muscle junctions, they activate the ventricular mus-
cle and propagate through the ventricular wall outward to the epicardial surface. A
schematic diagram of the cardiac conduction system is shown in Fig. 11.1.

It should be apparent from this introduction that in the heart there is one-
dimensional wave propagation, for example, along a Purkinje fiber, and there is
higher-dimensional propagation in the atrial and ventricular muscle.
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Figure 11.1 Schematic diagram of the cardiac conduction system. (Rushmer, 1976, Fig. 3-9,
p. 87).

11.1 Cardiac Fibers

11.1.1 Cellular Coupling

Myocardial cells are cable-like, roughly cylindrical, typically 100 µm long and 15 µm in
diameter. They are packed together in a three-dimensional irregular brick-like packing,
surrounded by extracellularmedium (Fig. 11.2). Each cell has specialized contacts with
its neighboring cells, mainly in end-to-end fashion, facilitated by a step-like surface that
locks into neighboring cells. The opposing cell membranes form the intercalated disk
structure. While the end-to-end cell membranes are typically separated by about 250
Å, there are places, called junctions, where the pre- and postjunctional membranes are
fused together. The mechanical adhesion of cells is provided by adhering junctions in
the intercalated disk, known as desmosomes or tight junctions. The electrical coupling
of cells is provided by gap junctions (Chapter 7).

The intercellular channels provided by the gap junctions are around 20 Å in di-
ameter and are characterized as “low-resistance” because the effective resistance is
considerably less than what would result from two cell membranes butted together.
However, compared to the intracellular cytoplasm, the gap junctions are of high resis-
tance, simply because the cross-sectional area for electrical conduction through gap
junctions is greatly reduced (about two percent of the total cross-sectional area).

To model a cardiac fiber, we consider a simple one-dimensional collection of cylin-
drical cells (with perimeter p) coupled in end-to-end fashion via gap junctions. From



314 11: Cardiac Propagation

Figure 11.2 Cardiac cell structure. (Guyton and Hall, 1996, Fig. 9-2, p. 108.)

Chapter 8, we know that between gap junctions we have the conservation equation

p

(
Cm

∂V

∂t
+ Iion

)
� ∂

∂x

(
Ai

Rc

∂Vi

∂x

)
� − ∂

∂x

(
Ae

Re

∂Ve

∂x

)
. (11.1)

whereRc andRe are the resistivities of intracellular and extracellular space, respectively,
and Ai and Ae are the average cross-sectional areas for intracellular and extracellu-
lar space per cell. At the ends of cells (each of length L), there is a possible jump in
intracellular potential, but the current − Ai

Rc

∂Vi
∂x
must be continuous, so that

[Vi]
rg

� Ai

Rc

∂Vi

∂x
(11.2)

at the ends of cells, where [Vi] is the jump in intracellular potential across the gap
junctions. The parameter rg is the effective gap-junctional resistance, or inverse per-
meability. The extracellular potential and current are continuous, unaffected by the
gap junctions.

The time constant for this fiber is the same as (8.16). The space constant, however,
is affected by the gap-junctional resistance.

To find the space constant, we take Iion � −V/Rm and look for a geometrically
decaying solution, with Vi(x+L) � µVi(x), Ve(x+L) � µVe(x) for some constant µ. The
constant µ relates to the space constant λg through µ � e−L/λg .

The solution of this problem can be found analytically. For the nth cell, the solution
is proportional to (

Vi

Ve

)
� µnP(µ, x), (11.3)
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where

P(µ, x) �
{[
(µ− 1

E
)eλx + (µ− E)e−λx

](
qi

−qe

)
(11.4)

+2qe
(µ− 1

E
)(µ− E)

µ− 1

(
1

1

)}

for 0 < x < L, where E � eλL, λL � √
qe + qi � √

Q, and qi � L2SRc
viRm

, qe � L2SRe
veRm

, where
vi � LAi and ve � LAe are the intracellular and extracellular volumes (per unit cell),
respectively, S � Lp is the cell surface area and p � 2

√
Aiπ is the perimeter. The number

µ must be a root of the characteristic equation

r � 2
√
Q
(µ− 1

E
)(µ− E)

µ(E− 1
E
)

, (11.5)

where r � Srg

Rm
is the effective nondimensional gap-junctional resistance.

The behavior of the extracellular and intracellular potentials is depicted in Fig.
11.3. As can be seen from this plot, the extracellular potential decays smoothly, but the
intracellular potential decays with discrete jumps across the gap junctions.

It is not possible to measure the intracellular potential with the detail shown in
Fig. 11.3, because cells are usually too small to invade with multiple intracellular elec-
trodes without irreversibly damaging the cell membrane. In fact, the space constant is
usually measured by fitting a decaying exponential to the intracellular or extracellular
potential. The formula (11.5) can then be used to calculate the effective gap-junctional
resistance.
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Figure 11.3 Plot of intracellular and extracellular potentials as a function of space, with a
constant subthreshold potential applied at a single point. For this plot cells had L � 0.012 cm,
Ai � 4.0 × 10−6 cm2, and a space constant λg � 0.09 cm. Rm � 7000 4cm2, Rc � 150 4cm,
qe � 0.5qi , qi � 5.47 × 10−3. The vertical scale on this plot is arbitrary.
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If the gap-junctional resistance is small compared with the cytoplasmic resistance,
then (11.5) has a simplified solution. If r/Q is small, or if L/λg is small, then the solution
of (11.5) is given approximately by

L2

λ2g
� r +Q � r + qi + qe. (11.6)

The formula (11.6) is used routinely in bioengineering and in linear circuit theory;
it implies that resistance along the cable is additive. This is exactly the same answer
that one would find for the space constant of a uniform continuous cable if the gap-
junctional resistance were uniformly distributed throughout the cytoplasm. For most
normal cells, the approximation (11.6) is valid. It is only when the gap-junctional re-
sistance is excessively large, such as if there is ischemia or if the cells are treated with
certain alcohols that block gap junctions, that this formula is substantially wrong.

The effective gap-junctional resistance rg can be calculated from (11.6). For exam-
ple, using frog myocardial cells (which are longer than many other cells, L � 131µm,
radius � 7.5µm), Chapman and Fry (1978) measured a space constant λg � 0.328 cm
yielding ( L

λg
)2 � 0.159. From this they inferred (using Rm � 16906cm2 and qe � 0) that

the effective cytoplasmic resistivity was Rc � 5886cm. They were also able to measure
the cytoplasmic resistivity directly, and they found Rc � 2826cm so that qi � 0.076.
Thus only 48% of the total resistivity of the cell was attributable to cytoplasmic resis-
tance. The remaining 52% must be from gap-junctional resistance. We can calculate
the effective gap-junctional resistance as rg � rRm

Lp
� 2.27M6 per cell.

The study of wave propagation in the cable equation (11.1) with jump conditions
(11.2) is quite difficult, and results are limited. It is therefore useful to consider sim-
plified models. The simplest of these is a continuous model in which gap junctions are
ignored, or more precisely, in which the intracellular resistance is adjusted to incor-
porate gap-junctional resistance in a homogeneous (or averaged) sense. The second
simplification is to take the opposite limit of small cytoplasmic resistance and to as-
sume that cells are isopotential and all resistance is concentrated in the gap junctions.
In this limit, conservation of current implies that

Lp

(
Cm

∂Vj

∂t
+ Iion

)
� d(Vj+1 − 2Vj + Vj−1), (11.7)

where Vj is the (iso-) potential of the jth cell. We pick the coupling parameter d such
that

d

(
µ− 2+ 1

µ

)
� Lp

Rm
, (11.8)

where µ � e−L/λg , so that the decay rate for a linear cable matches with the space
constant of the medium.
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11.1.2 Propagation Failure

One-dimensional propagation in cardiac fibers is expected to occur, since the equations
are similar to those of Chapter 9. It is perhaps more interesting and of greater clinical
significance to understand the causes of propagation failure. Here we mention two.

Branching
On leaving the AV node of the heart, the action potential enters the bundle of HIS.
The bundle divides near the upper ventricular septum into right and left branches. The
right bundle continues with little arborization toward the apex of the heart. The left
bundle branch divides almost immediately into two major divisions: one anterior and
superior, and the second posterior and inferior.

A bundle branch block occurs when the action potential fails to propagate through
the entire branch. To understand something about the cause of bundle branch block,
we consider a model of propagation in a one-dimensional fiber that divides into two.
Wave fronts are governed by the cable equation

CmRm
∂V

∂t
� Rm

p

∂

∂x

(
A

Rc

∂V

∂x

)
+ f (V). (11.9)

We can also use this equation for propagation in a bundle of fibers by letting p and
A be the total membrane perimeter and cross-sectional area, respectively, for the
bundle.

Suppose there is a junction at which a cable splits into two. On both sides of this
junction the cable equation (11.9) holds, but with different parameters p and A, say
p1, A1 for x < 0, and p2, A2 for x > 0. At the junction the potential V and the axial
current A

Rc

∂V
∂x
must be continuous.

Using upper and lower solution techniques (Fife, 1979), one can demonstrate an
important comparison property for the cable equation (11.9): If V1(x) and V2(x) are two
functions that are ordered, with V1(x) ≤ V2(x), then the solutions of (11.9) with initial
data V1(x) and V2(x), say V1(x, t) and V2(x, t) with V1(x,0) � V1(x) and V2(x,0) � V2(x),
then V1(x, t) ≤ V2(x, t) for all time t ≥ 0.

The importance of this theorem is that if we can establish the existence of a standing
transitional profile, then traveling profiles of similar type are precluded. The standing
wave is an upper bound for solutions and thereby prevents propagation (Pauwelussen,
1981).

Suppose the function f (V) has three zeros, at V � 0, α, and 1.We look for a standing
profile that connects V � 0 at x � −∞ with V � 1 at x � ∞. The standing profile must
satisfy the ordinary differential equation

Rm

pi

(
Ai

Rc
Vx

)
x

+ f (V) � 0 (11.10)
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with i � 1 for x < 0 and with i � 2 for x > 0. Multiplying these equations by Vx and
integrating, we obtain

1
2
RmAi

Rcpi
V2x + F(V) �

{
0 if i � 1,

F(1) if i � 2,
(11.11)

where F(V) � ∫ V
0 f (u)du. Sketches of these two curves are depicted in Fig 11.4 in the

case F(1) > 0. A connecting trajectory exists if these two curves intersect at the same
level of current. We express the profiles (11.11) in terms of the axial current I � − A

Rc
Vx

and obtain

1
2
RmRc

Aipi
I2 + F(V) �

{
0 if i � 1,

F(1) if i � 2.
(11.12)

Intersections of these two curves occur if there is a solution of

F(V)
(
A1p1

A2p2
− 1

)
� −F(1) (11.13)

with F(V) < 0 in the range 0 < V < 1. Since the minimum for F(V) is at V � α, there is
a solution whenever

A1p1

A2p2
≥ 1− F(1)

F(α)
. (11.14)

In the special case that f (V) is the cubic polynomial f (V) � V(V − 1)(α − V), this
condition becomes

A1p1

A2p2
≥ 1+ 1− 2α

α3(2− α)
. (11.15)

The interpretation is clear. If at a branch point of a fiber the product pA increases
by a sufficient amount, as specified by (11.14), then propagation through the branch
point in the direction of increasing pA is not possible. Of course, this criterion for
propagation block depends importantly on the excitability of the fiber as expressed
through the ratio F(1)

F(α) , and propagation failure is more likely when the fiber is less
excitable. Hence propagation block is time-dependent in that if inadequate recovery
time is provided, or if the recovery mechanism is slower than normal, the likelihood
of block at a branch point is increased.

Gap-junctional coupling
We expect that gap-junctional resistance can have the similar effect of precluding
propagation. To see how gap-junctional resistance affects the success or failure of prop-
agation, we consider the idealized situation of cells of length L coupled at their ends
by gap junctions, as described by (11.2) and the cable equation (11.1) with piecewise
linear ionic current

Iion(V) � 1
Rm

[
H(V − α)− V

]
. (11.16)
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Figure 11.4 The curves (11.12) with i � 1 and RmRc

2Ai pi
� 0.04 and with i � 2 and RmRc

2Ai pi
� 1.0,

for f (v ) � v (v − 1)(α − v ), α � 0.25. An intersection of the solid curve with the dashed curve
guarantees propagation failure.

This model recommends itself because it can be solved explicitly, even though it lacks
quantitative reliability.

As before, we look for a standing solution on the assumption that the existence of
a standing solution precludes the possibility of propagation.

To find a solution of the standingwave problem (Keener, 1991b), we use the solution
(11.5) of the linear problem to find the solution for the nth cell to be(

Vi

Ve

)
n

� AµnP(µ, x) (11.17)

for n ≥ 0 and (
Vi

Ve

)
n

� Aµn+1P
(
1
µ
, x

)
+
(
1+ C

C

)
(11.18)

forn < 0,whereµ < 1 is a root of (11.5). HereA andC are as yet undetermined.However,
this proposed solution has the feature that V � Vi − Ve approaches 0 as n → ∞, and
it approaches 1 as n → −∞. Furthermore, the intracellular and extracellular currents
are continuous at all junctions.

Now, to determine the coefficients A and C, we require that Ve be continuous at the
junction between cell n � −1 (at x � L) and cell n � 0 (at x � 0) and that the junctional
condition (11.2) be satisfied there as well.

A plot of this solution is shown in Fig. 11.5. The solution thus determined has V < 1
2

for cell n � 0 at x � 0 and V > 1
2 for cell n � −1 at x � L whenever rg is positive. In

particular,

V0(0) � Rc
√
Q(E2 − 2Eµ+ 1)

2
√
QRc(E2 − 2Eµ+ 1)+ qirgAi(E2 − 1) . (11.19)
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However, to be a valid solution for the piecewise linear ionic current (11.16), it must
be that V0(0) < α. This leads to the condition

r ≥ 1− 2α
α

√
Q

(
E− 2µ+ 1

E

E− 1
E

)
, (11.20)

where r � Srg

Rm
.

The critical gap-junctional resistance is that value, say r∗, such that block occurs
whenever r ≥ r∗, and it is also that value of r for which (11.20) is an equality. Then,
using (11.5) we find a quadratic polynomial for r∗ as a function of E and α. In the limit
of small Q, the positive root of this quadratic equation is

r∗ � (1− 2α)2
α(1− α)

+Q

(
1− 2α+ 2α2
2α(1− α)

)
+O(Q3/2). (11.21)

In general, one can show that for 0 < α < 1
2 , r

∗ is an increasing function of Q. When
Q � 0, this reduces to the same as found in (9.47), with the coupling coefficient D � 1

r
.

11.2 Myocardial Tissue

11.2.1 The Bidomain Model

Coupling in cardiac tissue is complicated by the fact that the signal is the membrane
potential, and this necessitates that the intracellular and extracellular spaces be con-
tinuously connected and intertwined, so that one can move continuously between any
two points within one space without traversing through the opposite space. This is
possible only in a three-dimensional domain.
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Figure 11.5 Plot of the standing wave solution for cells of length L coupled at their ends by
resistive gap junctions. For this plot, cells have L � 0.012 cm, Ai � 4.0 × 10−6 cm2, and a space
constant λg � 0.09 cm. Rm � 7000 4cm2, Ri � 150 4cm, qe � 0.5qi .
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It is impossible towrite and solve equations that take into account the fine-structure
details of the geometry of these two interleaving spaces. However, the microstructure
can be averaged (homogenized) to yield equations that describe the potentials in an
averaged, or smoothed, sense, and these are adequate for most situations.

In this averaged sense, we view the tissue as a two-phase medium, as if every point
in space is composed of a certain fraction of intracellular space and a fraction of extra-
cellular space. Accordingly, at each point in space there are two electrical potentials Vi
and Ve, as well as two currents ii and ie, with subscripts i and e denoting intracellular
and extracellular space, respectively.

The relationship between current and potential is ohmic,

ii � −σi∇Vi, ie � −σe∇Ve, (11.22)

where σi and σe are conductivity tensors. The principal axes of the conductivity tensors
are the same, owing to the cylindrical nature of the cells, but the conductivities in these
directions are possibly different. At any point in space the total current is it � ii + ie,
and unless there are extraneous current sources, the total current is conserved, so that
∇ · it � 0, or

∇ · (σi∇Vi + σe∇Ve) � 0. (11.23)

At every point in space there is a membrane potential

V � Vi − Ve. (11.24)

The transmembrane current iT is the current that leaves the intracellular space to enter
the extracellular space,

iT � ∇ · (σi∇Vi) � −∇ · (σe∇Ve). (11.25)

For a biological membrane, the total transmembrane current is the sum of ionic and
capacitive currents,

iT � χ

(
Cm

∂V

∂t
+ Iion

)
� ∇ · (σi∇Vi). (11.26)

Here χ is the membrane surface-to-volume ratio, needed to convert transmembrane
current per unit area into transmembrane current per unit volume. In the typical
scaling, Iion � − f (V)

Rm
.

Equation (11.26) shows how cardiac tissue is coupled, and it, together with (11.23),
is called the bidomain model. The bidomain model was first proposed in the late 1970s
by Tung and Geselowitz (Tung, 1978) and is now the generally accepted model for
electrical behavior of cardiac tissue (Henriquez, 1993).

Boundary conditions for the bidomain model usually assume that there is no cur-
rent across the boundary that enters directly into the intracellular space, whereas if
there is an injected current, it enters the tissue through the extracellular domain.
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Derivation of the bidomain equations
The derivation of the bidomain model follows quickly from the homogenization of a
cellular domain presented in Section 11.3 (see Neu and Krassowska, 1993, and Keener
and Panfilov, 1996). The notation used here is introduced in Section 11.3.

We define the potentials in the intracellular and extracellular domains as φi and φe,
respectively. Then the membrane potential is the difference between the two potentials
across the membrane boundary Sm between the two domains:

φ � (φi − φe) |Sm . (11.27)

At each point of the cell membrane the outward transmembrane current is given by

Im � Cm
dφ

dt
+ 1
Rm

fm(φ), (11.28)

where Cm is themembrane capacitance and fm/Rm represents the transmembrane ionic
current. The parameter Rm is the membrane resistance.

It follows from homogenization (11.76), (11.77) that

φi � Vi(x)+ εWi

(x
ε

)
· T−1∇Vi(x)+O(ε2Vi), (11.29)

φe � Ve(x)+ εWe

(x
ε

)
· T−1∇Ve(x)+O(ε2Ve), (11.30)

and that Vi(x) and Ve(x) satisfy the averaged equations

∇ · (σi∇Vi) � −∇ · (σe∇Ve) � 1
v

∫
Sm

Im(x, ξ)dSξ, (11.31)

where Im is the transmembrane current (positive outward). We calculate (using∫
Sm
WidSξ � ∫

Sm
WedSξ � 0) that∫
Sm

Im(x, ξ)dSξ � CmSm
∂V

∂t
+
∫
Sm

1
Rm

Fm (V + εH(ξ, x)) dSξ, (11.32)

where

H(ξ, x) � Wi(ξ) · T−1∇Vi(x)−We(ξ) · T−1∇Ve(x), (11.33)

V � Vi − Ve. (11.34)

It follows that

Rm

χ
∇ · (σi∇Vi) � −Rm

χ
∇ · (σe∇Ve) � CmRm

∂V

∂t
+ 1
Sm

∫
Sm

fm (V + εH(ξ, x)) dSξ. (11.35)

The parameter χ � Sm
v
is the ratio of cell surface area per unit volume. In the limit

ε � 0, the equations (11.35) reduce to the standard bidomain model. With ε �� 0, this
model can be used to study defibrillation (Chapter 14).
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Monodomain reduction
Equation (11.26) can be reduced to a monodomain equation for the membrane
potential in one special case. Notice that

∇Vi � (σi + σe)−1(σe∇V − it), (11.36)

so that the balance of transmembrane currents becomes

χ

(
Cm

∂V

∂t
+ Iion

)
� ∇ · (σi(σi + σe)−1σe∇V

)− ∇ · σi(σi + σe)−1it. (11.37)

Here we see that there is possibly a contribution to the transmembrane current from
the divergence of the total current. We know that ∇ · it � 0, so this source term is zero
if the matrix σi(σi + σe)−1 is proportional to a constant multiple of the identity matrix.
In other words, if the two conductivity matrices σi and σe are proportional, σi � ασe,

with α a constant, then the source term disappears, and the bidomain model reduces
to the monodomain model.

χ

(
Cm

∂V

∂t
+ Iion

)
� ∇ · (σ∇V), (11.38)

where σ � σi(σi + σe)−1σe. When σi � ασe, the tissue is said to have equal anisotropy
ratios. A one-dimensional model with constant conductivities can always be reduced
to a monodomain problem.

Plane waves
Cardiac tissue is strongly anisotropic, with wave speeds that differ substantially de-
pending on their direction. For example, in human myocardium, propagation is about
0.5 m/s along fibers and about 0.17 m/s transverse to fibers. To see the relationship be-
tween the wave speed and the conductivity tensor we look for plane-wave solutions of
the bidomain equations. Plane waves are functions of the single variable ξ � n · x− ct,
where n is a unit vector pointing in the direction of wave-front propagation.We assume
that the ionic current is such that the canonical problem

u′′ + c0u
′ + f (u) � 0 (11.39)

has a wave-front solution U(x) for some unique value of c0, the value of which depends
on f . The behavior of this solution was discussed in Chapter 9.

In terms of the traveling wave coordinate ξ, the bidomain equations reduce to the
two ordinary differential equations

Rm

χ
n · σinV ′′

i + cCmRmV
′ + f (V) � 0, (11.40)

n · σinV ′′
i + n · σenV ′′

e � 0. (11.41)

Using that V � Vi − Ve, we find that

V
′
i � n · σen
n · (σi + σe)n

V
′
, (11.42)
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V
′
e � − n · σin

n · (σi + σe)n
V

′
, (11.43)

and

Rm

χ

(n · σin)(n · σen)
n · (σi + σe)n

V
′′
i + cCmRmV

′ + f (V) � 0. (11.44)

Now we compare (11.44) with (11.39) and find that the solutions are related through

V(ξ) � U

(
ξ

J

)
, (11.45)

where J(n)2 � Rm
χ

(n·σin)(n·σen)
n·(σi+σe)n (J(n) is the directionally dependent space constant), and

the plane-wave velocity is

c � J(n)
CmRm

c0. (11.46)

From this we learn that the speed of propagation depends importantly on direction
n, but the membrane potential profile is independent of direction except in its spatial
scale J. This observation allows us to determine the coefficients of the conductivity
tensors σi and σe. This we do by observing from (11.43) that the total deflection of
extracellular potential is dependent on direction. If we denote the total deflection of
potentials during the upstroke by HV and HVe, then

rd � HVed

HV
�
(

σid

σid + σed

)
, d � L, T (11.47)

where the subscript d denotes the longitudinal (L) or the transverse (T) fiber direction
and σid � nd · σind with nL a unit vector along the fiber axis and nT a unit vector
transverse to the fiber axis, and similarly for σed. It follows that

σed

σid
� 1− rd

rd
. (11.48)

Measurements on dog myocardium (Roberts and Scher, 1982) find that HVeL �
74± 7 mV, HVeT � 43± 6 mV. With a typical membrane potential upstroke deflection
of HV = 100 mV, it follows that

σeL

σiL
� 0.35,

σeT

σiT
� 1.33, (11.49)

implying that myocardial tissue has unequal anisotropy ratios.

The eikonal-curvature relationship
Action potential wave fronts in the myocardium are not plane waves. To understand
the effects of cardiac geometry and fiber orientation on action potential propagation
requires numerical simulation of the bidomain equations. This task is made difficult
for a number of reasons, including the fact that the action potential upstroke is sharp,
requiring a fine spatial and temporal resolution. To overcome this restriction, it is useful
to have a model of propagation that tracks the location of the action potential upstroke
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without following the fine details of the upstroke kinetics, thereby permitting simula-
tion of the activation sequence on larger spatial domains withmuch less computational
effort.

For physiologically realistic descriptions of the dynamics of ionic currents, the
action potential front extends over only a few cell lengths, demanding a spatial grid
size on the order of the cell size. Certainly, a whole-heart simulation using several grid
points per cell is well beyond the memory capacity of most computers, and it is not
apparent that the results would justify the effort.

In Section 10.1.2 we derived the eikonal-curvature equation for waves in a ho-
mogeneous excitable medium. Because cardiac tissue is an anisotropic bidomain, the
derivation of the eikonal-curvature equation for cardiac tissue is a bit more tedious,
but essentially the same.

The eikonal-curvature model for cardiac tissue was developed and used to study
propagation in normal myocardium by a number of authors (Keener, 1986, 1991a;
Tyson and Keener, 1988; Colli-Franzone et al., 1990, 1993; Colli-Franzone and Guerri,
1993). The eikonal-curvature equation describes the evolution of a wave-front surface
in three-dimensional tissue. If S(x, t) � 0 denotes the location of an action potential
wave front, then

CmRmSt � σc0 + σ ·
(
Deff

∇S
σ

)
, (11.50)

where Deff � β2eDi + β2i De, βi � ∇S·Di∇S
∇S·D∇S , βe � ∇S·De∇S

∇S·D∇S , D � De + Di, σ2 � βeβi(∇s · D∇S),
Di � Rmσi

χ
, and De � Rmσe

χ
. The derivation of this equation is only slightly more difficult

than the derivation in Chapter 10 for a monodomain (see Keener and Panfilov, 1997).
Equation (11.50) is called the eikonal-curvature equation because of its physical

interpretation. If we ignore the diffusive term (take Deff � 0), then we have the eikonal
equation

∂S

∂t
� σc0

CmRm
. (11.51)

According to this equation, if R is a level surface of the function s(x, t) and if n is the
unit normal vector to that surface at some point, then the normal velocity of the surface
R, denoted by Rt · n, satisfies

Rt · n � J(n)c0
CmRm

. (11.52)

In other words, the front moves in the normal direction n with the plane wave velocity
(11.46) for the bidomain equations.

To assign boundary conditions for (11.50), it is assumed that the tissue is insulated,
and hence there is no current across the cardiac surface. It is further assumed that fibers
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are parallel to tissue boundaries, so that the action potential front is orthogonal to the
boundary, and this implies that

∇S · n � 0 (11.53)

on the boundary of the tissue. The initial specification for S(x, t) can be any smooth
function that has S(x,0) � 0 on the boundary of the initially stimulated region, is
positive inside the stimulated region, and is negative outside the stimulated region.

The activation sequence
The usefulness of the eikonal-curvature becomes apparent when one attempts to com-
pute the activation sequence. The activation sequence is the spatial and temporal
sequence in which the medium is activated by a wave initiated by the SA node.

Determination of the activation sequence is complicated by a number of fea-
tures. First, as mentioned above, the medium is strongly anisotropic. Further, the fiber
orientation in myocardial tissue varies through the thickness of the tissue, rotating
approximately 120 degrees from epicardium to endocardium. Additionally, the geom-
etry of the ventricles is complicated, and the initiation of action potentials occurs at
numerous places on the endocardial surface at the termini of thePurkinje fiber network.

Without belaboring the details, an example of a computed action potential acti-
vation sequence using the eikonal-curvature equation for an anisotropic medium is
shown in Fig. 11.6. Here is shown a sequence of wave-front surfaces at 20 ms intervals
following stimulation on the top surface of a slab of tissue measuring 6 cm × 6 cm ×
1 cm. The fiber orientation rotates continuously through 120 deg from top to bottom,
and the velocity of propagation along fibers was taken to be three times faster than
transverse to fibers. The most noticeable feature of these wave-front surfaces is the
distortion from elliptical that occurs because of the rotational fiber orientation. Fur-
thermore, there is a rotation of the elliptical axes, following the rotation of the fiber
axes. However, the fastest propagation is not in the longitudinal fiber direction, as the
ellipses rotate by only about 60 degrees. One can also determine (from the simulations)
that normal wave-front velocity is always slower than themaximal plane-wave velocity,
because of curvature slowing and fiber rotation.

Simulations of this type have also been done forwhole heart with realistic geometry
and fiber orientation incorporated into the conductivity tensors. An example of such is
shown in Fig. 11.7, where a cutaway section of the intact dog ventricles is shown. Data
for the geometry and fiber orientation from Hunter’s laboratory (Nielsen et al., 1991)
were incorporated into the conductivity tensors. The velocity of propagation along
fibers was taken as 0.6 mm/s, and the ratio of longitudinal to transverse velocities was
taken to be 2:1. Here, the stimulus was applied at the apex of the heart, although this is
not the normal situation. Distortions of the propagating wave front from spherical are
due primarily to the variable fiber orientation. For example, in this simulation, there
is considerable propagation delay in the mid-myocardial wall of the left ventricle. A
number of color pictures of this type can be found in Keener and Panfilov (1996).
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Figure 11.6 Action potential wave fronts at 20 ms intervals in a slab of tissue with rotational
anisotropy.

11.3 Appendix: The Homogenization of a Periodic
Conductive Domain

The homogenization technique in Chapter 7 (see also Exercise 12 in Chapter 7) was
used to find the effective diffusion coefficient for cells coupled via gap junctions. A
similar technique can be used to determine effective electrical properties of cardiac
cells.

The geometry of cardiac cells is slightly different from that described previously.We
assume that an individual cardiac cell is some small periodic subunit 6 contained in a
small rectangular box (Fig. 11.8). The rectangular box is divided into intracellular space
6i and extracellular space 6e, separated by cell membrane Sm. The cells are connected
to each other at the sides of the boxes through gap junctions, which are simply parts
of the box wall that are contiguous with intracellular space. Thus the boundary of the
cellular subunit, ∂S, is composed of two components, cell membrane Sm and sides
of the box Sb. Figure 11.8 is not intended to suggest a particular distribution of gap
junctions in the cell membrane.

In either of the intracellular or extracellular spaces, currents are driven by a poten-
tial and satisfy Ohm’s law rci � −∇φ, where rc is the cytoplasmic resistance (a scalar).
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Figure 11.7 The activation sequence in intact canine ventricles following stimulation at the
apex.

On the interior of the region, current is conserved, so that

∇2φ � 0. (11.54)

Current enters the domain only across boundaries, as a transmembrane current,
according to

n · 1
rc

∇φ � Im (11.55)

applied in the cell membrane, denoted by Sm, and where n is the outward unit normal
to the membrane boundary.

Suppose that x is the original Cartesian coordinate space. To allow for a variable
fiber structure we assume that the orientation of the rectangular boxes is slowly varying
(so that they are not exactly rectangular, but close enough), and that the axes of the
rectangular cellular boxes form a natural “fiber” coordinate system. At each point in
space the orientation of the rectangular box is determined by three orthogonal tangent
vectors, forming the rows of a matrix T(x). Then the fiber coordinate system is related
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cardiac cell.

to the original Cartesian coordinate system through

y � Y (x) �
∫
T(x)dx (11.56)

and in the y-coordinate system the Laplacian operator is

∇2φ � ∇2
y φ + κ · ∇yφ. (11.57)

The vector κ is the curvature vector, whose components are the mean curvatures of the
coordinate level surfaces. If the components of the matrix T are given by tij, then the
coordinates of κ are κj � tik

∂tij

∂xk
.

Now we take into account that the boundary of the cells is varying rapidly on the
scale of the fiber coordinate system, so we introduce the “fast” variable ξ � y

ε
, where

ε is the small dimensionless parameter ε � l
J
, l is the length of the cell, and J is the

natural length scale along fibers. We let z � y be the slow variable and assume that
κ is a function solely of z, since variations of fiber direction are not noticeable at the
cellular level.

Now we apply the homogenization technique introduced in Chapter 7. For this
particular problem, this was first done by Neu and Krassowska (1993; see also Keener
and Panfilov, 1997). Here we have a problem on two scales that we solve by making the
usual “two-variable” assumption. That is, we treat z and ξ as independent variables,
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Figure 11.9 Periodic cell structure.

and following the chain rule, write

∇z → ∇z + 1
ε
∇ξ. (11.58)

In terms of the two variables z and ξ, we wish to solve

1
ε2

∇2
ξ φ + 2

ε
∇ξ · ∇zφ + ∇2

z φ + 1
ε
κ · ∇ξφ + κ · ∇zφ � 0, (11.59)

subject to the boundary conditions

1
rc
n ·

(
1
ε
∇ξφ + ∇zφ

)
� Im(z, ξ) (11.60)

on Sm in ξ. We seek a solution that is periodic in the fast variable ξ.
The solution of this expanded partial differential equation is solved using the power

series in ε

φ(z, ξ) � P(z)+ εφ1(z, ξ)+ ε2φ2(z, ξ)+O(ε3), (11.61)

where all functions are taken to be periodic in ξ.We create a hierarchy of equations to be
solved by substituting the assumed solution form (11.61) into the governing equation
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(11.59) and collecting like powers of ε, with the result that

∇2
ξ φ1 � 0 (11.62)

∇ξ · (∇ξφ2 + ∇zφ1)+ (∇z + κ) · (∇ξφ1 + ∇zP) � 0. (11.63)

In a similar fashion we find a hierarchy of boundary conditions

1
rc
nξ · (∇ξφ1 + ∇zP) � 0 (11.64)

1
rc
nξ · (∇ξφ2 + ∇zφ1) � Im(z, ξ) (11.65)

applied on Sm, the membrane wall. Here, nξ � εn is the unit outward normal vector
normalized in units of ξ.

Now we solve this hierarchy of equations, one at a time. At this stage P(z) is not
known.However, sinceP(z) is independent of ξ, the solutionφ1 of (11.62)with boundary
condition (11.64) is of the form

φ1(z, ξ) � W(ξ) · ∇zP(z)+P1(z). (11.66)

Here, W(ξ) is a fundamental solution vector, periodic in ξ with zero surface average
value

∫
Sm
W(ξ)dSξ � 0, and it satisfies the vector partial differential equation

∇2
ξ W(ξ) � 0 (11.67)

subject to the boundary condition

nξ · (∇ξW(ξ)+ I) � 0 (11.68)

on Sm, the membrane wall. Here I is the identity matrix. This fundamental problem
separates into three independent problems for the three components ofW(ξ). Because
the governing problem is linear, we can take P1(z) � 0 without loss of generality.

According to the divergence theorem, for any differentiable vector valued function
f (ξ), ∫

6

∇ · fdVξ �
∫
∂6

nξ · f dSξ. (11.69)

Furthermore, if f (ξ) is periodic in ξ, then∫
Sb

nξ · fdSξ � 0. (11.70)

It follows that ∫
6

∇ξ · (∇ξφ2 + ∇zφ1)dVξ �
∫
Sm

nξ · (∇ξφ2 + ∇zφ1)dSξ. (11.71)

Thus, a necessary condition that (11.63) have a solution is that∫
6

1
rc
(∇z + κ) · (∇ξφ1 + ∇zP)dVξ � −

∫
Sm

Im(z, ξ)dSξ. (11.72)
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Substituting the solution (11.66) into the integral condition (11.72), we find the
condition

(∇z + κ) ·
(
1
rc

∫
6

(∇ξW(ξ)+ I)dVξ

)
∇zP � −

∫
Sm

Im(z, ξ)dSξ. (11.73)

We identify the average conductivity tensor

T � 1
rcv

∫
6

(∇ξW(ξ)+ I)dVξ, (11.74)

where v is the volume of the rectangular box containing the cell. The quantity T is the
inverse of effective resistance per unit length, a measurable quantity. We then write
(11.73) in terms of the original Cartesian coordinate variable x as

∇ · (σeff∇P) � −1
v

∫
Sm

Im(z, ξ)dSξ, (11.75)

where σeff(x) � TTT−1.
In summary, we have found φ to be of the form

φ � P(z)+ εW
(z
ε

)
· T−1∇zP(z)+O(ε2P), (11.76)

where P satisfies the averaged Poisson equation

∇ · (σeff∇P) � −1
v

∫
Sm

Im(z, ξ)dSξ. (11.77)

This homogenized solution is now readily used to derive the bidomain equations
(Section 11.2.1).

11.4 Exercises

1. Compare the solution of (11.5) with the approximation (11.6). In particular, plot
λ2g

L2
(Q+ r)

as a function of Q for different values of L

λg
.

2. Use cable theory to estimate the effective coupling resistance for cardiac cells in the lon-
gitudinal and transverse directions. Assume that cells are 0.01 cm long, 0.00167 cm wide,
χ � S/v � 2400 cm−1, Rm � 7000 6-cm2, Rc � 150 6-cm, Re � 0, with a longitudinal space
constant of 0.09 cm and transverse space constant 0.03 cm (appropriate for canine crista
terminalis). What difference do you observe with a transverse space constant of 0.016 cm
(appropriate for sheep epicardium)?

3. Show that the choice of coupling (11.8) gives a decay rate for the discrete linear model
(11.7) with Iion � −V/Rm that matches the space constant of the medium.

4. Using that the longitudinal and transverse cardiac action potential deflections are HVeL �
74 mV, HVeT � 43 mV, that the membrane potential has HV � 100 mV (independent of
direction), and that the axial speed of propagation in humans is 0.5 m/s in the longitudinal
fiber direction and 0.17 m/s in the transverse direction, determine the coefficients of the
conductivity tensors σeL

σiL
,
σeT
σiL
, and σiT

σiL
. What are these ratios in dog if the ratio of longitudinal

to transverse speeds is 2:1?
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Calcium Waves

As we discussed in Chapter 5, the concentration of intracellular calcium is often ob-
served to oscillate, with periods ranging from a few seconds to more than a minute.
However, often these oscillations do not occur uniformly throughout the cell, but are
organized into repetitive intracellular waves (Rooney and Thomas, 1993). In large cells
such as Xenopus oocytes, the intracellular waves develop a high degree of spatial or-
ganization, forming concentric circles, plane waves, and multiple spirals (Lechleiter
et al., 1991a, b; Lechleiter and Clapham, 1992). The speed of intracellular Ca2+ waves
is remarkably similar (5–20 µms−1) across a wide range of cell types (Jaffe, 1991). In
intact livers, slices of hippocampal brain tissue, epithelial and glial cell cultures, and
many other preparations, calcium waves have also been observed propagating from
cell to cell. These intercellular waves are, in general, independent of extracellular Ca2+,
and can initiate intracellular oscillations in some cell types (Sanderson et al., 1990,
1994; Charles et al., 1991, 1992; Robb-Gaspers and Thomas, 1995).

Just as the exact function of Ca2+ oscillations is not clear, neither is the function
of Ca2+ waves. It is widely believed that they enable communication from one side of
a cell to another, or between cells, and can serve to synchronize a global, multicellular,
response to a local stimulus. Nevertheless, the exact message carried by the wave is
unknown in most cases. One good example of the function of a Ca2+ wave is found in
ciliated tracheal epithelial cells and is discussed in detail later in this chapter.

Although there is controversy about the exact mechanisms by which Ca2+ waves
propagate (and it is certainly true that themechanisms differ from cell type to cell type),
it is widely believed that in many cell types, intracellular Ca2+ waves are driven by the
diffusion of Ca2+ between Ca2+ release sites. According to this hypothesis, the Ca2+

released fromoneCa2+-sensitive pool diffuses to neighboring pools and initiates further
Ca2+ release from there, via calcium-induced calcium release (Chapter 5). Repetition of
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this process can then generate an advancingwave front of high Ca2+ concentration, i.e.,
a Ca2+ wave. However, as we will see, this is not the only mechanism for the generation
of Ca2+ waves.

12.1 Waves in the Two-Pool Model

To show that Ca2+ diffusion between release sites is a possible mechanism for Ca2+

wave propagation, we consider first the two-pool model (Chapter 5). Inclusion of Ca2+

diffusion into the (nondimensional) model equations gives

εut � ε2uxx + ε(µ− u)− γf (u, v), (12.1)

εvt � f (u, v), (12.2)

where the spatial variable, x, has been scaled by ε/
√
D, D being the diffusion coefficient

of Ca2+. Although there is some difficulty in defining a diffusion coefficient of Ca2+ in
the cytosol (because Ca2+ is heavily buffered and may not obey a diffusion equation),
we ignore these complications for now, treating them in a later section. Diffusion of v
is not included in (12.2), since it is assumed that Ca2+ in the Ca2+-sensitive store is not
free to diffuse.

The two-pool model is capable of reproducing the waves observed in a variety of
cell types (Dupont and Goldbeter, 1994). By varying the parameter values, the model
can produce a wave with a sharp front and a sharp back, as is observed in cardiac
cells, as well as the smoother rise followed by a homogeneous return to steady levels,
as is observed in hepatocytes. Further, in two-dimensional space, themodel can exhibit
spiral waves similar to those observed in Xenopus oocytes (Girard et al., 1992).

Although the temporal behavior of the model can be understood by comparison
with the FitzHugh–Nagumo model, the same is not true of the model when Ca2+ dif-
fusion is included. In particular, (12.1) and (12.2) cannot be put into the same form as
the FitzHugh–Nagumo model, and therefore the previous theory of wave propagation
does not necessarily apply.

12.1.1 A Piecewise Linear Model

Just as a piecewise linear simplification of the FitzHugh–Nagumo model allows much
greater analytical understanding of the model behavior, so too does a piecewise linear
simplification of the two-pool model. We construct a piecewise linear version of the
two-pool model by replacing the nonlinear function f (u, v) by the piecewise linear
function g(u, v) such that the curve f (u, v) � 0 is approximated by the curve g(u, v) � 0
(Sneyd et al., 1993). Graphs of these two curves are shown in Fig. 12.1.

If the steady state is shifted so that the steady state is always at (0,0) for any µ, the
piecewise linear model equations are

εut � ε2uxx − εu− γg(u, v), (12.3)
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Figure 12.1 Nullclines of the two-pool model
(above) and its piecewise linear simplification
(below). The x in the upper panel denotes the po-
sition of the steady state when µ � 0.4. (Sneyd et
al., 1993, Fig. 6.)

εvt � g(u, v), (12.4)

g(u, v) �
{
β1u− v, u ≤ a,

β2 − v, u > a,
(12.5)

where a > 0 and β2 < 0 are functions of µ, and β1 > 0 is a constant.
To find a traveling wave solution, we follow a procedure similar to that described

for the piecewise linear FitzHugh–Nagumomodel, and thus the details are omitted. We
convert to the traveling wave variable ξ � x + st, where s is the wave speed, and look
for solutions u(ξ) of the form shown in Fig. 9.5. We divide the ξ axis into three regions:
region I, ξ < 0; region II, 0 < ξ < ξ1; and region III, ξ1 < ξ. We then solve (12.3)–(12.5) in
each region and determine the unknown constants by requiring continuity of u, v, and
u′ at the boundaries, i.e., at ξ � 0 and ξ � ξ1. Although the constraint equations cannot
be solved analytically when ε > 0, the solutions are easily computed numerically; a
typical result is shown in Fig. 12.2. As ε → 0, the upjumps and downjumps in the wave
become steeper, until at ε � 0, they form shocks, or discontinuities, in the wave.

The wave speed is a decreasing function of a (and thus an increasing function of
µ), and it can be shown (Exercise 2) that the traveling wave is the limit of a family of
periodic plane waves as the period tends to infinity.
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piecewise linear model. (Sneyd et al.,
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12.1.2 Numerical Study of the Nonlinear Model

Isolated traveling waves and periodic plane waves in the nonlinear model can be found
numerically, either by direct solution of the differential equations or by using a bifurca-
tion tracking program such as AUTO (Doedel, 1986). Since the isolated traveling waves
in the piecewise linear model arise as the limit of periodic plane waves as the period
tends to infinity, it is convenient to begin the numerical study of the nonlinear model
by looking for periodic plane waves.

Writing the model equations (12.1–12.2) in the traveling wave variable, ξ � x+ st,
gives

ε2u′′ − εsu′ + ε(µ− u)− γf (u, v) � 0, (12.6)

εsv′ − f (u, v) � 0. (12.7)

Periodic plane waves correspond to periodic solutions of (12.7), and these arise (at
least in this case) via Hopf bifurcations. The period T of each periodic plane wave is a
function both of s and of µ, and thus T � T(s, µ) defines a dispersion “surface” above
the (s, µ) plane. A cross-section of the dispersion surface for fixedµ gives the traditional
dispersion curve (i.e., period vs. wave speed), while a cross-section for fixed s gives the
period as a function of µ. In Fig. 12.3 we plot the locus of Hopf bifurcation points (the
Hopf curve) in the (s, µ) plane. For s greater than some critical value (here, about 1), the
two branches of the Hopf curve are connected by a branch of periodic orbits, while for
s less than the critical value, the branch of periodic orbits arising on the right branch of
the Hopf curve terminates in a homoclinic bifurcation, i.e., an isolated traveling wave.
The curve of homoclinic bifurcations is shown in Fig. 12.3 as the line labeled HC. For
each value ofµ, the faster wave is stable. As can be seen from the figure, the speed of the
isolated traveling wave increases as µ increases, as was predicted from the piecewise
linear analysis.
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Figure 12.3 The locus of Hopf bifurcations (Hopf curve) to periodic plane waves, and the curve
of infinite period waves (i.e., isolated traveling pulses labeled HC) in the two-pool model.

12.1.3 The Speed–Curvature Equation

The two-pool model for calcium waves provides another example for which the speed–
curvature relationship is different from that in (10.18) (Sneyd and Atri, 1993). The
reason for this difference is that the fronts of calcium waves in the two-pool model are
not governed by a bistable equation.

The equations governing the wave front aremodifications of (12.1), (12.2), ignoring
recovery, and are thus

ut � ∇2u− f (u, v), (12.8)

vt � f (u, v), (12.9)

where space and time have been rescaled to remove the ε dependence. As in Chapter
10, we introduce a traveling coordinate and look for translation-invariant solutions in
the wave-front coordinate. In the new coordinate system, the model equations reduce
to

uξξ − (N + κ)uξ � f (u, v), (12.10)

−Nvξ � −f (u, v), (12.11)

where N is the normal speed and κ is the curvature of coordinate lines.
We now suppose that the ordinary differential equations

uξξ − s1uξ � f (u, v), (12.12)
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−s2vξ � −f (u, v), (12.13)

have a heteroclinic trajectory whenever a special relationship between s1 and s2, de-
noted byH(s1, s2) � 0, is satisfied. In particular, plane waves occur at speed s, provided
thatH(s, s) � 0. We obtain a relationship between wave speed and curvature by setting
s1 � N + κ, s2 � N, and requiring

H(N + κ,N) � 0. (12.14)

We can find an explicit representation for the function H in the special case of
the piecewise linear model (12.5). Recalling that a is the point of discontinuity of the
function g, we let region I denote ξ ≤ 0, u ≤ a, region II denote ξ ≥ 0, u ≥ a, and look
for a wave-front solution, i.e., a solution that rises from 0 to a steady level. Then,

uI � a exp(λξ), (12.15)

Vi � β1a

1+ s2λ
exp(λξ), (12.16)

where λ is the positive root of

s2λ
2 + (1− s1s2)λ− (s1 + s2β1) � 0. (12.17)

In region II,

uII � B− (B− a) exp
(
− ξ

s2

)
, (12.18)

VII � β2 + (B− a)
(
s1

s2
+ 1

s22

)
exp

(
− ξ

s2

)
, (12.19)

for some unknown constant B. Requiring uξ and v to be continuous at ξ � 0 then gives

λas2 � B− a, (12.20)
β1a

1+ s2λ
� β2 + (B− a)

(
s1

s2
+ 1

s22

)
. (12.21)

We use (12.20) to eliminate B− a from (12.21) to obtain

β1a

1+ s2λ
� β2 + λas2

(
s1

s2
+ 1

s22

)
. (12.22)

Equations (12.17), (12.22) constitute a relationship between s1 and s2 that must
be satisfied for there to be a heteroclinic solution. As described above, replacing s1 by
N + κ and s2 by N in these equations gives a formal relationship between the normal
speed of a wave and its curvature. Numerical computations, as demonstrated in Fig.
12.4, show that waves in two dimensions satisfy this relationship.

12.2 Spiral Waves in Xenopus

In 1991, it was discovered by Lechleiter and Clapham and their coworkers that intra-
cellular Ca2+ waves in immature Xenopus oocytes showed remarkable spatiotemporal
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Figure 12.4 Speed–curvature equation for the piecewise linear two-pool model. (Sneyd and
Atri, 1993, Fig. 4.)

organization. By loading the oocytes with a Ca2+-sensitive dye, releasing IP3, and ob-
serving Ca2+ release patterns with a confocal microscope, Lechleiter and Clapham
(1992; Lechleiter et al., 1991b) observed spiral Ca2+ waves in vivo. Typical experimen-
tal results are shown in Fig. 12.5A. The crucial feature of Xenopus oocytes that makes
these observations possible is their large size. Xenopus oocytes can have a diameter
larger than 600 µm, an order of magnitude greater than most other cells. In a small
cell, a typical Ca2+ wave (often with a width of close to 100 µm) cannot be observed
in its entirety, and there is not enough room for a spiral to form. However, in a large
cell it may be possible to observe both the wave front and the wave back, as well as
spiral waves, and this has made the Xenopus oocyte one of the most important systems
for the study of Ca2+ waves. Of course, what is true for Xenopus oocytes is not nec-
essarily true for other cells, and so one must be cautious about extrapolating to other
cell types.

One common experimental procedure for initiatingwaves is to photorelease a bolus
of IP3 inside the cell and observe the subsequent Ca

2+ activity (Lechleiter and Clapham,
1992). After sufficient time, Ca2+ wave activity disappears as IP3 is degraded, but in the
short term, the observed Ca2+ activity is the result of Ca2+ diffusion and IP3 diffusion.
Another technique is to release IP3S3, a nonhydrolyzable analogue of IP3, which has a
similar effect on IP3 receptors but is not degraded by the cell. In this case, after sufficient
time has passed, the IP3S3 is at a constant concentration in all parts of the cell. Wave



340 12: Calcium Waves

Figure 12.5 A: Spiral Ca2+ wave in the Xenopus oocyte. The image size is 420 × 420 µm. The
spiral has a wavelength of about 150 µm and a period of about 8 seconds. B: A spiral wave in
the heuristic model, simulated on a domain of size 250 × 250 µm, with

[
IP3
] � 95 nM. (Atri et

al., 1993, Fig. 11.)

activity can then be observed over a period of many minutes while the background
level of IP3S3 remains constant, so that diffusion of IP3S3 has no further effect.

To model Ca2+ waves in Xenopus, we choose to use the heuristic model (Chapter
5), as this model is based on experimental data from Xenopus. However, any of the
other models would give qualitatively similar results. We extend (5.42) and (5.41) by
the addition of Ca2+ diffusion, and the diffusion and degradation of IP3. Thus,

∂p

∂t
� Dp∇2p− kpp, (12.23)

∂c

∂t
� Dc∇2c+ kf

(
µ0 + µ1p

p+ kµ

)(
b+ (1− b)c

k1 + c

)
h− γc

kγ + c
+ β, (12.24)

τh
dh

dt
� k22

k22 + c2
− h. (12.25)

Dp and Dc are the diffusion coefficients of IP3 and Ca
2+, respectively.

Equations (12.23)–(12.25) were solved on a square domain with no-flux boundary
conditions. The use of IP3 was modeled by setting kp � 0.2 s−1, while the use of IP3S3
was modeled by setting kp � 0. Standard parameters of the Ca2+ wave model are given
in Table 12.1.When a bolus of IP3S3 is released in themiddle of the domain, it causes the
release of a large amount of Ca2+ at the site of the bolus. The IP3S3 then diffuses across
the cell, releasing Ca2+ in the process. Activation of IP3 receptors by the released Ca2+
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Table 12.1 Standard parameters of the model of Ca2+ waves. One important point to note is
the difference between Dp and Dc . Although IP3 is a much larger molecule than Ca2+, it diffuses
faster through the cell because it is not buffered (Allbritton et al., 1992).

b � 0.11 kf � 8.1 µMs−1

β � 0.02 µMs−1 Dp � 300 µm2s−1

γ � 2 µMs−1 Dc � 20 µm2s−1

τh � 2 s kp � 0 − 0.2 s−1

k1 � 0.7 µM kµ � 4 µM

k2 � 0.7 µM µ0 � 0.567

kγ � 0.1 µM µ1 � 0.433

can lead to periodic Ca2+ release from the stores, and the diffusion of Ca2+ between IP3
receptors serves to stabilize the waves, giving regular periodic traveling waves. These
periodic waves are the spatial analogues of the oscillations seen in the temporal model,
and arise from the underlying oscillatory kinetics. After sufficient time, [IP3S3] is at the
same level throughout the entire cell, a level that is dependent on howmuch was added
in the original bolus. We saw before that if [IP3] is in the appropriate range, the model
has a stable limit cycle. Thus, if [IP3S3] is in this intermediate range over the entire cell,
every part of the cell cytoplasm is in an oscillatory state. It follows from the standard
theory of reaction–diffusion systems with oscillatory kinetics (see, for example, Kopell
and Howard, 1973; Duffy et al., 1980; Neu, 1979; Murray, 1989) that periodic and spiral
waves can exist for these values of [IP3S3]. When IP3, rather than IP3S3, is released,
the wave activity lasts for only a short time, which is consistent with the theoretical
results. When the wave front is broken, a spiral wave of Ca2+ often forms (Fig. 12.5B).
Depending on the initial conditions, these spiral waves can be stable or unstable. In the
unstable case, the branches of the spiral can intersect themselves and cause breakup
of the spiral, in which case a region of complex patterning emerges in which there is
no clear spatial structure (McKenzie and Sneyd, 1998).

12.3 Calcium Buffering

Calcium is heavily buffered in all cells, with about 99% of the available Ca2+ bound to
large proteins. The chemical reaction for calcium buffering can be represented by the
reaction

P+ Ca2+
k+
−→←−
k−

B, (12.26)
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where P is the buffering protein and B is buffered calcium. If we let b denote the
concentration of buffer with Ca2+ bound, and c the concentration of free Ca2+, then a
simple model of calcium buffering is

∂c

∂t
� Dc∇2c+ f (c)+ k−b− k+c(bt − b), (12.27)

∂b

∂t
� Db∇2b− k−b+ k+c(bt − b), (12.28)

where k− is the rate of Ca2+ release from the buffer, k+ is the rate of Ca2+ uptake by
the buffer, bt is the total buffer concentration, and f (c) denotes all the other reactions
involving free Ca2+ (for example, release from the IP3 receptors, reuptake by pumps,
etc.).

12.3.1 Buffers with Fast Kinetics

If the buffer has fast kinetics, its effect on the intracellular Ca2+ dynamics can be
analyzed simply. For if k− and k+ are large compared to the time constant of calcium
reaction, then we take b to be in the quasi-steady state

k−b− k+c(bt − b) � 0, (12.29)

and so

b � btc

K + c
, (12.30)

where K � k−/k+. It follows that

∂c

∂t
+ ∂b

∂t
� (1+ θ)

∂c

∂t
, (12.31)

where

θ � btK

(K + c)2
. (12.32)

Combining (12.31) with (12.27) and (12.28), we obtain

∂c

∂t
� 1
1+ θ

(
∇2
(
Dcc+Dbbt

c

K + c

)
+ f (c)

)
(12.33)

� Dc +Dbθ

1+ θ
∇2c− 2Dbθ

(K + c)(1+ θ)
|∇c|2 + f (c)

1+ θ
. (12.34)

Note that we are assuming that bt is a constant, and doesn’t vary in either space or
time.

We see that nonlinear buffering changes the model significantly. In particular, Ca2+

obeys a nonlinear diffusion–advection equation, where the advection is the result of
Ca2+ transport by a mobile buffer (Wagner and Keizer, 1994). Notice that the effective
diffusion coefficient is a convex linear combination of the two diffusion coefficients Dc
and Db, and so lies somewhere between the two. Since buffers are large molecules, the
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effective diffusion coefficient is decreased from that of unbuffered diffusion. Note also
that if the buffer is not mobile, i.e., Db � 0, then (12.34) reverts to a reaction–diffusion
equation, with a reduced diffusion coefficient. Also, when Ca2+ gradients are small, the
nonlinear advective term can be ignored (Irving et al., 1990). Finally, the buffering also
affects the qualitative nature of the nonlinear reaction term, f (c), which is divided by
1+ θ, a function of c (12.32). This may change many properties of the model, including
oscillatory behavior and the nature of wave propagation.

To facilitate numerical simulations, the calcium and buffer concentrations are
scaled by the approximate cytoplasmic calcium concentration at the peak of a wave,
c0 � 1 µM. Although this does not change the numerical values of any parameters, it is
important to keep in mind that c never gets much larger than c0 and is usually consid-
erably smaller. Typical parameter values are (Allbritton et al., 1992) Dc � 300 µm2s−1,
Db � 50 µm2s−1, bt � 150, and K � 10, where bt and K have both been scaled by c0
and are thus dimensionless. In some cells, such as the Xenopus oocyte, K is as large as
10 (Allbritton et al., 1992), but in other cells it can be considerably smaller.

Despite the complexity of (12.34) it retains the advantage of being a single equation.
However, if the buffer kinetics are not fast relative to the Ca2+ kinetics, the only way to
proceed is with numerical simulations of the complete system, a procedure followed
by a number of groups (Backx et al., 1989; Sala and Hernández-Cruz, 1990; Nowycky
and Pinter, 1993).

12.3.2 The Existence of Buffered Waves

Since the presence of fast Ca2+ buffers changes the nature of the Ca2+ transport equa-
tion, it is of considerable interest to determine howCa2+ buffering affects the properties
of waves. For instance, can the addition of a buffer eliminate wave activity? Howmuch
do buffers affect the speed of traveling waves? Does the addition of exogeneous buffer,
such as a fluorescent Ca2+ dye, affect the existence or the speed of the Ca2+ waves?
First, we address the question of whether buffers can eliminate wave activity.

The form of (12.33) suggests the change of variables

w � Dcc+Dbbt
c

K + c
, (12.35)

so that w is a monotone increasing function of c, since

dw

dc
� Dc +Dbθ(c). (12.36)

The unique inverse of this function is denoted by

c � φ(w). (12.37)

In terms of w, (12.33) becomes

∂w

∂t
� Dc +DbU

1+U

(
∂2w

∂x2
+ f (φ(w))

)
, (12.38)
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where U � btK

(K+φ(w))2 .
Now,we assume that f (c) is of bistable form,with three zeros,C1 < C2 < C3, ofwhich

C1 and C3 are stable. It immediately follows that f (φ(w)) has three zerosW1 < W2 < W3,
with W1 and W3 stable. The proof of existence of a traveling wave solution for (12.38)
uses exactly the same arguments as that for the bistable equation presented inChapter 9
(Sneyd et al., 1998). It follows that a travelingwave-front solution providing a transition
fromW1 toW3 exists if and only if∫ W3

W1

f (φ(w))dw > 0. (12.39)

Using (12.36), we write this condition in terms of c as∫ C3

C1

f (c)(Dc +Dbθ(c))dc > 0. (12.40)

In general, this integral cannot be evaluated explicitly. However, for the simple case
of cubic bistable kinetics f (c) � c(1 − c)(c − a), 0 < a < 1/2, explicit evaluation of the
integral (12.40) shows that traveling waves exist if and only if

a < ac � 1
2

Dc − 12DbbtK[(3K2 + 2K) ln(K+1
K
)− (3K + 1

2 )]

Dc + 12DbbtK[(K + 1
2 ) ln(

K+1
K
)− 1] . (12.41)

One conclusion that can be drawn immediately from (12.40) is that a stationary
buffer (i.e., one withDb � 0) has no effect on the existence of traveling waves. For when
Db � 0, the condition (12.40) for the existence of the traveling wave reduces to∫ 1

0
f (c)dc > 0, (12.42)

which is exactly the condition for the existence of a wave in the absence of a buffer.
Hence a stationary buffer, no matter what its kinetic properties, cannot eliminate Ca2+

waves. This conclusion is valid even if the calcium release is discrete (see Exercise 9).
Note that ac is a monotonically decreasing function of Dbbt/Dc, and

ac → ac,min(K) � −1
2

[(3K2 + 2K) ln(K+1
K
)− (3K + 1

2 )]

[(K + 1
2 ) ln(

K+1
K
)− 1] as Db → ∞. (12.43)

In Fig. 12.6 we give a plot of ac,min(K) against K. When K is large, the minimum value
of ac is close to 0.5, and thus wave existence is insensitive to Db. However, when K is
small, ac can also become small as Db increases, and so in this case, a mobile buffer
can easily stop a wave.

12.3.3 The Shape and Speed of Buffered Waves

The question of wave speed and shape is much more difficult and is not completely
solved. It is not known exactly how general buffers affect the wave speed and shape in
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Figure 12.6 Plot of ac,min against K .

the FitzHugh–Nagumomodel, far less inmore general Ca2+ wavemodels, and this is an
area of current research. However, some results for simpler models may be obtained.

Let γ � bt/K and ε � 2/K. When ε is small, then θ � γ(1 − εc) + O(ε2), and we can
expand the differential equation (12.34) in powers of ε, retaining only the leading-order
terms. To lowest order in ε, the buffered equation in one spatial dimension is

∂c

∂t
� Deff

∂2c

∂x2
+ f (c)
1+ γ

, (12.44)

where the effective diffusion coefficient Deff < Dc is given by

Deff � Dc +Dbγ

1+ γ
. (12.45)

Rescaling time by 1+ γ and space by
√
Dc +Dbγ, we see that if the unbuffered system

has a wave of speed s
√
Dc, the buffered system has a wave of speed

s

√
Dc + γDb

1+ γ
. (12.46)

In particular, for the buffered bistable equation (i.e., f (c) � c(1− c)(c− a)) we get

s � (1− 2a)
1+ bt/K

√
Dc +Dbbt/K

2
. (12.47)

Hence, the wave speed is an increasing function of Db for K sufficiently large.
Recall from Chapter 9 that the heteroclinic orbit corresponding to the traveling

wave solution of the bistable equation must leave in the direction of the unstable man-
ifold at the origin and enter along the direction of the stable manifold at c � 1. It
follows that the slope λu of the heteroclinic orbit at the origin must be the positive root
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of

λ2u −
(

s

φ1(0)

)
λu − φ3(0)a

φ1(0)
� 0, (12.48)

where

φ1(c) � Dc +Dbθ(c)
1+ θ(c)

, (12.49)

φ3(c) � 1
1+ θ(c)

. (12.50)

Similarly, if λs is the slope of the heteroclinic orbit at (1,0), then λsmust be the negative
root of

λ2s −
(

s

φ1(1)

)
λs − φ3(1)(1− a)

φ1(1)
� 0. (12.51)

Although (12.47) was derived only for the case when K is large, it turns out to be
approximately correct for K small also. The reason for this is not clear, but the fact can
be used to derive an approximate expression for the wave front when K is small. For if
s is given approximately by (12.47), one can construct approximate expressions for λu
and λs in terms of the model parameters, and then use these expressions to construct
an approximation to the wave front (Exercise 10).

However, what is more interesting is the shape of the wave. When K is large, λu ≈
−λs, and thus the rate at which the traveling wave rises is the same as the rate at
which it saturates to its maximum value of 1. However, as K decreases, this symmetry
is lost, until, for example, when K � 0.1, λu � 0.09 and λs � −0.99. Thus, the buffered
traveling wave has a noticeably different shape from that of the unbuffered traveling
wave, as illustrated in Fig. 12.7. The buffered wave has a slow rise and a fast saturation,
while the unbuffered wave is symmetrical around the midpoint. Since both λu and λs
are easily measured experimentally, this provides a convenient way to determine the
effects of buffers on the observedwaves. InXenopus oocytes, for example, experimental
measurements show that the traveling waves are symmetrical about their midpoints.
Thus, the theory predicts that the Ca2+ buffers in Xenopus have a large effective K
value. This indeed turns out to be the case; experimental measurements in Xenopus
give a value for K of around 10, which is consistent with the theoretical prediction.
As yet, the theory has not been applied to other cell types, nor has it been extended to
more complex models.

12.4 Discrete Calcium Sources

Skeletal muscle and cardiac cells are invaded by T-tubules (T for transverse), which
allow communication with the extracellular space (see Fig. 18.1 in Chapter 18). T-
tubules have voltage-dependent calcium channels allowing the influx of calcium into
the cell in response to an action potential. Directly opposite the calcium channels are
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the ryanodine receptors, through which additional calcium is released from terminal
sarcoplasmic reticulum. Uptake of calcium into the SR is via calcium ATPases, which
are uniformly distributed along the junctional SR. The physical arrangement of cal-
cium release sites means that in these cell types it may not be appropriate to view the
release of calcium as spatially uniform. In cardiac cells, calcium waves do not nor-
mally propagate without T-tubule stimulus. Thus, the discreteness of calcium release
sites prevents the spontaneous propagation of a calcium wave, which would lead to
spontaneous (uncontrolled) muscular contraction. One can also imagine situations in
which the discreteness of release sites could have major negative consequences. For
example, in hypertension, cardiac cells compensate for increased pressure by growing
larger (hypertrophy). It is possible that in this hypertrophied state, the separation be-
tween T-tubules and ryanodine receptors is increased, leading to less effective coupling
between action potentials and calcium release, and impaired contraction (Yue, 1997).

Here we examine the possibility of propagation of an intracellular calcium wave,
propagating discretely, from one ryanodine receptor to the next, without the benefit of
stimulus from an action potential. To explore this possibility, we assume that calcium
is released from discrete release sites but is removed continuously, and so we consider
the equation for calcium concentration

∂c

∂t
� Dc

∂2c

∂x2
− kc+ L

∑
n

δ(x− nL)f (c). (12.52)

The function f is your favorite (bistable) description of calcium release, and L is the
spatial separation between release sites. Notice that the average spatial calcium release
is normalized to be independent of L.

Waves of this type fail to propagate if there is a standing wave solution. Standing
waves for (12.52) satisfy

0 � Dc
∂2c

∂x2
− kc+ L

∑
n

δ(x− nL)f (c). (12.53)
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On the intervals nL < x < (n+ 1)L, this becomes

0 � Dc
∂2c

∂x2
− kc. (12.54)

We find jump conditions at x � nL by (formally) integrating from nL− to nL+ to obtain

Dccx|nL+
nL− + Lf (cn) � 0, (12.55)

where cn � c(nL).
Now we solve (12.54) to obtain

c(x) � (cn+1 − cn cosh β)
sinh

(
βx

L

)
sinh β

+ cn cosh
(
βx

L

)
(12.56)

where cn � c(nL), β2 � kL2

D
, so that

cx(nL+) � (cn+1 − cn cosh β)
β

L sinh β
. (12.57)

Similarly,

cx(nL−) � −(cn−1 − cn cosh β)
β

L sinh β
. (12.58)

It follows that (12.55) is the difference equation

k

β sinh β
(cn+1 − 2cncoshβ + cn−1)+ f (cn) � 0, (12.59)

which is a difference equation for cn that has standing wavelike solutions if β is
sufficiently large. For a different approach to this problem, see Keizer et al. (1998).

12.5 Intercellular Calcium Waves

In many cell types, a mechanical stimulus (for instance, poking a single cell with a
micropipette) can initiate a wave of increased intracellular Ca2+ that spreads from
cell to cell to form an intercellular wave (Sanderson et al., 1994). Typical experimental
results from airway epithelial cells are shown in Fig. 12.8. The epithelial cell culture
forms a thin layer of cells, connected by gap junctions. When a cell in the middle of the
culture is mechanically stimulated, the Ca2+ in the stimulated cell increases quickly.
After a time delay of a second or so, the neighbors of the stimulated cell also show
an increase in Ca2+, and this increase spreads sequentially through the culture. An
intracellular wave moves across each cell, is delayed at the cell boundary, and then
initiates an intracellular wave in the neighboring cell. The intercellular wave moves via
the sequential propagation of intracellular waves. Of particular interest here is the fact
that in the absence of extracellular Ca2+, the stimulated cell shows no response, but an
intercellular wave still spreads to other cells in the culture. It thus appears that a rise
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Figure 12.8 Mechanically stimulated intercellular wave in airway epithelial cells. The time after
mechanical stimulation is given in seconds in the lower right corner of each panel. (Sneyd et
al., 1995b, Fig. 4A.)

in Ca2+ in the stimulated cell is not necessary for wave propagation. Neither is a rise in
Ca2+ sufficient to initiate an intercellular wave. For example, epithelial cells in culture
sometimes exhibit spontaneous intracellular Ca2+ oscillations, and these oscillations
do not spread from cell to cell. Nevertheless, a mechanically stimulated intercellular
wave does spread through cells that are spontaneously oscillating.

Little is known about the physiological importance of these intercellular Ca2+

waves, although educated guesses can bemade. Airway epithelial cells have cilia, whose
function is to move mucus along the trachea. The rate at which cilia beat is closely re-



350 12: Calcium Waves

+

IP3

+Ca2+

+

IP3 diffusion

+

Mechanical stimulation

IPR

GJ

ER

Ca2+ Ca2+ Ca2+

Figure 12.9 Schematic diagram of the model of intercellular Ca2+ waves. GJ: gap junction;
ER: endoplasmic reticulum; IPR: IP3 receptor.

lated to the concentration of intracellular Ca2+ in the cell; as [Ca2+] goes up, so does
the ciliary beat frequency. Hence, the intercellular wave could be one way in which a
group of ciliated cells coordinates a rise in beat frequency over the entire group. This
would have the advantage that if one cell is mechanically stimulated by a foreign object
in the airway, it could initiate faster ciliary beating in that cell and all its neighbors,
which would serve to clear the airway more efficiently. However, despite the plausibil-
ity of this hypothesis, it remains conjectural. In nonciliated cells such as glial cells, or
endothelial cells, the physiological purpose of the calcium wave is even less clear.

Sanderson and his colleagues (Boitano et al., 1992; Sanderson et al., 1994; Sneyd et
al., 1994, 1995a,b) proposed amodel of intercellularCa2+waves (Fig. 12.9) based on this
and other experimental evidence. They proposed that mechanical stimulation causes
the production of large amounts of IP3 in the stimulated cell, and this IP3 moves through
the culture by passive diffusion, moving from cell to cell through gap junctions. Since
IP3 releases Ca

2+ from the endoplasmic reticulum (as described in detail in Chapter
5), the diffusion of IP3 from cell to cell results in a corresponding intercellular Ca2+

wave. Since experimental results indicate that the movement of Ca2+ between cells
does not play a major role in wave propagation, the model assumes that intercellular
movement of Ca2+ is negligible. Relaxation of this assumptionmakes little difference to
the model behavior, as it is the movement of IP3 through gap junctions that determines
the intercellular wave properties.

Model equations
In the model, the epithelial cell culture is modeled as a square grid of square cells. It is
assumed that IP3 moves by passive diffusion and is degraded with saturable kinetics.
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Thus, if p denotes [IP3], then

∂p

∂t
� Dp∇2p− Vppkp

kp + p
. (12.60)

When p � kp, p decays with time constant 1/Vp. Ca
2+ is also assumed to move by

passive diffusion, but it is released from the endoplasmic reticulum (ER) by IP3 and
pumped back into the ER by Ca2+ ATPase pumps. The equations are

∂c

∂t
� Dc∇2c+ Jflux − Jpump + Jleak, (12.61)

τh
dh

dt
� k22

k22 + c2
− h, (12.62)

Jflux � kf µ(p)h
[
b+ (1− b)c

k1 + c

]
, (12.63)

Jpump � γc2

k2γ + c2
, (12.64)

Jleak � β, (12.65)

µ(p) � p3

k3µ + p3
. (12.66)

These are essentially the same as those of the heuristic model, described in detail
in Chapter 5, and in equations (12.23)–(12.25). As before, Jflux refers to the flux of
Ca2+ through the IP3 receptors in the ER membrane and is a function of p, c, and
a slow variable h, which denotes the proportion of IP3 receptors that have not been
inactivated by Ca2+. Similarly, Jpump denotes the removal of Ca2+ from the cytoplasm
by Ca2+ ATPases in the ER membrane. Jleak is an unspecified leak of Ca2+ into the
cytoplasm, either from outside the cell or from the ER. However, there are some minor
differences between the heuristic model and the present one. For instance, to obtain
better agreement with experimental evidence (Lytton et al., 1992), the Ca2+ pump that
removes Ca2+ from the cytoplasm is assumed to have a Hill coefficient of 2, while the
activation of the IP3 receptor, described by the term µ(p) is assumed to have a Hill
coefficient of 3. Values of the model parameters are given in Table 12.2.

Finally, the internal boundary conditions are given in terms of the flux of IP3 from
cell to cell. If cell n has [IP3] � pn, it is assumed that the flux of IP3 from cell n to cell
n+ 1 is given by F(pn − pn+1).

Numerical results
Initially, a single cell was injected with IP3, which was then allowed to diffuse from cell
to cell, thereby generating an intercellular Ca2+ wave. Figure 12.10 shows a density
plot of a numerical solution of the model equations in two dimensions. An intercellu-
lar wave can be seen expanding across the grid of cells and then retreating as the IP3
degrades. As expected for a process based on passive diffusion, the intracellular wave
speed (i.e., the speed at which the intercellular wave moves across an individual cell)



352 12: Calcium Waves

Table 12.2 Parameters of the model of intercellular Ca2+ waves.

kf � 3 µMs−1 b � 0.11

k1 � 0.7 µM k2 � 0.7 µM

τh � 0.2 s kγ � 0.27 µM

γ � 1 µMs−1 β � 0.15 µMs−1

kµ � 0.01 µM Vp � 0.08 s−1

kp � 1 µM F � 2 µms−1

Dc � 20 µm2s−1 Dp � 300 µm2s−1

decreases with distance from the stimulated cell, and the arrival time and the intercel-
lular delay increase exponentially with distance from the stimulated cell. For the values
chosen for F, ranging from 1 to 8 µms−1, the model agrees well with experimental data
from endothelial and glial cells (Demer et al., 1993; Charles et al., 1992). Although it is
not possible to compare the model exclusively to data from epithelial cells, the agree-
ment with data from other cell types indicates that the model provides a reasonable
quantitative description of the intercellular wave. However, the most important model
prediction is the value of F needed to obtain such agreement. If F is lower than about 1
µms−1, the intercellular wave moves too slowly to agree with experimental data. Since
the actual value of F is unknown, this prediction provides away inwhich the underlying
hypothesis (of passive diffusion of IP3) may be tested.

12.6 Exercises
1. Construct the traveling wave solution of the piecewise linear version of the two-pool model

as ε → 0. Show that the traveling wave in this case exhibits two shocks. Using the solution
for ε � 0 as a starting point, find the solution for small but nonzero ε and plot the wave
solution. Compare to the solution when ε � 0. Compare to the solution obtained by solving
the differential equations numerically.

2. Construct a family of periodic plane-wave solutions to the piecewise linear two-pool model.
Show that the traveling wave obtained in Section 12.1.1 is the limit of this family of periodic
plane waves as the period tends to infinity.

3. Convert the model in Section 12.2 (i.e., the model for Ca2+ waves based on the heuris-
tic IP3 receptor model) to traveling wave coordinates, find the points of Hopf bifurcation
to periodic plane waves, and plot cross-sections of the dispersion surface. Are there any
homoclinic bifurcations to traveling waves?

4. Construct the piecewise exponential solution to (12.8) and (12.9) in one space dimension.
Show that the wave without recovery travels at the same speed as the wave with recovery
and satisfies the same existence condition.
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Figure 12.10 Density plot of a two-dimensional intercellular Ca2+ wave, computed numerically
from the intercellular Ca2+ wave model. (Sneyd et al., 1995a, Fig. 4.)

5. Show that (12.20) and (12.21) with s1 � N + k and s2 � N have two solutions for N that
appear in a tangent bifurcation as κ is decreased.

6. Generalize (12.34) to the case of multiple buffers, both mobile and immobile.

7. Verify the details of the proof that (12.38) has a traveling wave solution that is a transition
betweenW1 andW3 if and only if ∫ W3

W1

f (φ(w))dw > 0. (12.67)

8. By looking for solutions to (12.27) and (12.28) of the form c � A exp(ξ/λ), b � B exp(ξ/λ),
where λ is the space constant of the wave front and ξ � x + st, show that the speed of the
wave s is related to the space constant of the wave front by

s � Dc

λ
+ λ

[
f ′(0)− k+bt(λs−Db)

λ2k− + λs−Db

]
. (12.68)

What is the equation in the limit k+, k− → ∞, with k−/k+ � K? Hence show that for the
generalized bistable equation,

λs < Deff . (12.69)

9. Suppose the source term f (c) for the calcium buffering system in (12.27) is replaced by the
discrete source term L

∑
n δ(x − nL)f (c). Look for standing-wave solutions of the resulting



354 12: Calcium Waves

fast buffering system and show that the equation for standing solutions can be reduced to
the finite difference equation of the form

wn+1 − 2wn +wn−1 + L2f (φ(wn)) � 0, (12.70)

where φ(w) satisfies w � Dcφ − Dbbt
K

K+φ . What conclusions can you draw about the effect
of buffering on propagation when calcium is released from discrete sites?

10. Use (12.48), (12.51), and (12.47) to construct an approximate expression for the traveling
wave profile for the buffered bistable equation. Proceed by constructing a trajectory in the
c, c′ phase-plane, connecting the origin to (1,0) such that it has slope λu at the origin and
slope λs at (1,0). Then integrate to get

1
λu
ln(c)+ 1

λs
ln(1− c)+ λu + λs

λuλs
ln
(
c− λu

λu + λs

)
� ξ. (12.71)

11. Repeat the analysis of 12.3.1, without assuming that bt is constant. Under what conditions
may we assume that bt is constant?
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Regulation of Cell Function

The regulation of a cell’s activity all takes place within its nucleus. Within the nucleus
there are nucleic acids, which control the production of proteins necessary for cell
function. The nucleic acids are large polymers of smaller molecular subunits called
nucleotides, which themselves are composed of three basic molecular groups,

• a nitrogenous base, which is an organic ring containing nitrogen,
• a 5-carbon (pentose) sugar, either ribose or deoxyribose,
• an inorganic phosphate group.

Nucleotides may differ in the first two of these components, and consequently there
are two specific types of nucleic acids, deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA).

Theremay be any one of five different nitrogenous bases present in the nucleotides:
adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U). These are most often
denoted by the letters A, C, G, T, and U, rather than by their full names.

TheDNAmolecule is a longdouble strandof nucleotide bases,which canbe thought
of as a twisted, or helical, ladder. The backbone (or sides of the ladder) is composed of
alternating sugar and phosphate molecules, the sugar, deoxyribose, having one fewer
oxygen atom than ribose. The “rungs” of the ladder are complementary pairs of ni-
trogenous bases, with G always paired with C, and A always paired with T. The bond
between pairs is a weak hydrogen bond that is easily broken and restored during the
replication process.

The ordering of the base pairs along the DNA molecule is called the genetic code,
because it is this ordering of symbols from the four-letter alphabet of A, C, G, and T
that controls all cellular biochemical functions. The nucleotide sequence is organized
into code triplets, called codons, which code for amino acids as well as other signals,
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such as “start manufacture of a protein molecule” and “stop manufacture of a protein
molecule.” Segments of DNA that code for a particular product are called genes, of
which there are about 100,000 in human DNA. Typically, a gene contains start and stop
codons as well as the code for the gene product, and can include large segments of DNA
whose function is unclear. One of the simplest known living organisms, Mycoplasma
genitalian, has 470 genes and about 500,000 base pairs.

An RNA molecule is a single strand of nucleotides. It is different from DNA in that
the sugar in the backbone is ribose, and the base U is substituted for T. Cells generally
contain two to eight times as much RNA as DNA. There are three types of RNA, each
of which plays a major role in cell physiology. For our purposes here, messenger RNA
(mRNA) is the most important, as it carries the code for the manufacture of specific
proteins. Transfer RNA (tRNA) acts as a carrier of one of the twenty amino acids that are
to be incorporated into a protein molecule that is being produced. Finally, ribosomal
RNA constitutes about 60% of the ribosome, a structure in the cellular cytoplasm on
which proteins are manufactured.

The two primary functions that take place in the nucleus are the reproduction
of DNA and the production of RNA. RNA is formed by a process called transcrip-
tion, as follows. An enzyme called RNA polymerase (or, more precisely, a polymerase
complex, as many other proteins are also needed) attaches to some starting site on
the DNA, breaks the bonds between base pairs in that local region, and then makes
a complementary copy of the nucleotide sequence for one of the DNA strands. As
the RNA polymerase moves along the DNA strand, the RNA molecule is formed, and
the DNA crossbridges reform. The process stops when the RNA polymerase reaches a
transcriptional termination site and disengages from the DNA.

Proteins are manufactured employing all three RNA types. After a strand of mRNA
that codes for some protein is formed in the nucleus, it is released to the cytoplasm.
There it encounters ribosomes that “read” the mRNA much like a tape recording. As a
particular codon is reached, it temporarily binds with the specific tRNA with the com-
plementary codon carrying the corresponding amino acid. The amino acid is released
from the tRNA and binds to the forming chain, leading to a protein with the sequence
of amino acids coded for by the DNA.

Synthesis of a cellular biochemical product usually requires a series of reactions,
each of which is catalyzed by a special enzyme. In prokaryotes, formation of the nec-
essary enzymes is often controlled by a sequence of genes located in series on the DNA
strand. This area of the DNA strand is called an operon, and the individual genes within
the operon are called structural genes. At the beginning of the operon is a segment called
a promoter, which is a series of nucleotides that has a specific affinity for RNA poly-
merase. The polymerase must bind with this promoter before it can begin traveling
along the DNA strand to synthesize RNA. In addition, in the promoter region, there
is an area called a repressor operator, where a regulatory repressor protein can bind,
preventing the attachment of RNA polymerase, thereby blocking the transcription of
the genes of the operon. Repressor protein generally exists in two allosteric forms, one
that can bind with the repressor operator and thereby repress transcription, and one
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that does not bind. A substance that changes the repressor so that it breaks its bond
with the operator is called an activator, or inducer.

13.1 The lac Operon

To illustrate how these reactions can all work together to regulate cell function, we
give a simple description of the utilization of lactose by the bacterium Escherichia
coli (E. coli). Lactose is not generally available to E. coli as a food substrate, so the
bacterium does not usually synthesize the enzymes necessary for its metabolic use,
although they are available in very small quantities. However, there is an operon, called
the lac operon, normally turned off, that codes for the three enzymes β-galactoside
permease, β-galactosidase, and β-thiogalactoside acetyl transferase. If the bacterium is
exposed to lactose, the permease mediates the transport of lactose into the cell, and
β-galactosidase isomerizes lactose into allolactose (an allosteric isomer of lactose),

lactose+ E −→←− allolactose+ E, (13.1)

and also into simple hexose sugars, glucose and galactose,

lactose+ E −→←− glucose+ galactose+ E, (13.2)

that can be metabolized for energy. The allolactose binds with a repressor molecule
to keep it from repressing the production of mRNA. Thus, production of allolactose
turns on the production of mRNA, which then leads to production of more enzyme,
enabling the conversion of more lactose to allolactose. Hence we have the potential for
an autocatalytic reaction. (The function of the transferase is not known.)

A mathematical model for this process is similar to a model of Griffith (1971) (see
Exercise 2) and uses familiar principles. We suppose that the production of the enzyme
is turned on by m molecules of the product allolactose, denoted by P, according to

G+mP
k1

−→←−
k−1

X,

where G is the inactive, or repressed, state of the gene, and X is the induced, or active,
state of the gene.

Normally we would use the law of mass action to write an equation for the pro-
duction of enzymes. Here, however, there is only one gene, and so we must invent a
different argument. Notice that in a large population of genes, the percentage of genes
in the active state at any time is given by the chemical equilibrium

p � [P]m

kmeq + [P]m , (13.3)
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where kmeq � k−1/k1. Thus, p is the average production rate of a single “typical” gene, so
that the average production of mRNA is described by the differential equation

dM

dt
� M0 + k1[P]m

kmeq + [P]m − k2M, (13.4)

where M is the concentration of mRNA that codes for the enzymes. The term M0 is
added here because trace amounts of mRNA are produced simply because the bind-
ing of the repressor site is a stochastic process with random fluctuations, even in the
absence of allolactose, allowing the production of small amounts of mRNA.

We next assume that the enzymes are produced at a rate linearly proportional to
available mRNA and are degraded, so that the concentrations of enzymes permease
(denoted E1) and β-galactosidase (denoted E2) are determined by

dE1

dt
� c1M− d1E1, (13.5)

dE2

dt
� c2M− d2E2. (13.6)

Since their codes are part of the samemRNA, the production rates of E1 and E2 are the
same (c1 � c2). Lactose that is exterior to the cell, with concentration S0, is brought into
the cell to become the lactose substrate, with concentration S, at a Michaelis–Menten
rate proportional to E1, via

dS0

dt
� −σ0E1 S0

k0 + S0
. (13.7)

Once inside the cell, lactose substrate is converted to allolactose, and then allolactose
is converted to glucose and galactose via enzymatic reaction with β-galactosidase, so
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Figure 13.1 Control sites and control states for the lac operon.
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that

dS

dt
� σ0E1

S0

k0 + S0
− σ1E2

S

ks + S
(13.8)

and

d[P]
dt

� σ1E2
S

ks + S
− σ2E2

[P]
kp + [P] . (13.9)

This is a simplification of the full reaction mechanism, but it is adequate for our
purposes here.

We expect this system of equations to have a biochemical switch to turn on the
production of enzymes and then to switch it off when there is no more lactose to
convert. To uncover this behavior we make a few simplifying assumptions. First, we
take the mRNA to be in quasi-steady state, so that

M � k1

k2

(
[P]m

kmeq + [P]m
)

+ M0

k2
. (13.10)

Second, the decay rates d1 and d2 include effects of degradation of enzyme and dilution
because of increase in cell volume from cell growth. Typically, enzyme degradation is
slow compared to cell growth, so it is reasonable to take d1 � d2, so that

dE1

dt
� c1M0

k2
+ c1k1

k2

(
[P]m

kmeq + [P]m
)

− d1E1 (13.11)

and E2 � E1. Next we assume that there is no delay in the conversion of the lactose
substrate into allolactose. This allows us to eliminate (13.8) and replace (13.9) with

d[P]
dt

� σ0E1
S0

k0 + S0
− σ2E1

[P]
kp + [P] . (13.12)

The three equations (13.7), (13.11), and (13.12) form a closed system.We introduce
dimensionless variables S0 � k0s, [P] � kpp, E1 � e0e, and t � t0τ to obtain

de

dτ
� m0 + pm

κm + pm
− εe, (13.13)

dp

dτ
� µe

(
s

s+ 1 − λ
p

p+ 1
)
, (13.14)

ds

dτ
� −e s

s+ 1 , (13.15)

where e20 � c1k0k1/(σ0k2), t0 � k0/(e0σ0), λ � σ2/σ0, µ � k0/kp, κ � k/kp,m0 � M0/k1, and
ε � t0d1. This system of equations is relatively easy to understand. We assume that at
time τ � 0 an initial amount of lactose s � s(0) is presented to a cell in which there are
trace amounts of enzyme e. There are two possible responses. If the amount of lactose
is too small, then the lactose is gradually depleted, although there is no increase in
enzyme concentration. However, if the lactose dose is sufficiently large, then there is
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Figure 13.2 Solution of the differential equations (13.13), (13.14), (13.15). Parameters are µ �
λ � κ � 1, ε � 0.01, m0 � 0.001, m � 2, and initial data were s � 1.0, e � 0.01, p � 0.0.

an autocatalytic response in enzyme production, as the lac operon is turned on and
enzyme is produced. The production of enzyme shuts down when the lactose stimulus
has been consumed, and the enzyme concentration then gradually declines (Fig. 13.2).

13.1.1 Glucose Oscillations

An additional feature of E. coli is that lactose is not utilized when there is adequate
glucose. The mechanism for this control is as follows: preceding the promoter region
of the lac operon where the RNA polymerase must bind to begin transcription, there is
another region, called a CAP site (catabolic gene activator protein), which can be bound
by a dimeric molecule CAP. CAP by itself has no influence on transcription unless it is
bound to cyclic AMP (cAMP), but when CAP is bound to cAMP the complex can bind
to the CAP site, thereby promoting the binding of RNA polymerase to the promoter
region, allowing transcription.

The connection with glucose is that one of the catabolites of glucose (a product of
its breakdown) lowers the amount of intracellular cAMP (by an unknownmechanism),
thereby decreasing the amount of bound CAP, decreasing the activator activity of the
CAP site. This is believed to be the mechanism underlying oscillatory usage of lactose,
as follows. When the glucose concentration is low and lactose is available, CAP site
activity promotes the production of allolactose and β-galactosidase, thereby turning
on the production of glucose from lactose. However, as glucose concentrations rise,
the CAP activity is turned off, so that lactose utilization ceases, at least until glucose
levels fall. These oscillations of β-galactosidase activity with a period of approximately
50 minutes have been observed experimentally (Knorre, 1968). Experimental data for
these oscillations are shown in Fig. 13.3.
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Figure 13.3 Oscillations of the specific rate of β-galactosidase synthesis in E. coli strains ML30
and ML 308. (Knorre, 1968).

13.2 Cell Cycle Control

The cell-division cycle is that process by which a cell duplicates its contents and then
divides in two. The adult human must manufacture many millions of new cells each
second simply tomaintain the status quo, and if all cell division is halted, the individual
will die within a few days. On the other hand, abnormally rapid cell proliferation, i.e.,
cancer, can also be fatal, as rapidly proliferating cells interfere with the function of
“normal” cells and organs. Control of the cell cycle involves, at a minimum, control of
cell growth and replication of nuclear DNA in such a way that the size of the individual
cells remains, on average, constant.

The cell cycle is traditionally divided into several distinct phases (shown schemat-
ically in Fig. 13.4), the most dramatic of which is mitosis or M phase. Mitosis is
characterized by separation of previously duplicated nuclear material, nuclear divi-
sion, and finally the actual cell division, called cytokinesis. In most cells the whole of
M phase takes only about an hour, a small fraction of the total cycle time. The much
longer period of time between one M phase and the next is called interphase. The por-
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tion of interphase following cytokinesis is called G1 phase (G = gap), during which cell
growth occurs. When the cell is sufficiently large, DNA replication in the nucleus is
initiated and continues during S phase (S = synthesis). Following S phase is G2 phase,
providing a safety gap during which the cell is presumably preparing for M phase, to
ensure that DNA replication is complete before the cell plunges into mitosis.

There are actually two controlled growth processes. There is the chromosonal cycle,
in which the genetic material is exactly duplicated and two nuclei are formed from one
for every “turn” of the cycle. Accuracy is essential to this process, since each daughter
nucleus must receive an exact replica of each chromosome. A less tightly controlled
process, the cytoplasmic cycle, duplicates the cytoplasmic material, including all of
the structures (mitochondria, organelles, sarcoplasmic reticulum, etc.). This growth is
continuous during the G1, S, and G2 phases, pausing briefly only during mitosis.

In mature organisms these two processes operate in coordinated fashion, so that
the ratio of cell mass to nuclear mass remains essentially constant. However, it is pos-
sible for these two to be uncoupled. For example, during oogenesis, a single cell (an
ovum) grows in size without division. After fertilization, during embryogenesis, the egg
undergoes twelve rapid synchronous mitotic divisions to form a ball consisting of 4096
cells, called the blastula.

There is strong evidence that these early embryonic divisions are controlled by a
cytoplasmic biochemical limit cycle oscillator. For example, if fertilized (Xenopus) frog
eggs are enucleated, they continue to exhibit periodic “twitches” or contractions, as if
the cytoplasm continued to generate a signal in the absence of a nucleus. Enucleated
sea urchin eggs go a step further by actually dividing a number of times before they
notice that they contain no genetic material and consequently die.

The cell cycle has been studied most extensively for frogs and yeast. Frog eggs are
useful because they are large and easily manipulated. Yeast cells are too small for these
kinds of studies, but are suitable for cloning and identification of the involved genes
and gene products. The budding yeast Saccharomyces cerevisiae, used by brewers and
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bakers, divides by first forming a bud that is initiated and grows steadily during S and
G2 phases, and finally separates from its mother after mitosis.

13.2.1 The G1 Checkpoint

The autonomous cell cycle oscillations seen in early embryos are unusual. Most cells
proceed through the division cycle in fits and starts, pausing at “checkpoints” to ensure
that all is ready for the next phase of the cycle. There are checkpoints at the end of the
G1, G2, andM phases of the cell cycle, although not all cells use all of these checkpoints.
During early embryogenesis, however, the checkpoints are inoperable, and cells divide
as rapidly as possible, driven by the underlying limit cycle oscillation.

The G1 checkpoint is often called Start, because here the cell determines whether
all systems are ready for S phase and the duplication of DNA. Before Start, newly born
cells are able to leave the mitotic cycle and differentiate (into nondividing cells with
specialized function). However, after Start, they have passed the point of no return and
are committed to another round of DNA synthesis and division.

As with all cellular processes, the cell cycle is regulated by genes and the proteins
that they encode. There are two classes of proteins that form the basis of the cell-
cycle control system. The first is the family of cyclin-dependent protein kinases (Cdk),
which induce a variety of downstream events by phosphorylating selected proteins. The
second family are the cyclins, so named because the first members to be identified are
cyclically synthesized and degraded in each division cycle of the cell. Cyclins bind to
Cdk molecules and control their ability to phosphorylate target proteins, but without
cyclin, Cdk is inactive. In budding yeast cells there is only one major Cdk and nine
cyclins, leading to a possibility of nine active cyclin–Cdk complexes. In mammals, the
story is substantially more complicated, as there are (at last count) six Cdks and more
than a dozen cyclins.

The critical chemicals for getting through the G1 and G2 checkpoints are known
as S-phase promoting factor (SPF) and M-phase promoting factor (MPF), respectively.
These are heterodimers because they consist of two essential subunits, a Cdk and a
cyclin. A schematic diagram of the cell cycle is shown in Fig. 13.5.

Themolecular events that constitute Start aremost thoroughly understood for bud-
ding yeast. The major events triggered by Start are DNA synthesis and bud emergence.
DNA synthesis appears to be triggered by a Cdk called Cdc28 (Cdc for cell-division-
cycle; remember that in yeast there is only one major Cdk) in association with either
cyclin Clb5 or cyclin Clb6. Bud emergence seems to depend on Cdk association with
cyclin Cln1 or Cln2. These four cyclins are subject to rapid degradation, so their levels
in the cell are controlled by their rates of transcription. Their transcription, in turn, is
controlled by two transcription factors, SBF and MBF. As the cyclins accumulate and
associate with Cdc28, they activate their own transcription factors, so their rate of ac-
cumulation increases. These positive feedback loops lead to autocatalytic production of
the cyclins, ensuring that the cells pass Start decisively and irreversibly by an explosive
activation of Start kinase. In addition, there is another activator, a complex of Cdc28
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Figure 13.5 Schematic diagram of the primary chemical reactions of the cell cycle.

with cyclin Cln3, which is thought to activate SBF and MBF in a cell-size-dependent
fashion, although the mechanism of this size dependence is not known.

A simple mathematical model of this process (following Tyson et al., 1995) can
reveal how the G1 checkpoint works. We assume that there is one transcription factor,
SBF, denoted by Sa when active, and by Si when inactive. The transcription factor
is rendered active by a Cln cyclin (the only cyclin in the model), denoted by N, and
by a starter kinase (Cdc28-Cln3), denoted by A. The transcription factor is rendered
inactive by another chemical, a phosphatase, denoted by E. The cyclin is produced via
activation of SBF and degrades naturally according to

Sa−→ N
k2−→, (13.16)

so that

d[N]
dt

� k1[Sa]
ks + [Sa] − k2[N]. (13.17)

The SBF is activated by both Cln and the starter kinase and is deactivated by the
phosphatase via

Si
N+A
−→←−
E

Sa, (13.18)

leading to the equation

d[Sa]
dt

� k3([A]+ [N]) [Si]
ki + [Si] − k4[E]

[Sa]
ka + [Sa] . (13.19)
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We assume that [Sa] + [Si] � C, a constant. Then, in terms of the nondimensional
variables [Sa] � Cs, [N] � k1/k2n, t � τ/k2, we have

dn

dτ
� s

κs + s
− n, (13.20)

ds

dτ
� (α+ λn)

1− s

κi + 1− s
− µ

s

κa + s
, (13.21)

where α � k3[A]
k2C

, λ � k3k1
k22C
, µ � k4[E]

k2C
, κs � ks/C, κi � ki/C, κa � ka/C.

The behavior of this system is readily exposed by its phase portrait. The nullclines
are the curves dn

dτ
� 0 and ds

dτ
� 0. It is apparent that for the ds

dτ
� 0 nullcline, n is

decreasing as a function of the control parameter α, for fixed s. In Fig. 13.6 are shown
examples of the nullclines, dn

dτ
� 0 a dashed curve, and ds

dτ
� 0 as solid curves, for two

different values of α = 2.5 and 3.8. Other parameter values are κs � 1.0, κi � 0.1, κa �
0.001, λ � 37.0, µ � 4.0.

The behavior of this model for the G1 checkpoint is now easily described. There
are either one or three steady solutions. The steady solution with s saturated (near 1)
is a stable steady state that always exists, and corresponds to high levels of cyclin and
activation of Start. For large values of the control parameter α, corresponding to large
cell size, this is the only steady solution. However, for small cell size, and hence, small
values of the control parameter α, there are three steady states, the smallest and largest
being stable and the intermediate being an unstable saddle point.

We suppose that during G1 phase with α small the system sits at the small steady-
state solution. However, as the cell grows, the value of α increases (by an unknown
mechanism), reaching a critical value at which the small steady-state solution disap-
pears (through a saddle-node bifurcation), and the system quickly switches to the large
steady state, at which production of cyclin is high, enabling the rapid production of
S-phase promoting factor.
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13.2.2 The G2 Checkpoint

In budding yeast, the G2 checkpoint works by a similar mechanism to the G1 check-
point. Here there is a cyclin Clb-kinase and its transcription factor Mcm1. The Clb
cyclins are different from the Cln cyclins in that the Cln cyclins degrade naturally and
rapidly, so that they must be continually synthesized, whereas the degradation of the
Clb cyclins is mediated by other enzymes. We describe a bit of this regulatory pathway
below. For this model, however, we assume that Cln-kinase (the dimer complex of a Cln
and Cdc28 = MPF) acts enzymatically to inhibit the degradation of Clb. Furthermore,
the Cln synthesis is inhibited by the presence of Clb.

A mathematical model combining both of these processes is as follows: We assume
that there are two cyclins, a Cln (denoted by N) and a Clb (denoted by B). The produc-
tion of Cln follows the reaction mechanism (13.16) and is governed by the differential
equation (13.17), and the concentration of active SBF is governed by

Si
N+A1
−→←−
E1

Sa, (13.22)

from which we find an equation similar to (13.19), modified only to account for Clb
inactivation,

d[Sa]
dt

� k3([A1]+ [N]) [Si]
ksi + [Si]

− k4([E1]+ [B]) [Sa]
ksa + [Sa] . (13.23)

The production of Clb (B) follows

Ra−→ B
k−(N)−→ (13.24)

and is governed by the equation

d[B]
dt

� k5[Ra]
kr + [Ra] − k6[B]

kn

kn + [N] . (13.25)

Finally, the production of active Mcm1 (Ra, the transcription factor for the Clb) follows
the mechanism

Ri
B+A2
−→←−
E2

Ra (13.26)

and is governed by

d[Ra]
dt

� k7([A2]+ [B]) [Ri]
kri + [Ri]

− k4[E2]
[Ra]

kra + [Ra] . (13.27)

Here we have also assumed that there is an additional enzyme A2 that activates Mcm1,
thereby activating the transcription of Clb.

The nondimensional version of this system of equations is found by taking [Sa] +
[Si] � Cs, [Ra] + [Ri] � Cr, [Ra] � Crr, [Sa] � Css, [N] � k1

k2
n, [B] � k5

k2
b, from which it
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follows that

dn

dτ
� s

κs + s
− n, (13.28)

ds

dτ
� (α+ λnn)

1− s

κsi + 1− s
− (µ1 + λbb)

s

κsa + s
, (13.29)

db

dτ
� r

κr + r
− µb

b

κn + n
, (13.30)

dr

dt
� (β + λrb)

1− r

κri + 1− r
− µ2

r

κra + r
, (13.31)

where α � k3[A1]
k2Cs

, β � k7[A2]
k2Cr

, λn � k3k1
k22Cs

, λb � k4k5
k22Cs

, λr � k5k7
k22Cr

, µ1 � k4[E1]
k2Cs

, µ2 � k4[E2]
k2Cr

,

µb � k6kn/k1, κn � k2kn/k1, κsa � ksa /Cs, κsi � ksi /Cs, κri � kri /Cr, κra � kra /Cr.
We can understand something about the behavior of this system of four differential

equations by looking at the nullclines in the (n, b) plane. This is not a true phase portrait
because the system is four-dimensional, but the steady-state behavior is correctly de-
picted. There are two curves that can be plotted: The curve on which both dn

dτ
� ds

dτ
� 0,

and the curve on which both db
dτ

� dr
dτ

� 0. For example, the curve in the (n, b) plane on
which dn

dτ
� ds

dτ
� 0 can be found as a parametric curve with s ranging between 0 and 1

as the parameter, and the curve on which db
dτ

� dr
dτ

� 0 can be found in a similar way as
a parametric curve with r as the parameter.

In Fig. 13.7 are shown two examples of each of these nullclines, the solid curves
showing the n nullcline and the dashed curve depicting the b nullcline. The nullclines
depend in monotonic fashion on the parameters α and β. That is, the n nullcline moves
up with increasing α and the b nullcline moves leftward (n values decrease for each
fixed b) with increasing β.

Intersections of the nullclines locate steady-state solutions of the full system. Be-
cause the nullclines are both “s”-shaped, there are up to nine such steady-state values,
depending on parameter values. In Fig. 13.7 there can be as many as five fixed points,
depending on the values of α and β.
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Figure 13.7 Nullclines for the sys-
tem of equations (13.28), (13.29),
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Clb concentration) shown as dashed
curves, shown for α � 2.95 and 3.15,
and β � 3.05 and 3.1. Other param-
eter values are κs � 2.0, λn � 26.0,
µ1 � 4.0, κsi

� 0.1, κsa
� 0.01, λb �

24.0, λr � 50.0, µ2 � 4.0, µb � 0.33,
κri

� 0.1, κr � 17.0, κra
� 0.01,

κn � 0.08.
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The steady-state solutions of most interest are for small n and b corresponding to
the G1 checkpoint, and for small b and large n corresponding to the G2 checkpoint.
The first of these can be eliminated by increasing α, and the second is eliminated by
increasing β. Thus we can make up the following story by supposing that the size of
α is dependent upon the size of the cell and that the size of β is dependent upon the
amount of DNA replication. A small cell is presumed to sit at the G1 checkpoint until
α increases enough to eliminate the rest point, whereupon the dynamics take n and b
to the second checkpoint. There, the cell awaits sufficient increase in the parameter β
to eliminate the steady state and initiate mitosis.

It is noteworthy that if both of these checkpoints are eliminated by increasing both
α and β (the values α � 3.15 and β � 3.1 suffice), then the dynamic motion is a periodic
limit cycle. This limit cycle is shown in Fig. 13.8.

In budding yeast, cells do not divide with equal size, so that a mother and daugh-
ter cell can be identified. Because they are much larger, mother cells typically reenter
mitosis almost immediately following division, while daughter cells must grow to ade-
quate size, while sitting at the G1 checkpoint, before initiating mitosis. In terms of this
model, the mother cell has α large while the daughter cell has α small.

13.2.3 Control of M Phase

In fertilized Xenopus oocytes, cell division takes place without any cell growth, so the
G1 checkpoint is removed (or inoperable). The MPF that is critical for getting through
the G2 checkpoint is a dimer of a Cdk called Cdc2 and a mitotic cyclin. (The enzyme
Cdc2 in Xenopus can be substituted for Cdc28 in budding yeast with no loss of function,
although the two enzymes are slightly different.)

Cdc2 is one member of a class of enzymes, coded by cell-division-cycle (cdc) genes,
that are required to get the cell past some specific point in the cell division cycle. In
yeast, there are now about 70 known cdc genes, many of which have been cloned and
sequenced. cdc deficient mutants, i.e., cells with mutated cdc genes, are characterized
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0.10
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0.00

b

0.40.30.20.10.0
n

Figure 13.8 Limit cycle for the sys-
tem of equations (13.28), (13.29),
(13.30), (13.31), with the nullclines
shown as dashed curves, with α �
3.15 and β � 3.1. Other parameter
values are as in Fig. 13.7.
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by their inability to progress through the normal cell cycle, and since they continue to
grow without dividing, by their large size.

A second type of gene, called wee, from the Old English meaning tiny, is so named
because mutant cells divide at smaller size than normal. Thus wee mutants are pre-
sumed to be deficient in a gene product that normally inhibits passage through a
checkpoint, so that they pass through unimpeded and hence are too “wee.”

The cdc2 gene encodes a cyclin-dependent protein kinase, Cdc2, which in combi-
nation with B-type cyclins (a Clb) forms MPF, which induces entry into M phase. The
activity of the Cdc2-cyclin B dimer (MPF) is also controlled by phosphorylation at two
sites, tyrosine-15 and threonine-167. (Tyrosine and threonine are two of the twenty
amino acids that are strung together to form a protein molecule. The number 15 or
167 denotes the location on the protein sequence of Cdc2.) These two sites define four
different phosphorylation states. MPF is active when it is phosphorylated at threonine-
167 only. The other three phosphorylation states are inactive. Active MPF initiates a
chain of reactions that controls mitotic events.

Movement between different phosphorylation states is mediated by other enzymes.
The Wee1 enzyme, the gene product of the normal wee gene, inactivates MPF by
adding a phosphate to the tyrosine-15 site. Cdc25 reverses this by dephosphorylating
the tyrosine-15 site.

We can now describe a piece of the cell cycle regulating mitosis in oocytes. A
schematic diagram of this regulation is shown in Fig. 13.9. Cyclin B is synthesized
from amino acids and binds with free Cdc2 to form an inactive MPF dimer. The dimer
is quickly phosphorylated on threonine-167 (by a protein kinase called CAK) and de-
phosphorylated at the same site by an unknown enzyme. Simultaneously, Wee1 can
phosphorylate the dimer at the tyrosine-15 site, rendering it inactive, and Cdc25 can
dephosphorylate the same site. Mitosis is initiated when a sufficient quantity of MPF
is active.

All of this becomes dynamically interesting when we include the known feedback
loops. ActiveMPFphosphorylatesmany proteins, including Cdc25 andWee1. Phospho-
rylated Cdc25 is active, meaning it is able to dephosphorylate the MPF at tyrosine-15,
and phosphorylated Wee1 is inactive, so that it is unable to phosphorylate MPF at

CAK

CAK
MPF

P-MPF P-MPF-P

MPF-P (active)

Cdc25 Wee1Wee1 Cdc25

Cdc2 + cyclin B

?

?

+ -

Figure 13.9 Schematic diagram of the regulatory pathway of MPF.
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Figure 13.10 Schematic diagram of the feed-
back control of Cdc25 and Wee1.

MPF-P
IE-P IEanti

UbE

UbE*

IE

cyclin

Figure 13.11 Schematic diagram of the regula-
tion of cyclin degradation.

tyrosine-15. Both of these actions by active MPF, the phosphorylation of Cdc25 and
Wee1, act as positive feedback to allow autocatalytic production of active MPF. These
feedbacks are depicted in Fig. 13.10.

There is also a negative feedback loop involving the degradation of cyclin. Cyclin
is degraded after it is first “labeled” for destruction by a ubiquitin-conjugating enzyme
(UbE). UbE is activated by active MPF, although with a substantial delay, suggesting
that the activation of UbE is at the end of some chain reaction involving one or more
intermediate enzymes, none of which have been identified. For this model we assume
that there is one such intermediate enzyme, denoted by IE. These assumed reactions
are depicted in Fig. 13.11.

We now have a complete verbal description of a model for the initiation of mitosis.
In summary, as cyclin is produced, it combines with Cdc2 to formMPF. MPF is quickly
phosphorylated to its active form. ActiveMPF turns on its own autocatalytic production
by activating Cdc25 and inactivating Wee1. By activating UbE, which activates the
destruction of cyclin, active MPF also turns on its own destruction, but with a delay,
thus completing the cycle.

Of course, this verbal description is incomplete, because there are many other
features of M phase control that have not been included. It also does not follow from
verbal arguments alone that thismodel actually controlsmitosis in amanner consistent
with experimental observations. To check that this model is indeed sufficient to explain
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some features of the cell cycle, it is necessary to present it in quantitative form (Novak
and Tyson, 1993).

The chemical species that must be tracked include the Cdc2 and cyclin monomers,
the dimer MPF in its active and inactive states, as well as the four regulatory enzymes
Wee1, Cdc25, IE, and UbE in their phosphorylated and unphosphorylated states.

First, cyclin (with concentration y) is produced at a steady rate and is degraded or
combines with Cdc2 (with concentration c) to form the MPF dimer (r):

dy

dt
� k1[A]− k2y− k3Yc. (13.32)

The MPF dimer can be in one of four phosphorylation states, with phosphate at
tyrosine-15 (s), at threonine-167 (concentration m), at both sites (concentration n),
or at none (concentration r). The movement among these states is regulated by the
enzymes Wee1, Cdc25, CAK, and one unknown enzyme (“?”). Thus,

dr

dt
� −(k2 + kCAK + kwee)r + k3yc+ k?n+ k25s, (13.33)

ds

dt
� −(k2 + kCAK + k25)s+ k?n+ kweer, (13.34)

dm

dt
� −(k2 + k? + kwee)m+ kCAKr + k25n, (13.35)

dn

dt
� −(k2 + k? + k25)n+ kweem+ kCAKs. (13.36)

Notice that in the above equations, cyclin degradation at rate k2 is permitted for free
cyclin as well as for cyclin that is combined with Cdc2. If cyclin degrades directly from
a phosphorylated dimer, we assume that the phosphate is also immediately removed
to form free Cdc2. Thus,

dc

dt
� k2(r + s+ n+m)− k3cy. (13.37)

These six equationswould forma closed systemwere it not for feedback.Notice that
the last equation (13.37) is redundant, sincem+ r+ s+n+ c � constant. The feedback
shows up in the nonlinear dependence of rate constants on the enzymes Cdc25, Wee1,
IE, and UbE. This we express as

k25 � V
′
25[Cdc25]+ V

′′
25[Cdc25 P], (13.38)

kwee � V
′
wee[Wee1 P]+ V

′′
wee[Wee1], (13.39)

k2 � V
′
2[UbE]+ V

′′
2[UbE

∗]. (13.40)

In addition, the active states of Cdc25, Wee1, IE, and UbE are determined by
Michaelis–Menten rate laws of the form

d[Cdc25 P]
dt

� kam[Cdc25]
Ka + [Cdc25] − kb[PPase][Cdc25 P]

Kb + [Cdc25 P] , (13.41)

d[Wee1 P]
dt

� kem[Wee1]
Ke + [Wee1] − kf [PPase][Wee1 P]

Kf + [Wee1 P] , (13.42)
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d[IE P]
dt

� kgm[IE]
Kg + [IE] − kh[PPase][IE P]

Kh + [IE P] , (13.43)

d[UbE∗]
dt

� kc[IE P][UbE]
Kc + [UbE] − kd[IEanti][UbE

∗]
Kd + [UbE∗]

. (13.44)

The quantities with P attached correspond to phosphorylated forms of the enzyme
quantity. The total amounts of each of these enzymes are assumed to be constant, so
equations for the inactive forms are not necessary. PPase denotes a phosphatase that
dephophorylates Cdc25 P.

This forms a complete model with nine differential equations having 8 Michaelis–
Menten parameters and 18 rate constants. There are twoways to gain an understanding
of the behavior of this system of differential equations: by numerical simulation of the
full system of equations using reasonable parameter values, or by approximating the
system to a smaller system of equations and studying the simpler system by analytical
means.

The parameter values used byNovak and Tyson to simulateXenopus oocyte extracts
are shown in Tables 13.1 and 13.2.

While numerical simulation of these nine differential equations is not difficult, to
gain an understanding of the basic behavior of the model it is convenient to make
some simplifying assumptions. Suppose kCAK is large and k? is small, as experiments
suggest. Then the phosphorylation of Cdc2 on threonine-167 occurs immediately after
formation of the MPF dimer. This allows us to ignore the quantities r and s. Next we
assume that the activation and inactivation of the regulatory enzymes is rapid and
is in quasi-steady state, depending on the level of active MPF. This leaves only three

Table 13.1 Michaelis–Menten constants for the cell-cycle model of Novak and Tyson (1993).

Ka/[Cdc25total] = 0.1 Kb/[Cdc25total] = 0.1
Kc /[UbEtotal] = 0.01 Kd /[UbEtotal] = 0.01
Ke/[Wee1total] = 0.3 Kf /[Wee1total] = 0.3
Kg/[IEtotal] = 0.01 Kh/[IEtotal] = 0.01

Table 13.2 Rate constants for the cell-cycle model of Novak and Tyson (1993).

k1[A]/[Cdc2total] = 0.01 k3[Cdc2total] = 1.0
V

′
2[UbEtotal] = 0.015 (0.03) V

′′
2 [UbEtotal] = 1.0

V
′
25[Cdc25total] = 0.1 V

′′
25[Cdc25total] = 2.0

V
′
wee[Wee1total] = 0.1 V

′′
wee[Wee1total] = 1.0

kCAK = 0.25 k? = 0.25
ka [Cdc2total]/[Cdc25total] = 1.0 kb [PPase]/[Cdc25total] = 0.125
kc [IEtotal]/[UbEtotal] = 0.1 kd [IEanti]/[UbEtotal] = 0.095
ke [Cdc2total]/[Wee1total] = 1.33 kf [PPase]/[Wee1total] = 0.1
kg [Cdc2total]/[IEtotal] = 0.65 kh[PPase]/[IEtotal] = 0.087
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equations for the three unknowns y (free cyclin), m (active MPF), and Cdc2 monomer
(q) as follows

dy

dt
� k1 − F2y− k3yq, (13.45)

dm

dt
� k3yq− F2m+ F25n− kweem, (13.46)

dq

dt
� −k3yq+ F2(m+ n), (13.47)

where m + n + q � c is the total Cdc2. It follows that the total cyclin l � y + m + n

satisfies the differential equation

dl

dt
� k1 − F2l. (13.48)

In addition, the rates F2 and F25 depend upon active MPF through

F2 � k2 + k
′
2m

2, (13.49)

F25 � k25 + k
′
25m

2. (13.50)

Any three of these four equations describes the behavior of the system. However, in
the limit that k3 is large compared to other rate constants, the system can be reduced
to a two-variable system for which phase-plane analysis is applicable. If we set v � k3y,
then

dv

dt
+ F2v � k3(k1 − qv), (13.51)

so that qv � k1 to leading order. If k1 is small, then y is small as well, so that (13.46)
becomes

dm

dt
� k1 − F2m+ F25(l −m)− kweem. (13.52)

The two equations (13.48) and (13.52) form a closed system that can be studied
using the phase portrait in the (l,m) plane. In this approximation, q � c − l. The
nullclines are described by the equations

dl

dt
� 0 : l � k1

F2(m)
(13.53)

and

dm

dt
� 0 : l � kweem+ F2(m)m− k1

F25(m)
+m, (13.54)

which are shown plotted in Fig. 13.12.
For these parameter values, there is a unique unstable steady-state solution sur-

rounded by a limit cycle oscillation. By adjusting parameters one can have a stable
fixed point on the leftmost branch of the “n”-shaped curve corresponding to the G2
checkpoint, or one can have a stable fixed point on the rightmost branch, yielding an
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M phase checkpoint. Here a possible control parameter is kwee, since increasing kwee
causes the m nullcline to increase. Thus, increasing kwee creates a G2 checkpoint on
the leftmost branch of the “n”-shaped curve.

13.2.4 Conclusion

We are a long way from a complete understanding of the biochemistry of the cell cycle.
Here we have seen a few of the main players, although there are major portions of
the cell cycle (the M phase checkpoint, for example) that are still a mystery. With the
modern development of biochemistry, many similar stories relating to regulation of cell
function are being unfolded. It is likely that in the coming years many of the details of
this story will change andmany new details will be added. However, the basic modeling
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process of turning a verbal description into a mathematical model and the consequent
analysis of the model will certainly remain an important tool to aid our understanding
of these complicated and extremely important processes. Furthermore, as the details
of the stories becomemore complicated (as they are certain to do), mathematical anal-
ysis will become even more important in helping us understand how these processes
work.

13.3 Exercises
1. The genes for the enzymes necessary for the production of the amino acid tryptophan are

sequentially arranged in the DNA of E. coli, following a single operator site. If the operator
site is occupied (bound by a repressor), then production of mRNA is blocked. However, the
repressor protein binds to the operator site only when it is activated by binding with two
molecules of tryptophan.
Write a model for the production of tryptophan that incorporates this control mechanism.
Howwould you describe the effect of this controlmechanism (positive feedback, or negative
feedback)?

2. Suppose that the production of an enzyme is turned on by m molecules of the enzyme
according to

G+mP
k+−→
←−
k−
X,

where G is the inactive state of the gene and X is the active state of the gene. Suppose that
mRNA is producedwhen the gene is in the active state and the enzyme is produced bymRNA
and is degraded at some linear rate. Find a system of differential equations governing the
behavior of mRNA and enzyme. Give a phase portrait analysis of this system and show that
it has a “switch-like” behavior.

3. Develop a mathematical model for the breakdown of lactose into glucose that incorporates
the interplay between the two. Are oscillations in the uptake and utilization of lactose
possible? How well does your model agree with the data shown in Fig. 13.3?
Hint: Include an additional equation for glucose concentration and assume that glucose
interferes with the production of mRNA. If this does not suffice, how might you modify the
model to better reflect the biochemistry and to produce oscillations?

4. Goldbeter (1996) has developed and studied a “minimal” cascade model for the mitotic os-
cillator. The model assumes that cyclin B (C) is synthesized at a constant rate and activates
Cdc25 kinase. The activated Cdc25 kinase in turn activates Cdc2 kinase (M), and the acti-
vated Cdc2 kinase is inactivated by the kinase Wee1. There is also a cyclin protease X that
is activated by Cdc2 kinase and inactivated by an additional phosphatase. The differential
equations for this reaction scheme (shown in Fig. 13.14) are

dc

dt
� νi − νdx

c

Kd + c
− kdc, (13.55)

dm

dt
� V1

1−m

K1 + 1−m
− V2

m

K2 +m
, (13.56)

dx

dt
� V3

1− x

K3 + 1− X
− V4

x

K4 + X
, (13.57)
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Figure 13.14 Diagram for the minimal cascade mito-
sis model of Goldbeter (1996).

Table 13.3 Parameter values for the Goldbeter minimal mitotic cycle model.

K1 = 0.1 VM1 = 0.5 min−1

K2 = 0.1 V2 = 0.167 min−1

K3 = 0.1 VM3 = 0.2 min−1

K4 = 0.1 V4 = 0.1 min−1

νi = 0.023 µM/min νd = 0.1 µM/min
Kc = 0.3 µM Kd = 0.02 µM
kd = 3.33×10−3 min−1

and

V1 � VM1
c

Kc + c
, V3 � VM3m, (13.58)

where c denotes cyclin concentration, and m and x denote the fraction of active Cdc2 ki-
nase and the fraction of active cyclin protease, respectively. The parameters νi and νd are the
constant rate of cyclin synthesis and maximum rate of cyclin degradation by protease X,
achieved at x � 1. Kd and Kc denote Michaelis constants for cyclin degradation and cyclin
activation, while kd is the rate of nonspecific degradation of cyclin. The remaining parame-
ters Vi and Ki, i � 1, . . . ,4, are the effective maximum rate andMichaelis constants for each
of the four enzymes Cdc25, Wee1, Cdc2, and the protease phosphatase (E4), respectively.
Typical parameter values are shown in Table 13.3.
Numerically simulate this system of equations to show that there is a stable limit cycle
oscillation for this model. What is the period of oscillation?



P A R T I I

Systems Physiology



This page intentionally left blank 



C H A P T E R 1 4

Cardiac Rhythmicity

We have seen in previous chapters that cardiac cells are excitable, and some, such as
sinoatrial (SA) nodal cells, are autonomous oscillators. We have also seen that these
cells are coupled and can support propagated waves. It remains to understand how
this activity is coordinated to produce a regular heartbeat, or how this regular activity
may fail.

The study of cardiac electrical activity often takes on a quantitative flavor, in which
one begins with one or more of the detailed cellular models discussed in Chapter 4
and builds a large-scale numerical simulation that incorporates a variety of features of
the cardiac conduction system. In this chapter we take an entirely different approach,
devoting our attention solely to qualitative behavior, using the simplest possiblemodels
that give insight into the important phenomena.

14.1 The Electrocardiogram

14.1.1 The Scalar ECG

One of the oldest and most important tools for evaluating the status of the heart and
the cardiac conduction system is the electrocardiogram (ECG). It has been known since
1877, when the first ECG recording was made, that the action potential of the heart
generates an electrical potential field that can be measured on the body surface. When
an action potential is spreading through cardiac tissue, there is a wave front surface
across which the membrane potential experiences a sharp increase. Along the same
wave front, the extracellular potential experiences a sharp decrease. From a distance,
this sharp decrease in potential looks like a Heaviside jump in potential. This rapid
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change in extracellular potential results from a current source (or sink) because ions
are moving into or out of the extracellular space as transmembrane currents.

The body is a volume conductor, so when there is a current source somewhere
in the body, such as during action potential spread, currents spread throughout the
body. Although the corresponding voltage potential is quite weak, no larger than 4 mV,
potential differences can be measured between any two points on the body using a
sufficiently sensitive voltmeter.

Potential differences are observed whenever the current sources are sufficiently
strong. There are three such events. When the action potential is spreading across
the atria, there is a measurable signal, called the P wave. When the action potential
is propagating through the wall of the ventricles, there is the largest of all deflections,
called theQRS complex. Finally, the recovery of ventricular tissue is seen on the ECG as
theTwave. The recovery of the atria is tooweak to be detected on theECG. Similarly, SA
nodal firing, AV nodal conduction, and Purkinje network propagation are not detected
on the normal body surface ECG because they do not involve sufficient muscle mass
or generate enough extracellular current.

In Fig. 14.1 is shown a sketch of a typical single electrical ECG event, and a contin-
uous recording is shown in Fig. 14.2a. In hospitals, ECG recordings are made routinely
using oscilloscopes, or, if a permanent record is required, on a continuous roll of paper.
The paper speed is standardized at 25 mm per second, with a vertical scale of 1 mV per
cm, and the paper is marked with a lined grid of 1 mm and darkened lines with 0.5 cm
spacing.

Themost important use of the single-leadECG is to detect abnormalities of rhythm.
For example, a continuous oscillatory P wave pattern suggests atrial flutter (Fig. 14.2b)
or atrial fibrillation (Fig. 14.2c). A rapid repetition of QRS complexes is ventricular
tachycardia (Fig. 14.2d), and a highly irregular pattern of ventricular activation is
called ventricular fibrillation (Fig. 14.2e). The normal appearance of P waves with a few
skipped QRS complexes implicates a conduction failure in the vicinity of the AV node.
Broadening of the QRS complex suggests that propagation is slower than normal, pos-
sibly because of conduction failure in the Purkinje network (Fig. 14.3). Spontaneously
appearing extra deflections correspond to extrasystoles, arising from sources other than
the SA or AV nodes.

14.1.2 The Vector ECG

There is much more information contained in the ECG than is available from a single
lead. Some of this information can be extracted from the vector electrocardiogram. The
mathematical basis for the vector ECG comes from an understanding of the nature of a
volume conductor. The human body is an inhomogeneous volume conductor, meaning
that it is composed of electrically conductive material. If we assume that biological
tissue is ohmic, there is a linear relationship between current and potential

I � −σ∇φ. (14.1)
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Figure 14.1 Cellular transmembrane potential and electrocardiogram. The upper tracing rep-
resents the transmembrane potential of a single ventricular myocyte and the lower tracing
shows the body surface potential during the same electrical event. The numbers on the upper
tracing designate phases in the action potential cycle: 0: the upstroke, 1: the brief spike, 2: the
plateau, 3: the rapid recovery, 4: resting potential. (Rushmer, 1976, Fig. 8–4, p. 286.)

The conductivity tensor σ is inhomogeneous, because it is different for bone, lung,
blood, etc., and it is anisotropic, because of muscle fiber striation, for example.
Obviously, current is conserved, so that

∇ · I � −∇ · (σ∇φ) � S, (14.2)

where S represents all current sources.
The most significant current source in the human body is the spreading action

potential wave front in the heart. The spreading cardiac action potential is well ap-
proximated as a surface of current dipoles. The rapid increase in membrane potential
(of about 100mV) translates into an extracellular decrease of about 40mV that extends
spatially over a distance (the wave front thickness) of about 0.5 mm. If the exact loca-
tion and strength of this dipole surface and the conductivity tensor for the entire body
were known, then we could (in principle) solve the Poisson equation (14.2) to find the
body surface potential at all times during the cardiac cycle. This problem is unsolved,
and is known as the forward problem of electrocardiography.
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Figure 14.2 A collection of ECG recordings, including (a) Normal ECG recording (lead II) from
a sedated 18-year-old male (JPK’s son). (b) Atrial flutter showing rapid, periodic P waves, only
some of which lead to QRS complexes. (Rushmer, 1976, Fig. 8-29, p. 316.) (c) Atrial fibrillation
showing rapid, nonperiodic atrial activity and irregular QRS complexes. (Rushmer, 1976, Fig. 8-
28, p. 315.) (d) (Monomorphic) ventricular tachycardia in which ventricular activity is rapid
and regular (nearly periodic). (Davis, Holtz, and Davis, 1985, Fig. 17-24, p. 346.) (e) Ventricular
fibrillation in which ventricular activity is rapid and irregular. (Rushmer, 1976, Fig. 8-30, p. 317.)
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Figure 14.3 ECG from the twelve standard leads, showing left bundle branch block (LBBB),
diagnosed as such because of the lengthened QRS complex (0.12 ms), a splitting of the QRS
complex in leads V1 through V4 into two signals, and a leftward deflection of the heart vector,
indicated, for example, by the amplitude shift in lead V6. (Rushmer, 1976, Fig 8-46, p. 338.)

What we would really like to know is the operator, say T, called a transfer function,
that solves (14.2) and yields the body surface potential φB, denoted by

φB(t) � T · S(t). (14.3)

Even more useful, if the transfer function T were known, one could determine the
sources by inverting the forward problem

S(t) � T−1 · φB(t). (14.4)

This problem, known as the inverse problem of electrocardiography, is even harder to
solve than the forward problem, because it is a numerically unstable mathematical
problem.

Since these problems are yet unsolved, we do well to make some simplifications.
Our first simplification is to view the action potential upstroke surface as a single
current dipole, known as the heart dipole vector. We define the heart dipole vector as

H(t) �
∫
V

JdV, (14.5)

where J represents the dipole density at each point of the heart, and V is the heart
volume. The heart dipole vector is assumed to be located at a fixed point in space,
changing only in orientation and strength as a function of time.
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Next we assume that the volume conductor is homogeneous and infinite with unit
conductance. Then, from standard potential theory (see Exercise 1), at any point x in
space,

φ(x, t) � H(t) · x
4π|x|3 , (14.6)

where the dipole is assumed to be located at the origin. Thus, at each point on the body
surface,

φB(x, t) � lx ·H(t), (14.7)

where lx is a vector, called the lead vector, associated with the electrode lead at position
x. Of course, for a real person, the lead vector is not exactly x

4π|x|3 , and some other
method must be used to determine lx. However, (14.7) suggests that we can think of
the body surface potential as the dot product of some vector lx with the heart vector
H(t), and that lx has more or less the same orientation as a vector from the heart to the
point on the body where the recording is made.

Since H is a three-dimensional vector, if we have three leads with linearly in-
dependent lead vectors, then three copies of (14.7) yields a matrix equation that
can be inverted to find H(t) uniquely. In other words, if our goal is to determine
H(t), then knowledge of the full transfer function is not necessary. In fact, additional
measurements from other leads should give redundant information.

Of course, the information from additional leads is not truly redundant, but it is
nearly so. Estimates are that a good three-lead system can account for 85% of the in-
formation concerning the nature of the dipole sources. Discrepancies occur because
the sources are not exactly consolidated into a single dipole, or because the lead vec-
tors are not known with great accuracy, and so on. However, for clinical purposes,
the information gleaned from this simple approximation is remarkably useful and
accurate.

The next simplification is to standardize the position of the body-surface recordings
and to determine the associated lead vectors. Then, with experience, a clinician can
recognize features of the heart vector by looking at recordings of the potential at the
leads. Or sophisticated (and expensive) equipment can be built that inverts the lead
vector matrix and displays the heart vector on a CRT display device.

Cardiologists have settled on 12 standard leads. The first three were established
by Einthoven, the “father of electrocardiography” (1860–1927, inventor of the string
galvanometer in 1905, 1924 Nobel Prize in physiology) and are still used today. These
are the left arm (LA), the right arm (RA), and the left leg (LL). One cannot measure
absolute potentials, but only potential differences. There are three ways to measure
potential differences with these three leads, namely,

VI � φLA − φRA, (14.8)

VII � φLL − φRA, (14.9)

VIII � φLL − φLA, (14.10)
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and of course, since the potential drop around any closed loop is zero,

VI + VIII � VII. (14.11)

With these three differences, there are three lead vectors associatedwith the orientation
of the leads, and the potential difference is the amplitude of the projection of the heart
vector H onto the corresponding lead vector. Thus, Lj � lj ·H, and Vj � |Lj| for j � I, II,
III.

Einthoven hypothesized that the lead vectors associated with readings VI, VII, VIII
form an equilateral triangle in the vertical, frontal plane of the body, given by the unit
vectors (ignoring an amplitude scale factor) lI � (1,0,0), and lII � ( 12 ,

1
2

√
3,0). The

Einthoven triangle is shown in Fig. 14.4. Here the unit coordinate vector (1, 0, 0) is
horizontal from right arm to left arm, (0, 1, 0) is vertical pointing downward, and the
vector (0, 0, 1) is the third coordinate in a right-handed system, pointing in the posterior
direction, from the front to back of the chest. Associatedwith the frontal plane is a polar
coordinate system, centered at the heart, with angle θ � 0 along the x axis, and θ � 90◦

vertically downward along the positive y axis.
Of course, the lead vectors of Einthoven are not very accurate. Experiments to

measure the lead vectors in a model of the human torso filled with electrolytes pro-
ducedmeasured lead vectors lI � (0.923,−0.298,0.241), and lII � (0.202,0.972,−0.121)
(Burger and van Milaan, 1948), which are not in the frontal plane. These lead vectors
are known as the Burger triangle.

It is fairly easy to glean information about the direction of the heart vector by
recognizing the information that is contained in (14.7). The vector ECG is actually a
time-varying vector loop (shown in front, top, and side views in Fig. 14.6), and deduc-
ing time-dependent information is best done with an oscilloscope. However, one can
estimate the mean direction of the vector by estimating the mean amplitude of a wave
and then using (14.7) to estimate the mean heart vector. The mean (or time average) of

φRA φLA

φLL

H

LI

LII
LIII

Figure 14.4 The Einthoven triangle
showing a typical heart vector H and
associated lead vectors LI, LII and LIII.
Because the body is approximately
planar, the lead vectors are assumed
to be in the frontal plane.
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the QRS complex is approximately proportional to the sum of the (positive) maximum
and the (negative) minimum.

Since the lead voltage is a dot product of two vectors, a change in mean amplitude
of a particular wave suggests either a change in amplitude of the heart vector or a
change in direction of the heart vector. For example, the normal QRS and T wave mean
dipoles are oriented about 45◦ below horizontal to the left (see Exercise 5). This is close
to orthogonal to the lead vector lIII, and more or less aligned with lead vector lII. Thus,
on a normal ECG, we expect the mean amplitude of a QRS to be small in lead III, large
in lead II, and intermediate to these two in lead I. Shifts in these relative amplitudes
suggest a shift in the orientation of the heart dipole. For example, an increase in the
relative amplitude of the potential difference at lead III and a decrease in amplitude at
lead II suggests a shift of the heart vector to the right, away from the left, suggesting a
malfunction of the conduction in the left heart.

Although two orthogonal lead vectors suffice to determine the orientation of the
heart vector in the vertical plane, for ease of interpretation it is helpful to have more
leads. For this reason, there are three additional leads on the frontal plane that are
used clinically. To create these leads one connects two of the three Einthoven leads
to a central point with 5000 6 resistors to create a single terminal that is relatively
indifferent to changes in potential and then takes the difference between this central
potential and the remaining electrode of the Einthoven triangle. These measurements
are denoted by aVR, aVL, or aVF, when the third unipolar lead is the right arm, the
left arm, or the left foot, respectively. The initial “a” is used to denote an augmented
unipolar limb lead.

For standard cardiographic interpretation the lead vectors for leads I, aVR−, II,
aVF, III, and aVL− are assumed to divide the frontal plane into equal 30◦ sectors.
For example, lI is horizontal, laVR− is declined at 30◦, while laVF is vertical, etc. The
superscript for aVR− denotes the negative direction of the lead vector laVR (Fig. 14.5).

aVF-
III-

aVL+

0o I+

aVR-

II+

aVF+
III+

aVL-

I- 180o

aVR+

II-

90o

-90o

Figure 14.5 The standard six leads for the
electrocardiogram (and their negatives).
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Figure 14.6 Normal ECG and VCG recording from the standard twelve leads in a nine-year
old girl. (Rushmer, 1976, Fig. 8-33, p. 320, originally from Guneroth, 1965.)

With these six leads, vector interpretation of the frontal plane orientation of the
heart dipole is fast. One looks for the leads with the largest and smallest deflections,
and surmises that the lead vector with largest mean amplitude is most parallel to the
heart dipole, and the lead vector with the smallest mean deflection is nearly orthogonal
to the heart dipole. Thus in the normal heart situations, readings at leads II and aVR
should be the largest inmean amplitude, with positive deflection at lead II, and negative
deflection at lead aVR, while the mean deflections from leads III and aVL should be
the smallest, being the closest to orthogonal to the normal heart dipole (Fig. 14.6).
Deviations from this suggest conduction abnormalities.

Six additional leads have been established to obtain the orientation of the heart
dipole vector in a horizontal plane. For these leads, the three leads of Einthoven are
connected with three 5000 6 resistors to form a “zero reference,” called the central
terminal of Wilson. This is compared to a unipolar electrode reading taken from six
different locations on the chest. These are denoted by V1, V2, . . . , V6 and are located on
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Figure 14.7 Frontal and horizontal cross-sectional views of the thorax in relation to the V-lead
positions of Wilson. (Rushmer, 1976, Fig. 8-10, p. 294.)

the right side of the sternum (V1), the left side of the sternum (V2) between the third
and fourth ribs, and proceeding around the left chest following just below the fourth
rib, ending on the side of the chest directly under the armpit (V6) (Fig. 14.7).

While a detailed discussion of interpretation of a vector ECG is beyond the scope
of this text, there are several features of cardiac conduction that are easy to recognize.
Notice fromFig. 14.6 that the normal Twave and the normalQRS complex deflect in the
same direction on leads I, II, and aVR (up on I and II, down on aVR). However, the QRS
complex corresponds to the upstroke and the T wave to the downstroke of the action
potential, so it must be that the activation (upstroke) and recovery (downstroke) wave
fronts propagate in opposite directions. Said another way, the most recently activated
tissue is the first to recover. The reason for the retrograde propagation of the wave of
recovery is not fully understood. Second, an inverted wave (i.e., inverted from what
is normal) implies that either the wave is propagating in the retrograde direction, or
more typically with novice medical technicians, that the leads have been inadvertently
reversed (see Exercise 4a).

The amplitude of the QRS complex reflects the amount of muscle mass involved in
propagation. Thus, if the QRS amplitude is extraordinarily large, it suggests ventricu-
lar hypertrophy. If the ECG vector is leftward from normal, it suggests left ventricular
hypertrophy (Fig. 14.8), while a rightward orientation suggests right ventricular hy-
pertropy (Fig. 14.9). On the other hand if an amplitude decrease is accompanied by a
rightward change in orientation, a diagnosis of myocardial infarction in the left ven-
tricle is suggested, while a leftward orientation with decreased amplitude suggests a
myocardial infarction of the right ventricle, as the heart vector is deflected away from
the location of the infarction (see Exercises 6 and 7).
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Figure 14.8 Twelve-lead ECG recording for severe left ventricular hypertrophy, particularly
noticeable in leads III and aVL. (Rushmer, 1976, Fig. 8-24, p. 331, originally from Guneroth,
1965.)

14.2 Pacemakers

14.2.1 Pacemaker Synchrony

The sinoatrial (SA) node is a clump of self-oscillatory cells located on the atrium near
the superior vena cava. These cells fire regularly, initiating an action potential that prop-
agates throughout the atrium, eventually terminating at the atrio-ventricular septum,
or conducting into the AV node. SA nodal cells are not identical, but nevertheless fire
at the same frequency. They are not synchronous in their firing (i.e., firing all at once),
but they are phase locked, meaning that during each cycle, each cell fires once and there
is a regular pattern to the firing of the cells. The variation of cellular properties in the
SA node has two dominant features. There are gradual spatial gradients of the period
of the oscillators and random deviations of individual cells from this average gradient.

Three questions concerning the SA pacemaker are of interest. First, since the indi-
vidual cells all have different natural frequencies, what determines the frequency of the
collective SA node? Second, what determines the details of the firing sequence, specif-
ically, the location of the cell that fires earliest in the cycle and the subsequent firing
order of the cells in the node? One might anticipate that the leader of the pack is the
cell with the highest intrinsic frequency, but as we will see, this is not the case. Third,
under what conditions does the SA node lose its ability to initiate the heartbeat (called
sinus node dysfunction), and is it possible for other regions of (abnormal) oscillatory
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Figure 14.9 Twelve-lead ECG recording for severe right ventricular hypertrophy, particularly
noticeable in leads III, V2, and V3. (Rushmer, 1976, Fig. 8-23, p. 330, originally from Guneroth,
1965.)

cells to initiate a wave? Furthermore, since sinus node dysfunction is a potentially fatal
condition, it is of clinical interest to understand how to treat this condition.

To address these questions, we suppose that the SA node is composed of self-
oscillatory cells coupled together in a network, and that the action potential of the
ith cell can be described by a vector of state variables ui, which, in the absence of
coupling, has dynamics

dui

dt
� F(ui)+ εGi(ui). (14.12)

Here, the term F(u) represents typical dynamics applicable for every cell, and εGi(u)
represents the deviation of the dynamics for the ith cell from the average. The parameter
ε is assumed to be a small positive number, indicating that the variation among cells is
small. To specify F, one might use the YNI model or the FitzHugh–Nagumo model (as
in section 4.3), adjusted to allow for autonomous oscillations.

Next we assume that the cells are isopotential and connected discretely through
resistive gap-junction coupling and that the extracellularmedium is isopotential. Then,
when the cells are coupled, we obtain the system of equations

dui

dt
� F(ui)+ εGi(ui)+ εD

∑
j

dij(uj − ui). (14.13)
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Here D is a diagonal matrix with entries of zero or one to indicate which of the state
variables participate in the coupling. In neuromuscular media, only the intracellular
and extracellular potentials participate in the coupling. However, because we have
assumed that the extracellular potential is uniform, D has only one nonzero entry,
namely that one corresponding to the intracellular potential, which in this case is the
same as the membrane potential.

The coefficients dij are the coupling coefficients for the network of cells, where dij
is equal to the (positive) coupling strength (inversely proportional to the resistance)
between cells i and j. Of course, dij � 0 if cells i and j are not directly coupled, and
coupling is symmetric, so that dij � dji. Without loss of generality, dii � 0.

A simple example for the coupling matrix comes from considering a one-
dimensional chain of cells coupled by nearest-neighbor coupling, for which di,i+1 �
di,i−1 � d, the coupling strength between cells, and all other coupling coefficients are
zero. The general formulation (14.13) of the problem allows us to consider a wide
variety of coupling networks, including anisotropically coupled rectangular grids and
hexagonal grids. The parameter ε scales the coupling term to indicate that the coupling
is weak, so that currents through gap junctions are small compared to transmembrane
currents. The evidence for weak coupling is that the wave speed in the SA node is very
slow, on the order of 2–5 cm/s, compared with 50 cm/s in myocardial tissue and 100
cm/s in Purkinje fiber. (See Exercise 12 for a possible explanation of whyweak coupling
is advantageous.)

Suppose the stable periodic solution of the equation du
dt

� F(u) is given by U(t).
Then, because ε is assumed to be small, one can use multiscale methods (see Section
14.5) to find that ui(t) � U(ω(ε)t+ δθi(t))+O(ε), where ω(ε) � 1+ ε61 +O(ε2) and the
phase shift δθi of each oscillator satisfies the equation

d

dt
δθi � ε

(
ξi −61 +

∑
j ��i
dij[h(δθj − δθi)− h(0)]

)
. (14.14)

The periodic coupling function h and the numbers ξi are specified in Section 14.5 and
the scalar 61 is as yet undetermined. Notice that each oscillator has frequency ω(ε)
and that the phase is slowly varying by comparison with the underlying oscillation and
represents only the variation from the typical oscillation.

While there are many interesting questions that could be addressed at this point,
of greatest interest here is to determine the firing sequence in a collection of phase-
locked oscillators. By firing sequence, we mean the order of firing of the individual
cells. If the firing sequence of cells is spatially ordered, then the firing of cells appears
as a spreading wave, although it is not a propagated wave, but a phase wave. (It is not
propagated because it would remain for some time even if coupling were set to zero.
The role of coupling is merely to coordinate, not to initiate, the wavelike behavior.)

To determine the approximate firing sequence, we suppose that the cells are phase-
locked and that the steady-state phase differences are not too large. This is the case for
normal SA nodal cells, since all of the SA nodal cells fire within a few milliseconds of
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each other during an oscillatory cycle of about one second duration. If the steady-state
phase differences are small enough, we can replace h(δθj − δθi)− h(0) in (14.14) by its
local linearization h′(0)(δθj − δθi). Then the steady states of (14.14) are determined as
solutions of the linear system of equations∑

j

dijh
′(0)(δθj − δθi) � 61 − ξi. (14.15)

We rewrite (14.15) in matrix notation by defining a matrix Awith entries aij � dij if i �� j

and aii � −∑j ��i dij, and then (14.15) becomes

AP � 1
h′(0)

( $61 − $ξ), (14.16)

where P is the vector with entries δθi, $61 is a vector with all entries 61, and the entries
of $ξ are the numbers ξi.

A few observations about the matrix A are important. Notice that A is symmetric
and has a nontrivial null space, since

∑
j aij � 0. For consistency, we must choose 61

such that the sum of all rows of (14.16) is zero, so that

61 � 1
N

∑
i

ξi. (14.17)

Thus the bulk frequency of the SA node is determined as the average of the frequencies
of the individual oscillators. This is a democratic process in which one cell equals one
vote, regardless of coupling strength.

Next, since all the nonzero elements of dij (and hence the off-diagonal elements of
A) are positive and A has zero row sums, all the nonzero eigenvalues of A have negative
real part. Furthermore, since A is real, symmetric, and nonpositive definite, it has a
complete set of N mutually orthogonal, real eigenvectors, say {yk}, with corresponding
real eigenvalues λk. All of the eigenvalues λk are negative or zero. If the matrix of
coupling coefficients dij is irreducible, then the constant eigenvector y1 is the unique
null vector of A, and λk < 0 for k > 1 (see Chapter 6, Exercise 6). The matrix of coupling
coefficients is irreducible if all the cells are connected by some electrical path, so that
there are no electrically isolated clumps of cells. Suppose also that the eigenvectors are
ordered by increasing amplitude of the eigenvalue. The solution of (14.16) is readily
expressed in terms of the eigenvectors and eigenvalues of A as

P � − 1
h′(0)

∑
k��1

〈$ξ, yk〉 yk
λk
. (14.18)

The scalar 61 drops out of this expression because the eigenvector y1 is the constant
vector and 〈yk, y1〉 � 0 for all k �� 1.

The firing sequence is now determined from P. That is, if δθk is the largest element
of P, then the phase of the kth cell is the most advanced and therefore the first to fire,
and so on in decreasing order. It remains to gain someunderstanding of the relationship
between the natural frequencies $ξ and the firing sequence P.
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The general principle of how the firing sequence is determined from the natu-
ral frequencies $ξ is apparent from (14.18). The firing sequence is a superposition
of the eigenvectors {yk} with amplitudes λ−1

k
〈$ξ, yk〉. Thus, eigenvector components of

$ξ that are most influential on the firing sequence are those components for which
λ−1
k

〈$ξ, yk〉 is largest in amplitude. The expression (14.18) is a filter that suppresses, or
filters out, certain components of $ξ. It follows that a single cell with high natural fre-
quency compared to its coupled neighbors is not necessarily able to lead the firing
sequence.

The expression (14.18) for the firing sequence does not give much geometrical in-
sight. Furthermore, it is usually not a good idea to solvematrix problems such as (14.16)
using eigenfunction expansions, since direct numerical methods are much faster and
easier. To illustrate how (14.18) works, we consider, as an example, a two-dimensional
grid of cells coupled by nearest-neighbor coupling. The natural frequencies of the cells
are randomly distributed, with the fastest cells concentrated near the center of the grid.
The distribution of frequencies found by direct numerical solution is depicted in Fig.
14.10, with darker locations representing the slowest intrinsic frequencies. The firing
sequence for this collection of cells is shown in Fig. 14.11, where cells with advanced (or
largest) phase fire earliest in the firing sequence. The initiation of the firing sequence
is at the site of a group of fast, but not necessarily the fastest, oscillators. Notice that
the phase is smoothed, giving the appearance of wave-like motion moving from the
location of largest phase to smallest phase, even though these are phase waves rather
than propagated waves. In this figure, the scale of the phase variable is arbitrary.

Figure 14.10 Natural frequencies ξi

for a collection of oscillatory cells.
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Figure 14.11 Phase for oscillators in a collection of coupled cells with nearest-neighbor
coupling and natural frequencies as depicted in Fig. 14.10.

14.2.2 Critical Size of a Pacemaker

TheSAnode is a small clumpof self-oscillatory cells in a sea of excitable (but nonoscilla-
tory) cells whose function is to initiate the cardiac action potential. SA nodal cells have
no contractile function and therefore no contractile machinery. Thus, when viewed in
terms of contractile efficiency, SA nodal cells are a detriment to contraction and awaste
of important cardiac wall space. On the other hand, the SA node cannot be made too
small because presumably, it would not be able to generate the current necessary to
entrain the rest of the heart successfully. Thus it is important to have some measure of
the critical size of the SA node.

An ectopic focus is a collection of cells other than the SA node or AV node that are
normally not oscillatory but that for some reason (for example, increased extracellular
potassium) become self-oscillatory and manage to entrain the surrounding tissue into
a rapid beat. In some situations, particularly in people with scar tissue resulting from
a previous heart attack, the appearance of an ectopic focus may be life-threatening.

Wemodel the behavior of a clump of oscillatory cells in an otherwise nonoscillatory
medium in a simple way, using FitzHugh–Nagumo dynamics:

∂v

∂t
� ∇2v+ f (v)−w, (14.19)

∂w

∂t
� ε(v− γw− α(r/σ)), (14.20)
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where v represents the membrane potential and w the recovery variable for our ex-
citable medium. The function f (v) is of typical “cubic” shape (cf. Chapter 4). The
function α(r) is chosen to specify the intrinsic cell behavior as a function of the ra-
dial variable r. The number σ is a scale factor that measures the size of the oscillatory
region. We take ε to be a small positive number and require γ > 0, f ′(v)γ < 1 for all v.
This requirement on γ guarantees that the steady-state solution of (14.19)–(14.20) is
unique. If the domain is bounded, typical boundary conditions are Neumann (no-flux)
conditions. Notice that space has been scaled to have unit space constant. We assume
radial symmetry for the SA node as well as for the entire spatial domain.

When there is no spatial coupling, there are two possible types of behavior, ex-
emplified by the phase portraits in Figs. 4.17 and 4.19. In these examples, the system
has a unique steady-state solution that is globally stable (Fig. 4.17) or has an unstable
steady-state solution surrounded by a stable periodic orbit (Fig. 4.19), depending on
the location of the intercept of the two nullclines.

The transition from a stable to an unstable steady state is a subcritical Hopf bifur-
cation. The Hopf bifurcation is readily found from standard linear analysis. Suppose
v∗ is the equilibrium value for v (v∗ is a function of α). Then the characteristic equation
for (14.19)–(14.20) (with no diffusion) is

f ′(v∗) � λ+ ε

λ+ εγ
, (14.21)

where λ is an eigenvalue of the linearized system. There is a Hopf bifurcation (i.e., λ is
purely imaginary) when

f ′(v∗) � εγ, (14.22)

provided that εγ2 < 1. If f ′(v∗) > εγ, the steady-state solution is an unstable spiral point,
whereas if f ′(v∗) < εγ, the steady-state solution is linearly stable. If ε is small, most
of the intermediate (increasing) branch of the curve f (v) is unstable, with the Hopf
bifurcation occurring close to the minimal and maximal points. Thus, there is a range
of values of α, which we denote by α∗ < α < α∗, for which the steady solution is unstable.

We wish to model the physical situation in which a small collection of cells (like
the SA node or an ectopic focus) is intrinsically oscillatory, while all other surrounding
cells are excitable, but not oscillatory. To model this, we assume that α(r) is such that
the steady solution is unstable for small r, but stable and excitable for large r, so that
limr→∞ α(r) � a < α∗ and limr→∞ f ′(v∗(r)) < εγ. As an example, we might have the
bell-shaped curve

α(r) � a+ (b− a)exp
(
− r2

R2

)
, (14.23)

R2 � log
(
b− a

α∗ − a

)
, (14.24)

with a < α∗ < b < α∗. The scale factor R was chosen such that α(1) � α∗, so that cells
with r < 1 are self-oscillatory and the cells outside unit radius are nonoscillatory.
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Another way to specify α(r) is simply as the piecewise constant function

α(r) �
{
b, for 0 < r < 1,

a, for r > 1,
(14.25)

with a < α∗ < b < α∗. The specification (14.25) is particularly useful when used in
combination with the piecewise linear function

f (v) �




−v, for v <
1
4
,

v− 1
2
, for

1
4
< v <

3
4
,

1− v, for v >
3
4
,

(14.26)

since then all the calculations that follow can be done explicitly (see Exercises 11 and
12).

There are two parameters whose influence we wish to understand and that we
expect to be most significant, namely, a, the asymptotic value of α(r) as r → ∞, and σ,
which determines the size of the oscillatory region. Note that as a decreases, the cells
become less excitable and the wavespeed of fronts decreases. We expect the behavior
to be insensitive to variations in b, although this should be verified as well.

With a nonuniform α(r), the uncoupled medium has a region of cells with unstable
steady states and a region with stable steady states. With diffusive coupling, the steady
state is smoothed and satisfies the elliptic equation

∇2v+ F(v, r) � 0, (14.27)

F(v, r) � f (v)−w, (14.28)

w � 1
γ

(
v− α

( r
σ

))
. (14.29)

For each r, the function F(v, r) is a monotone decreasing function of v having a unique
zero, say v � v∗(r), F(v∗(r), r) � 0. It follows that there is a unique, stable solution of
(14.29), denoted by v0(r), w0(r). In fact, this unique solution is readily foundnumerically
as the unique steady solution of the nonlinear parabolic equation

∂y

∂t
� ∇2y+ F(y, r). (14.30)

This steady-state solution is shown in Fig. 14.12. Here are shown three different
steady-state solutions of (14.19)–(14.20); the uncoupled solution (the steady states for
the uncoupled medium, i.e., with no diffusion), the solution for a symmetric one-
dimensional medium, and the solution for a spherically symmetric three-dimensional
medium. The three-dimensional solution with spherical symmetry is not much harder
to find than the one-dimensional solution, because the change of variables y � Y/r

transforms (14.30) in three spatial dimensions into

∂Y

∂t
� ∂2Y

∂r2
+ rF

(
Y

r
, r

)
. (14.31)
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Figure 14.12 Three steady-state solutions with f (v ) � 10.0v (v − 1)(0.5 − v ), γ � 0.1, and α(r )
given by (14.23), with a � 0.104, b � 0.5, σ � 2.25. The short dashed curve shows the uncoupled
solution, the long dashed curve shows the solution for a symmetric one-dimensional medium,
and the solid curve shows the solution for a spherically symmetric three-dimensional medium.

Solutions of this partial differential equation are regular at the origin if we require
Y � 0 at r � 0. Diffusion obviously smooths the steady-state solution in the oscillatory
region.

The issue of collective oscillation is determined by the stability of the diffusively
smoothed steady state as a solution of the partial differential equation system (14.19)–
(14.20). To study the stability of the steady state,we look for a solution of (14.19)–(14.20)
of the form v(r) � v0(r)+V(r)eλt, w � w0(r)+W(r)eλt and linearize. We obtain the linear
system

λV � ∇2V + f ′(v0(r))V −W, (14.32)

λW � ε(V − γW). (14.33)

Because of the special form of this linear system, it can be simplified to a single
equation, namely,

∇2V + f ′(v0(r))V � µV, (14.34)

where µ � λ+ ε
λ+εγ . Equation (14.34) has a particularly nice form, being a Schrödinger

equation. In quantum physics, the function −f ′(v0(r)) is the potential-energy function,
and the eigenvalues µ are the energy levels of bound states. In the present context,
we are interested in determining the sign of the real part of λ through µ � λ + ε

λ+εγ .
Notice that the relationship between µ and λ here is of exactly the same form as the
characteristic equation for individual cells (14.21). This leads to anice interpretation for
the Schrödinger equation (14.34). Because it is a self-adjoint equation, the eigenvalues
µ of (14.34) are real. Therefore, there is a Hopf bifurcation for the medium whenever
µ � εγ. The entire collection of coupled cells is stable when the largest eigenvalue
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Figure 14.13 The potential function f ′(v (r )) for three steady profiles v (r ). The short dashed
curve corresponds to the uncoupled solution, the long dashed curve to the symmetric one-
dimensional medium, and the solid curve to a spherically symmetric three-dimensional
medium.

satisfies µ < εγ and unstable if the largest eigenvalue has µ > εγ.
In Fig. 14.13 is shown the potential function f ′(v(r)) for the three steady profiles

of Fig. 14.12. The largest eigenvalue of (14.34) represents an average over space of
the influence of f ′(v0(r)) on the stability of the steady state. When this value is larger
than εγ (the critical slope of f (v) at which Hopf bifurcations of the uncoupled system
occur), then the entire medium loses stability to a Hopf bifurcation and gives rise to
an oscillatory solution. The condition µ > εγ is therefore the condition that determines
whether a region of oscillatory cells is a source of oscillation. If µ < εγ, the oscillatory
cells are masked by the rest of the medium.

Some observations about the size of the eigenvalues µ are immediate. Because
limr→∞ v0(r) � limr→∞ v∗(r), it follows that f ′(v0(r)) < εγ for large r. For there to be
a bounded solution of (14.34) that is exponentially decaying at ±∞, there must be
a region of sinusoidal behavior in which µ < f ′(v0(r)). Thus, the largest eigenvalue
of (14.34) is guaranteed to be smaller than the maximum of f ′(v0(r)). Therefore, if
v0(r) < α∗ (so that f ′(v0(r)) < εγ for all r), there are no oscillatory cells, and the steady
solution is stable. Furthermore, since the largest eigenvalue is strictly smaller than
the maximum of f ′(v0(r)) and it varies continuously with changes in v0(r), there are
profiles α(r) having a nontrivial collection of oscillatory cells that is too small to render
the medium unstable. That is, there is a critical mass of oscillatory cells necessary to
cause the medium to oscillate. Below this critical mass, the steady state is stable, and
the oscillation of the oscillatory cells is quenched.

Suppose f ′(v) is a monotone increasing function of v in some range v < v+, and
suppose that α(r) is restricted so that v0(r) < v+ for all r. Suppose further that α(r) is
a monotone increasing function of its asymptotic value a and a monotone decreasing
function of r. Then the steady-state solution v0(r) is an increasing function (for each
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point r) of both a and σ. Therefore, the function f ′(v0(r)) is an increasing function of
a and σ for all values of r, from which it follows—using standard comparison argu-
ments for eigenfunctions (Keener, 1988, or Courant and Hilbert, 1953)—that µ(a, σ),
the largest eigenvalue of (14.34), is an increasing function of both a and σ. As a result,
if α(r) is restricted so that v0(r) < v+ for all r, there is a monotone decreasing func-
tion of σ, denoted by σ � T(a), along which the largest eigenvalue µ(a, σ) of (14.34) is
precisely εγ.

This summary statement shows that to build the SA node, one must have a suf-
ficiently large region of oscillatory tissue, and that the critical mass requirement
increases if the tissue becomes less excitable or if the coupling becomes stronger. Strong
coupling inhibits oscillations, because increasing coupling increases the space con-
stant, and σ was measured in space constant units. Therefore, an increase of the space
constant increases the critical size requirement of the oscillatory region. In Fig. 14.14
is shown the critical Hopf curve σ � T(a) for a one-dimensional domain and for a
three-dimensional domain (taking ε � 0), both found numerically.

Having established that there is a critical size for a self-oscillatory region above
which oscillations occur and below which oscillations are prevented, we would like to
examine the behavior of the oscillations. Two types of oscillatory behavior are possible.
If the far field r → ∞ is sufficiently excitable, then the oscillations of the oscillatory
region excite periodic waves that propagate throughout themedium, as depicted in Fig.
14.15. On the other hand, it may be that there are oscillations that fail to propagate
throughout the entire medium, as depicted in Fig. 14.16. In Fig. 14.15, the oscilla-
tory region successfully drives oscillatory waves that propagate throughout the entire
medium. Here, a � 0.2, σ � 3.0. In Fig. 14.16, the oscillatory region is incapable of driv-
ing periodic waves into the nonoscillatory region. For this figure, a � 0.0, and σ � 3.0,
so that the medium at infinity does not support front propagation.

The issue of whether or not the entire medium is entrained to the central oscillator
is decided by the relationship between the period of the oscillator and the dispersion
curve for the far medium. Roughly speaking, if the period of the central oscillator is
large enough compared to the absolute refractory period of the far medium (the knee
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Figure 14.14 The critical curve
σ � D(a) along which there is
a Hopf bifurcation for the system
(14.19)–(14.20), shown solid for a
one-dimensional and dashed for a
three-dimensional medium.
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Figure 14.15 Waves generated by an oscilla-
tory core that propagate into the nonoscillatory
region. The nonlinearity here is the same as in
Fig. 14.12 with ε � 0.1, γ � 0.1, a � 0.2, b � 0.5,
and σ � 3.0.

Figure 14.16 Waves generated by an oscil-
latory core that fail to propagate into the
nonoscillatory region. The nonlinearity here is
the same as in Fig. 14.12 with ε � 0.1, γ �
0.1, a � 0, b � 0.5, and σ � 3.0.

of the dispersion curve), then waves can be expected to propagate into the far field in
one-to-one entrainment. On the other hand, if the frequency of the oscillation is below
the knee of the dispersion curve, we expect partial or total block of propagation. Block
of propagation occurs as the excitability of the far field, parametrized by a, decreases.

We can summarize how the oscillations of the medium depend on coupling
strength. For a medium with fixed asymptotic excitability, if the size of the oscilla-
tory region is large enough, there is oscillatory behavior. However, this critical mass is
an increasing function of coupling strength. With sufficiently large coupling, the oscil-
lations of any finite clump of oscillatory cells (in an infinite domain of nonoscillatory
cells) are quenched. If coupling is decreased, the critical mass for oscillation decreases.
Thus, any clump of oscillatory cells oscillates if coupling is weak enough. However, if
coupling is too weak, then effects of discrete coupling may become important, and the
oscillatory clumpof cellsmay lose its ability to entrain the entiremedium. It follows that
if the medium is sufficiently excitable, there is a range of coupling strengths, bounded
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above and below, in which a mass of oscillatory cells entrains the medium. If the cou-
pling is too large, the oscillations are suppressed, while if the coupling is too weak, the
oscillations are localized and cannot drive oscillations in the medium far away from
the oscillatory source. On the other hand, if the far region is not sufficiently excitable,
then one of these two mechanisms suppresses entrainment for all coupling strengths.

14.3 Cardiac Arrhythmias

Cardiac arrhythmias are disruptions of the normal cardiac electrical cycle. They are
generally of two types. There are temporal disruptions, which occur when cells act out
of sequence, either by firing autonomously or by refusing to respond to a stimulus from
other cells, as in AV nodal block or a bundle branch block. A collection of cells that
fires autonomously is called an ectopic focus. Generally speaking, these arrhythmias
cause little disruption to the ability of the heart muscle to pump blood, and so if they
do not initiate some other kind of arrhythmia, are generally not life-threatening.

The second class of arrhythmias are those that are reentrant in nature and can
occur only because of the spatial distribution of cardiac tissue. If they occur in the
ventricles, reentrant arrhythmias are of serious concern and life-threatening, as the
ability of the heart to pump blood is greatly diminished. Reentrant arrhythmias on the
atria are less dangerous, since the pumping activity of the atrial muscle is not necessary
to normal function with minimal physical activity.

A classic example of a reentrant rhythm is Wolff–Parkinson–White (WPW) syn-
drome, in which an action potential circulates continuously between the atria and the
ventricles through a loop, exiting the atria through the AV node and reentering the
atria through an accessory pathway (or vice versa). Since conduction through the AV
node is quite slow compared to other propagation, an accessory pathway that circum-
vents the AV node usually reveals itself on the ECG by an early, broad deflection of the
QRS complex (Fig. 14.17). This deflection is broadened because it depicts propagation
through myocardial tissue, which is slow compared to normal propagation through
the Purkinje network. WPW syndrome is life-threatening if not detected and treated,
because it allows for the possibility of rapid reentrant rhythms. However, WPW syn-
drome is usually curable, as cardiac surgeons can use localized radio frequency waves
to burn and permanently obliterate the accessory pathway, restoring a normal single
pathway conduction and a normal ECG.

14.3.1 Atrioventricular Node

In the normal heart, the only pathway for an action potential to travel to the ventricles
is through the AV node. As noted above, propagation through the AV node is quite slow
compared to propagation in other cardiac cells. This slowed conduction is primarily
due to a decreased density of sodium channels, which yields a decreased upstroke
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Figure 14.17 Twelve-lead ECG recording of Wolff–Parkinson–White syndrome, identifiable
by the shortened P–Q interval (because the AV delay is circumvented) and the slowed QRS
upstroke, particularly noticeable in leads II, aVR, and V6. (Rushmer, 1976, Fig. 8-47, p. 339;
originally from Guneroth, 1965).

velocity. With a decrease of sodium channel density there is also an increase in the
likelihood of conduction failure.

Propagation failure in the AV node leads to skipped QRS complexes on the ECG,
or, more prosaically, skipped heartbeats. A skipped heartbeat once in a while is not
particularly dangerous, but it is certainly noticeable. During diastole (the period of
ventricular relaxation during the heartbeat cycle), the ventricles fill with blood. Fol-
lowing an abnormally long diastolic period, the heart becomes enlarged, and when the
next compression (systole) occurs,Starling’s law (i.e., that compression is strongerwhen
the heart is more distended initially, cf. Chapter 15) takes control, and compression is
noticeably more vigorous, giving the subject a solid thump in the chest.

AVnodal conduction abnormalities are sorted into three classes. They are all readily
visible fromECG recordings by looking at the time interval between the P wave and the
QRS complex, i.e., the P–R interval. Type I AV nodal block shows itself as an increase in
the P–R interval as the SA pacing rate increases. Type III AV nodal block corresponds
to no AV nodal conduction whatever and total absence of a QRS complex.

Type II AV nodal block is phenomenologically the most interesting. In the sim-
plest type, there is one QRS complex for every two P waves, a 2:1 pattern. A more
complicated pattern is as follows: on the ECG (Fig. 14.18), P waves remain periodic,
although the P–R interval is observed to increase gradually until one QRS complex is
skipped. Following the skipped beat, the next P–R interval is quite short, but then the
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Figure 14.18 ECG recording of a Wenckebach pattern in which every fourth or fifth atrial beat
is not conducted. (Rushmer, 1976, Fig. 8-24, p. 313.)

P–R lengthening begins again, leading to another skipped beat, and so on. A pattern
with n P waves to n − 1 QRS complexes is called an n-to-(n − 1) Wenckebach pattern,
after the German cardiologist Wenckebach (1904).

A simple mathematical description of AV nodal signal processing can be given as
follows: we view the AV node as a collection of cells that fire when they are excited,
which happens if their potential reaches a threshold, θ(t). Immediately after firing, the
cells become refractory but then gradually recover. Effectively, at firing, the threshold
increases dramatically but then decreases back to its steady-state value as recovery
proceeds. This model ignores the fact that the AV node is self-oscillatory and will fire
without stimulus with a low frequency of 30–40 per minute. The self-oscillatory nature
of the AV node becomes evident only in cases of SA nodal failure or at very low SA nodal
firing rates. Thus, the model discussed here is valid at high stimulus rates (appropriate
for AV nodal block) but not at low stimulus rates.

Input to the AV node comes from the action potential propagating through the atria
from the SA node. The AV node experiences a periodic, time-varying potential, say φ(t).
Firing occurs if the input signal reaches the threshold. Therefore, at the nth firing time,
denoted by tn,

φ(tn) � θ(tn). (14.35)

Subsequent to firing, the threshold evolves according to

θ(t) � θ0 + [θ(t+n )− θ0]e−γ(t−tn), t > tn. (14.36)

Note that θ → θ0 as t → ∞, and thus θ0 denotes the base value of the threshold. Further,
θ � θ(t+n ) at t � tn, and thus θ(t+n ) − θ(t−n ) denotes the jump in the threshold caused by
the firing of an action potential. To complete the model we must specify θ(t+n ). The
important feature of θ(t+n ) is that it must have some memory, that is, depend in some
way on θ(t−n ). Therefore, we take

θ(t+n ) � θ(t−n )+Hθ. (14.37)
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The simple choice used here is to take Hθ a constant. However, consideration of the
threshold in FitzHugh–Nagumo models suggests that (in a more general model) Hθ
could also be some decreasing function of θ(t−n ), i.e., Hθ � Hθ(θ(t−n )) � Hθ(φ(tn)), since
φ(tn) � θ(t−n ).

Now we can find the next firing time as the smallest solution of the transcendental
equation

φ(tn+1) � θ0 + [θ(t+n )− θ0] e−γ(tn+1−tn). (14.38)

Equation (14.38) can be rearranged into an equation of the form

F(tn+1) � F(tn)+Hθeγtn � G(tn), (14.39)

where

F(t) � (φ(t)− θ0)eγt. (14.40)

Plots of typical functions F(t) and G(t) are shown in Fig. 14.19. Here we have taken
φ(t)− θ0 � sin4(πt). The dashed lines in this figure follow a few iterates of the map.

The key observation is that the map tn %→ tn+1 as defined by (14.39) is the lift of a
circle map. Before proceeding with this example, we give a brief introduction to the
theory of circle maps.

The first application of circle maps to the behavior of neurons was given by Knight
(1972). More detailed discussions of maps and chaos and the like with application to a
wide array of biological problems can be found in Glass and Mackey (1988), Glass and
Kaplan (1995), and Strogatz (1994).

Circle maps
A circle map is a map of the circle to itself, f : S1 → S1, but it is often easier to describe
a circle map in terms of its lift F : R → R, where F is a monotone increasing function
and F(x+ 1) � F(x)+ 1. The two functions f and F are related by

f (x) ≡ F(xmod 1) mod 1. (14.41)

(For convenience we normalize the circumference of the circle to be of length 1, rather
than 2π.)

The primary challenge from a circle map is to determine when the behavior is
periodic and to understand the possible nonperiodic behaviors. The simplest periodic
behavior is a period 1 solution, say a point x0 for which F(x0) � x0 + 1. This orbit is
also said to have rotation number one because it rotates around the circle once on each
iterate. This is also described as 1:1 phase locking between input and output. A more
complicated periodic orbit would be a point x0 and its iterates xj with the property that
xn � x0 +m. In other words, the iterates rotate around the circlem times in n iterates.
The rotation number ism/n, and there ism : n phase locking, withm output cycles for
every n input cycles.
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The key fact to understand is that the asymptotic behavior of a circle map is
characterized by its rotation number, ρ, defined by

ρ � limn→∞
Fn(x)
n

. (14.42)

Fn(x) is the nth iterate of the point x,

Fn(x) � F(Fn−1(x)), (14.43)

where F0(x) � x and F1(x) � F(x).
If F is a continuous function, the rotation number has the following properties:

1. ρ exists and is independent of x.
2. ρ is rational if and only if there are periodic points.
3. If ρ is irrational, then the map F is equivalent to a rigid rotation by the amount ρ.
4. If there is a continuous family of maps Fλ, then ρ(λ) is a continuous function of λ.
Furthermore, ifFλ is amonotone increasing function of λ, then ρ is a nondecreasing
function of λ.

5. Generically, if ρ(λ) is rational at some value of λ0, it is constant on an open interval
containing λ0.

Here iswhat thismeans in practical terms. Since ρ exists, independent of x, all orbits
have the same asymptotic behavior, orbiting the circle at the same rate. If ρ is rational,
the asymptotic behavior is periodic, whereas if ρ is irrational, the motion is equivalent
to a rigid rotation. In this case, the behavior is aperiodic, but not complicated, or
“chaotic.” There are no other types of behavior for a continuous circle map.

The last two features of ρ make the behavior of the orbits so unusual, being a
function that is continuous, monotone nondecreasing (if Fλ is an increasing function
of λ), yet locally constant at all the rational levels. Such a function is called the Devil’s
staircase. Notice that if ρ is rational on an open interval of parameter space, then phase
locking is robust.

The reason for this robustness is that a periodic point with ρ � p/q corresponds to a
root of the equation Fq(x)− x � p, and roots of equations are generally, but not always,
robust, or transversal (i.e., the derivative of Fq(x)− x at a root is nonzero). If a root is
transversal, then arbitrarily small perturbations to the equation do not destroy the root,
and it persists for a range of parameter values. However, the existence of a periodic
point is no guarantee that it is robust. For example, the simple shift F(x) � x + λ has
periodic points whenever λ is rational, but these periodic points are never isolated or
robust.

A detailed exposition on continuous circlemaps and proofs of the above statements
can be found in Coddington and Levinson (1984, chapter 17).

Now we attempt to apply this theory of circle maps to (14.39). Notice that this is
indeed the lift of a circle map, since if tn and tn+1 satisfy (14.39), then so do tn + T and
tn+1 + T. To find a circle map, we let kn be the largest integer less than tn/T and define
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ψn � (tn − knT)/T. In these variables the map (14.39) can be written as

f (ψn+1) � (f (ψn)+HθeγTψn)eγTHkn , (14.44)

where

f (ψ) � (P(ψ)− θ0)eγTψ, P(ψ) � φ(Tψ), (14.45)

and Hkn � kn+1 − kn.
We can make a few observations about the map ψn %→ ψn+1. First, and most dis-

concerting, the map is not continuous. In fact, it is apparent that there are values of t
on the unit interval that can never be firing times. For t to be permitted as a firing time
it must be the first point at which F(t) reaches the level G(tn), i.e., the first time that
the threshold is reached. At such a point, F′(t) > 0. Since there are regions for which
F′(t) < 0, which can therefore never be firing times, this is a map of the unit interval
into, but not onto, itself. However, the map tn %→ tn+1 is order preserving, since G(t) is
increasing whenever F(t) is increasing.

Since the entire unit interval is not covered by the map, it is only necessary to
examine the map on its range. Examples of the map ψn %→ ψn+1 are shown in Figs.
14.20–14.23. Here we have plotted the map only on the attracting range of the unit
interval. These show important and typical features, namely that the map consists of
either one or two continuous, monotone increasing branches. The first branch, with
values above the one-to-one curve, corresponds to firing in response to the subsequent
input (with kn+1 � kn + 1), and the second, with values below the one-to-one curve,
corresponds to firing after skipping one beat (with kn+1 � kn + 2). The skipped beat
occurs because when the stimulating pulse arrives, it is subthreshold and so does not
evoke a response.
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Figure 14.19 Plot of the functions F (t ) and G(t ) with &θ � 1.0, γ � 0.6.
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Figure 14.20 Plot of the map ψn %→ ψn+1 with &θ � 1.0, γT � 0.8.
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Figure 14.21 Plot of the map ψn %→ ψn+1 with &θ � 1.0, γT � 0.695.

The sequence of figures in Figs. 14.20–14.23 is arranged according to decreasing
values of γT. Note that as γ decreases, the rate of recovery from inhibition decreases.
For γT sufficiently large, there is a unique fixed point, corresponding to firing in 1:1
response to the input signal. Thismakes intuitive sense, forwhen γ is large, the recovery
from inhibition is fast, and thus the AV node can be driven at the frequency of the
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Figure 14.22 Plot of the map ψn %→ ψn+1 with &θ � 1.0, γT � 0.67.
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Figure 14.23 Plot of the map ψn %→ ψn+1 with &θ � 1.0, γT � 0.55.

SA node. For large γT the map is relatively insensitive to changes in parameters. As
γT decreases, the first branch of the map increases and the value of the fixed point
increases, corresponding to a somewhat delayed firing. Furthermore, because the slope
of the map in the vicinity of the fixed point is close to 1, the fixed point is sensitive to
changes in parameter values (depicted in Fig. 14.21), corresponding to type I AV block.
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As the parameter γT is decreased further, the fixed point is lost and a second branch
to the map appears (as in Fig. 14.22). Iterations show that subsequent firings become
later and later in the input cycle until one beat is skipped, followed by a firing that is
relatively early in the input cycle. For this region of parameter space, themap replicates
the Wenckebach pattern.

Finally, as γT decreases further, the second branch “slides over” to the left and
eventually intersects the one-to-one line, yielding a fixed point. This fixed point corre-
sponds to a periodic pattern of one skipped beat for each successful firing, a two-to-one
pattern, and replicates type II AV block.

The behavior of the map in the region with no fixed point can be described by the
rotation number. For maps of the type (14.39) the rotation number can be defined,
analogously to our earlier definition, by

ρ � limn→∞
tn

nT
. (14.46)

The following features of the rotation number ρ can be verified (Keener, 1980a, 1981):

1. ρ exists and is independent of initial data.
2. ρ is a monotone decreasing function of γT.
3. ρ attains every rational level between 0 and 1 on an open interval of parameter
space.

For continuous circle maps, it is not certain that every rational level is attained on an
open interval of parameter space.

The main consequence of this result is that between 1:1 phase locking and 2:1 AV
block, for every rational number there is an open interval of γT on which the rotation
with that rational number is attained.

14.3.2 Reentrant Arrhythmias

Point stimuli
Reentrant arrhythmias usually form spontaneously, although they can also be inten-
tionally initiated. Theway inwhich they are intentionally initiated probably has little to
do with how they form spontaneously. However, intentional initiation gives important
insight into the nature of excitable media. It is well known that reentrant arrhythmias
can be initiated intentionally by the correct application of point stimuli. This procedure
has been described beautifully by Winfree (1987), with many gorgeous color plates, so
here we content ourselves with a shorter, less colorful, verbal description of the process.

When a current is injected at somepoint to resting cardiac tissue, cells in the vicinity
of the stimulus are depolarized. If the stimulus is of sufficient amplitude and duration,
the cells closest to the stimulating electrodemay receive a superthreshold stimulus and
become excited. Cells further away from the stimulus site receive a subthreshold stim-
ulus, so they return to rest when the stimulus ends. At the border between subthreshold
and superthreshold stimulus, a wave front is formed.
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Once a transition front is formed, the nonlinear dynamics and curvature deter-
mine whether it moves forward or backward. That is, if the undisturbed medium is
sufficiently excitable, and the initially excited domain is sufficiently large, the wave
front moves outward into the unexcited region. If, however, the unaffected medium is
not excitable, but partially refractory, or the excited domain is too small, the wave front
recedes and collapses.

If the stimulated medium is initially uniform, these two are the only possible
responses to a stimulus. However, if the state of the medium in the vicinity of the
stimulating electrode is not uniform, then there is a third possible response. Suppose,
for example, that there is a gradual gradient of recovery so that a portion of the stimu-
lated region is excitable, capable of supporting wave fronts (with positive wave speed)
and the remaining portion of the stimulated region cannot support wave fronts, but
only wave backs (i.e., fronts with negative speed). Then, the result of the stimulus is to
produce both wave fronts and wave backs.

With a mixture of wave fronts and wave backs, a portion of the wave surface
will expand, and a portion will retract. Allowed to continue in this way, a circular
(two-dimensional) domain evolves into a double-armed spiral, and a spherical (three-
dimensional) domain evolves into a scroll. If the domain is sufficiently large, these
become self-sustained reentrant patterns.

In resting tissue with no pacemaker activity, two stimuli are required to initiate a
reentrant pattern. The first is required to set up a spatial gradient of recovery. Then, if
the timing and location of the second iswithin the appropriate range, a single action po-
tential that propagates in the backward, but not forward, direction can be initiated. This
window of time and space is called the vulnerable window or vulnerable period. If the
tissuemass is large enough or if there is a sufficiently long closed one-dimensional path,
the retrograde propagation initiates a self-sustained reentrant pattern of activation.

Sudden cardiac death
Death following a heart attack probably occurs via amuchdifferentmechanism. Aheart
attack occurswhen there is a sudden occlusion of a coronary artery, stopping the flowof
blood to a portion of the ventricularwall. Following this occlusion, cells become anoxic,
and cellmetabolismchanges. There is a subsequent change in the internal osmotic pres-
sure, followed by swelling of the cell. To prevent swelling, stretch-activated potassium
channels release large quantities of potassium into the extracellular space, possibly
rendering the cell self-oscillatory, but certainly changing the cell’s resting potential.
Gradually, gap junctions fail, and cells become electrically decoupled. Eventually, the
cells die (a myocardial infarction), and form nonfunctioning scar tissue.

It is during the period of potassium extrusion preceding complete electrical de-
coupling that a reentrant arrhythmia is most likely to form. While the details are not
known, there are several ingredients associated with their formation that are certain.
First, theremust be a regionwhere propagation is blocked. Clearly, this is not sufficient,
because in general, propagation simply goes around the blocked region and continues
merrily on its way. However, if the region of block is on a one-dimensional conduct-
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ing pathway and there is an alternative route by which an action potential can reach
the blocked region from the opposite side, then a reentrant pattern is formed if the
returning action potential successfully propagates through the blocked region in the
retrograde direction. Such a region is called a region of one-way block, and we know
that such regions can exist, for example, at points of fiber arborization (Section 11.1.2).
One-dimensional paths with one-way block may be created by infarctions. Following
occlusion of a coronary artery, tissue is highly inhomogeneous, and all sorts of strange
conductive arrangements are possible, indeed likely.

A simple model shows why the initiation of a reentrant pattern is so dramatic.
Suppose that there are cells located next to the exit from a one-dimensional path with
one-way block (Fig. 14.24), and suppose that these cells are normally stimulated by
some external pacemaker, with period T. We define the instantaneous frequency of
stimulus as HTn+1 � tn+1 − tn, where tn is the nth firing. Now we take a simple kine-
matic description of propagation in the one-way path and suppose that the speed of
propagation in the path is a function of the instantaneous period, c � c(HT). (Typi-
cally, c is an increasing function of HT.) Then the travel time around the one-way loop
is L

c(HT) . In cardiac tissue, the speed of an action potential is on the order of 0.5 m/s, so
that travel time around the loop is much shorter than the period of external stimulus.
Thus the wave on the loop typically returns to the stimulus site long before the next
external stimulus arrives (i.e., we assume that L/c < T). If this travel time is larger than
the absolute refractory period Tr of the cells but smaller than T, the period of the ex-
ternal stimulus, then it stimulates the cells and initiates another wave around the loop.
Thus,

HTn+1 � tn+1 − tn � L

c(HTn)
, (14.47)

provided that T > L
c(HTn)

> Tr.
On the other hand, if this travel time is smaller than Tr, the stimulus is not

successful, and the cells must await the next external stimulus before they fire, so
that

HTn+1 � tn+1 − tn � T (14.48)

if L
c(HTn)

< Tr.
With this information, we can construct the map HTn %→ HTn+1 (shown in Fig.

14.25). There are obviously two branches for this map (shown as solid curves). Of
interest are the fixed points of this map, corresponding to a periodic pattern of stimu-
lus. The fixed point on the upper branch corresponds to the normal stimulus pattern
from the external source, whereas the fixed point on the lower branch corresponds
to a high-frequency, reentrant, pattern. The key feature of this map is that there is
hysteresis between the two fixed points. In a “normal” situation (Fig. 14.25A), with L
small and T large, the period of stimulus is fixed at T. However, as L increases or as T
decreases, rendering L > Trc(δTn), there is a “snap” onto the smaller-period fixed point,
corresponding to initiation of a reentrant pattern (Fig. 14.25B). The pernicious nature
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one-way block

A B
Figure 14.24 Diagram of a conduct-
ing path with one-way block, pre-
venting conduction from right to left.
A: Conduction of a stimulus around
the loop until it encounters refractori-
ness and fails to propagate further.
B: Conduction of a reentrant pattern
circulating continuously around the
loop and exiting via the entry pathway
on every circuit.

of the reentrant pattern is demonstrated by the fact that increasing the period back to
previous levels does not restore the low-frequency pattern—the iterates of the map stay
fixed at the lower fixed point, even though there are two possible fixed points. This is
because the circulating pattern acts as a retrograde source of high-frequency stimulus
on the original stimulus site, thereby masking its periodic activity.

Note that there are a number of ways that this reentrant pattern might be initiated.
First, following a heart attack, a growing infarcted regionmay lead to a gradual increase
in L, initiating the reentrant pattern while keeping T fixed. On the other hand, an
infarcted region may exist but remain static (L fixed), and the reentrant pattern is
initiated following a decrease in T, for example, during strenuous exercise. Thus, a
static one-way loop acts like a “period bomb” (rather than a time bomb), ready to go
off whenever the period is sufficiently low.

∆Tn +1

∆Tn

Tr

Tr

L/c

T

∆Tn +1

∆Tn

Tr

Tr

L/c

T

A B

Figure 14.25 Next-interval map for a one-way conducting loop in two cases. A: With T large,
so that two stable steady solutions exist. B: With T small, so that the only steady solution
corresponds to reentry.
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It is possible to initiate a reentrant arrhythmia in any healthy human heart using
the two-stimulus protocol. However, the reason that we do not all succumb to reentrant
arrhythmias (althoughmany of us will) is that the spontaneous generation of reentrant
patterns seems to require a substantial mass of damaged tissue (in this model, suffi-
ciently large, but not too large, L). The most dangerous time for onset of a reentrant
arrhythmia following a heart attack is when the infarcted area is in this critical size
domain. It is perhaps not surprising that reentrant patterns also occur with high likeli-
hood during reperfusion after an occlusion has been removed and blood flow restored
to a region of tissue damage (although a full explanation of this requires a much more
detailed model and analysis than that given here).

Tachycardia and fibrillation
The two primary reentrant arrhythmias are tachycardia and fibrillation. Both of these
can occur on the atria (atrial tachycardia and atrial fibrillation) or on the ventricles
(ventricular tachycardia and ventricular fibrillation). When they occur on the atria, they
are not life-threatening because there is little disruption of blood flow. However, when
they occur on the ventricles, they are life-threatening. Ventricular fibrillation is fatal if
it is not terminated quickly. Symptoms of ventricular tachycardia include dizziness or
fainting, and sometimes rapid “palpitations.”

Tachycardia is often classified as being either monomorphic or polymorphic,
depending on the assumedmorphology of the activation pattern. Monomorphic tachy-
cardia is identified as having a simple periodic ECG, while polymorphic tachycardia is
usually quasiperiodic, apparently the superposition of more than one periodic oscilla-
tion. A typical example of a polymorphic tachycardia is called torsades de pointes, and
appears on the ECG as a rapid oscillation with slowly varying amplitude (Fig. 14.26).
A vectorgram interpretation suggests a periodically rotating mean heart vector.

The simplest reentrant pattern is one for which the path of travel is a one-
dimensional path. These were first studied by Mines (1914) when he intentionally cut
a ring of tissue from around the superior vena cava and managed to initiate waves
that traveled in only one direction. More complicated monomorphic tachycardias cor-
respond to single spirals on the atrial surface (known as atrial flutter) or single scroll
waves in the ventricularmuscle. A three-dimensional view of a (numerically computed)
monomorphic V-tach is shown in Fig. 14.27.

Stable monomorphic ventricular tachycardia is rare, as most reentrant tachycar-
dias become unstable and degenerate into fibrillation. Thus, the clinical occurrence of
stable monomorphic V-tach is considered an anomaly rather than the typical case.

Fibrillation is believed to correspond to the presence of many reentrant patterns
moving throughout the ventricles in continuous, perhaps erratic, fashion, leading to
an uncoordinated pattern of ventricular contraction and relaxation. A surface view of
a (numerically computed) fibrillatory pattern is shown in Fig. 14.28.

The likely reason that monomorphic V-tach is rare is because there are a number of
potential instabilities, although themechanismof the instability has not been decisively
determined. Some possibilities are discussed by a number of authors (Courtemanche
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Figure 14.26 A six-lead ECG recording of torsades de pointes. (Zipes and Jalife, 1995, Fig. 79-1,
p. 886.)

and Winfree, 1991; Karma, 1993, 1994; Panfilov and Holden, 1990; Panfilov and
Hogeweg, 1995; Bar and Eiswirth, 1993; Courtemanche et al., 1993). Suffice it to say,
whatever the form and evolution of a reentrant pattern, all are dangerous, so we now
devote our attention to the important problem of how to get rid of a reentrant pattern,
whether stable or erratic.

14.4 Defibrillation

Nearly everyone in the United States knows something about defibrillation. They have
all seen television shows where the paramedic places paddles on the chest of a man
who has unexpectedly collapsed, yells “Clear!” and then a jolt of electricity shakes
the body of the victim. Mysteriously, the victim revives. Since they were first made in
1947, defibrillators have saved many lives, and the recent development of implantable
defibrillators will no doubt extend the lives of many people who in a previous era would
have died from their first heart attack. The goal of a defibrillator is clear. Since during
fibrillation different regions of tissue are in different phases of electrical activity, some
excited, some refractory, some partially recovered, the purpose of defibrillation is to
give an electrical impulse that stimulates the entire heart, so that the electrical activity
is once again coordinated and will return to rest as a whole to await the next normal
SA nodal stimulus. Said another way, the purpose is to reset the phase of each cardiac
cell so that all cells are in phase.
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Figure 14.27 Numerically computed scroll wave in ventricular muscle. (Panfilov and Keener,
1995, p. 685, Fig. 3a.)

While it is known that defibrillationworks (and is accomplished thousands of times
daily around the world), the dilemma we face is that simple mathematical models fail
to explain how this can happen, and indeed, seem to suggest that defibrillation shocks
cannot achieve their goal.

To understand the dilemma, consider the numerical calculation shown in Fig.
14.29. Here is shown the result of applying a stimulus to the ends of a bidomain cable.
The stimulus on the left is depolarizing and on the right is hyperpolarizing. On the left,
a right-moving wave is initiated almost immediately, and on the right a left-moving
wave is initiated via anode break excitation (see Chapter 4, Exercises 7 and 12 ). The
dilemma, however, is that local stimuli can only have local effects.
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Figure 14.28 Surface view of fibrillatory reentrant activity in the ventricles (computed by
A. Panfilov).

A similar conclusion is drawn from Fig. 14.30. Here is shown a periodic traveling
wave on a one-dimensional bidomain cable, traveling from left to right. (If the left
and right ends were connected, this wave would circulate around the ring indefinitely.)
What cannot be seen in this figure is that a large stimulus was applied at the ends of
the cable between the first and second traces, simulating defibrillation. What can be
seen from this figure is that the stimulus has essentially no effect on the traveling wave.
This stimulus has no chance of defibrillating the cable, since the effects of the stimulus
are local only.
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Figure 14.29 Response of a uniform cable to a stimulus of duration t � 0.2 applied at the ends
of the cable. Traces shown start at time t � 0.1 and with equal time steps &t � 0.2.
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Figure 14.30 A traveling wave in a uniform cable following application of a stimulus at the
ends of the cable at a time between the first and second traces.

The question, then, is how can defibrillation work, if only those regions close to the
stimulating source are excited by the stimulus. The likely answer is that the medium
into which the stimulus is applied has small inhomogeneities that are not accounted
for in a uniform cable model.



418 14: Cardiac Rhythmicity

To see the effect these spatial inhomogeneities might have, we consider what hap-
pens when a brief but large current is applied to an inhomogeneous one-dimensional
strand of cardiac tissue. The inhomogeneity comes from the fact that much of the
intracellular resistance is concentrated in the gap junctions. We take the bidomain
model equations (11.1), but now assume that the conductivity σi � Ai/Ri is continuous
but nonconstant to reflect the occurrence of gap junctions. We take σe � Ae/Re to be
constant. Then, the monodomain reduction for a one-dimensional cable gives from
(11.37)

p

(
Cm

∂V

∂t
− f (V)
Rm

)
� ∂

∂x

(
σiσe

σi + σe

∂V

∂x

)
+ ∂

∂x

(
σi

σi + σe

)
I(t). (14.49)

The important observation is that if σi is nonconstant, the new term in (14.49) acts as
a source term everywhere throughout the medium, and it is this source term that we
wish to exploit.

A physical explanation of this current source term is as follows. A current that
is applied at one end of the fiber will flow to the opposite end of the fiber following
the path of least resistance by dividing itself between two paths, the intracellular and
extracellular paths. If both paths are homogeneous, the current is quickly divided into
two parts, where it stays until it is forced back into the extracellular space at the far end.
However, the intercellular inhomogeneities of resistance act much like speed bumps
on a two-lane thoroughfare. As traffic nears the speed bump in one lane, it will merge
into the clear lane to avoid slowing down, but once past the speed bump, it will again
split back into a two-lane flow. It is the merging of traffic between the two lanes that is
the analogy of a transmembrane current and that makes it possible to depolarize and
hyperpolarize individual cells at their ends.

It is useful to introduce dimensionless variables τ � t/τm, y � x/λm, where τm �
CmRm, λ

2
m � σeDRm/p, and we then obtain

Vτ − f (V) �
(
d

D
Vy

)
y

− J(τ)
(
d

D

)
y

, (14.50)

where d � σi/(σi + σe), D−1 is the average value of d−1, and J(τ) � DRmI(τ)/(pλm). In
addition, we have boundary conditions Vy � −J(τ) at y � 0 and at y � Y � L/λm.

There are potentially many different spatial scales for resistive inhomogeneities.
However, here we want to focus on the effect of resistive inhomogeneities on the spatial
scale of individual cells, and so, we suppose that d/D is a periodic function of y, with
period ε � l/λm, where l is the cell length. Specifically, we take

d � d
(y
ε

)
, (14.51)

with d(y) a function of period 1. Typically, ε is a small number, on the order of 0.1.
Now we are able to use homogenization arguments to separate (14.50) into two

equations that describe the behaviors on different spatial scales (Exercise 14). The
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result of a standard multiscale calculation gives

V(z, τ, η) � u0(z, τ)+ εJ(τ)W(η)− εW(η)
∂u0(z, τ)
∂z

, (14.52)

where η � z/ε,

dW

dη
� 1− D

d(η)
, (14.53)

and

∂u0

∂τ
− f (V(z, τ, η)) � ∂2u0

∂z2
, (14.54)

where

f (V(z, τ, η)) � ε

Y

∫ Y/ε

0
f (V(z, τ, η))dη. (14.55)

The interpretation of (14.54) is significant. While a current stimulus is being ap-
plied, the response at the cellular level has an effect that is communicated to the tissue
on a macroscopic scale through the nonlinearity of the ionic currents. (If the ionic cur-
rent f (V) were linear, the applied stimulus would have no global effect, since it would
have zero average.)

To get some insight into the dynamics while the stimulus is applied, we take the
simple model for gap-junctional resistance

ri � rc + rg

l
δ(η) (14.56)

on the interval 0 ≤ η < 1, and periodically extended from there. Here, rc is the intracel-
lular cytoplasmic resistance per unit length, and rg is the gap-junctional resistance per
cell. The function δ(η) is any positive function with small support and area one unit
that represents the spatial distribution of the gap-junctional resistance, for example,
the Dirac delta function.

In the specific case that δ(η) is the Dirac delta function, we calculate that

W ′(η) � Rg(1− δ(η)), (14.57)

where Rg � rg

rg+l(rc+re) is the fraction of the total resistance per unit length that is con-
centrated into the gap junctions. Here we used the fact that ri � 1/σi. Then, W(η) is
given by

W(η) � Rg

(
η− 1

2

)
,0 ≤ η < 1, (14.58)

andW(η+ 1) � W(η).
The function W(η) is a sawtooth function, and according to (14.52), when a stim-

ulus is applied, the membrane potential is the sum of two components, the sawtooth
function W(η) on the spatial scale of cells and u(y, τ) on the macroscopic scale of the
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Figure 14.31 Nullclines for FitzHugh–Nagumo dynamics, w � v (1 − v )(α − v ) + β2

12 (1 + α −
3v ), w � v/γ , modified to include the effects of a current stimulus, for several values of β.

tissue. The effect of the small-scale oscillatory behavior on the larger scale problem is
found by averaging, whereby

F(u, β) � f (V(z, τ, η)) �
∫ 1

2

− 1
2

f (u+ βη)dη (14.59)

and β � Rgε(J(t) − ∂u
∂z
). In other words, the effect of the current stimulus is to modify

the ionic current through local averaging over the cell. The details of the structure of
W(η) are not important because they are felt only in an average sense. For the cubic
model f (V) � V(V − 1)(α− V), F can be calculated explicitly to be

F(V, β) � f (V)+ β2

12
(1+ α− 3V). (14.60)

A plot of this function for different values of β is shown in Fig. 14.31.
Before examining this model for its ability to explain defibrillation, we discuss the

simpler problem of direct activation of resting tissue.

14.4.1 The Direct Stimulus Threshold

Direct activation (or field stimulation) occurs if all or essentially all of the tissue is
activated simultaneously without the aid of a propagated wave front. According to
the model (14.54), it should be possible to stimulate cardiac tissue directly with brief
stimuli of sufficiently large amplitude.
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Anumerical simulationdemonstrating howdirect stimulation canbe accomplished
for the bistable equation is shown in Fig. 14.32. In this simulation a one-dimensional
array of 200 cells was discretized with five grid points per cell, and a brief, large current
was injected at the left end and removed at the right end of the cable. In Fig. 14.29 is
shown the response to the stimulus when the cable is uniform. Shown here is the
membrane potential, beginning at time t � 0.1, and at later times with equal time steps
Ht � 0.2. The stimulus duration was t � 0.2, so its effects are seen as a depolarization
on the left and hyperpolarization on the right in the first trace. As noted above, a wave
is initiated from the left from superthreshold depolarization, and a wave from the right
is initiated by anode break excitation.

The same stimulus protocol produces a substantially different result if the cable
has nonuniform resistance. In Fig. 14.32 is shown the response of the discretized cable
with high resistance at every fifth node, at times t � 0.15,0.25, and 0.35, with a stimulus
duration of 0.2. The first curve, at time t � 0.15, is blurred because the details of the
membrane potential cannot be resolved on this scale. However, the overall effect of the
rapid spatial oscillation is to stimulate the cable directly, as seen from the subsequent
traces.

To analyze this situation, note that since direct activation occurswithout the benefit
of propagation, it is sufficient to ignore diffusion and the boundary conditions and
simply examine the behavior of the averaged ordinary differential equation

dV

dτ
� F(V, β). (14.61)
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Figure 14.32 Response of a nonuniform cable with regularly spaced high-resistance nodes to
a stimulus of duration t � 0.2 applied at the ends of the cable. The traces show the response at
time t � 0.15, during the stimulus, and at times t � 0.25, 0.35 after the stimulus has terminated.
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For any resting excitable system, it is reasonable to assume that f (V) < 0 for 0 < V < θ,
where θ is the threshold that must be exceeded to stimulate an action potential. To
directly stimulate a medium that is initially at rest with a constant stimulus, one must
apply the stimulus until V > θ. The minimal time to accomplish this is given by the
strength–duration relationship,

T �
∫ θ

0

dV

F(V, β)
. (14.62)

Clearly, this expression is meaningful only if β is sufficiently large that F(V, β) > 0
on the interval 0 < V < θ. In other words, there is a minimal stimulus level (a threshold)
below which the medium cannot be directly stimulated.

14.4.2 The Defibrillation Threshold

While its threshold cannot be calculated in the same way as for direct stimulus, the
mechanism of defibrillation can be understood from simple phase-plane arguments. To
study defibrillation, we must include the dynamics of recovery in our model equations.
Thus, for simplicity and to be specific we take FitzHugh–Nagumo dynamics

Iion(v,w) � −f (v)+w, (14.63)

wτ � g(v,w), (14.64)

with f (v) � v(v − 1)(α − v), and assume that the parameters are chosen such that
reentrant waves are persistent. This could mean that there is a stable spiral solution,
or it could mean that the spiral solution is unstable but some nonperiodic reentrant
motion is persistent. Either way, we want to show that there is a threshold for the
stimulating current above which reentrant waves are terminated.

The mechanism of defibrillation is easiest to understand for a periodic wave on a
one-dimensional ring, but the idea is similar for higher-dimensional reentrant patterns.
For a one-dimensional ring, the phase-portrait projection of a rotating periodic wave is
a closed loop. From singular perturbation theory, we know that this loop clings to the
leftmost and rightmost branches of the nullclinew � f (v) and has two rapid transitions
connecting these branches, and these correspond to wave fronts and wave backs (recall
Fig. 9.12).

According to our model, the effect of a stimulus is to temporarily change the v
nullclines and thereby to change the shape of the closed loop. After the stimulus has
ended, the distorted closed loop will either go back to a closed loop, or it will collapse
to a single point on the phase portrait and return to the rest point. If the latter occurs,
the medium has been “defibrillated.”

Clearly, if β is small and the periodic oscillation is robust, then the slight perturba-
tion is insufficient to destroy it. On the other hand, if β is large enough, then the change
is substantial and collapse may result.

There are two ways that this collapse can occur. First, and easiest to understand,
if the nullcline for nonzero β is a monotone curve (as in Fig. 14.31 with β � 1.2), then
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the open loop collapses rapidly to a double cover of the single curve w � F(v, β), from
where it further collapses to a single point in phase space. For the specific cubic model,
this occurs if β2 > 4

3 (1− α+ α2).
The v nullcline need not be monotone to effect a collapse of the periodic loop. In

fact, as β increases, the negative-resistance region of the nullcline becomes smaller,
and the periodic loop changes shape into a loop with small “thickness” (i.e., with little
separation between the front and the back) and with fronts and backs that move with
nearly zero speed. Indeed, if the distorted front is at a large enoughw “level” (in sense of
singular perturbation theory), it cannot propagate at all and stalls, leading to a collapse
of thewave. Another way to explain this is to say that with large enough β, the “excitable
gap” between the refractory tail and the excitation front is excited, pushing the wave
front forward (in space) as far as possible into the refractory region ahead of it, thereby
causing it to stall, and eventually to collapse.

This scenario can be seen in Fig. 14.33, where the results of numerical simulations
for a one-dimensional nonuniform cable are shown. Earlier, in Fig. 14.30, we showed a
wave, propagating to the right, at equal time steps ofHt � 0.55. To simulate a reentrant
arrhythmia, this wave was chosen so that were this cable a closed loop, the wave would
circulate around the loop indefinitely without change of shape. It is not apparent from
this previous figure that a stimulus of duration t � 0.3 was applied at the ends of the
cable between the first and second traces, because in a uniform cable a stimulus at the
boundary has little effect on the interior of the medium.

In Fig. 14.33 is shown exactly the same sequence of events for a nonuniform cable.
This time, however, the applied stimulus (between the first and second traces) induces a
rapidly oscillating membrane potential on the spatial scale of cells (not shown), which
has the average effect (because of nonlinearity) of “pushing” the action potential for-
ward as far as possible. This new front cannot propagate forward because it has been
pushed into its refractory tail and has stalled. In fact, the direction of propagation
reverses, and the action potential collapses as the front and back move toward each
other.

To illustrate further this mechanism of defibrillation in a two-dimensional domain,
numerical simulations were performed using a standard two-variable model of an ex-
citable medium and using the full bidomainmodel derived in Section 11.3 (Keener and
Panfilov, 1996). Parameters for the excitable dynamics were chosen such that spirals
are not stable, but exhibit breakup and develop into “chaotic” reentrant patterns (Pan-
filov and Hogeweg, 1995), thereby giving a reasonable model of cardiac fibrillation (see
Chapter 10, Exercise 5).

Some time after initiating a reentrant wave pattern, a constant stimulus (of du-
ration about 2.5 times the duration of the action potential upstroke) was applied
uniformly to the sides of the rectangular domain. Because the stimulus was applied
uniformly along the sides of the domain, the stimulus parameter β was constant
throughout the medium.

In Fig. 14.34a is shown an irregular reentrant pattern just before the stimulus is
applied. In this picture, the darkest regions are excited tissue, white denotes recovered
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Figure 14.33 A traveling wave in a nonuniform cable following application of a stimulus at
the boundary.

and excitable tissue, and grey is refractory tissue. Following a stimulus (with β � 0.86),
the excited region expanded to include essentially all of the recovered tissue, as the
excitable gap was eliminated by a polarizing stimulus. Shortly thereafter (Fig. 14.34c,
t � 12) the activation collapsed, leaving behind only recovered or refractory tissue,
which shortly thereafter returned to uniform rest. The extensive patterning seen in this
last figure shows a mixture of refractory and recovered tissue, but since it contains no
excited tissue (except a small patch at the lower left corner that is propagating out of
the domain), it cannot become reexcited, but must return to rest. (The similar fates of
recovered and refractory regions can be seen in Fig. 14.35b, where the patterning has
nearly disappeared.)

Defibrillation is unsuccessful with a smaller stimulus β � 0.84. The pattern at time
t � 12 is shown in Fig. 14.35a and is similar to Fig. 14.34c, which was successful.
Here, however, after the stimulus and subsequent collapse of much of the excitation,
one small excited spot remains at the upper left-hand corner of the medium, which
eventually evolves into a double spiral pattern (Fig. 14.35b,c), reestablishing a reentrant
arrhythmia.

14.5 Appendix: The Phase Equations

Because coupled oscillators arise so frequently inmathematical biology and physiology,
there is an extensive literature devoted to their study. In this book, coupled oscillators
play a role in the sinoatrial node and in the digestive system. An important model for
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where r2 � x2 + y2. Systems of this form are called lambda–omega (J–ω) systems, and
are special because by changing to polar coordinates, x � r cos θ, y � r sin θ, (14.65)
and (14.66) can be written as

dr

dt
� rJ(r), (14.67)

dθ

dt
� ω(r). (14.68)

This system has a stable limit cycle at any radius r > 0 for whichJ(r) � 0, J′(r) < 0. The
periodic solution travels around this circle with angular velocityω(r). Starting from any
given initial conditions, the solution of (14.65) and (14.66) will eventually settle onto a
regular oscillation with fixed amplitude and period ω(r)

2π . Hence, in the limit as t → ∞,
the system is described completely by its angular velocity around a circle.

Now suppose that we have two similar systems, one with a limit cycle of amplitude
R1 and angular velocity ω1, and the other with a limit cycle of amplitudeR2 and angular
velocity ω2. If there is no coupling between the systems, each will oscillate at its own
frequency, unaffected by the other, and in the four-dimensional phase space the solu-
tions will approach the torus r1 � R1, r2 � R2, moving around the torus with angular
velocities θ′1 � ω1, θ′2 � ω2. Since all solutions eventually end up winding around the
torus, and since any solution that starts on the torus cannot leave it, the torus is called
an attracting invariant torus. The flow on the torus can be described entirely in terms
of the rates of change of θ1 and θ2. In this case (θ1− θ2)′ � ω1−ω2, and so the phase dif-
ference increases at a constant rate. Thus, analogously to the one-dimensional system
discussed above, in the limit as t → ∞, the original systemof four-differential equations
can be reduced to a two-dimensional system describing the flow on a two-dimensional
torus.

If our two similar systems are now loosely coupled, so that each oscillator has only
a small effect on the other, it is reasonable to expect (and indeed it can be proved;
see Rand and Holmes (1980) for a nice discussion of this, and Hirsch et al. (1977)
for a proof) that the invariant torus persists, changing its shape and position by only
a small amount. In this case, the longtime solutions for r1 and r2 remain essentially
unchanged, with r1 � R1 +O(ε) and r2 � R2 +O(ε), where ε � 1 is the strength of the
coupling. However, the flow on the torus could have a drastically different nature, as
the phase difference need no longer simply increase at a constant rate. Hence, although
the structure of the torus is preserved, the properties of the flow on the torus are not.

In general, the flow on the torus is described by

dθi

dt
� ωi + fi(r1, r2, θ1, θ2, ε), i � 1,2, (14.69)

but since r1 � R1 +O(ε) and r2 � R2 +O(ε), to lowest order in ε this simplifies to

dθi

dt
� ωi + hi(θ1, θ2, ε), i � 1,2. (14.70)
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In general, R1 and R2 appear in (14.70), the so-called phase equation, but the indepen-
dent variables r1 and r2 do not. It follows that the full four-dimensional system that
describes the two coupled oscillators can be understood in terms of a simpler system
describing the flow on a two-dimensional invariant torus.

To derive the equations describing this flow on a torus, we assume that we have a
coupled oscillator system that can be written in the form

dui

dt
� F(ui)+ εGi(ui)+ ε

N∑
j�1
aijH(uj). (14.71)

Here, ui is the vector of state variables for the ith oscillator, the coefficients aij represent
the coupling strength, and the function H(u) determines the effect of coupling. For
simplicity, we assume that H is independent of i and j.

To get the special case of SA nodal coupling in (14.13), we take aij � dij for i �� j,
aii � −∑j ��i dij, and H(u) � Du. We take this general form of H to allow for synaptic as
well as diffusive coupling.

Next, we assume that when ε � 0 we have a periodic solution, i.e., that the equation

du

dt
� F(u) (14.72)

has a stable periodic solution, U(t), scaled to have period one. Note that because of the
functions Gi, we are not assuming that each oscillator is identical. Thus, the natural
frequency of each oscillator is close to, but not exactly, one.

The model system (14.71) is a classic problem to which the method of averaging
or the multiscale method can be applied. Specifically, since ε is small, we expect the
behavior of (14.71) to be dominated by the periodic solution U(t) of the unperturbed
problem and that deviations from this behavior occur on a much slower time scale. To
accommodate two different time scales, we introduce two time-like variables, σ � ω(ε)t
and τ � εt, as fast and slow times, respectively. Here, ω is a function, as yet unknown,
of order 1. Treating σ and τ as independent variables, we find from the chain rule that

d

dt
� ω(ε)

∂

∂σ
+ ε

∂

∂τ
, (14.73)

and accordingly, (14.71) becomes

ω(ε)
∂ui

∂σ
+ ε

∂ui

∂τ
� F(ui)+ εGi(ui)+ ε

N∑
j�1
aijH(uj). (14.74)

Next we suppose that ui and ω(ε) have power series expansions in ε, given by

ui � u0i + εu1i + · · · , ω(ε) � 1+ ε61 + · · · (14.75)

Note that the first term in the expansion for ω is the frequency of the unperturbed
solution,U. Expanding (14.74) in powers of ε and gathering terms of like order, we find
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a hierarchy of equations, beginning with

∂u0i

∂σ
� F(u0i ), (14.76)

∂u1i

∂σ
− Fu(u0i )u

1
i � Gi(u0i )+

N∑
j�1
aijH(u0j )−61

∂u0i

∂σ
− ∂u0i

dτ
. (14.77)

Equation (14.76) is easy to solve by taking

u0i � U(σ + δθi(τ)). (14.78)

The phase shift δθi(τ) allows each cell to have different phase shift behavior, and it is
yet to be determined.

Next, observe that d
dσ
( dU
dσ

− F(U)) � ∂U′
∂σ

− Fu(u0i )U
′ � 0, so that the operator

LU � ∂U
∂σ

− Fu(u0i )U has a null space spanned by U
′(σ + δθi(τ)). The null space is one-

dimensional because the periodic solution is assumed to be stable. It follows that the
adjoint operator L∗y � − ∂y

∂σ
− Fu(u0i )

Ty has a one-dimensional null space spanned by
some periodic function y � Y (σ + δθi(τ)). (It is a consequence of Floquet theory that
the Floquet multipliers of the operator L, say µi, and the Floquet multipliers of L∗, say
µ∗
i , are multiplicative inverses, µiµ

∗
i � 1 for all i. Since a periodic solution has Floquet

multiplier 1 and there is only one periodic solution for L, there is also precisely one
periodic solution for the adjoint operator L∗. See Exercise 18.) Without loss of gen-
erality we scale Y so that

∫ 1
0 U

′(σ) · Y (σ)dσ � 1. Therefore, for there to be a periodic
solution of (14.77), the right-hand side of (14.77) must be orthogonal to the null space
of the adjoint operator L∗. This requirement translates into the system of differential
equations for the phase shifts

d

dτ
δθi � ξi −61 +

∑
j

aijh(δθj − δθi), (14.79)

where

ξi �
∫ 1

0
Y (σ)Gi(U(σ))dσ, (14.80)

h(φ) �
∫ 1

0
Y (σ)H(U(σ + φ))dσ. (14.81)

The numbers ξi are important because they determine the approximate natural
(i.e., uncoupled) frequency of the ith cell. This follows from the fact that when aij � 0,
a simple integration gives δθi � εt(ξi −61), and thus

u0i � U(ω(ε)t+ δθi) � U((1+ εξi)t). (14.82)

Hence, the uncoupled frequency of the ith cell is 2π(1+ εξi). Therefore, ξi can (presum-
ably) be measured or estimated without knowing the function Gi(u). The function h(φ)
can be determined numerically (see, for example, Exercise 17.)

The function h(φ) has an important physical interpretation, being a phase resetting
function. That is, h(φ) shows the effect of one oscillator on another when the two have
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phases that differ by φ. For example, in the case of two identical oscillators, the two
phase shifts are governed by

d

dτ
δθ1 � −61 + a12h(δθ2 − δθ1)+ a11h(0), (14.83)

d

dτ
δθ2 � −61 + a21h(δθ1 − δθ2)+ a22h(0). (14.84)

Thus, when a12h(δθ2− δθ1) > 0, the phase of oscillator 1 is advanced, while if a12h(δθ2−
δθ1) < 0, the phase of oscillator 1 is retarded. Furthermore, it is not necessarily the case
that h(0) � 0, so that identical oscillators with identical phases may nonetheless exert
a nontrivial influence on each other.

The system of equations (14.79) can be written in terms of phase differences by
definingP as the vector of consecutive phase differences and defining δθ as the average
of the phase shifts, δθ � 1

N

∑N
i�1 δθi. In terms of these variables the system (14.79) can

be written in the form

dP

dτ
� H+ C(P), (14.85)

where H is the vector of consecutive differences of ξi. This is a closed system of N − 1
equations. Phase locking is defined as the situation in which there is a stable steady
solution of (14.85), a state in which the phase differences of the oscillators do not
change (see Chapter 21).

14.6 Exercises
1. (a) The fundamental solution of Poisson’s equation in free space with a unit source at the

origin (∇2φ � −δ(x)) is φ(x) � 1
4π|x| .

Find the solution of Poisson’s equation with a source at the origin and a sink of equal
strength at x � x1, and let |x1| → 0. What must you assume about the strength of the
source and the sink in order to obtain a nonzero limiting potential?

(b) Find the solution of Poisson’s equation with a dipole source by solving the problem
∇2φ � 1

ε
(δ(x− εv)− δ(x)) with |v| � 1, and then taking the limit ε → 0.

2. Determine the heart rate for the ECG recording in Fig. 14.2a. The subject was sedated at
the time this recording was made. What are the effects of the sedation?

3. Identify the different deflections in the ECG recording shown in Fig. 14.36. What can you
surmise about the nature of propagation for the extra QRS complex (called an extrasystole).
Because of the apparent periodic coupling between the normal QRS and the extrasystole,
this rhythm is called a ventricular bigeminy.

4. (a) Suggest a diagnosis for the ECG recording in Fig. 14.37.
Hint: What does the inverted P-wave suggest? What is the heart rate?

(b) What possible mechanisms can account for the failure of the SA node to generate the
heartbeat?
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Figure 14.36 ECG recording of a ventricular extrasystole for exercise 3. (Rushmer, 1976, Fig
8-25, p. 314, originally from Guneroth, 1965.)

Figure 14.37 ECG for Exercise 4a. Can you determine the nature of this abnormality?
(Goldberger and Goldberger, 1994, p. 45.)

5. Estimate the mean deflection of the QRS complex in each of the six standard leads (I, II,
III, aVR, aVL, aVF) in Fig. 14.6 and then estimate the mean heart vector for the normal
heartbeat.

6. Improve your skill at reading ECGs by finding themean heart vector for the QRS complexes
in Figs. 14.3, 14.8, and 14.9. Why is hypertrophy the diagnosis for Figs. 14.8 and 14.9? In
what direction are the heart vectors deflected in these figures?

7. Find themeanheart vector for theECG recording shown inFig. 14.38.Whatmechanismcan
you suggest that accounts for this vector? Hint: Notice that the amplitude is substantially
smaller than normal, suggesting loss of tissuemass (infarction), and determine the location
of this loss by determining the deflection of the heart vector from normal. Is the deflection
toward or away from the location of tissue loss?

8. Consider the following simple model of a forced periodic oscillator, called the Poincaré
oscillator (also called a radial isochron clock or a snap back oscillator; Guevara and Glass,
1982; Hoppensteadt and Keener, 1982; Keener and Glass, 1984; Glass and Kaplan, 1995).
A point is moving counterclockwise around a circle of radius 1. At some point of its phase,
the point is moved horizontally by an amount A and then allowed to instantly “snap back”
to radius 1 moving along a radial line toward the origin (see Fig. 14.39).

(a) Determine the phase resetting curve for this process. That is, given the phase θ before
resetting, find the phase φ after resetting the clock. Plot φ as a function of θ for several
values of A.

(b) Show that for A < 1 the phase resetting function is a type 1map, satisfying φ(θ+2π) �
φ(θ)+ 2π.
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Figure 14.38 ECG for Exercise 7. Can you determine the nature of this abnormality? (Rushmer,
1976, Fig. 8-51, p. 343.)

A(r,θ)
(ρ,φ)

Figure 14.39 Diagram of phase reset-
ting for the Poincaré oscillator (Exercise
8).

(c) Show that for A > 1, the phase resetting function is a type 0map, for which φ(θ+2π) �
φ(θ).

(d) Show that there is a phase singularity, that is, values of A and θ for which a new phase
is not defined (Winfree, 1980).

(e) Construct a map θn %→ θn+1 by resetting the clock every T units of phase, so that

θn+1 � φ(θn)+ T. (14.86)
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Show that for A < 1, this is a circle map. Determine the values of A and T for which
there is one-to-one phase locking.

9. A simple model of the response of an excitable cell to a periodic stimulus is provided by
the integrate-and-firemodel (Knight, 1972; Keener, Hoppensteadt and Rinzel, 1981). In this
model the membrane potential v(t) is assumed to behave linearly unless the threshold is
reached, whereupon the membrane “fires” and is immediately reset to zero. The equations
describing the evolution of the membrane potential are

dv

dt
� −γv+ S(t), (14.87)

and v(t+) � 0 if v(t) � vT , the threshold. We take the periodic stimulus to be a simple
sinusoidal function, S(t) � S0 + Sm sin(ωt).
Let Tn be the time of the nth firing. Formulate the problem of determining Tn+1 from Tn
as a circle map. For what parameter values is this a continuous circle map and for what
parameter values is it a discontinuous circle map? (Guevara and Glass, 1982.)

10. Suppose the membrane potential rises at a constant rate λ until it reaches a threshold
θ(t), at which time the potential is reset to zero. Suppose that the threshold is the simple
sinusoidal function θ(t) � θ0 + θm sin(ωt). Let Tn be the time of the nth firing. Formulate
the problem of determining Tn+1 from Tn as a circle map. For what parameter values is this
a continuous circle map and for what parameter values is it a discontinuous circle map?
(Glass and Mackey, 1979.)

11. Suppose a constant-current stimulus I is added to a cablewith FitzHugh–Nagumodynamics
and piecewise linear function f as in (14.26).

(a) Find the steady-state solution as a function of input current I.

(b) Examine the stability of this steady-state solution. Show that the eigenvalues are eigen-
values of a Schrödinger equation with a square well potential. Find the critical Hopf
bifurcation curve. Show that for ε sufficiently small, the solution is stable if I is small
or large, but there is an intermediate range of I for which the solution is unstable
(Rinzel and Keener, 1983).

Hint: Because the function f (v) is piecewise linear, the potential for the Schrödinger equa-
tion is a square well potential. Solve the resulting transcendental equations numerically.

12. (a) Carry out the calculations of Section 14.2.2 for a one-dimensional piecewise linear
model (14.26) with α(r) specified by (14.25), b � 1

2 . Determine the critical stability
curve.

(b) Generalize this calculation by supposing that the oscillatory cells have coupling co-
efficient D. What is the effect of the coupling coefficient of the oscillatory cells on
the critical stability curve? Show that oscillatory behavior is more likely with weak
coupling.

13. A heart attack corresponds to the sudden occlusion of a coronary artery and is rapidly
followed by anoxia and the increase of extracellular potassium in the region of decreased
blood flow. The increase in extracellular potassium can lead to spontaneous oscillations, but
anoxia also leads to cell death and loss of excitability (as the resting potential goes to zero).
This gradient of resting potential between normal and damaged tissue leads to a current
between the damaged cells and surrounding normal tissue, called a current of injury, and
the border zone between damaged cells and normal cells may become self-oscillatory and
may drive oscillations in the surrounding medium.
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Devise a model of FitzHugh–Nagumo type that shows the qualitative effect of increased
potassium and anoxia in regions of decreased blood flow. Following the analysis of Section
(14.2.2), determine conditions under which this region becomes an ectopic focus.

14. Use homogenization to separate (14.50) into two equations on different spatial scales. Show

that V ≈ u0(z, τ)+ εW(η)
(
J(τ)− ∂u0(z,τ)

∂z

)
, whereW ′(η) � 1− D

d(η) and u0 satisfies the averaged

equation (14.54). Show that this answer is valid even if J(τ) � O( 1
ε
).

15. Suppose that the nonlinear function f (V) for an excitable medium is well represented by

f (V) � V

(
V

θ
− 1

)
, (14.88)

at least in the vicinity of the rest point and the threshold. Find the relationship between
minimal time and stimulus strength to directly stimulate the medium.
Hint: Evaluate 14.62.

16. Find the relationship between minimal time and stimulus strength to directly stimulate
the medium (as in the previous problem) for the Beeler–Reuter model of myocardial tissue
(Section 4.3). To do this, setm � m∞(V) and set all other dynamic variables to their steady-
state values and then evaluate (14.62).

17. Suppose a collection of FitzHugh–Nagumo oscillators described by

δ
dv

dt
� f (v)−w, (14.89)

dw

dt
� v− α, (14.90)

with f (v) � v(v− 1)(α− v) with parameter values δ � 0.05, α � 0.4, is coupled through the
variable v. Calculate (numerically) the coupling function

h(φ) �
∫ P

0
y1(σ)v(σ + φ)dσ, (14.91)

where y1 is the first component of the periodic adjoint solution.

18. (a) Consider a linear system of differential equations dy

dt
� A(t)y and the corresponding

adjoint system dv

dt
� −AT(t)v, where A(t) is periodic with period P. Let Y (t) and V(t)

be matrix solutions of these equations and suppose that VT(0)Y (0) � I. Show that
VT(P)Y (P) � I.

(b) The eigenvalues of the matrix Y (P)Y−1(0) are called the Floquet multipliers for the
system dy

dt
� A(t)y. What does the fact that VT(0)Y (0) � VT(P)Y (P) imply about the

Floquet multipliers for dy

dt
� A(t)y and its adjoint system?
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The Circulatory System

The circulatory system forms a closed loop for the flow of blood that carries oxygen
from the lungs to the tissues of the body and carries carbon dioxide from the tissues
back to the lungs (Figs. 15.1 and 15.2). Because it is a closed loop system, there are two
pumps to overcome the resistance and maintain a constant flow. The left heart receives
oxygen-rich blood from the lungs and pumps this blood into the systemic arteries. The
systemic arteries form a tree of progressively smaller vessels, beginning with the aorta,
branching to the small arteries, then to the arterioles, and finally to the capillaries.
The exchange of gases takes place in the capillaries. Leaving the systemic capillaries,
the blood enters the systemic veins, through which it flows in vessels of progressively
increasing size toward the right heart. The systemic veins consist of venules, small
veins, and the venae cavae. The right heart pumps blood into the pulmonary arteries,
which form a tree that distributes the blood to the lungs. The smallest branches of
this tree are the pulmonary capillaries, where carbon dioxide leaves and oxygen enters
the blood. Leaving the pulmonary capillaries, the oxygenated blood is collected by the
pulmonary veins, through which it flows back to the left heart. It takes about a minute
for a red blood cell to complete this circuit.

While there is an apparent structural symmetry between the pulmonary and sys-
temic circulations, there are significant quantitative differences in pressure and blood
volume. Nevertheless, the output of the right and left sides of the heart must always
balance, even though the cardiac output, or total amount of blood pumped by the heart,
varies widely in response to the metabolic needs of the body. One of the goals of this
chapter is to understand how the cardiac output is determined and regulated in re-
sponse to the metabolic needs of the body. Questions of this nature have been studied
for many years, and many books have been written on the subject (see, for example,
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Figure 15.1 Schematic diagram of the circulatory system, showing the systemic and pul-
monary circulations, the chambers of the heart, and the distribution of blood volume
throughout the system. (Guyton and Hall, 1996, Fig. 14-1, p. 162.)

Guyton, 1963, or Reeve and Guyton, 1967). Here, we consider only the simplest models
for the control of cardiac output.

Each beat of the heart sends a pulse of blood through the arteries, and the form of
this arterial pulse changes as it moves away from the heart. An interesting problem is
to understand these changes and their clinical significance in terms of the properties
of the blood and the arterial walls. Again, this problem has been studied in great detail,
andwe present here a brief look at the earliest and simplest models of the arterial pulse.

15.1 Blood Flow

The term blood pressure refers to the force per unit area that the blood exerts on the
walls of blood vessels. Blood pressure varies both in time and distance along the circu-
latory system. Systolic pressure is the highest surge of pressure in an artery, and results
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Figure 15.2 Schematic diagram of the heart as a pump. (Guyton and Hall, 1996, Fig. 9-1, p.
108.)

from the ejection of blood by the ventricles during ventricular contraction, or systole.
Diastolic pressure is the lowest pressure reached during ventricular relaxation and fill-
ing, called diastole. In the aorta of a normal human, systolic pressure is about 120 mm
Hg and diastolic pressure is about 80 mm Hg.

If we ignore the effects of gravity (which we do throughout this book), then we
may asume that blood flows in response to pressure gradients. The simplest way to
characterize a blood vessel is as a resistance vessel in which the radius is constant and
the flow is linearly proportional to the pressure drop. In a linear resistance vessel, the
flow, Q, is related to pressure by the ohmic relationship

Q � HP

R
, (15.1)

where HP is the pressure drop and R is the resistance. The relationship between resis-
tance and radius of the vessel is dramatic. To understand this dependence suppose that
a viscous fluid moves slowly and steadily through a cylindrical vessel of fixed radius.
The velocity of the fluid is described by a vector u that has axial, radial, and angular
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components. Because the fluid is incompressible and fluid is conserved, it must be that

∇ · u � 0. (15.2)

Furthermore, because momentum is conserved, the Navier–Stokes equations (Segel,
1977) hold:

ρ(ut + u · ∇u) � −∇P+ µ∇2u, (15.3)

where ρ is the constant fluid density, P is the fluid pressure, and µ is the fluid vis-
cosity. (A brief derivation of the conservation and momentum equations in the case
of zero viscosity is given in Chapter 23, Section 23.2.1.) If we assume that the flow is
steady and that the nonlinear terms are small compared to viscosity (in an appropriate
nondimensional scaling), then

µ∇2u � ∇P. (15.4)

This simplification of the Navier–Stokes equation is called the Stokes equation.
The applicability of the Stokes equation to blood flow is suspect for several reasons.

The viscosity contribution (the Laplacian) in the Stokes equation is derived from an
assumed constitutive law relating stresses and strains in the fluid (Segel, 1977) that is
known not to hold in fluids containing long polymers or other complicated chemical
structures, including red blood cells. Furthermore, in the capillaries, the large size
of the red blood cells compared to the typical diameter of a capillary suggests that a
continuum description is not appropriate. However, we do not concern ourselves with
these issues here and accept the Stokes equation description as adequate.

We look for a solution of the Stokes equation whose only nonzero component is the
axial component. We define coordinates on the cylinder in the usual fashion, letting x
denote distance along the cylinder in the axial direction and letting r denote the radial
direction. The angular direction, with coordinate θ, does not enter into this analysis.

First observe that with only axial flow, the incompressibility condition (15.2) im-
plies that ∂u

∂x
� 0, where u is the axial component of the velocity vector. Thus, u is

independent of x. Then, with a steady flow, (15.4) reduces to the ordinary differential
equation

µ
1
r

d

dr

(
r
d

dr
u

)
� dP

dx
� Px, (15.5)

where Px is the axial pressure gradient along the vessel. Note also that Px must be
constant, independent of r and x. Because of viscosity, the velocity must be zero at the
wall of the cylindrical vessel, r � r0.

It is easy to calculate that

u(r) � − Px

4µ
(r20 − r2), (15.6)

from which it follows that the total flux through the vessel is (Poiseuille’s law)

Q � 2π
∫ r0

0
u(r)rdr � −πPx

8µ
r40 . (15.7)
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This illustrates that the total flow of blood through a vessel is directly proportional to
the fourth power of its radius, so that the radius of the vessel is by far themost important
factor in determining the rate of flow through a vessel. In terms of the cross-sectional
area A0 of the vessel, the flux through the cylinder is

Q � − Px

8πµ
A20, (15.8)

while the average fluid velocity over a cross-section of the cylinder is given by

v � Q

A0
� − Px

8πµ
A0. (15.9)

Note that a positive flow is defined to be in the increasing xdirection, and thus a negative
pressure gradient Px drives a positive flow Q. Important controls of the circulatory
system are vasodilators and vasoconstrictors, which, as their names suggest, dilate or
constrict vessels and thereby adjust the vessel resistance by adjusting the radius.

If there aremany parallel vessels of the same radius, then the total flux is the sum of
the fluxes through the individual vessels. If there are N vessels, each of cross-sectional
area A0 and with total cross-sectional area A � NA0, the total flux through the system
is

Q � − Px

8πµ
A0(NA0) � − Px

8πµ
A0A, (15.10)

and the corresponding average velocity is

v � Q

A
. (15.11)

Now, for there to be no stagnation in any portion of the systemic or pulmonary
vessels, the total flux Q must be the same constant everywhere, implying that PxA0A
must be constant. Thus, for a vessel with constant cross-sectional area, the pressure
drop must be linear in distance. Furthermore, the pressure drop per unit length must
be greatest in that part of the circulatory system for which A0A is smallest.

In Table 15.1 are shown the total cross-sectional areas and pressures at entry to
different components of the vascular system. The largest pressure drop occurs in the
arterioles, and the pressure in the small veins and venae cavae is so low that these are
often collapsed. The pressure at the capillariesmust be low to keep them from bursting,
since they have very thin walls. The numbers in Table 15.1 suggest that the pressure
drop per unit length is greatest in the arterioles, about a factor of three times greater
than in the capillaries, even though the capillaries are substantially smaller than the
arterioles.

When the diameter of a vessel decreases, the velocity must increase if the flux is
to remain the same. In the circulatory system, however, a decrease in vessel diameter
is accompanied by an increase in total cross-sectional area (i.e., an increase in the
total number of vessels), so that the velocity at the capillaries is small, even though
the capillaries have very small radius. In fact, according to (15.11), the velocity in a
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Table 15.1 Diameter, total cross-sectional area, mean blood pressure at entrance, and mean
fluid velocity of blood vessels.

Vessel D (cm) A (cm2) P (mm Hg) v (cm/s)
Aorta 2.5 2.5 100 33
Small arteries 0.5 20 100 30
Arterioles 3 × 10−3 40 85 15
Capillaries 6 × 10−4 2500 30 0.03
Venules 2 × 10−3 250 10 0.5
Small veins 0.5 80 2
Venae cavae 3.0 8 2 20

vessel is independent of the radius of the individual vessel but depends solely on the
total cross-sectional area of the collection of similar vessels. Once again, from Table
15.1 we see that the velocity drops continuously from aorta to arteries to arterioles
to capillaries and then rises from capillaries to venules to veins to venae cavae. The
velocity at the vena cava is about half that at the aorta.

15.2 Compliance

Because blood vessels are elastic, there is a relationship between distending pressure
and volume. Suppose we have an elastic vessel of volume V , with a uniform internal
pressure P. The simplest assumption one can make is that V is linearly related to P,
and thus

V � V0 + CP, (15.12)

for some constant C, called the compliance of the vessel, where V0 is the volume of the
vessel at zero pressure. Although this linear relationship is not always accurate, it is
good enough for the simple models that we use here.

The compliance of the venous compartment is about 24 times as great as the com-
pliance of the arterial system, because the veins are both larger and weaker than the
arteries. It follows that large amounts of blood can be stored in the veins with only
slight changes in venous pressure, so that the veins are often called storage areas. The
blood vessels in the lungs are also much more compliant than the systemic arteries.

It is possible for veins and arteries to collapse and for blood flow through the vessel
to cease; i.e., the radius becomes zero if the pressure is sufficiently negative. Negative
pressures are possible if one takes into account that there is a fluid pressure in the
body exterior to the vessels, and P actually refers to the drop in pressure across the
vessel wall. The flow of whole blood is stopped at a nonzero radius, primarily because
of the nonzero diameter of red blood cells. Thus, when the arterial pressure falls below
about 20 mm Hg, the flow of whole blood is blocked, whereas blockage of plasma in
arterioles occurs between 5 and 10 mm Hg.
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Equation (15.12) is applicable when the vessel has the same internal pressure
throughout. When P is not uniform, we model the compliance of the vessel by re-
lating the cross-sectional area to the pressure. Again, the simplest assumption to make
is that the relationship is linear, and thus

A � A0 + cP, (15.13)

for some constant c. Note that c is the compliance per unit length, since in a cylindrical
vessel of length L and uniform internal pressure, V � AL, so that C � cL. However,
here we refer to both C and c as compliance.

For a given flow, the pressure drop in a compliance vessel is different from the
pressure drop in a resistance vessel. Further, in a compliance vessel, the flow is not a
linear function of the pressure drop. We know from (15.8) that the flux through a vessel
is proportional to the product of the pressure gradient and the square of the area. Thus,
for a compliance vessel,

8πµQ � −PxA2(P), (15.14)

where A(P) is the relationship between cross-sectional area and pressure for the chosen
vessel. In steady state, the flux must be the same everywhere, so that

x � − 1
8πµQ

∫ P(x)

P0

A2(P)dP (15.15)

determines the pressure as a function of distance x. If the cross-sectional area of the
vessel is given by (15.13), then the flux through a vessel of length L is related to the
input pressure P0 and output pressure P1 by

RQ � 1
3γ
(1+ γP)3|P0P1 (15.16)

� (P0 − P1)
(
1+ γ(P0 + P1)+ γ2

3
(P20 + P0P1 + P21)

)
, (15.17)

where R � 8πµL/A20 and γ � c/A0. In the limit of zero compliance, this reduces to
the linear ohmic law (15.1). Note that 1/γ has units of pressure, while R has units of
pressure/flow. Thus, R can be interpreted as the flow resistance, as in (15.1).

Since Q is an increasing function of γ, it follows that a given flow can be driven
by a smaller pressure drop in a compliance vessel than in a noncompliance vessel.
This relationship is viewed graphically in Fig. 15.3, where we plot the scaled flux RQ
as a function of pressure drop HP � P0 − P1 for fixed γ and P0. Clearly, the higher
the compliance, the smaller the pressure drop required to drive a given fluid flux. This
explains, for example, why the pressure drop in the veins can be much less than in the
arteries.

We also calculate the volume of blood contained in a vessel with input pressure P0
and output pressure P1 to be

V �
∫ L

0
A(x)dx �

∫ P1

P0

A(P)x′(P)dP � − 1
8πµQ

∫ P1

P0

A3(P)dP. (15.18)
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Figure 15.3 Scaled flow RQ (with units of pressure) as a function of pressure drop &P � P0−P1

for different values of compliance γ . For all curves P0 � 1.0.

For a linear compliance vessel (15.13) this is

V

V0
� 3
4

(
(1+ γP)4|P0P1
(1+ γP)3|P0P1

)
(15.19)

� 1+ γ

2
(P0 + P1)+ γ2

6
(P0 − P1)2 +O(γ3), (15.20)

where V0 is the volume of the vessel at zero pressure. It is left as an exercise (Exercise
2) to show that when there is no pressure drop across the vessel, so that P0 � P1,

V � V0 + V0γP0 � V0 + V0

A0
cP, (15.21)

which is the same as (15.12).

15.3 The Microcirculation and Filtration

The purpose of the circulatory system is to provide nutrients to and remove waste
products from the cellular interstitium. To do so requires continuous filtration of the
interstitium. This filtration is accomplished primarily at the level of capillaries, as fluid
moves out of the capillaries at the arteriole end and back into the capillaries at the
venous end.

The efflux or influx of fluid from or into the capillaries is determined by the local
pressure differences across the capillary wall. In normal situations, the pressure drop
through the capillaries is substantial, about 25 mm Hg.



442 15: The Circulatory System

Figure 15.4 Diagram of the capillary microcirculation. (Berne and Levy, 1993, Fig. 28-1, p. 466.)

A schematic diagram of the capillary network is shown in Fig. 15.4. To get some
understanding of how filtration works and why a capillary pressure drop is necessary,
we use a simple one-dimensional model of a capillary. We suppose that there is an
influx Qi at x � 0 that must be the same as the efflux at x � L, where L is the length of
the capillary. At each point x along the capillary, there is blood flow q. The (hydrostatic)
pressure Pc at each point along the capillary is determined by

dPc

dx
� −ρq, (15.22)

where ρ is the coefficient of capillary resistance. Flow into or out of the capillary (across
the porous capillary wall) is determined by the difference between total internal pres-
sure and total external (interstitial) pressure. The interstitial hydrostatic pressure Pi
is typically about −3 mm Hg, and the interstitial fluid colloidal osmotic pressure πi is
about 8 mmHg, while the plasma colloidal osmotic pressure πc averages about 28 mm
Hg (although it necessarily varies along the length of the capillary; see Exercise 11).



15.4: Cardiac Output 443

Thus, the flow into the capillary is determined by

dq

dx
� Kf (−Pc + Pi + πc − πi), (15.23)

where Kf is the capillary filtration rate.
We assume that only Pc varies along the length of the capillary. Clearly, when Pc

is high, fluid is forced out of the capillary, and when Pc drops sufficiently low, fluid is
reabsorbed into the capillary.

Equations (15.22) and (15.23) form a linear system of equations, which is readily
solved. We find that

Pc(x) � Pi + πc − πi − HPc

2
sinh β(x− L/2)

sinh βL

2

, (15.24)

where HPc is the total pressure drop across the capillary and β2 � ρKf . It also follows
that

q(x) � Qi
cosh β(x− L/2)

cosh βL

2

, (15.25)

where

Qi � HPc

R

βL/2

tanh βL

2

(15.26)

is the total influx at x � 0 and R � ρL is the total resistance of the capillary. Notice
the similarity of this formula with (15.1), describing the relationship between flow and
pressure drop in a nonleaky vessel. Apparently, leakiness in the vessel (β �� 0) has the
effect of decreasing the overall resistance of the capillary flow.

Notice that q(x) isminimal, and therefore the interstitial flow ismaximal, at x � L/2.
We define the filtration rate Qf to be the maximal flux through the interstitium, in this
case,

Qf � Qi − q(L/2). (15.27)

It follows that

Qf

Qi
� 1− sechβL

2
. (15.28)

The filtration rate depends on the single dimensionless parameter βL � √
ρKf L. Thus

filtration is enhanced in vessels that are “leaky” (large Kf ) and of small radius, since
vessel resistance ρ is inversely proportional to r4.

15.4 Cardiac Output

During a heartbeat cycle, the pressure and volume of the heart change in a highly spe-
cific way, shown in Fig. 15.5. Notice that the pressure–volume loops are of rectangular
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Figure 15.5 Experimental data of the pressure–volume relationship during the heartbeat cycle
in the denervated left ventricle of the dog. (Sagawa et al., 1978, Fig. 11.4.) A: Three beats from
different end-diastolic volumes and against different arterial pressures are shown in solid lines,
with the broken lines representing the same beat cycles in the presence of epinephrine, which
enhances the contraction. B: Pressure–volume loops of the same ventricle for four different
end-diastolic volumes, but against the same arterial pressure. C: Schematic diagram of the
pressure–volume loop (adapted from Hoppensteadt and Peskin, 1992, Fig. 5.5). a: inflow valve
closes, b: outflow valve opens, c: outflow valve closes, d: inflow valve opens.
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shape, and thus the pressure and volume change at different places in the cycle. For ex-
ample, on the right ascending side of the loop, the pressure is increasing while volume
is constant, which corresponds to the ventricle contracting while the outflow valve is
closed. At the top right-hand corner the outflow valve opens, and the volume decreases
as the blood is pumped out at a constant pressure. The constant pressure at the top
of the loop corresponds to the arterial pressure, while the constant pressure along the
bottom of the loop corresponds to the venous pressure. Notice also that the top left
corners of the loops lie on the same straight line. Thus, the ventricular volume at the
end of a contraction (the end-systolic volume VES) is a linear function of the arterial
blood pressure. Further, in panel B of the same figure, the top left corner of the loop (the
end-systolic pressure and volume) is constant, independent of the total volume of blood
pumped by the ventricle, suggesting that it depends solely on the arterial pressure.

This suggests that

VES � Vmin + CsPa, (15.29)

where Vmin is the intercept on the V axis, and Cs is the slope of the line connecting
the three labeled points in Fig. 15.5A. The key observation is that Cs and Vmin are
independent of the arterial pressure and the end-diastolic volume, and are thus intrinsic
properties of the ventricle. Cs is, in fact, the compliance of the ventricle at the end of
systole. By connecting the lower right corners of the pressure–volume loops, as shown
in Fig. 15.5C, we reach a similar conclusion for the end-diastolic volume.

These observations can be summarized in a simple model, in which we determine
the total amount of blood pumped by the ventricle, i.e., the cardiac output, but ignore
the time-dependent changes in volume and pressure over the beat cycle. We view the
heart as a compliance vessel whose basal volume and compliance change with time.
Thus,

V � V0(t)+ C(t)P. (15.30)

During diastole, when the heart is filling, the heart is relaxed and compliant, so that V0
and C are large. During this time, the aortic valve is closed, preventing backflow, so that
the pressure is essentially the same as the venous pressure. During systole, the heart
is contracting and much less compliant, so that C and V0 are decreased compared to
diastolic values. At this time, the mitral valve is closed, preventing backflow into the
veins, so that the pressure in the heart is the same as the arterial pressure. Accordingly,
the minimal volume (end systolic) is given by (15.29), and the maximal volume VED
(end diastolic) is

VED � Vmax + CdPv, (15.31)

where Pa and Pv are the arterial and venous pressures, respectively, and Cs and Cd are
the compliances of the heart during systole and diastole, respectively. This implies that
the stroke volume is

Vstroke � Vmax − Vmin + CdPv − CsPa, (15.32)
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and the total cardiac output is

Q � FVstroke, (15.33)

where F is the heart rate in beats per unit time.
This expression of cardiac output has some features that agree with reality. For

example, if Cs is small compared to Cd, then the cardiac output depends primarily on
the venous pressure, or on the rate of venous return. This phenomenon, that cardiac
output increases with increasing filling, is commonly referred to as Starling’s law. While
there is some decrease in output due to arterial loading, this effect is not nearly as
significant as the increase in output resulting from an increase in venous pressure.

According to this formula, cardiac output is a linear function of venous pressure.
This is not a terrible approximation in normal physiological ranges, although a more
accurate formula would show saturation as a function of venous pressure. That is,
cardiac output approaches a constant as a function of venous pressure for venous
pressure above 10 mm Hg. Cardiac output also saturates at high frequencies because
of inadequate fluid filling.

15.5 Circulation

15.5.1 A Simple Circulatory System

compliances Cd,Cs
Vh=Vmax-Vmin

Systemic resistance
R

Arterial pressure
Pa

Venous pressure
Pv

Q

Heart

Figure 15.6 Schematic diagram of the simplest circulation model, with a single-chambered
heart and a single loop.
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To illustrate how all the above pieces fit together to give a model of the circulatory
system, consider a simple circulatory system with one loop and a single-chambered
heart (Fig. 15.6). To beginwith, supposewe have only a heart and a resistive closed loop.
For the resistive closed loop, we suppose that the total flux is related to the pressure
drop through

Q � (Pa − Pv)/R, (15.34)

so that in steady state the flux through the loopmustmatch the cardiac output, yielding

Q � F(Vh + CdPv − CsPa) � (Pa − Pv)/R, (15.35)

where Vh � Vmax − Vmin. Equation (15.35) gives a relationship between arterial and
venous pressure that must be maintained in a steady-state condition. Unfortunately,
these are not uniquely determined by this equation. The reason the solution is not
completely determined is primarily because we have not allowed the circulation loop
to be a compliance vessel. If we allow the loop to be a compliance vessel, then there is
an additional relationship between pressure and total volume that must be satisfied.

To see how thisworks for a simple system, suppose that the circulatory loop consists
of a compliance vessel with cross-sectional area given by (15.13). It follows from (15.16)
that

Q � 1
3Rγ

{(1+ γPa)3 − (1+ γPv)3}, (15.36)

and the total volume of the vessel is given by

V

V0
� 3
4

{
(1+ γPa)4 − (1+ γPv)4

(1+ γPa)3 − (1+ γPv)3

}
. (15.37)

These two equations, together with

Q � F(Vh + CdPv − CsPa), (15.38)

give a system of three equations in terms of the four unknowns Q,Pa, Pv, and V . (Of
course, it is also possible to regard Pa and Pv as known, i.e., measured, quantities, and
then view γ and R as unknowns. This would determine the resistance and compliance
corresponding to a given pressure difference.) This is too many unknowns for the
number of equations, and so we must find another equation before the solution is
uniquely determined. The final equation comes from conservation of blood. Because
blood is assumed to be incompressible, and because the heart chambers are assumed
to have a fixed volume (as cardiac output is expressed in terms of the average output), it
follows that V must be constant. The system is then completely determined. However,
because it is nonlinear, a closed-form solution is not apparent, and the easiest way to
obtain a solution is to solve the equations numerically.
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Cv

Compliance
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Figure 15.7 Schematic diagram of the two-compartment model of the circulation. The heart
and pulmonary system are combined into a single vessel, and the systemic capillaries are
modeled as a resistance vessel. The larger arteries and veins are modeled as compliance
vessels.

15.5.2 A Simple Linear Circulatory System

It is difficult to extend the analysis of the previous section to more realistic models
because of the complexity of the resulting nonlinear equations. However, much can be
learned using linear approximations to the governing equations. The simplest linear
model is due to Guyton (1963), in which the circulatory system is represented as a
closed loop with two compliance vessels and one pure resistance vessel (Fig. 15.7).
The large arteries and veins are each treated as compliance vessels with linearized
flow equations, and the systemic capillaries are treated as a resistance vessel with no
compliance.

The equations describing this model can be conveniently divided into two groups:
those describing the arterial system and those describing the venous system.

Arterial system: Cardiac output is described in terms of the compliance of the
ventricle, and so

Q � F(CdPv − CsPa), (15.39)

where, for simplicity, we have assumed that Vh � 0, i.e., that Vmax � Vmin. The
larger arteries are modeled as a compliance vessel, and thus, from (15.17),

Q � Pa − Ps1

Ra
, (15.40)
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where we have ignored the nonlinear terms. This approximation is accurate if the
compliance is small. The parameters are defined in Fig. 15.7. For example, Pa is the
arterial pressure, while Ps1 is the blood pressure at the (somewhat arbitrary) border
between the larger arteries and the arterial capillaries, and Ra is the resistance of
the larger arteries. Note that although this expression for the flux looks as though
the arteries are treated as resistance vessels, this is only because the nonlinear terms
are omitted. The compliance of the arteries appears in the relationship between
the pressure and the volume of the arteries,

Va � γV0

2
(Pa + Ps1) � Ca

2
(Pa + Ps1), (15.41)

where Ca � caV0/A0 is the compliance of the systemic arteries. Note that we have
assumed that the volume of the systemic arteries is zero at zero pressure.

Venous system: We have three similar equations for the venous system, except that
the equation for the cardiac output (15.39) is replaced by an equation describing
the flow through the capillaries,

Q � Ps1 − Ps2

Rs
. (15.42)

The remaining two equations describe the flow through the veins,

Q � Ps2 − Pv

Rv
, (15.43)

and the volume of blood in the veins,

Vv � Cv

2
(Pv + Ps2). (15.44)

At this point, we have a system of six equations in seven unknowns (four pressures,
two volumes, andQ). The final equation comes from conservation of volume, according
to which

Va + Vv � V0, (15.45)

where V0 is a given constant.
These seven equations, being linear, can be solved for the unknowns. However,

before doing so, wemake two further simplifications. First, we assume that the systolic
compliance, Cs, is nearly zero, and second, that the pressure drops across the larger
vessels are small, so that Ra and Rv are quite small, with the result that Pa � Ps1 and
Pv � Ps2, to a good approximation. This removes two of the variables, leaving us with
a system of five equations:

Q � FCdPv, (15.46)

Q � Pa − Pv

Rs
, (15.47)

Va � CaPa, (15.48)

Vv � CvPv, (15.49)
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Va + Vv � V0. (15.50)

The solution of this system is easily found to be

Pa � (1+ FCdRs)V0
Cv + (1+ FCdRs)Ca

, (15.51)

Pv � V0

Cv + (1+ FCdRs)Ca
, (15.52)

Q � FCdV0

Cv + (1+ FCdRs)Ca
. (15.53)

A number of qualitative features of the circulation can be seen from this solution.

1. As the heart rate increases, the arterial pressure Pa increases to a maximum of
V0/Ca, but as the heart rate falls, the arterial pressure decreases to a minimum of
V0/(Cv + Ca).

2. Conversely, as the heart rate falls, the venous pressure Pv increases to a maximum
of V0/(Cv + Ca). Hence, in heart failure, the arterial pressure falls and the venous
pressure rises, until they are equal. With no pressure drop, there is no flow.

3. An increase in the systemic resistance,Rs, leads to a decrease in the cardiac output,
an increase in the arterial pressure, and a decrease in the venous pressure.

4. Since Va � CaPa and Vv � CvPv, an increase in systemic resistance is accompanied
by a shift in the blood volume from the venous system to the arterial system, i.e.,
Vv decreases, and Va increases.

In reality, systemic resistance varies widely (decreasing, for example, during ex-
ercise), but the cardiac output compensates for this variation, keeping the arterial
pressure relatively constant. Thus, the above model, which includes no control of car-
diac output, needs to bemodified to agree with experimental data. Later in this chapter
we consider some simple models for regulation of the circulation. Before doing so,
however, we consider a more complex model of the circulation, incorporating more
compartments.

15.5.3 A Multicompartment Circulatory System

To construct amore detailed linearmodel of the circulatory system, we assume that the
systemic and pulmonary loops each consist of two compliance vessels, the arterial and
venous systems, connected by the capillaries, a pure resistance. Further, we assume
that the heart has two chambers, the left and right hearts. A schematic diagram of the
model is given in Fig. 15.8. We must write equations for the flow through each of these
compartments and keep track of the total volume of blood contained in the system.
Unfortunately, the notation can be difficult to follow. We let subscripts a, v, s, and p
denote, respectively, arterial, venous, systemic, and pulmonary. So, for example, Psa is
the pressure at the entrance to the systemic arteries, and Csa is the compliance of the
systemic arteries. Also, subscripts r, l, d, and s denote, respectively, right, left, diastolic



15.5: Circulation 451

Crd,Crs

Left
Heart

Right
Heart

Cld,Cls

Rp

Ppa Ppv

Pp1 Pp2

Rpa Rpv

Cpa
Cpv

Vpa Vpv

Rsv

Csv

Vsv

Rsa

Csa

Vsa

Rs

PsaPsv

Ps1Ps2

Pulmonary system

Systemic system

Q

Q

Q
Q

Figure 15.8 Schematic diagram of the multicompartment model of the circulation.

and systolic. Thus, Cld denotes the diastolic compliance of the left heart. Finally, Ps1
denotes the pressure at the ill-defined border between the systemic arteries and the
systemic capillaries, with similar definitions for Ps2, Pp1, and Pp2 as indicated in Fig.
15.8.

As before, we write down the governing equations in groups.

Systemic arteries:

Q � Psa − Ps1

Rsa
, (15.54)
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Q � F(CldPpv − ClsPsa), (15.55)

Vsa � Vs0 + Csa

2
(Psa + Ps1). (15.56)

Note that here we have assumed that the volume of the systemic arteries at zero
pressure is Vs0, not zero, as was assumed in the previous model.

Systemic veins:

Q � Ps2 − Psv

Rsv
, (15.57)

Q � Ps1 − Ps2

Rs
, (15.58)

Vsv � Csv

2
(Psv + Ps2). (15.59)

For the venous system, it is reasonable to take the basal volume as zero, because
if the blood pressure falls to zero, these vessels collapse. In the arterial system,
however, such an approximation is not realistic.

Pulmonary arteries:

Q � Ppa − Pp1

Rpa
, (15.60)

Q � F(CrdPsv − CrsPpa), (15.61)

Vpa � V
p

0 + Cpa

2
(Ppa + Pp1). (15.62)

Pulmonary veins:

Q � Pp2 − Ppv

Rpv
, (15.63)

Q � Pp1 − Pp2

Rp
, (15.64)

Vpv � Cpv

2
(Ppv + Pp2). (15.65)

At this stagewe have 12 equations for 13 unknowns (8 pressures, 4 volumes, andQ).
The final equation, as before, comes from the conservation of blood volume, whereby

Vsa + Vsv + Vpa + Vpv � V0. (15.66)

The capillary and heart volumes need not be included in this equation because they
are assumed to be fixed.

This system of equations can be treated in a number of ways. First, using a symbolic
manipulation package such as Maple or Mathematica, it is not difficult to find the
solution directly. A second approach is to make a number of simplifying assumptions,
as was done in the simplermodel discussed above. For example, if we assume that there
is no pressure drop over the arteries or veins (both pulmonary and systemic), then we
find that Psa � Ps1, Psv � Ps2, and similarly for the pulmonary equations. This removes
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Figure 15.9 Schematic diagram of the simplified three-compartment model, obtained from
the one in Fig. 15.8 by letting Rs and Rp tend to zero and combining all the pulmonary vessels
into one.

four variables and four equations, giving a system of nine equations for the remaining
nine unknowns. This variation of the model has been discussed by Hoppensteadt and
Peskin (1992), and its further study is left as an exercise (Exercise 3).

A second approximation of the full system is to omit the pure systemic resistance
and combine all the pulmonary vessels into a single compliance vessel. This results in
a model consisting of only three compliance vessels (Fig. 15.9). It is left as an exercise
(Exercise 4) to show that this approximation results from letting Rs and Rp approach
zero and by setting Cpa � Cpv and Rpa � Rpv. For convenience, we write Cp in place of
Cpa, and Rp in place of Rpa. We also assume that the systolic compliances are negligible.

The equations governing this simplified three compartment model are as follows.
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Systemic arteries:

Q � Psa − Ps

Rsa
, (15.67)

Q � FCldPpv, (15.68)

Vsa � Vs0 + Csa

2
(Psa + Ps). (15.69)

Systemic veins:

Q � Ps − Psv

Rsv
, (15.70)

Vsv � Csv

2
(Psv + Ps). (15.71)

Pulmonary system:

Q � Ppa − Ppv

Rp
, (15.72)

Q � FCrdPsv, (15.73)

Vp � Cp

2
(Ppa + Ppv). (15.74)

Note that we have assumed that the basal pulmonary volume is zero.

Conservation of volume:

Vsa + Vsv + Vp � V0. (15.75)

Because this is a linear system, one can solve (using symbolic manipulation) to
obtain

Psa � Q

(
1
FCrd

+ Rsa + Rsv

)
, (15.76)

Ps � Q

(
1
FCrd

+ Rsv

)
, (15.77)

Psv � Q

FCrd
, (15.78)

Ppa � Q

(
1
FCld

+ Rp

)
, (15.79)

Ppv � Q

FCld
, (15.80)

Q � Ve

α+ Cp

FCld
+ Csv+Csa

FCrd

, (15.81)

where α � Rsv(Csa + Csv/2) + RsaCsa/2 + CpRp/2, and Ve � V − Vs0 − V
p

0 is the excess
volume beyond that which is necessary to fill the system at zero pressure. Clearly, the
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cardiac output saturates for large F, and

lim
F→∞

Q � Q∞ � Ve

α
� 2Ve
Rsv(2Csa + Csv)+ RsaCsa + CpRp

. (15.82)

We can also see that, as in the simplermodel, systemic arterial pressure is an increasing
function of the heart rate, and systemic venous pressure is a decreasing function of the
heart rate.

Cardiac output depends linearly on excess blood volume V − Vs0 − V
p

0 . In trauma,
if there is substantial blood loss, the cardiac output drops rapidly. If there is no com-
pensatory control (increased heart rate or change of resistance and compliance), loss
of 15–20% of blood volume over a period of half an hour is fatal. If reflexes are intact,
loss of 30–40% in half an hour is fatal. Notice that in this model (taking V � 5 liters,
V
p

0 + Vs0 � 1.2 liters) a 20% loss of blood with no compensatory control leads to a 26%
loss of cardiac output.

There are ten physical parameters in this system of nine equations, giving nine
relationships between parameters if the solution is known from data.We take as typical
volumes Vsa � 1, Vsv � 3.5, Vp � 0.5 (liters), and typical pressures Psa � 100, Ps � 30,
Psv � 2, Ppa � 15, Ppv � 5 (mm Hg). Total cardiac output is about 5.6 liters/min, with a
heart rate of 80 beats per minute and a stroke volume of 0.07 liter. Using these, we find
estimates for parameters of Csv � 0.22, Cp � 0.05 liter/mm Hg, Rsa � 12.5, Rsv � 5.0,
Rp � 1.78 mm Hg/(liters/min), and Cld � 0.014, Crd � 0.35 (liter/mm Hg)/stroke.

To estimate Vs0 and Csa, we note that at the heart the arterial pressure is varying
on a beat-to-beat basis, as is the volume of blood in the arteries. During one beat, the
blood ejected from the heart must be accommodated by the compliance of the arteries.
Thus,

HV � CsaHP, (15.83)

where HV is the stroke volume, about 0.07 liter, and HP is the difference between
systolic and diastolic pressure, about 40 mm Hg. Once Csa is known (Csa � 0.0018
liter/mmHg), the resting volumeVs0 can be determined using the given values of volume
and pressure in (15.69) as Vs0 � 0.94 liter.

These numbers correlate with some known features of the adult circulatory system.
For example, the venous system is about 24 times more compliant than the arterial
system. The ratio found here is Csv/Csa � 122, which is too high, but this does not
create significant errors in interpretation. Total resistance of the systemic circulation
is larger than the pulmonary resistance, and the compliance of the left heart is less
than that of the right heart, simply because the left ventricular wall is much thicker
than the right.

To gain some understanding of the dependence of the solution on parameters, we
calculate the sensitivity σyx, which is the sensitivity of dependence of the dependent
variable y upon changes in the independent variable x. Thus, σ is the proportional
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Table 15.2 Sensitivities for the three compartment circulatory system (expressed as
percentages).

Csa Csv Cp Rsa Rsv Rp Cld Crd F

Normal 0.0018 0.22 0.05 12.5 5.0 1.78 0.014 0.035 80
Psa 100 −5.4 −82.8 −11.8 67.1 −46.8 −5.9 5.9 8.5 14.4
Ps 30 −5.4 −82.8 −11.8 −2.9 18.5 −5.9 5.9 3.8 9.8
Psv 2 −5.4 −82.8 −11.8 −2.9 −74.8 6.1 5.9 −89.5 84.6
Ppa 15 −5.4 −82.8 −11.8 −2.9 −74.8 60.7 −27.5 10.5 −17.0
Ppv 5 −5.4 −82.8 −11.8 −2.9 −74.8 −5.9 −94.1 10.5 −84.6
Vsa 1.0 21.6 −18.9 −2.7 11.6 −7.2 −1.3 1.3 1.7 3.0
Vsv 3.5 −5.4 17.2 −11.8 −2.9 12.7 −5.9 5.9 −2.0 3.9
Vp 0.5 −5.4 −82.8 88.2 −2.9 −74.8 44.0 −44.2 10.5 −33.6
Q 5.6 −5.5 −82.8 −11.8 −2.9 −74.8 −5.9 5.9 10.5 16.4
Q∞ 6.7 −6.2 −86.7 −7.1 −3.5 −89.5 −7.0 0.0 0.0 0

change in y for a given proportional change in x, and so

σyx � Hy/y

Hx/x
� x

y

∂y

∂x
, (15.84)

in the limit as Hx goes to zero. In Table 15.2 are shown the sensitivities, expressed as
percentages, for the three-compartment loop using normal parameter values, as shown
in the table. For example, the first number in the first column, −5.4, is the sensitivity
of the systemic arterial pressure Psa to changes in the systemic arterial compliance Csa.

From this table we infer some interesting features of the human circulatory system.
First, the system is relatively insensitive to changes in the arterial compliance Csa. In
fact, compliance of the arterial system is insignificant compared to compliance of the
other compartments and to a first approximation can be ignored. On the other hand,
the system is strongly sensitive to changes in Csv, the venous compliance. Similarly, the
solution is relatively insensitive to changes in arterial resistance, Rsa, but is relatively
sensitive to changes in venous resistance, Rsv. Much of the regulation of the cardiac
systems occurs through changes in the compliance and resistance of the venous system,
and this result demonstrates the efficacy of that choice.

The most common cause of coronary occlusion is atherosclerosis, hardening of the
arteries. (About half of all deaths in the United States and Europe are the result of
atherosclerosis and two thirds of those are the result of a thrombosis (clotting) of one
or more coronary arteries.) This occurs when excess cholesterol and fats are deposited
in the arteries. These deposits are invaded by fibrous tissue and frequently become
calcified, resulting in atherosclerotic plaques and stiffened arterial walls that can be
neither constricted nor dilated. While systemic compliance is not extremely important
in this model, systemic resistance is significant, and increases in systemic resistance
produce increases in arterial pressure.

A person with higher than normal mean arterial pressure is said to have hyper-
tension, or high blood pressure. Life expectancy is shortened substantially when mean
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arterial pressure is 50 percent or more above normal. The lethal effects of hypertension
are

1. Increased cardiac workload, leading to congestive heart disease or coronary heart
disease, often leading to a fatal heart attack;

2. rupture of a major blood vessel in the brain (a stroke), resulting in paralysis,
dementia, blindness, or multiple other brain disorders;

3. multiple hemorrhages in the kidneys, leading to renal destruction and eventual
kidney failure and death.

One other parameter that has an important effect is the diastolic compliance of
the left heart, Cld. As expected, if this compliance decreases, there is a reduction in
systemic arterial pressure and a reduction in cardiac output. There is also a noticeable
increase in pulmonary blood volume, Vp. Thus, left heart failure, which corresponds to
a weakening of the left ventricular muscles and hence decreased cardiac efficiency and
decreased compliance, results in excess fluid and fluid congestion in the lungs, known
as pulmonary edema. Notice that in this model, failure of the left or right heart does
not influence the maximal cardiac output Q∞, although it certainly requires a higher
heart rate to effect the same output. Notice, also, that with left or right heart failure,
systemic volume changes little, so that one does not expect peripheral edema.

15.6 Cardiac Regulation

The circulatory system is equipped with a complex system for the control of blood flow.
There are three major types of control mechanisms:

1. Local control of blood flow in the individual tissue, determined mainly by the
tissue’s need for blood perfusion.

2. Neural control, by which the overall vesicular resistance and cardiac activity are
controlled.

3. Humoral control, in which substances dissolved in the blood, such as hormones,
ions, or other chemicals, cause changes in flow properties.

15.6.1 Autoregulation

Autoregulation is a local mechanism that makes flow through a tissue responsive to
local oxygen demand but relatively insensitive to arterial pressure. In tissue for which
the delivery of oxygen is of central importance (for example, the brain or the heart) the
local blood flow is controlled to be slightly higher than required, but no higher.

In dead organs, an increase in arterial pressure produces a linear increase in blood
flow, suggestive of a linear-resistance vessel. However, in normally functioning tissue,
the arterial pressure can be changed over a large range with little effect on the blood
flow (Fig. 15.10). For example, in muscle, with an arterial pressure between 75 mmHg
and 175 mm Hg the blood flow remains within ±10-15% of normal.
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Figure 15.10 Blood flow as a function of arterial pressure if pressure is raised over a period of
a few minutes. (Data (solid curve) from Guyton and Hall, 1996, Fig. 17-4, p. 203.) Dashed curve
shows the result from the model (15.88).

The flow through an artery is known to be responsive to the need for oxygen. For
example, an eightfold increase in metabolism produces a fourfold increase in blood
flow (as shown in Fig. 15.11B). Similarly, if oxygen content falls because of anemia,
high altitude, or carbon monoxide poisoning, the blood flow increases to compensate.
For example, a reduction to 25% of normal oxygen saturation produces a threefold
increase in blood flow, not quite enough to compensate fully for the loss (see Fig.
15.11A).

Although the mechanism for autoregulation is not completely understood, it is
most likely that resistance of tissue is responsive to biochemical measures of how hard
it is working, such as concentrations of H+, CO2, O2, and lactic acid. The arterioles are
highlymuscular, and their diameters can changemanyfold. Themetarterioles (terminal
arterioles) are encircled by smooth muscle fibers at intermittent points and are also
used to regulate flow.

The arterial blood has the same composition for all tissues of the body so cannot
be used as a local control mechanism. This is problematic because it is the arterioles
whose resistance is regulated. Here we assume that the resistance of arterioles is a
function of the concentration of oxygen in the venous blood. This is possible, since
arteries and veins tend to run side by side, and venous concentrations may regulate
arterial resistance by release and diffusion of regulatory substances, called vasodilators.

An example of how this may work is provided by cardiac tissue. If cardiac activity
increases and the utilization of oxygen exceeds the supply, ATP is degraded, increasing
the concentration of adenosine. Adenosine is a vasodilator, which leaks out of the cells
into the venous flow to cause local dilation of coronary arteries.



15.6: Cardiac Regulation 459

3.0

2.5

2.0

1.5

1.0

0.5

0.0

B
lo

od
 fl

ow
 (

× 
no

rm
al

)

6040200
% Arterial oxygen deficiency

4

3

2

1

0

B
lo

od
 fl

ow
 (

× 
no

rm
al

)

86420
Metabolism (× normal)

A B

Figure 15.11 A: Blood flow as a function of the percentage of arterial oxygen deficiency,
keeping arterial pressure and metabolic rate fixed. (Data (solid curve) from Guyton and Hall
(1996), Fig. 17-2, p 200.) Dashed curve shows the result from the model. B: Blood flow as a
function of metabolism, keeping arterial pressure and arterial oxygen content fixed at normal
levels. (Data (solid curve) from Guyton and Hall, 1996, Fig. 17-1, p. 200.) Dashed curve shows
the result from the model.

A simple model for autoregulation is as follows (Huntsman et al., 1978; Hop-
pensteadt and Peskin, 1992). We keep track of oxygen consumption and blood flow
via

([O2]a − [O2]v)Q � M, (15.85)

Pa − Pv � RQ, (15.86)

where [O2]a and [O2]v are the arterial and venous oxygen concentrations, respectively,
M is the metabolic rate (oxygen consumption per unit time), Pa and Pv are the arterial
and venous pressures driving the flow Q through tissue with total resistance R. In
this model we treat [O2]a as a given constant and [O2]v as variable. Now we assume
that there is some linear relationship between arterial resistance and venous oxygen
content, say

R � R0 (1+ A[O2]v) . (15.87)

The assumption of linearity is reasonable in restricted ranges of oxygen content. Here,
the parameter A denotes the sensitivity of resistance to oxygen; if A � 0 the resistance
is unregulated.

We can solve these equations for the flow rate Q to get

Q � 1
1+ A[O2]a

(
MA+ Pa

R0

)
, (15.88)
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where we have assumed that Pv � 0. This is a linear relationship between flow rate and
arterial pressure, which, when A � 0, reproduces the unregulated situation. However,
with A > 0, the sensitivity of the flow to changes in arterial pressure varies with arterial
oxygen content. Furthermore, this expression shows linear dependence of blood flow
on metabolism.

We can estimate the parameters A and R0 using the data from Fig. 15.10. In the
range of pressures between 75 and 175 mm Hg, the curve is well represented by the
straight line

Q

Q∗ � 1
3

+ 2
3
Pa

P∗ , (15.89)

where Q∗ and P∗ are the normal values of flow and pressure (Q∗ � 5.6 liters/min.,
P∗ � 100 mm Hg). (Remark: Any straight line through P∗ and Q∗ must be of the form
Q
Q∗ � α+ (1− α)Pa

P∗ .) Comparing this to the regulated curve (15.88) at normal values,

Q � 1
1+ A[O2]∗a

(
M∗A+ Pa

R0

)
, (15.90)

where [O2]∗a andM
∗ are normal values of arterial oxygen and metabolism, respectively

(M∗ � Q∗([O2]∗a − [O2]∗v), [O2]∗a � 104 mm Hg, [O2]∗v � 40 mm Hg), we find that

A � 2Q∗

3M∗ − 2Q∗[O2]∗a
, (15.91)

R0 � P∗ 2Q
∗(M∗ − [O2]∗a)
Q∗M∗ , (15.92)

so that

Q

Q∗ � 2 M
M∗ + P

P∗

3+ 13
4 (

[O2]a
[O2]∗a

− 1)
, (15.93)

using typical values for Q∗[O2]∗a
M∗ � 13

8 .
In Fig. 15.10 are shown the data for blood flow as a function of arterial pressure,

compared with the model (15.93). The good agreement over the linear range is the
result of fitting.

The relationship (15.88) reproduces two other features of autoregulation that are
qualitatively correct. It predicts that the flow rate increases as the arterial oxygen con-
tent decreases, and increases linearly with metabolic rate. In Fig. 15.11A is shown the
blood flow plotted as a function of arterial oxygen deficiency. Here, the solid curve
is taken from data, and the dashed curve is from (15.93). Similarly, in Fig. 15.11B is
shown the blood flow plotted as a function of metabolic rate. As before, the solid curve
is from data, and the dashed curve is from (15.93). Clearly, the model gives reasonable
qualitative agreement for blood flow as a function of arterial oxygen content, and for
blood flow as a function of metabolism.
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15.6.2 The Baroreceptor Loop

The baroreceptor loop is a global feedback control mechanism using the nervous system
to adjust the heart rate, the venous resistance, and thereby the venous pressure in order
to maintain the arterial pressure at a given level, with the ultimate goal of regulating
the cardiac output.

The need to regulate cardiac output is apparent. During exercise, when the demand
for oxygen goes up, cardiac output normally rises at a linear rate, with slope about 5
(since 5 liters of blood are required to supply 1 liter of oxygen). In normal situations,
the cardiac output and heart rate are roughly proportional, indicating that the stroke
volume remains essentially constant. However, if heart rate is artificially driven upwith
a pacemaker, with no increase in oxygen consumption, then the cardiac output remains
virtually the same, indicating a decrease in stroke volume. Similarly, in exercise with a
fixed heart rate (set by a pacemaker), total cardiac output increases tomeet the demand.

The primary nervous mechanism for the control of cardiac output is the barore-
ceptor reflex. This reflex is initiated by stretch receptors, called baroreceptors or
pressoreceptors, located in the walls of the carotid sinus and aortic arch, large arteries
of the systemic circulation. A rise in arterial pressure is detected and causes a signal to
be sent to the central nervous system fromwhich feedback signals are sent through the
autonomic nervous system to the circulatory system, thereby enabling the regulation
of arterial pressure. For example, the baroreceptor reflex occurs when a person stands
up after having been lying down. Immediately upon standing, the arterial pressure in
the head and upper body falls, with dizziness or loss of consciousness a distinct pos-
sibility. The falling pressure at the baroreceptors elicits an immediate reflex, resulting
in a strong sympathetic discharge throughout the entire body, thereby minimizing the
decrease in blood pressure in the head. This observation suggests that the larger di-
nosaurs required a well-tuned baroreceptor reflex in order not to faint every time they
raised their heads.

The most important part of the autonomic nervous system for regulation of the
circulation is the sympathetic nervous system, which innervates almost all the blood
vessels,with the exception of the capillaries. The primary effects of sympathetic nervous
stimulation are

1. the contraction of small arteries and arterioles (by stimulation of the surrounding
smooth muscle) to increase blood flow resistance and thereby decrease blood flow
in the tissues;

2. constriction of the veins, thereby decreasing the amount of blood in the peripheral
circulation;

3. the stimulation of the heart muscle, thereby increasing both the heart rate and
stroke volume.

The parasympathetic or vagus nerves have the opposite effect on the heart, namely
to decrease the heart rate and decrease the strength of contractility. Strong sympathetic
stimulation can increase the heart rate in adult humans to 180–200 beats per minute,
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and even as high as 220 beats per minute in young adults. Strong parasympathetic
stimulation can lower the heart rate to 20–40 beats per minute and can decrease the
strength of contraction by 20 to 30 percent.

The effect of the baroreceptors is to increase sympathetic stimulation and decrease
parasympathetic stimulation when there is a drop in arterial pressure. This increase
in sympathetic activity, in turn, increases the heart rate, the systemic resistance, and
the cardiac compliances, and decreases the venous compliance. Notice from Table 15.2
that in the unregulated circulation these changes effect an increase of arterial pressure.
Thus, the overall effect of the baroreceptor loop is to maintain the arterial pressure at
a desired level.

The sympathetic nervous system is also stimulated by the brain vasomotor center,
where an increase in carbon dioxide in the brain acts to cause a widespread vasocon-
striction throughout the body. A sympathetic response is also stimulated by fright or
anger, and is called the alarm reaction.

The sympathetic nervous system acts by three mechanisms. First, it stimulates the
contraction of vessels by the release of vasoconstrictors, primarily norepinephrine. Si-
multaneously, the adrenal medullae are stimulated to release epinephrine (adrenaline)
and norepinephrine into the circulating blood. These two hormones are carried in the
bloodstream to all parts of the body, where they act directly on blood vessels, usually
to cause contraction. (Some tissues respond to epinephrine by dilation rather than
constriction.) The action of secreted norepinephrine lasts about 30 minutes. Finally,
sympathetic nervous activity acts to increase heart rate and heart contractility.

To include the baroreceptor loop and the sympathetic nervous system in our circu-
lation model, we suppose that the level of sympathetic stimulation is given by S, and
that S is related to the deviation of the arterial pressure Psa through a simple linear
relationship

S � S∗ + β(P∗
sa − Psa), (15.94)

so that as arterial pressure decreases, sympathetic stimulation increases. Here, S∗ and
P∗
sa are “normal” values. In animal experiments, blocking all sympathetic activity leads
to a drop of arterial pressure from 100 to 50 mm Hg, indicating a continuous basal
level of sympathetic firing at normal pressure (S∗ �� 0), called sympathetic tone, known
to be about one impulse per second.

Next, we assume that heart rate F, arterial resistance Rsa, and cardiac compliances
Cld and Crd are (unspecified) increasing functions of S, while the venous compliance Csv
is a decreasing function of S. We account for the metabolic need of the tissue through

([O2]a − [O2]v)Q � M, (15.95)

and suppose that the metabolic need is communicated to the tissue through
autoregulation via

Rsa � R(S)+ A[O2]sv. (15.96)
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This representation is slightly different from that in (15.87), but it has the same
interpretation.

Combined with the balance equations (15.67)–(15.75), we have a closed system of
equations, which can be solved to find the cardiac output Q as a function of metabolic
need M. The solution is complicated, and so we leave the details to the interested
reader.

However, it is useful to view the solution of these equations in a slightly different
way.We suppose that the effect of baroreceptor feedback is to hold the arterial pressure
fixed at some target level and to adjust other parameters such as arterial resistance,
venous compliance, and heart rate so that this target pressure is maintained. Then we
can view Psa as a parameter of the model and let the heart rate, say, be an unknown.
Thus we solve the governing equations, not for the pressures and cardiac output as
functions of the heart rate, as with the unregulated flow, but for heart rate and cardiac
output as functions of arterial pressure and metabolism.

We then obtain

F �
(
1
Crd
(2Csv + Csa)+ 2

Cld
Cp

)
(AM+ Psa)+ 1

Crd
(PsaCsa − 2Ve)

(2Ve − PsaCsa)(Rsa + Rsv)− (AM+ Psa)(CsvRsv + CpRp + CsaRsv)
, (15.97)

Q �
(
Cld(2Csv + Csa)+ 2CrdCp

)
(AM+ Psa)+ Cld(PsaCsa − 2Ve)

Cld
(
Rsa(2Csv + Csa)+ RsvCsv − CpRp

)+ 2CpCrd(Rsa + Rsv)
. (15.98)

Although these formulae are somewhat complicated and obscure, herewe see a number
of features for the controlled circulation that are markedly different from those for the
uncontrolled circulation. Most obvious is that heart rate and cardiac output respond to
changes inmetabolic needM. In fact, the cardiac output can be increased by increasing
the arterial pressure or decreasing the systemic resistances.

These formulae also show some difficulties that the control system faces. Notice
that there are parameter ranges for which either the numerator or denominator are
negative. These are parameter values for which the solution is not valid, or, said another
way, that are outside the range of physical possibility. Thus, for example, certain target
pressures Psa cannot be maintained if Ve is either too large or too small. Similarly (and
not surprisingly), there are some large values of metabolism and pressure (AM + Psa)
that are impossible to maintain.

If the heart rate cannot be controlled by the baroreceptor loop, as for instancewhen
there is an implanted pacemaker, then F must be viewed as a parameter of the model
rather than an unknown. Instead, some other variables, such as cardiac compliance,
are the unknowns. If we suppose that the cardiac compliances always maintain the
same ratio, then it is easy to see that an increase in heart rate leads to an exactly
compensating decrease in compliance and stroke volume, so that the same total output
is maintained.
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15.7 Fetal Circulation

Because the fetus receives all of its oxygen through the umbilical cord and the placenta,
the lungs of the fetus are not used for gas exchange. Instead, the lungs are collapsed
and have high resistance to blood flow: only 12% of the blood flow is through the lungs.
This situation is reversed at birth when the newborn takes its first breath, expanding
the lungs, and when the umbilical cord constricts.

Necessitated by the high resistance of the pulmonary circulation, the fetal circula-
tory system has a connection between the pulmonary artery and the aorta, called the
ductus arteriosus, that shunts blood from the outflow of the right heart directly into
the systemic arteries. After birth, the ductus gradually closes.

The ventricular chambers of the developing fetal heart are nearly equal in size. It
is only after birth that the load on the left ventricle increases, necessitating additional
growth of the left ventricular wall to accommodate an increased demand. To equalize
the output of the two hearts, there is a small opening in the interatrial septum, called
the foramen ovale. On the left side of the septum there is a small flap of tissue that
allows flow from the right atrium to the left but prevents the reverse from occurring.
In the fetus, this flap is open, but at birth it closes for reasons that will become clear
below.

To model the fetal circulatory system, we use the same three-compartment model
as above with additional connections allowed by the ductus arteriosus and the foramen
ovale (Fig. 15.12). Since there is no longer a single loop, wemust keep track of the flows
in each compartment. These flows are governed by the following equations:

Systemic arteries:

Qs � Psa − Ps

Rsa
. (15.99)

Systemic veins:

Qs � Ps − Psv

Rsv
. (15.100)

Pulmonary system:

Qp � Ppa − Ppv

Rp
. (15.101)

Left heart:

Ql � F(CldPpv − ClsPsa). (15.102)

Right heart:

Qr � F(CrdPsv − CrsPpa). (15.103)

The equations for the volumes are unchanged from before.
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Figure 15.12 Schematic diagram of the fetal circulation. The model is based on the three-
compartment model in Fig. 15.9, with additional connections to model the ductus arteriosus
and the foramen ovale.

Since fluid is conserved, flow into any junction must equal the flow out. There are
four junctions, and thus we have the four conservation laws

Ql +Qd � Qs, (15.104)

Qr � Qd +Qp, (15.105)

Qs � Qr +Qf , (15.106)

Qp +Qf � Ql, (15.107)
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where l = left heart, r = right heart, s = systemic, p = pulmonary, f = foramen ovale, d =
ductus arteriosus. Notice that there are only three independent relationships here, as
the first three imply the fourth, for the simple reason that total fluid is conserved. As a
result, any three flows can be determined as functions of the remaining three.

A quick count now shows us that there are 14 variables (5 pressures, 3 volumes,
and 6 flows), but only 12 equations so far, including the three equations for the volumes
and the equation for the conservation of volume, which are not shown explicitly here.
Thus, to characterize the system completely, we need two further equations. These are
the equation for the ductus,

Qd � Ppa − Psa

Rd
, (15.108)

and the equation for the foramen, modeled as an ideal valve,

Psv � Ppv, if Qf > 0, (15.109)

Qf � 0, if Psv < Ppv. (15.110)

Here, there is no resistance to flow in the forward direction if the valve is open, and if
the valve is closed, there is no flow in the backward direction.

There are two possible solutions. First, for the “foramen open” solution, we set
Psv � Ppv and then solve the governing system of equations. This yields a valid solution
for all parameter values for which Qf > 0. On the other hand, if we take Qf � 0 (the
“foramen closed” solution) and determine all the pressures, we have a valid solution for
all parameter values for which Psv < Ppv. For any set of parameter values there should
be one, but only one, solution set.

We begin by looking for the “foramen open” solution. For simplicity, we again
suppose that the systolic compliances are negligible, i.e., that Crs � Cls � 0. We obtain

Qf � Qr
Rd(Cld − Crd)+ RpCld − Crd(Rsa + Rsv)

Crd(Rsa + Rsv + Rp + Rd)
, (15.111)

Qd � Qr
Cld(Rsv + Rsa)− RpCrd

Crd(Rsv + Rsa + Rd + Rp)
, (15.112)

Qs � Qr
Rp(Crd + Cld)+ RdCld

Crd(Rsa + Rsv + Rp + Rd)
, (15.113)

Qp � Qr
(Rsa + Rsv)(Crd + Cld)+ RdCrd

Crd(Rsa + Rsv + Rp + Rd)
, (15.114)

Ql � Qr
Cld

Crd
. (15.115)

In the developing fetus, the left and right hearts are nearly the same. If Crd � Cld � Cd,
the outputs from the left and right hearts are the same, and Ql � Qr � Q. With this
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simplification we find that

Qf � Qd � Q
Rp − Rsa − Rsv

Rsa + Rsv + Rp + Rd
, (15.116)

Qs � Q
2Rp + Rd

Rsa + Rsv + Rp + Rd
, (15.117)

Qp � Q
2Rsa + 2Rsv + Rd

Rsa + Rsv + Rp + Rd
. (15.118)

As long as the pulmonary resistance is larger than the total systemic resistance, the flow
Qf is positive, as required by our initial assumption. Thus, by adjusting the pulmonary
resistance Rp, the foramen and the ductus allow blood to be shunted from the lungs
to the systemic circulation. Notice that in the extreme case of Rp � ∞, we have Qf �
Qd � Q,Qp � 0, Qs � 2Q. In other words, if Rp � ∞, there is no pulmonary flow, the
flow returning from the systemic circulation is equally divided between the left and
right hearts for pumping, and the blood pumped by the right heart is shunted from the
lungs to the systemic arteries.

At birth, the lungs fill with air and expand, dramatically decreasing the resistance
of blood flow in the lungs. Simultaneously, the umbilical cord constricts, dramatically
increasing the total systemic resistance Rsa+Rsv. When this happens, the flow through
the foramen reverses, and closes the foramen. To find the flow solution in this “foramen
closed” situation, we take Qf � 0 and drop the restriction that Psv � Ppv. It follows
immediately from (15.106) and (15.107) thatQp � Ql,Qs � Qr, andQd � Qr−Ql. Thus,
we see that the flow through the ductus is used to balance the outputs of the left and
right sides of the heart.

Furthermore,

Ppv � Qr

FCld
, (15.119)

Psv � Ql

FCrd
, (15.120)

Psa

Ppa
�
( 1

FCrd
+ Rsv + Rsa

1
FCrd

+ Rsa + Rsv + Rd

)( 1
FCld

+ Rp + Rd

1
FCld

+ Rp

)
, (15.121)

and

Ppv

Psv
� FCrd(Rsa + Rsv + Rd)+ 1

FCld(Rp + Rd)+ 1
, (15.122)

which is greater than one (as required) as long as Rp < Rsa +Rsv. Thus, remarkably, as
soon as the first breath is drawn and the pulmonary resistance drops, the pulmonary
venous pressure exceeds the systemic venous pressure, keeping the foramen closed,
allowing the skin flap to gradually grow over and seal tightly. In addition,

Qd � Qr
( 1
FCld

+ Rp)− ( 1
FCld

+ Rsa + Rsv)
1
FCld

+ Rd + Rp
. (15.123)
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Thus, immediately after birth, when the left and right heart compliances are the same,
the flow through the ductus reverses direction, so that the left heart output exceeds the
right heart output, with

Ql

Qr
�

1
FCrd

+ Rsa + Rsv + Rd

1
FCld

+ Rp + Rd
. (15.124)

For reasons that are not completely understood (probably because of the increased
concentration of oxygen in the blood), the ductus gradually closes, so that Rd grows,
eventually to ∞. As it does so, the arterial pressure Psa increases, causing the left ven-
tricle to thicken gradually, decreasing its compliance. The end result (taking Rd → ∞)
is the solution of the single-loop system found in the previous section, although with
parameter values that are not yet the “adult” values.

15.7.1 Pathophysiology of the Circulatory System

Occasionally, the heart or its associated blood vessels are malformed during fetal life,
leaving the newborn infant with a defect called a congenital anomaly. There are three
major types of congenital abnormalities:

1. A blockage, or stenosis, of the blood flow at some part of the heart or amajor vessel.
2. An abnormality that allows blood to flow directly from the left heart or aorta to the
right heart or pulmonary artery, bypassing the systemic circulation.

3. An abnormality that allows blood to flow from the right heart or pulmonary artery
to the left heart or aorta, thereby bypassing the lungs.

Patent ductus arteriosus (PDA)
While the ductus arteriosus constricts to a small size shortly after birth, it is several
months before flow is completely occluded. In about 1 out of 5500 babies, the ductus
never closes, a condition known as patent ductus arteriosus. In a child with a patent
ductus, there is a substantial backflow from the left heart into the lungs, so that the
blood is well oxygenated, but there is decreased cardiac reserve and respiratory reserve,
because insufficient blood is supplied to the systemic arteries. As the child grows and
systemic pressure increases, the backflow through the ductus also increases, some-
times causing the diameter of the ductus to increase, thereby worsening the condition.
Symptoms of patent ductus include fainting or dizziness during exercise, and there is
usually hypertrophy of the left heart.

It can happen that the lungs respond to the excess pulmonary flow by increasing
pulmonary resistance, thereby, according to (15.123), reversing the flow in the ductus,
shunting blood from the right heart to the aorta, carrying deoxygenated blood directly
into the systemic arteries.

Closed foramen ovale in utero
In this situation the circulation is like the circulation after birth, except that the
pulmonary resistance exceeds the systemic resistance, Rp > Rsa + Rsv. According to
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(15.124), the output of the left heart is low compared to the output of the right heart,
so that development of the left heart is impaired and the right heart is overdeveloped
at birth.

Atrial septal defect (ASD)
If the foramen does not close properly at birth, there remains a hole in the septum
between the left and right atria, allowing oxygenated blood to leak from the left heart
to the right heart. Assuming that the ductus closes successfully, so thatQd � 0, it follows
that

Qp � Qr � FCrdPsv, (15.125)

Qs � Ql � FCldPpv, (15.126)

Qf � Qs −Qr � Ql −Qp, (15.127)

so that

Qp

Qs
� Qr

Ql
� Crd

Cld
. (15.128)

If the left heart has smaller compliance than the right heart, as would be true in an
adult, the pulmonary flow exceeds the systemic flow.

ASD and PDA
The configuration here is the same as with the fetal circulation, except that there is no
valve to prohibit flow from the left to right atrium. The solution is the “foramen open”
solution, for which

Qs −Qp � Qf +Qd � Qs

(
1− RdCrd + (Rsa + Rsv)(Cld + Crd)

RdCld + Rp(Cld + Crd)

)
, (15.129)

which is negative for typical parameter values. This shows that it is possible to reduce
the shunted flow and equalize the pulmonary and systemic flows by banding or sur-
gically constricting the pulmonary artery, thus increasing Rp. The banding procedure
works, however, only if Rd �� ∞, that is, only if there is flow through the ductus. Band-
ing has no effect in ASD when the ductus is closed, because in the limit Rd → ∞, the
flow through the foramen is

Qf � Qs

(
1− Crd

Cld

)
, (15.130)

independent of Rp.

15.8 The Arterial Pulse

The above analysis treats the circulation as if the various pressures in the blood vessels
were constant over time. Of course, since the heart pumps blood in a pulsatile manner,
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this is not the case. Each beat of the heart forms a pressure wave that travels along the
arteries, changing shape as it moves away from the heart. Typical experimental data,
taken from a dog artery, are shown in Fig. 15.13. It is evident that closer to the heart
the pressure pulse is wider and does not have a distinct second wave, and the velocity
and pressure waves have different forms. However, as the pulse moves away from the
heart, the pressure wave becomes steeper, a second wave develops following the first,
and the velocity profile becomes similar to the pressure profile. Since variations in the
form of the arterial pulse are often used as clinical indicators (for example, the second
wave is usually absent in patients with diabetes or atherosclerosis), it is important to
gain an understanding of the physical mechanisms underlying the shape of the pulse in
normal physiology. Models to explain the shape of the arterial pulse range from simple
linear ones to complex models incorporating the tapering of the arterial walls and
its branching structure (Pedley, 1980; Lighthill, 1975; Peskin, 1976), and the modern
literature on models of the arterial pulse is vast. Here, we restrict our attention to only
the simplest models.

15.8.1 The Conservation Laws

Consider flow in a blood vessel with cross-sectional area A(x, t). For simplicity we as-
sume that the flow is a plug flow, with velocity that is a scalar quantity u and is a
function of axial distance along the vessel only. Poiseuille flow becomes plug flow in
the limit of zero viscosity, and so in the following analysis we omit consideration of vis-
cous forces. The volume of the vessel of length L is

∫ L
0 A(x, t)dx, and thus conservation

Figure 15.13 The form of the arterial pulse measured in the arteries of a dog. The top panel
shows the pressure waveform, and the bottom panel shows the velocity. (Pedley, 1980, Fig.
1.14, taken from McDonald, 1974.)
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of mass requires that

∂

∂t

(∫ L

0
A(x, t)dx

)
� u(0)A(0, t)− u(L)A(L, t). (15.131)

Taking the partial derivative of (15.131) with respect to L and replacing L by x gives

At + (Au)x � 0. (15.132)

According to Newton’s law, the rate of change of momentum is equal to the total force
exerted. Thus, if P is defined to be the excess pressure generated by the heart (i.e., the
difference between the actual pressure and the resting pressure), then conservation of
momentum demands that

∂

∂t

(
ρ

∫ L

0
A(x, t)u(x, t)dx

)
� ρA(x, t)u2(x, t)

∣∣0
x�L + P(x, t)A(x, t)

∣∣0
x�L. (15.133)

Note that ρA(0, t)u(0, t) is the rate at which mass enters the vessel across the surface
x � 0, so that ρA(0, t)u2(0, t) is the rate at which momentum enters the vessel across
this surface. Differentiating (15.133) with respect to L and replacing L by x, we find
that

ρ
(
(Au)t + (Au2)x

) � −(PA)x. (15.134)

This second equation can be simplified by expanding the derivatives and using (15.132)
to get

ρ (ut + uux) � −Px (15.135)

as the equation for the conservation of momentum.
For simplicity we assume that the vessel is a linear compliance vessel with

A(P) � A0 + cP. (15.136)

In the analysis that follows, one can use a more general relationship between area and
pressure, but the basic conclusions remain unchanged. With this expression for the
cross-sectional area, the conservation equation becomes

c(Pt + uPx)+ A(P)ux � 0. (15.137)

15.8.2 The Windkessel Model

One of the earliest models of the heart, dating back to the past century (Frank, 1899;
translated by Sagawa et al., 1990), is the windkessel model, from the German word
meaning an air chamber, or bellows. (The name originally arose because of the simi-
larities between the mechanical conditions in the arterial system and the operation of
the windkessel, or bellows, of a nineteenth-century fire engine.)

The windkessel model is obtained from (15.135) and (15.137) by letting ρ → 0, in
which case Px � 0, so that the pressure is a function only of time. Thus, we model
the greater arteries as a compliance vessel, extending from x � 0 to x � L, with a
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Q(t)

x =0 x =L

R

Vessel expands to
accommodate the pulse

Compliance c(x)

Figure 15.14 Schematic diagram of the windkessel model.

pressure and volume varying over time; inflow at x � 0 is from the heart, and outflow
at x � L is into the peripheral arterial system (Fig. 15.14). However, although the
pressure is uniform inside the vessel, the compliance is not, so that the cross-sectional
area of the vessel varies with x, the distance along the vessel. In fact, we assume that
c(0) � c(L) � 0, but that the compliance c(x) is nonzero inside the vessel. Finally, we
assume that the outflow to the peripheral system is through a resistance R.

From (15.137) it follows that

ux(x, t) � −c(x)Pt
A0 + c(x)P

, (15.138)

and thus, integrating from x � 0 to x � L, we get

A0u(0, t) � θ(P)Pt + A0u(L, t), (15.139)

where

θ(P) �
∫ L

0

A0c(x)
A0 + c(x)P

dx. (15.140)

We now note that A0u(0, t) is the flow into the vessel from the heart, and thus we
write it as Q(t). Further, A0u(L, t) is the outflow from the vessel into the peripheral
vessels, which we can write as P/R (since the compliance at x � L is zero, and the
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resistance is R). Hence, we have the differential equation for P,

Q(t) � θ(P)Pt + P

R
. (15.141)

From this differential equation we learn that when the heart ejects blood, Q(t)
increases quickly, leading to a corresponding increase in P (i.e., the vessel fills up and
expands). When the flow stops, Q becomes zero, and the pressure decreases to zero
according to Pt � −P/(θ(P)R). Thus, the major arteries act as a bellows, inflating to
accommodate the blood from theheart and then contracting to pump the blood through
the periphery.

15.8.3 A Small-Amplitude Pressure Wave

If we assume that p are u are small, so that all nonlinear terms in (15.135) and (15.137)
can be ignored, we then obtain the linear system

ρut + Px � 0, (15.142)

cPt + A0ux � 0. (15.143)

By cross-differentiation, we can eliminate u and find a single equation for P, namely

Ptt � A0

cρ
Pxx, (15.144)

which is well known as the wave equation.
Solutions of the wave equation include traveling wave solutions, which are func-

tions whose shape is invariant but that move at the velocity s �
√
A0
cρ
. For arteries, this

velocity is on the order of 4 m/s, as can be verified by comparing the arrival times of
the pressure pulse at the carotid artery in the neck and at the posterior tibial artery at
the ankle.

The general solution of the wave equation (15.144) can be written in the form

P(x, t) � f (t− x/s)+ g(t+ x/s), (15.145)

where f and g are arbitrary functions. Note that f (t− x/s) denotes a wave, with profile
f (x), traveling from left to right, while g(t+x/s) denotes a wave traveling in the opposite
direction. It follows that the general solution for u is

u � 1
ρs
[f (t− x/s)− g(t+ x/s)]. (15.146)

15.8.4 Shock Waves in the Aorta

Although the linear wave equation can be used to gain an understanding of many fea-
tures of the arterial pulse, such as reflected waves and waves in an arterial network
(Lighthill, 1975), there are experimental indications that nonlinear effects are also im-
portant (Anliker et al., 1971a,b). One particular nonlinear effect that we investigate
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here is the steepening of the wave front as it moves away from the heart. If the wave
front becomes too steep, the top of the front overtakes the bottom, and a shock, or
discontinuity, forms, a solution typical of hyperbolic equations. Of course, physiolog-
ically, a true shock is not possible, as blood viscosity and the elastic properties of the
arterial wall preclude the formation of a discontinuous solution. Nevertheless, it might
be possible to generate very steep pressure gradients within the aorta.

Under normal conditions, no such shocks develop. However, in conditions where
the aorta does not function properly, allowing considerable backflow into the heart,
the heart compensates by an increase in the ejection volume, thus generating pressure
waves that are steeper and stronger than those observed normally. Furthermore, the
pistol-shot phenomenon, a loud cracking sound heard through a stethoscope placed
at the radial or femoral artery, often occurs in patients with aortic insufficiency. It
has been postulated that the pistol-shot is the result of the formation of a shock wave
within the artery, a shock wave that is possible because of the increased amplitude of
the pressure pulse.

To model this phenomenon, recall that the governing equations are

c(Pt + uPx)+ A(P)ux � 0, (15.147)

ρ(ut + uux)+ Px � 0, (15.148)

which can be written in the form

wt + Bwx � 0, (15.149)

where

w �
(u
P

)
(15.150)

and

B �




u
1
ρ

A(P)
c

u


 . (15.151)

Using themethod of characteristics (Whitham1974; Pedley, 1980; Peskin, 1976), we can
determine some qualitative features of the solution. Roughly speaking, a characteristic
is a curve C in the (x, t) plane along which information about the solution propagates.
For example, the equation ut + cux � 0 has solutions of the form u(x, t) � U(x − ct),
so that information about the solution propagates along curves x − ct � constant in
the (x, t) plane. Similarly, characteristics for the wave equation (15.144) are curves of
the form t± x/s � constant, because it is along these curves that information about the
solution travels.

To find characteristic curves, we look for curves in x, t along which the original
partial differential equation behaves like an ordinary differential equation. Suppose a
characteristic curve C is defined by

x � x(λ), t � λ. (15.152)
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Derivatives of functions w(x, t) along this curve are given by

dw

dλ
� wt +wx

dx

dλ
. (15.153)

Notice that with dx/dλ � c, the partial differential equation ut + cux � 0 reduces
to the simple ordinary differential equation uλ � 0. Thus, curves with dx/dt � c are
characteristic curves for this simple equation.

To reduce the system (15.149) to characteristic form, we try to find appropriate
linear combinations of the equations that transform the system to an ordinary differen-
tial equation. Thus, suppose the matrix B has a left eigenvector ξT with corresponding
eigenvalue s, so that ξTB � sξT . If we multiply (15.149) by ξT , we find that with the
identification dx/dλ � s,

0 � ξT(wt + Bwx) � ξT(wt + swx) � ξTwλ. (15.154)

In other words, along the curve dx/dt � s, the original system of equations reduces to
the simple ordinary differential equation ξTwλ � 0.

It is an easy matter to determine that the eigenvalues of B are

s � u± K(P), (15.155)

where

K(P) �
√
A(P)
ρc

, (15.156)

with corresponding left eigenvector

ξT � (ξ1, ξ2) � (ρK(P),±1). (15.157)

It follows from ξTwλ � 0 that

uλ ± 1
ρK(P)

Pλ � 0 (15.158)

along the characteristic curve dx/dλ � u ± K(P), which we denote by C±. Now, notice
that

d

dP
K(P) � 1

2
1

ρK(P)
, (15.159)

so that

d

dλ
(u± 2K(P)) � 0. (15.160)

In other words, u+ 2K(P) is conserved (remains constant) along C+, the characteristic
curvewith slope dx/dt � u+K(P), andu−2K(P) is conserved alongC−, the characteristic
curve with slope dx/dt � u− K(P).

Now, to see how this reduction allows us to solve a specific problem, consider the
region x ≥ 0, t ≥ 0 with u(0, t) > 0 specified. For example, u(0, t) could be the velocity
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x

t

A

C+ (slope, u +K(P))

C- (slope, u-K(P))

u specified along this axis, as the
velocity generated by the heartbeat

Initial condition
     u = 0  
     P = P0

Figure 15.15 Diagram of the characteristics of the arterial pulse equations in the (t, x ) plane.

pulse generated by a single heartbeat. We suppose that initially, u(x,0) � 0, P(x,0) � P0

for all x ≥ 0, where P0 is the diastolic pressure.
Pick any point A in the region x ≥ 0, t ≥ 0 (Fig. 15.15). There are two characteristics

passing through A, one, C+, with positive slope u + K(P) and one, C−, with negative
slope u − K(P). (Here and in the following we assume that u is small enough so that
C− always has negative slope.) Following C− up and to the left, we see that it intersects
the vertical axis, where u � 0 and P � P0 (because of the specified initial data). Since
the quantity u− 2K(P) is conserved on C−, it must be that u− 2K(P) � −2K(P0) at the
point A. Since A is arbitrary, it follows that u � 2K(P)− 2K(P0) everywhere in the first
quadrant. Thus, we know that u+2K(P) � 4K(P)−2K(P0) is constant along C+. Hence,
K(P) is conserved along C+, as are both P and u, so that C+ is a straight line. The slope
of C+ is the value of u+ K(P) at the intersection of C+ with the horizontal axis.

To be specific, suppose u(0, t) first increases and then decreases as a function of t,
as shown in Fig. 15.16A. (In this figure u(0, t) is shown as piecewise linear, but this is
simply for ease of illustration.) To be consistent, sinceu � 2K(P)−2K(P0) everywhere in
the first quadrant,K(P(0, t)) � K(P0)+ 1

2u(0, t), so that the slope of theC+ characteristics
is s(t) � 3

2u(0, t) + K(P0), which also increases and then decreases as a function of t.
With increasing slopes, the characteristics converge, resulting in a steepening of the
wave front. If characteristics meet, the solution is not uniquely defined by this method,
and shocks develop.

The place a shock first develops can be found by determining the points of inter-
section of the characteristics. Suppose we have two C+ characteristics, one emanating
from the t-axis at t � t1, described by x � s(t1)(t− t1), and the other emanating at t � t2,
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Figure 15.16 A: Sketch of u(0, t ). B: Characteristics generated by u(0, t ) in the previous figure.
C: Plots of u(x, t ) for x � 0 and x � x0, obtained by taking cross-sections for a fixed x (as
indicated by the dotted line in B).

described by x � s(t2)(t− t2). They intersect at any point (ti, xi), where

ti � s(t2)t2 − s(t1)t1
s(t2)− s(t1)

, (15.161)

xi � s(t2)s(t1)(t2 − t1)
s(t2)− s(t1)

. (15.162)
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In the limit t2 → t1,

ti � s(t)
s′(t)

+ t, (15.163)

xi � s2(t)
s′(t)

, (15.164)

which defines parametrically the envelope of intersection points as a function of t, the
time of origin of one of the characteristics.

The important point to note is that the first point of shock formation is where xi is
smallest. In other words, for data with s′(t) large, the shock develops quickly, and close
to x � 0. Thus, generally speaking, the steeper the pulse generated by the heart, the
sooner and closer a shock will form. This may explain why the pistol-shot occurs in
patientswith aortic insufficiency but not in other patients. Using numerical simulations
of the model equations, Anliker et al. (1971a,b) have shown that under conditions of
aortic insufficiency, a steep pressure gradient can develop within 40 cm of the heart,
well within the physiological range.

It is also noteworthy that the slope s depends on diastolic pressure P0 through
s � 3

2u+K(P0). Thus, a decrease inK(P0), caused either by a decrease of P0 or a decrease
of the function A(P), leads to a decrease of the first location of shock formation xi.

Notice also that if s′(t) < 0, so that u(0, t) is decreasing, no shock can form for
positive x. This can also be seen from Fig. 15.16, since, if u(0, t) is a decreasing function
of t, the characteristics fan out and do not intersect for positive x.

15.9 Exercises
1. Equation (15.7) was derived assuming that the radius of the vessel and pressure drop along

the vessel were constant, but then it was used in (15.14) as if the pressure were variable.
Under what conditions is this a valid approximation?

2. Show that

lim
x→y

x4 − y4

x3 − y3
� 4
3
y, (15.165)

so that (15.21) follows.

3. Simplify the six-compartment model of the circulation by assuming that there are no pres-
sure drops over the arterial and venous systems (either systemic or pulmonary), and thus,
for example, Psa � Ps1. Solve the resultant equations and compare with the behavior of the
three-compartment model presented in the text. How do the parameter values change?
Are the sensitivities altered? (Calculate the sensitivities using a symbolic manipulation
program.)

4. Show that (15.67)–(15.75) can be derived from (15.54)–(15.66) by lettingRs andRp approach
zero and by letting Cpa � Cpv and Rpa � Rpv.

5. In the three-compartment circulatory model it was assumed that the base volume of the
pulmonary circulation Vp0 was zero. Using the fact that the systolic pressure in the pul-
monary artery is about 22 mm Hg and the diastolic pressure is about 7 mm Hg, determine
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the typical value for the volume of the pulmonary circulation. How does this change to the
model affect the results?

6. Find the pressures as a function of cardiac output assuming Vl �� 0, Vr �� 0, where Vl is the
basal volume of the left heart, and similarly for Vr (cf. equation (15.35)). Show that

Q∞ � 2CpVl/Cld + 2(Csv + Csa)Vr/Crd + 2(V − V
p

0 − Vs0)
CpRp + CsvRsv + Csa(Rsa + 2Rsv) . (15.166)

7. Explore the behavior of the autoregulation model with R � R0 (1+ a[O2]v) /(1+ b[O2]v).

8. What symptoms in the circulation would you predict from anemia?
Hint: Anemia refers simply to an insufficient quantity of red blood cells, which results in
decreased resistance and oxygen-carrying capacity of the blood.

9. Devise a simple single loop model for the fetal circulation that treats the systemic flow
and the placental flow as parallel flows. How should the flow be split between system and
placenta to support the highest metabolic rate?

10. In the model for autoregulation Pa and Pv are given. More realistically, they would be deter-
mined, in part at least, byRs. Construct amore detailedmodel for autoregulation, including
the effects of Rs on the pressures, and show how the arterial and venous pressures, and the
cardiac output, depend onM and A.

11. Modify the model for capillary filtration by allowing the plasma osmotic pressure to vary
along the capillary distance, by setting πc � RTcc

Qi
q
, where cc is the local concentration

of osmolites. If incoming pressure is unchanged from the first model, what is the effect of
osmotic pressure on total filtration? What changes must be made to the incoming pressure
to maintain the same total filtration?
Hint: Study the phase portrait for this system of equations.

12. Derive a simplified windkessel model by starting with a single vessel with volume V(t) �
V0 + CP(t). Assume that the flow leaves through a resistance R and that there is an inflow
(from the heart) of Q(t). Derive the differential equation for P and compare it to (15.141).

13. Frank (1899) described a method whereby the flux of blood out of the heart could be esti-
mated fromaknowledge of the pressure pulse, evenwhen the arterial resistance is unknown.
Starting with (15.141), assume that during the second part of the arterial pulse, Q(t) ≡ 0.
Write down equations for the first and second parts of the pulse, eliminate R, and find an
expression for Q. Give a graphical interpretation of the expression for Q.

14. In the model for the arterial pulse, set u(0, t) � at for some constant a, and determine the
curve in the (t, x) plane along which characteristics form an envelope. Determine the first
value of x at which a shock forms.
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Blood

Blood is composed of two major ingredients, the liquid blood plasma and several types
of cellular elements suspended within the plasma. The cellular elements constitute
approximately 40% of the total blood volume and are grouped into three major cate-
gories: erythrocytes (red blood cells), leukocytes (white blood cells), and thrombocytes
(platelets).

16.1 Blood Plasma

The blood plasma is 89–95%water, with a variety of dissolved substances. The dissolved
substances with small molecular weight include bicarbonate, chloride, phosphorus,
sodium, calcium, potassium, magnesium, urea, and glucose. There are also large pro-
teinmolecules including albumin and α-, β-, and γ-globulins. Of these proteins, albumin
has the highestmolar concentration in plasma and thismakes the greatest contribution
to the plasma osmotic pressure.

In addition, gases, such as carbon dioxide and oxygen, are dissolved in the blood
plasma. For an ideal gas, the pressure, volume, and temperature are related by the ideal
gas law,

PV � nkT, (16.1)

where P is the pressure, V is the volume, n is the number of gas molecules, k is Boltz-
mann’s constant, and T is temperature in Kelvin. Since concentration is c � n/V , for
an ideal gas

P � ckT. (16.2)
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This representation of concentration is in units of molecules per volume, and while this
seems natural, it is not the usual way that concentrations are represented. To express
concentration in terms of moles per unit volume, we multiply and divide (16.2) by
Avogadro’s number NA to obtain

P � CRT, (16.3)

where C � c/NA and R � kNA is the universal gas constant.
Air is a mixture of different gases, with 78% nitrogen and 21% oxygen. Each of

these gases contributes to the total pressure of the mixture via its partial pressure. The
partial pressure of gas i, Pi, is defined by

Pi � xiP, (16.4)

where xi is themole fraction of gas i, and P is the total pressure of the gasmixture. Thus,
by definition, the total pressure of a gas mixture is the sum of the partial pressures of
each individual gas in the mixture. In an ideal mixture the partial pressure of gas i is
equal to the pressure that gas i would exert if it alone were present.

When a gas with partial pressure Pi comes into contact with a liquid, some of
the gas will dissolve in the liquid. When a steady state is reached, the amount of gas
dissolved in the liquid is a function of the partial pressure of the gas above the liquid.
If the concentration of the dissolved gas is low enough, thus forming an ideally dilute
solution, then Pi is related to the concentration of gas i by

ci � σiPi, (16.5)

where ci is the concentration of gas i, and σi is called the solubility. In general σi is a
function of the temperature and the total pressure above the liquid. In Table 16.1 are
shown the solubilities of important respiratory gases in blood, where it can be seen,
for example, that the solubility of carbon dioxide in blood is about 20 times larger than
that of oxygen.

Table 16.1 Solubility of respiratory gases in blood plasma.

Substance σ

(Molar/mm Hg)
O2 1.4 × 10−6

CO2 3.3 × 10−5

CO 1.2 × 10−6

N2 7 × 10−7

He 4.8 × 10−7
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16.2 Erythrocytes

Erythrocytes (red blood cells) are small biconcave discs measuring about 8 µm in
diameter. They are flexible, allowing them to change shape and to passwithout breaking
through blood vessels with diameters as small as 3 µm. Their function is the transport
of oxygen from the lungs to the rest of the body, and they accomplish this with the
help of a large protein molecule called hemoglobin, which binds oxygen in the lungs,
later releasing it in tissue. Hemoglobin is the principal protein constituent of mature
erythrocytes. A similar protein,myoglobin, is used to store and transport oxygen within
muscle; mammals that dive deeply, such as whales and seals, have skeletal muscle that
is especially rich in myoglobin.

16.2.1 Myoglobin and Hemoglobin

The binding of oxygen with myoglobin and hemoglobin serves as an excellent example
of relatively simple chemical reactions that are of fundamental importance in blood
physiology.We get someunderstanding of this process by examining the experimentally
determined saturation function for hemoglobin and myoglobin as a function of the
partial pressure of oxygen. For myoglobin the saturation curve is much like a standard
Michaelis–Menten saturation function, while for hemoglobin it is S-shaped (Fig.
16.1). From these curves we see that when the partial pressure of oxygen is at 100
mm Hg (about what it is in the lungs), hemoglobin is 97% saturated. This amount is
affected only slightly by small changes in oxygen partial pressure, because at this level
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Figure 16.1 Uptake of oxygen by myoglobin and hemoglobin. (Rubinow, 1975, Fig. 2.13, p.
82, taken from Changeux, 1965.)
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the saturation curve is relatively flat. In veins or tissue, however, where the partial pres-
sure of oxygen is about 40 mm Hg, the saturation is about 75%. Furthermore, because
this is on a steep portion of the saturation curve, if the metabolic demand for oxygen
should decrease the oxygen pressure to, say, 20 mm Hg, then hemoglobin gives up its
oxygen readily, reducing its saturation to about 35%. At this value of oxygen partial
pressure the saturation of myoglobin is at 90%. Thus, if the tissue is muscle, the oxy-
gen will be transferred from hemoglobin to myoglobin. These curves illustrate that the
affinity of myoglobin for oxygen is greater than that of hemoglobin.

These saturation curves are of fundamental importance to blood chemistry, so
it is of interest to understand why the saturation curves of the two are as they are.
We can derive models of these saturation curves from the underlying chemistry (see
Section 1.2.4 on cooperativity). Myoglobin consists of a polypeptide chain and a disc-
shaped molecular ring called a heme group, which is the active center of myoglobin.
At the center of the heme group is an iron atom, which can bind with oxygen, forming
oxymyoglobin. Hemoglobin consists of four such polypeptide chains (called globin)
and four heme groups, allowing the binding of four oxygen molecules. When bound
with oxygen, the iron atoms in hemoglobin and myoglobin give them their red color.
Myoglobin content accounts for the difference in color between red meat such as beef,
and white meat such as chicken.

A simple reaction scheme describing the binding of oxygen with myoglobin is

O2 +Mb
k+−→←−
k−
MbO2.

The dynamics for this scheme are described by (1.4), and at equilibrium k+[Mb][O2] �
k−[MbO2], so that the percentage of occupied sites is

Y � [MbO2]
[Mb]+ [MbO2] � [O2]

K + [O2] , (16.6)

where K � k−/k+.
To compare the function (16.6) with the saturation curve formyoglobin in Fig. 16.1,

wemust relate the oxygen concentration to the oxygen partial pressure via [O2] � σPO2.
Then, (16.6) becomes

Y � PO2

K/σ + PO2
� PO2

KP + PO2
, (16.7)

and we get a good fit of the myoglobin uptake curve in Fig. 16.1 with KP � 2.6 mm Hg.
Notice that the equilibrium constant KP is in units of pressure rather than concentra-
tion, as is more typical. The equilibrium constant K is related to KP through K � σKP.
For the myoglobin saturation curve K � 3.7 µM; however, because it is typical to de-
scribe concentrations of dissolved gases in units of pressure, it is also typical to write
the equilibrium constant K in these units as K � 2.6σ mm Hg. A comparison of the
curve (16.7) with the data is shown in Fig. 16.2.

The primary reason that the saturation curve for hemoglobin is significantly dif-
ferent from that for myoglobin is that it has four oxygen binding sites instead of one.
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Figure 16.2 Comparison of myoglobin saturation curve (solid) with the curve (16.7) (dashed)
with KP � 2.6 mm Hg.

A simple kinetic scheme for the formation of oxyhemoglobin is

4O2 +Hb
k+−→←−
k−
Hb(O2)4,

with the corresponding differential equation

d[Hb]
dt

� k−[Hb(O2)4]− k+[Hb][O2]4. (16.8)

At steady state, the percentage of available hemoglobin sites that are bound to oxygen
is

Y � [Hb(O2)4]
[Hb(O2)4]+ [Hb] � [O2]4

[O2]4 + K4
, (16.9)

where K4 � k−/k+. We use the half-saturation level from the hemoglobin uptake curve
in Fig. 16.1 to estimate K as K � 26σ mm Hg.

While (16.9) (shown as a short dashed curve in Fig. 16.3) reproduces some features
of the uptake curve that are qualitatively correct, it is not quantitatively accurate. In
fact, one can achieve a much better fit of the data with the Hill equation

Y � [O2]n

[O2]n + Kn
, (16.10)

with n � 2.5 and K � 26σ mm Hg. However, there is no adequate theoretical basis for
such a model.
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A better model keeps track of the elementary reactions involved in the binding
process, and is given by

O2 +Hj−1
kj−→←−
k−j
Hj, j � 1,2,3,4,

where Hj � Hb(O2)j. The steady state for this reaction is attained at

[Hj] � k+j
k−j
[Hj−1][O2] � [Hj−1][O2]

Kj
, (16.11)

and the saturation function is

Y �
∑4

j�0 jHj

4
∑4

j�0Hj

. (16.12)

Substituting (16.11) into (16.12) we obtain the saturation function

Y �
∑4

j�0 jαj[O2]
j

4
∑4

j�0 αj[O2]j
, (16.13)

where αj �
∏j

i�1 K
−1
i , Kj � k−j/k+j, α0 � 1.

One can fit the saturation function (16.13) to the hemoglobin uptake curve shown
in Fig. 16.1, with the result K1 � 45.9, K2 � 23.9, K3 � 243.1, K4 � 1.52σ mm Hg
(Roughton et al., 1972). The striking feature of these numbers is thatK4 ismuch smaller
than K1, K2, or K3, indicating that there is apparently a greatly enhanced affinity of
oxygen for hemoglobin if three oxygen molecules are already bound to it. Hemoglobin
prefers to be “filled up” with oxygen. The mechanism for this positive cooperativity is
not completely understood. (If the binding siteswere independent, thenK1 would be the
smallest and K4 would be the largest equilibrium constant; see Exercise 2 and Section
1.2.4.) The most widely known model of hemoglobin cooperativity is that of Monod,
Wyman, and Changeux (1965). Models of this type were discussed in Section 1.2.4, and
so construction of an MWC model of hemoglobin is left as an exercise (Exercise 4).

Notice that the affinity of oxygen for myoglobin is greater than for any of the bind-
ing sites of hemoglobin. In Fig. 16.3 is shown a comparison between the data and
the approximate curves (16.9) and (16.13). The Hill equation fit (16.10) is not shown
because it is nearly identical to (16.13).

16.2.2 Hemoglobin Saturation Shifts

There are a number of factors that affect the binding of oxygen to hemoglobin, the
most important of which is the hydrogen ion, which is an allosteric inhibitor of
oxygen binding (Chapter 1). As we will see, the interactions between oxygen concen-
tration and carbon dioxide concentration (which indirectly changes the hydrogen ion
concentration) are important for transport of both oxygen and carbon dioxide.
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Figure 16.3 Comparison of hemoglobin saturation curve (solid) with the curves (16.9) (short
dashed) and (16.13) (long dashed).

Carbon monoxide combines with hemoglobin at the same binding site as oxygen
(and is a competitive inhibitor), but with an affinitymore than 200 times greater. There-
fore the carbon monoxide saturation curve is almost identical to the oxygen saturation
curve, except that the abcissa is scaled by a factor of about 200. At a carbon monoxide
partial pressure of 0.5 mm Hg, and in the absence of oxygen, hemoglobin is 97% satu-
rated with carbon monoxide. If oxygen is present at atmospheric concentrations, then
it takes a carbon monoxide partial pressure of only 0.7 mm Hg (about 0.1 percent) to
cause oxygen starvation in the tissues (Chapter 17).

Fetal hemoglobin, a different type of hemoglobin found in the fetus, has a consid-
erable leftward shift for its oxygen saturation curve. This allows fetal blood to carry as
much as 30%more oxygen at low oxygen partial pressures than can adult hemoglobin.
This is important since the oxygen partial pressure in the fetus is always low. The
left-shift of the fetal hemoglobin saturation curve is also important for the transfer of
oxygen from mother to fetus.

Because it is important in the next section, we construct a simple model of the
allosteric inhibition by hydrogen ions of oxygen binding to hemoglobin. As illustrated
in Fig. 16.4, we assume that the hemoglobin molecule can exist in four different states:
withH+ bound (concentration Z), withO2 bound (concentrationY), with neither bound
(concentrationX), or with both bound (concentrationW). This is, of course, an extreme
simplification, as it ignores the cooperative nature of oxygen binding as discussed in
the previous section and in Chapter 1, but nevertheless the results are qualitatively
correct.

Assuming that each reaction is at equilibrium we find

O4X � K1Y, (16.14)

hX � K2Z, (16.15)
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Figure 16.4 Binding diagram for the allosteric binding of hydrogen ions and oxygen to
hemoglobin. We assume a single hydrogen ion binding site, and a simplified mechanism for
oxygen binding. Hb denotes hemoglobin.

O4Z � K̄1W, (16.16)

X + Y + Z +W � THb, (16.17)

where h denotes [H+], O denotes [O2], THb denotes the total concentration of
hemoglobin, K1 � k−1/k1 and similarly for K2, K̄1 and K̄2 (which is used below). Solving
these four equations we find

Y +W � O4THb

φ(h)+O4
, (16.18)

where

φ(h) � K1K̄1(K2 + h)

K2K̄1 + hK1
. (16.19)

Note that we are interested in Y + W as a function of O, since Y + W is the total
concentration of hemoglobin with oxygen bound, and thus plotting Y+W as a function
of O gives the oxygen saturation curve.

It is easily seen from (16.18) that h does not change the maximal saturation,
although it shifts the mid-point of the curve. Since hydrogen ions are an allosteric
inhibitor of oxygen binding, we assume that K̄1 > K1. Note that, in this case, φ(h) is an
increasing function of h, and thus increasing h shifts the saturation curve to the right,
as required.

Before we can discuss the importance of the allosteric effect of hydrogen ions on
oxygen binding it is necessary to discuss the mechanism of carbon dioxide transport.
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16.2.3 Carbon Dioxide Transport

Just as oxygen is taken up in the lungs and transported to the tissues, so carbon dioxide
must be transported from the tissues to the lungs for removal from the body. In the
blood, CO2 is transported in three main forms. In venous blood a significant amount
(about 6%) is present as dissolved CO2. A slightly greater amount (about 7%) is bound
to the globin part of hemoglobin as carbamino compounds, but most CO2 (87 %) is
present in the form of bicarbonate ions.

In the tissues CO2 diffuses down its concentration gradient into the plasma and
into the red blood cells. In both plasma and red blood cells it combines with water to
form carbonic acid (H2CO3), which then dissociates quickly into hydrogen ions and
bicarbonate ions. Thus,

CO2 +H2O
r1

−→←−
r−1

H2CO3
r2

−→←−
r−2

H+ +HCO−
3 . (16.20)

This reaction proceeds slowly in the plasma but much more rapidly in the red blood
cells because of the presence there of the enzyme carbonic anhydrase, which increases
the speed of CO2 hydration by more than a thousand times. The H+ formed by the dis-
sociation of carbonic acid binds to the globin part of hemoglobin, and the bicarbonate
ion diffuses into the plasma in exchange for Cl−.

In the lungs the reaction is reversed, as CO2 diffuses down its concentration gra-
dient to be excreted in the alveolar air and then the expired air. It is important to
emphasize that the direction of the carbonic anhydrase reaction (16.20) is determined
by the local concentration of CO2. In the tissues, [CO2] is high, which drives reaction
(16.20) from left to right, thus storing CO2 in the blood. In the lungs, [CO2] is low,
driving the reaction from right to left, thus removing CO2 from the blood. Of course,
carbonic anhydrase speeds up the reaction in both directions; without this increase
in speed not enough CO2 can be stored in the blood to remove it from the body fast
enough.

The importance of the allosteric effect of H+ on oxygen binding to hemoglobin is
nowapparent. In the tissues, because of the high local CO2 concentration, the hydration
of CO2 causes an increase in the local concentration of H+ (i.e., the blood pH falls
slightly, from about 7.4 to about 7.35), which in turn results in a decreased affinity of
hemoglobin for oxygen, thus increasing oxygen release to the tissues. In the lungs, the
reverse occurs; the low local CO2 concentration causes a decrease in H+ concentration
which results in an increase in hemoglobin oxygen affinity, and thus increased oxygen
uptake. This effect of CO2 concentration on oxygen transport (mediated by the carbonic
anhydrase reaction and hydrogen ions), is known as the Bohr effect.

It is interesting to note that, from the principle of detailed balance applied to the
reaction scheme shown in Fig. 16.4 (i.e., from consistency of the four equilibrium
equations) it must be that

K1

K̄1
� K2

K̄2
. (16.21)
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It thus follows that, if K̄1 > K1 we must also have K̄2 > K2. In other words, if H+ is an
allosteric inhibitor of oxygen binding, then oxygen must also be an allosteric inhibitor
of H+ binding. Hence, as CO2 influences oxygen transport, so too oxygen affects CO2
transport. In the tissues, where [O2] is low, binding of H+ to hemoglobin is enhanced.
This lowers the local H+ concentration, thus driving the carbonic anhydrase reaction
from left to right, and increasing CO2 storage. The reverse occurs at the lungs. The
enhancement of CO2 transport by low levels of oxygen is called theHaldane effect. Note
that, according to the principle of detailed balance (at least in our simple model) the
Bohr effect implies the Haldane effect, and vice versa.

To construct a mathematical model of CO2 transport, we assume that the
dissociation of carbonic acid is fast, and thus

[H2CO3] � R2[H+][HCO−
3 ], (16.22)

where R2 � r−2/r2. At steady state,

[CO2] � R1R2[H+][HCO−
3 ], (16.23)

where R1 � r−1/r1.
Carbon dioxide enters this system from the tissues and leaves at the lungs. When it

does so, bicarbonate is produced or removed. However, since the carbonic anhydrase
reaction produces exactly one hydrogen ion for each bicarbonate ion it produces, and
since these hydrogen ions must either be free, or bound to hemoglobin, it follows that

[HCO−
3 ] � h+ Z +W − T0, (16.24)

where T0 � h0 + Z0 +W0 − [HCO−
3 ]0 is some measured reference level. In reality each

hemoglobin molecule can bind many hydrogen ions, and so the conservation equation
should be

[HCO−
3 ] � h+ n(Z +W)− T0, (16.25)

where n can be as large as 10 or 20, and T0 � h0 + n(Z0 +W0)− [HCO−
3 ]0. The number

n is important, because without it (if n � 0), the pH fluctuates widely with changes in
bicarbonate (Exercise 5a), whereas in normal blood, practically all the H+ produced
by the carbonic anhydrase reaction is absorbed by the hemoglobin. This demonstrates
the extreme importance of hemoglobin as a hydrogen ion buffer. Note that, to be con-
sistent, the factor n should also be included in the model for hemoglobin. However,
as this would greatly increase the complexity of the binding model without adding
anything fundamentally new, we cheat slightly by including n in the bicarbonate con-
servation equation, but not in the binding diagram. A more accurate model gives the
same qualitative result.

In arterial and venous blood, the oxygen and carbon dioxide concentrations are
known. Their precise values are set by the rate of gas exchange in the lungs and the
tissues, anddepend to some extent on the properties of the carbonic anhydrase reaction,
among other things. Thus, to be strictly correct, we should not treat them as constants,
but solve for them as part of a more complicated model. We omit these complications
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here and treatO and [CO2] as known constants. Our goal is to find the other unknowns
(X , Y , Z,W and h) as functions of the gas concentrations.

We now have five equations

O4X � K1Y, (16.26)

hX � K2Z, (16.27)

O4Z � K̄1W, (16.28)

X + Y + Z +W � THb, (16.29)

[CO2] � R1R2h[h+ n(Z +W)− T0], (16.30)

to solve for the five unknowns. It is an easy matter to solve (16.26)-(16.29) for X,Y, Z,
andW in terms of O4, h and parameters, and substitute these into (16.30). This yields a
single equation for [CO2] as a function ofO4 and h. This equation can be readily solved
numerically for h as a function of [CO2] and O4. Solution of this equation is left for the
exercises (Exercise 5).

16.2.4 Red Blood Cell Production

One cubic millimeter of blood contains 4.2–5.4 million red blood cells. These cells
have an average lifetime of 120 days and are estimated to travel through about 700
miles of blood vessels during their life span. Because of aging and rupturing, red blood
cells must be constantly replaced. On average, the body must produce 3 × 109 new
erythrocytes for each kilogram of body weight every day.

Red blood cells are produced by the bone marrow. In a child before the age of 5,
blood cells are produced in the marrow of essentially all the bones. However, with age,
the marrow of the long bones becomes quite fatty and so produces no more blood cells
after about age 20. In the adult, most red blood cells are produced in the marrow of
membranous bones, such as the vertabrae, sternum, ribs, and ilia.

In the bone marrow there are cells, called pluripotential hemopoietic stem cells,
from which all of the cells in the circulating blood are derived. As these cells grow
and reproduce, a portion of them remains exactly like the original pluripotential cells,
maintaining a more or less constant supply of these cells. The larger portion of the
reproduced stem cells differentiates to formother cells, called committed stem cells. The
committed stem cells produce colonies of specific types of blood cells, called formed
elements, including erythrocytes, granulocytes, monocytes, and megakaryocytes.

Growth and reproduction of stem cells are controlled by multiple proteins called
growth inducers, and differentiation is controlled by another set of proteins, the differ-
entiation inducers. Formation of growth inducers and differentiation inducers is itself
controlled by factors outside the bone marrow such as, in the case of red blood cells,
low oxygen concentration for an extended period of time.

The principal factor stimulating red blood cell production is the hormone ery-
thropoietin. About 90% of the erythropoietin is secreted by renal tubular epithelial
cells when blood is unable to deliver sufficient oxygen. The remainder is produced by
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other tissues (mostly the liver). When both kidneys are removed or destroyed by renal
disease, the person invariably becomes anemic because of insufficient production of
erythropoietin.

The role of erythropoietin in bone marrow is twofold. First, it stimulates the pro-
duction of pre-erythrocytes, called proerythroblasts, and it also controls the speed at
which the developing cells pass through the different stages. Normal production of
red blood cells from stem cells takes 5–7 days, with no appearance of new cells before
5 days, even at high levels of erythropoietin. At high erythropoietin levels the rate of
red blood cell production (number per unit time) can be as much as ten times nor-
mal, even though the maturation rate of an individual red blood cell varies much less.
Details of the regulatory system governing red blood cells can be found in Williams
(1990).

In most people the production of red blood cells is relatively constant. However,
there are pathological conditions that exhibit oscillatory behavior. The most common
oscillatory hematological disease is called periodic hematopoiesis (PH) (Milton and
Mackey, 1989). In humans, PH is a disease characterized by 17–28 day periodic oscil-
lations in numbers of all the circulating formed elements of blood. All grey collies have
PH. In a related disease known as periodic chronic myelogenous leukemia (CML), the
number of neutrophils (see Section 16.3) varies from approximately normal levels to
barely detectable numbers. Data showing oscillations of white blood cell count in a
twelve-year-old girl with periodic CML are shown in Fig. 16.5.

Periodic erythropoiesis can be induced in rabbits by the injection of an incompat-
ible red cell isoantibody (Orr et al., 1968) or in mice by the administration of a single
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Figure 16.5 White blood cell count
as a function of time for a twelve-
year-old girl with periodic CML. (Gatti
et al., 1973, Fig. 1.)
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dose of marrow-seeking radioisotope 89 SR (Gurney et al., 1981). In patients with CML,
periodic oscillations of granulocytes may be induced by chemotherapy.

We can model the blood production cycle as follows (Belair et al., 1995). We let
n(x, t) be the number of red blood cells at time t that are x units old. That is, they were
released into the bloodstream at time t − x. We suppose that as they age, a certain
percentage of them die, but at some age X all remaining cells die. The conservation law
for the number of cells is

∂n

∂t
+ ∂n

∂x
� −βn, (16.31)

where β is the death rate. In general, we expect the death rate to be a function of age,
so that β � β(x). However, for this model we take the death rate to be independent of
age. At any given time the total number of red blood cells in circulation is

N(t) �
∫ X

0
n(x, t)dx. (16.32)

Nowwe suppose that the production of red blood cells is controlled byN, and that once
a cohort of cells is formed in the bone marrow, they will emerge into the bloodstream
as mature cells some fixed time d later, about 5 days. Here we are ignoring the fact that
at high levels of erythropoietin (low oxygen) cells mature a bit more rapidly. Thus,

n(0, t) � F(N(t− d)), (16.33)

where F is some nonlinear production function that is monotone decreasing in its
argument. The functionF is related to the rate of secretion of erythropoietin in response
to the red blood cell population size.

The steady-state solution for this model is easy to determine. We set ∂n/∂t � 0 and
find that

n(x) �
{
n(0)e−βx, x < X,

0, x > X,
(16.34)

where n(0) is yet to be determined. If we define N0 to be the total steady-state number
of blood cells, then

N0 �
∫ X

0
n(x)dx, (16.35)

from which it follows that

N0 �
∫ X

0
n(0)e−βx dx � n(0)

β
(1− e−βX ), (16.36)

and thus

F(N0) � βN0

1− e−βX
. (16.37)

Since F(N0) is a monotone decreasing function of N0, (16.37) is guaranteed to have
a unique solution. In fact, the solution is a monotone decreasing function of the
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Figure 16.6 Plot of left- and right-
hand sides of (16.37) for three differ-
ent values of β and for F (N) � 1

1+N7

and X � 10.

parameter β, indicating that at higher death rates, the cell population drops while
the production of cells increases. An illustration of these facts is provided by the
graph in Fig. 16.6, where the two curves F(N) and βN

1−e−βX are plotted as functions of
N. Here the function F(N) is taken to be F(N) � A

1+N7 , as suggested by data from
autoimmune-induced hemolytic anemia in rabbits (Belair et al., 1995).

The next interesting question to ask is whether this steady solution is stable or
unstable. We linearize the governing equation about the steady state N0 and find that
the deviation of n(x, t) from steady state, denoted by δn, satisfies (16.31). To find the
linearized initial condition, we use (16.33) and write

n(0, t) � F(N0)+ δn(0, t) � F(N0 + δN(t− d)) ≈ F(N0)+ F′(N0)δN(t− d), (16.38)

so that

δn(0, t) � F′(N0)δN(t− d). (16.39)

We seek the characteristic equation, found by setting δN(t) � eλt, from which it follows
that

F′(N0)e−λd
1− e−(λ+β)X

λ+ β
� 1. (16.40)

The roots of this equation determine the stability of the linearized solution. If all the
roots have negative real part, then the solution is stable, whereas if there are roots with
positive real part, the steady solution is unstable. For the remainder of this discussion,
we take β � 0. This implies that all cells die at exactly age X . A different simplification,
taking X → ∞, leads to a delay differential equation that is discussed in Chapter 17
(see also Exercise 9).

In the limit β → 0, the characteristic equation (16.40) is

F′(N0)(e−λd − e−λ(d+X)) � λ. (16.41)

Since F′(N0) < 0, there are no positive real roots. (The root at λ � 0 is spurious.)
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There is possibly one negative real root; all other roots are complex. It follows that
even if the steady solution is stable, the return to steady state will be oscillatory rather
than monotone. Thus, following rapid disruptions of blood cell population, such as
traumatic blood loss or transfusion, or a vacation at a high-altitude ski resort, the red
blood cell population will oscillate about its steady state.

The only possible way to have a root with positive real part is if it is complex.
Furthermore, a transition from stable to unstable can occur only if a complex root
changes the sign of its real part, leading to a Hopf bifurcation. If a Hopf bifurcation
occurs, it does so with λ � iω. We substitute λ � iω into (16.41) and separate this into
its real and imaginary parts to obtain

F′(N0)(cos
(
ωd)− cos(ω(d+ X))

) � 0, (16.42)

F′(N0)(sin
(
ωd)− sin(ω(d+ X))

) � −ω. (16.43)

It follows from (16.42), because of symmetry, that ω(2d + X) � 2nπ, for any positive
integer n. It could also be that ωX � 2nπ, but this fails to work in (16.43). With ω(2d+
X) � 2nπ, (16.43) becomes

2dF′(N0) sin(ωd) � −ωd, (16.44)

or

2dF′(N0) � − 2nπ

2+ X
d

1

sin
(
2nπ
2+ X

d

) . (16.45)

Finally, we use that F(N0) � N0/X to write

N0F
′(N0)

F(N0)
� −1

2
X

d

2nπ

2+ X
d

1

sin( 2nπ
2+ X

d

)
. (16.46)

For each integer n, this equation defines a relationship betweenN0 andX/d at which
there is a Hopf bifurcation. If we take F to be of the special form

F(x) � A

1+ xp
, (16.47)

then we can use (16.37) (in the limit β → 0) and (16.46) to find an analytic relationship
between dA(� dF(0)) and X/d at which Hopf bifurcations occur (see Exercise 7). Shown
in Fig. 16.7 is this curve for n � 1 and p � 7. The case n � 1 is the only curve of interest,
since it is the first instability. That is, if a curve for n > 1 is crossed, the steady solution
is already unstable from the n � 1 instability.

The implications of this calculation are interesting. If the nondimensional param-
eters X/d and dF(0) are such that they lie above the curve in Fig. 16.7, then the steady
solution is unstable, and a periodic or oscillatory solution is likely (but not rigorously
proven). On the other hand, if these parameters lie below or to the far right of this
curve, the steady solution is stable.

From thiswe learn that there are threemechanisms bywhich cell production can be
destabilized, and these are by changing themaximal production rate F(0), the expected
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Figure 16.7 Critical stability curve
(Hopf bifurcation curve) for cell growth.

lifetime X , or the production delay d. If X/d is sufficiently large (>≈ 14), the system
cannot be destabilized. However, ifX/d is small enough, increasing F(0) is destabilizing.
Increasing d is also destabilizing. If F(0) and X are held fixed, then changing d moves
y � dF(0) and x � X/d along the hyperbola yx � constant. Every such hyperbola
has exactly one intersection with the critical stability curve shown in Fig. 16.7. Thus,
decreasing d is stabilizing, as it increases X/d, moving it out of and away from the
unstable region.

For normal humans, with d � 5 days and X � 120 days, there is no instability,
since X/d � 24. However, any mechanism that substantially shortens X can have a
destabilizing effect and can result in oscillatory production of blood cells (Exercise 8).
Near the bifurcation, the period of oscillation is T � 2π

ω
, where ω(2d+X) � 2π, so that

T � 2d+ X. (16.48)

Thus, for example, a disorder that halves the normal lifetime of red blood cells toX � 60
days should result in oscillatory cell production with period on the order of 70 days,
the approximate period of the oscillation depicted in Fig. 16.5.

16.3 Leukocytes

The leukocytes (white blood cells) are the mobile units of the body’s immune sys-
tem. There are six types of white blood cells normally found in the blood. These are
the neutrophils, eosinophils, basophils, monocytes, lymphocytes, and plasma cells. The
neutrophils, eosinophils, and basophils are called granulocytes, or in clinical termi-
nology, polymorphonuclear (PMN) cells, because they have a granular appearance and
have multiple nuclei. The normal adult human has about 7000 white blood cells per
microliter of blood, approximately 62% of which are neutrophils and 30% of which
are lymphocytes. The granulocytes and monocytes protect the body against invading
organisms mainly by ingesting them, a process called phagocytosis.
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16.3.1 Leukocyte Chemotaxis

Leukocytes crawl about in tissue by putting out pseudopodal extensions by which they
adhere to the fibrousmatrix of the tissue. In uniform chemical concentrations of chem-
ical stimulus, their motion is that of a persistent random walk. At random times they
undergo random changes in direction. The persistence time, the average time between
changes of direction, is on the order of a few minutes, and the speed of migration is
on the order of 2–20 µm/min.

One important question is how leukocytes are able to find their bacterial targets.
The answer is that they move preferentially in the direction of increasing chemoat-
tractant gradients. Exactly how this is accomplished, how this should be modeled, and
how well the model represents this behavior is the topic of this section.

Here we derive a simple model for directed motion in a one-dimensional medium
(Tranquillo and Lauffenberger, 1987). We assume that the population of cells, c, can be
subdivided into two subpopulations, c � n+ + n−, where superscripts + and − denote
right-moving and left-moving cells, respectively. If v+ is the velocity of right-moving
cells, and v− is the velocity of left-moving cells, then the flux of cells is given by

Jc � v+n+ − v−n−. (16.49)

We expect that the cell velocity should be a function only of local conditions, so that
v+ � v− � v. In general, v will be a function of x and t. Now we write conservation
equations for the directional cell species,

∂n+

∂t
� −∂(vn

+)
∂x

+ p−n− − p+n+, (16.50)

∂n−

∂t
� ∂(vn−)

∂x
+ p+n+ − p−n−, (16.51)

where p+ is the probability per unit time that a right-moving cell changes direction to
become a left-moving cell, and p− is the probability that a left-moving cell becomes a
right-moving cell. These probabilities are also known as turning rates.

An equation governing the cell flux Jc is found by differentiating (16.49) and using
(16.50) and (16.51), yielding

∂Jc

∂t
− Jc

v

∂v

∂t
� −Jc(p+ + p−)− v

∂(vc)
∂x

− vc(p+ − p−). (16.52)

The steady-state flux is found by setting all time derivatives equal to zero, from which
we find that

Jc � −v2Tp ∂c
∂x

+ v(p− − p+)Tpc− Tpv
∂v

∂x
c, (16.53)

where T−1
p � p+ + p−.

Now we define phenomenological population migration parameters µ � Tpv
2 as

the random motility coefficient and Vc � Tpv(p− − p+) as the chemotactic velocity. Then
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the equilibrium flux is

Jc � −µ∂c
∂x

+ Vcc− Tpv
∂v

∂x
c. (16.54)

Finally, the total cell density is governed by the equation

∂c

∂t
� −∂Jc

∂x
. (16.55)

The movement of cells is governed by three terms in (16.54). The first term, −µ∂c
∂x
,

represents purely random movement of cells, since it gives a diffusive term in (16.55).
The second and third terms allow for directed cell movement, since they are propor-
tional to c. The directed motion from the second term is due to a difference in the
directional change probabilities, while the directed motion in the third term is due to
variation in cell speed with spatial position. The second term is called chemotaxis, and
the third term is chemokinesis.

The next problem is to determine the coefficients of these movement terms and in
so doing to understand more about the sensory capabilities of the cells. It is known
that cell speed can vary with stimulus concentration, yielding a chemokinetic effect,
and changes in the direction of movements can be biased toward attractant concentra-
tion gradients, a chemotactic response. These responses are mediated by cell surface
receptors for attractant molecules that can measure the attractant concentration and
its spatial gradient.

There is no a priori theory for the dependence of cell speed on attractant concentra-
tion, so it must bemeasured experimentally. For example, with the tripeptide attractant
formyl-norleucyl-leucyl-phenylalanine (FNLLP), the data show that leukocyte velocity
is a linearly increasing function of the logarithm of concentration over the range of
concentrations 10−9 M to 10−6 M, with velocity about 2–5 µm/min (Zigmond et al.,
1981).

Leukocytes determine the presence of an attractant when it binds to receptors on
the leukocyte cell surface. When there is a spatial gradient of the attractant, there is
also a spatial gradient in the concentration of bound receptors. The side of the cell that
experiences a higher concentration of attractant will have a higher concentration of
occupied receptors. It has been found experimentally that the fraction of leukocytes
that move toward higher attractant concentrations is dependent on this gradient in
receptor occupancy. The simplest reasonable expression (Zigmond, 1977) is

f � 1
2

(
1+ χ0

∂Nb
∂x

1+ χ0
∂Nb
∂x

)
, (16.56)

where f is the fraction of cells moving toward higher concentrations, χ0 is the chemo-
tactic sensitivity, and Nb is the number of bound cell receptors. Notice that Nb is a
function of a, the concentration of chemoattractant, and a is a function of x, so the
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spatial gradient of Nb is given by
∂Nb(a)
∂x

� dNb
da

∂a
∂x
. For small gradients,

f ≈ 1
2

(
1+ χ0

dNb

da

∂a

∂x

)
, (16.57)

while for large gradients, f ≈ 1. Thus in small gradients, the fraction of cells mov-
ing toward higher concentrations is linearly proportional to the gradient, and this
fraction approaches 1 as the gradient increases. From data for rabbit leukocytes re-
sponding to the peptide attractant formyl-methionyl-methionyl-methionine (FMMM)
it is estimated that χ0 � 2× 10−5 cm/receptor.

In a uniform steady state (for which ∂n
∂x

� 0), n+p+ � n−p−, so that

f � n+

n+ + n− �
(
1+ p+

p−

)−1
. (16.58)

Since Tp � (p− + p+)−1, we find the chemotactic velocity to be

Vc � (2f − 1)v � v
χ0

dNb
da

∂a
∂x

1+ χ0
dNb
da

∂a
∂x

. (16.59)

For a single homogeneous population of cell receptors, the number of bound
receptors is related to the concentration of attractant through a Michaelis–Menten
relationship

Nb � NTa

Kd + a
, (16.60)

where Kd is the receptor dissociation constant and NT is the total number of cell
receptors.

If the function v � v(a) is known, we have a complete model for the flux of cells
due to an attractant concentration. In the special case that cell velocity is independent
of attractant concentration, and the attractant concentration and gradient are small,
this reduces to a well-known model for chemotaxis (Keller and Segel, 1971),

Jc � −µ∂c
∂x

+ χc
∂a

∂x
, (16.61)

where χ � vχ0N
′
b
(a).

16.3.2 The Inflammatory Response

Leukocytes respond to a bacterial invasion by moving up a gradient of some chemical
attractant produced by the bacteria and then ingesting the bacterium when it is en-
countered. Here we present a one-dimensional model (Alt and Lauffenberger, 1987) to
show if and when the leukocytes successfully defend against a bacterial invasion.

There are three concentrations that must be determined. These are the bacte-
rial, attractant, and leukocyte concentrations, denoted by b, a, and c, respectively. The
governing equations for these concentrations follow from the following assumptions
concerning their behavior:
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1. Bacteria diffuse, reproduce, and are destroyed when they come in contact with
leukocytes:

∂b

∂t
� µb

∂2b

∂y2
+ (kg − kdc)b. (16.62)

2. The chemoattractant is produced by bacterial metabolism and diffuses:

∂a

∂t
� D

∂2a

∂y2
+ kpb. (16.63)

3. The leukocytes are chemotactically attracted to the attractant, and they die as they
digest the bacteria, so that

∂c

∂t
� −∂Jc

∂y
− (g0 + g1b)c. (16.64)

For this model we assume that the leukocyte flux is given by (16.61), althoughmore
general descriptions are readily incorporated.

To specify boundary conditions we assume that y � 0 is the skin surface and that a
blood-transporting capillary or venule lies at distance y � L from the skin surface. We
assume that the bacteria cannot leave the tissue domain, although the attractant may
diffuse into the bloodstream. Leukocytes enter the tissue from the bloodstream at a
rate proportional to the circulating leukocyte density cb. When chemotactic attractant
is present, the emigration rate increases, because leukocytes that would normally flow
in the bloodstream tend to adhere to the vessel wall (margination) and then migrate
into the interstitium. These considerations lead to the boundary conditions

∂b

∂y
� 0 at y � 0 and y � L, (16.65)

∂a

∂y
�
{
0 at y � 0,

−haa at y � L,
(16.66)

Jc �
{
0 at y � 0,

−(h0 + h1a)(cb − c) at y � L.
(16.67)

The governing equations are made dimensionless by setting x � y/L, τ � kgt, u �
c/cb, v � b/b0, and w � a/a0. We find that

∂v

∂τ
� ρv

∂2v

∂x2
+ (1− ξu)v, (16.68)

∂w

∂τ
� ρw

(
∂2w

∂x2
+ v

)
, (16.69)

∂u

∂τ
� ρu

(
∂2u

∂x2
− α

∂

∂x

(
u
∂w

∂x

))
− γ0(1+ v)u, (16.70)

where a0 � L2kpb0/D, b0 � g0/g1, α � χa0/µ, ρv � µb
kgL2

, ρu � µ

kgL2
, ρw � D

kgL2
, ξ �

kdcb/kg, γ0 � g0/kg.
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In nondimensional form the boundary conditions become

∂v

∂x
� 0 at x � 0 and x � 1, (16.71)

∂w

∂x
�
{
0 at x � 0,

−σw at x � 1,
(16.72)

ρu

(
∂u

∂x
− αu

∂w

∂x

)
�
{
0 at x � 0,

γ0(β0 + β1w)(1− u) at x � 1,
(16.73)

where σ � haL/D, β0 � h0
g0L
, β1 � h1a0

g0L
.

There is at least one steady-state solution for this system of equations. It is the
elimination state, in which v � w � 0 and

u(x) � 1
A
cosh

(√
γ0

ρu
x

)
, (16.74)

where A � cosh
(√

γ0
ρu

)
+ ρu

γ0β0

√
γ0
ρu
sinh

(√
γ0
ρu

)
. In this state, all bacteria are eliminated,

and the leukocyte density is independent of any bacterial properties. This should rep-
resent the normal state for healthy tissue. If γ0/ρu is small, then this steady distribution
of leukocytes is nearly constant, at level (1+ 1

β0
)−1.

Bacterial diffusion is generally much smaller than the diffusion of leukocytes or
of chemoattractant. Typical numbers are D � 10−6 cm2/s, µ � 10−7 cm2/s, µb < 10−8

cm2/s, kg � 0.5 h−1, and L � 100 µm. With these numbers, ρu and ρw are relatively
large, while ρv is small. This leads us to consider an approximation in which bacterial
diffusion is ignored, while attractant and leukocyte diffusion are viewed as fast. In this
approximation, airborne bacteria can attach to the surface, but they do not movemuch
on the time scale of leukocyte and chemoattractant motion.

Our first approximation is to ignore bacterial diffusion (take ρv � 0) and then to
assume that a bacterial invasion occurs at the skin surface x � 0. This is a reasonable
assumption for periodontal, peritoneal, and epidermal infections, which are highly lo-
calized, slowlymoving infections. Then, since we neglect bacterial diffusion, we specify
the bacterial distribution by

v(x, τ) � V(τ)δ(x), (16.75)

where δ(x) is the Dirac delta function. The governing equation for V(τ) is

∂V

∂τ
� (1− ξu(0, τ))V. (16.76)

Since v � 0 for x > 0, the equations for w and u simplify slightly to

∂w

∂τ
� ρw

∂2w

∂x2
, (16.77)

∂u

∂τ
� ρu

(
∂2u

∂x2
− α

∂

∂x

(
u
∂w

∂x

))
− γ0u, (16.78)
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while the effect of the bacterial concentration at the origin is reflected in the boundary
conditions at x � 0 (found by integrating (16.69) and (16.70) “across” the origin),

∂w

∂x
� −V, (16.79)

ρu

(
∂u

∂x
− αu

∂w

∂x

)
� γ0Vu. (16.80)

An identity that will be important below is found by integrating (16.78) with respect
to x to obtain

γ−1
0

dU

dt
� −U − Vu(0, τ)+ (β0 + β1w(1, τ))(1− u(1, τ)), (16.81)

where U(τ) � ∫ 1
0 u(x, τ)dx is the total leukocyte population within the tissue.

Our second approximation is to assume that the chemoattractant diffusion is
sufficiently large, so that the chemoattractant is in quasi-steady state,

∂2w

∂x2
� 0. (16.82)

This implies that w(x) is a linear function of x with gradient

∂w

∂x
� −V. (16.83)

Finally, we assume that ρu is large (taking ρu → ∞), so that the leukocyte density
is also in quasi-steady state with Jc � 0, that is,

∂u

∂x
+ αVu � 0. (16.84)

We can solve this equation and find the leukocyte spatial distribution to be

u(x, τ) � U(τ)F(αV)e−αVx, (16.85)

where F(z) � z
1−e−z is determined by requiring U(τ) �

∫ 1
0 u(x, τ)dx.

Now we are able to determine u(0, τ), u(1, τ) from (16.85) and w(1, τ) from (16.72)
and (16.83), which we substitute into the equation for total leukocyte mass (16.81) to
obtain

γ−1
0

dU

dτ
� (β0 + βV)

(
1−UF(αV)e−αV

)− (VF(αV)+ 1)U, (16.86)

where β � β1/σ. Similarly, from (16.76) and (16.85), we find the equation governing V
to be

∂V

∂τ
� V (1− ξUF(αV)) . (16.87)

Phase-plane analysis
The systemof equations (16.86)–(16.87) is a two-variable systemof ordinary differential
equations that can be studied using standard phase-plane methods. In this analysis
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we focus on the influence of two parameters: β, which characterizes the enhanced
leukocyte emigration from the bloodstream, and α, which measures the chemotactic
response of the leukocytes to the attractant.

One steady-state solution that always exists isU � (1+ 1
β0
)−1, V � 0. This represents

the elimination state in which there are no bacteria present. Any other steady solutions
that exist withV > 0 are compromised states inwhich the bacteria are allowed to persist
in the tissue.

We assume that the system is at steady state at time τ � 0 with U(0) � U0 �
(1 + 1

β0
)−1 when a bacterial challenge with V(0) � V0 > 0 is presented. We begin the

analysis with simple cases for which α � 0.

Case I: α � 0, β � 0.
In this case the system reduces to

γ−1
0

dU

dτ
� β0 − (β0 + 1)U − VU, (16.88)

∂V

∂τ
� V(1− ξU). (16.89)

There are three nullclines: dV
dτ

� 0 on the vertical line U � 1
ξ
and on the horizontal line

V � 0, and dU
dτ

� 0 on the hyperbola V � β0−(β0+1)U
U

.
Two types of behavior are possible. If ξU0 < 1, there are no steady states in the

positive first quadrant. The only steady state is at U � U0, V � 0. For U ≤ U0,
dV
dt
> 0,

so that U decreases and V increases without bound. The bacterial challenge cannot be
met. This situation is depicted in Fig. 16.8. In this and all the following phase portraits,
the nullcline for dV

dτ
� 0 is shown as a short dashed curve, and the nullcline for dU

dτ
� 0

is shown as a long dashed curve. The solid curve shows a typical trajectory starting
from initial data U � U0, V � V0.

If ξU0 > 1, there is a nontrivial steady state in the first quadrant, which is a saddle
point. This means that there is a value V∗ for which a trajectory starting atU � U0, V �

2.0

1.5

1.0

0.5

0.0

V

0.60.50.40.3
U

dU/dt = 0

dV/dt = 0

Figure 16.8 Phase portrait for the sys-
tem (16.86)–(16.87) with “small” ξ �
1.6, “small” β � 0.1, α � 0. Other pa-
rameters are β0 � 1.0, γ0 � 0.2, so that
U0 � 0.5.
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V∗ is on the stable manifold of this steady state and divides the line U � U0 into two
types of behavior. If V < V∗ initially, the trajectory evolves toward the elimination state,
while if V > V∗ initially, the trajectory is unbounded. Thus, for large enough ξ and
small enough initial bacterial population, the challenge can be withstood, but for a
larger initial bacterial challenge, the bacterial population wins the competition. The
number V∗ is a monotone increasing function of ξ, and limξ→∞ V∗ � ∞. This follows
because to the right of U � 1

ξ
the stable manifold is an increasing curve as a function

of U, so that V∗ lies above the the value of V at the saddle point. However, as a function
of ξ, the steady-state value of V is monotone increasing as ξ increases, approaching∞
in the limit ξ → ∞, so V∗ → ∞ as well.

The phase portrait for this situation is depicted in Fig. 16.9. In this situation the
bacterial challenge is met only if ξ is large enough and V0 is small enough, so that the
leukocytes are effective killers, although with α � β � 0 they are not good hunters.
Note that ξ � kdcb/kg, where kd is the rate at which leukocytes kill bacteria, kg is the
growth rate of the bacteria, and cb is the leukocyte density in the blood. Hence, large ξ
means that leukocytes are effective killers, since they kill bacteria at a rate exceeding
the growth rate of the bacteria.

Case II: α � 0, β > 0.
Here, the leukocytes can respond to the bacterial challenge by enhanced emigration
from the bloodstream, but they cannot localize preferentially within the tissue. The
system of equations becomes

γ−1
0

dU

dτ
� (β0 + βV)(1−U)− (V + 1)U, (16.90)

∂V

∂τ
� V (1− ξU) . (16.91)

The nullclines for dV
dτ
are unchanged from above. The nullcline dU

dτ
� 0 is the hy-

perbola V � β0−(β0+1)U
(β+1)U−β . For small β, with

β

β+1 < U0, the behavior of the system changes
only slightly from Case I. These phase portraits are as depicted in Figs. 16.8 and 16.9.
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0.500.450.400.350.300.250.20
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dU/dt = 0

dV/dt = 0

Figure 16.9 Phase portrait for the
system (16.86)–(16.87) with “large”
ξ � 3.0, “small” β � 0.1, α � 0. Other
parameters are β0 � 1.0, γ0 � 0.2, so
that U0 � 0.5.
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If ξU0 < 1, the bacterial population grows without bound, whereas if ξU0 > 1, the
bacterial population can be eliminated if V < V∗ initially. The value V∗ is a monotone
increasing function of β. Thus, with β small, the leukocytes have an enhanced ability to
eliminate a bacterial population. In fact, if ξβ > β+ 1 (phase portrait not shown), then
V∗ � ∞, so that a bacterial invasion of any size can be eliminated. Notice that in this
case, the bacterial invasion is controlled because the leukocytes are effective killers and
they effectively deploy troops to withstand the invasion. There is still no mechanism
making them effective hunters.

In all of the above cases, the leukocyte population decreases initially, and if the
bacterial population is controllable, the leukocyte population eventually rebounds back
to normal. If β is large enough, with β

β+1 > U0, then the response to a bacterial invasion
is with an initial increase in leukocyte population. If ξβ < β + 1, then the bacterial
population is unbounded; the invasion cannot be withstood.

If ξβ > β + 1 and ξU0 < 1, there is a nontrivial steady state in the positive first
quadrant that is a stable attractor. All trajectories starting at U � U0 go to this stable
steady-state solution with U > U0. Since V > 0 for this steady solution, the bacterial
population is controlled but not eliminated. This situation is depicted in Fig. 16.10.

Finally, if ξU0 > 1, the leukocyte population initially increases and then decreases
back to normal as the bacterial population is eliminated. This situation is depicted in
Fig. 16.11.

The above information is summarized in Fig. 16.12, where four regions with differ-
ing behaviors are shown, plotted in the (1/β, ξ) parameter space. The four regions are
bounded by the curves ξ � 1/U0 and ξ � 1 + 1/β and are identified by the asymptotic
state for V, limτ→∞ V(τ). For ξ > 1/U0 and ξ > 1+1/β, the bacteria are always eliminated.
For ξ > 1/U0 and ξ < 1+1/β, there are two possibilities, either elimination or unbounded
bacterial growth, depending on the initial size of the bacterial population. For ξ < 1/U0
and ξ > 1+1/β, the bacteria survive but are controlled at population size Vp, and finally,
for ξ < 1/U0 and ξ < 1+ 1/β, the bacterial population cannot be controlled but becomes
infinite.

2.0

1.5

1.0

0.5

0.0

V

0.700.650.600.550.50
U

dV/dt = 0
dU/dt = 0 Figure 16.10 Phase portrait for the

system (16.86)–(16.87) with “small”
ξ � 1.6, “large” β � 3.0, α � 0. Other
parameters are β0 � 1.0, γ0 � 0.2, so
that U0 � 0.5.
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Figure 16.11 Phase portrait for the
system (16.86)–(16.87) with “large”
ξ � 3.0, “large” β � 3.0, α � 0. Other
parameters are β0 � 1.0, γ0 � 0.2, so
that U0 � 0.5.
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Figure 16.12 Parameter space for
the system (16.86)–(16.87) with α �
0.

Case III: α > 0, β > 0.
The primary goal of this model is to determine the effect of the chemotaxis coefficient
on the performance of the leukocytes in warding off a bacterial invasion. We have seen
so far that with α � 0 there are three possible responses to an invasion. The bacteria
may become unbounded, they may be controlled at a nonzero steady state, or they may
be eliminated, depending on the sizes of the parameters ξ and β. With α �� 0, we expect
control and elimination to be enhanced, if only because the bacterial growth rate is a
decreasing function of α.

The effect of α �� 0 is seen first of all in the nullclines. The nullclines are the curves

dV

dτ
� 0 : U � 1

ξF(αV)
, (16.92)

and

dU

dτ
� 0 : U � β0 + βV

(β0 + βV)F(αV)e−αV + VF(αV)+ 1 . (16.93)
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Both of these are decreasing functions of α, and both asymptote to U � 0 as V → ∞. A
steady state occurswhenever there is an intersection of these two curves. This condition
we write as

1
ξ

� αV(β0 + βV)
(1− e−αV )+ αV2 + αVe−αV (β0 + βV)

� G(V). (16.94)

One can easily see that G(0) � U0 and that limV→∞G(V) � β. This implies that there is
an even number of roots if

(
1
ξ

−U0

)(
1
ξ

− β

)
> 0, (16.95)

and an odd number of roots otherwise. An odd number of roots implies that there is at
least one steady-state solution in the first quadrant; with an even number there could
be no steady states. This leads to four different possible outcomes separated by the
curves ξ � 1

U0
and ξ � 1

β
. These are

1. ξ < 1
U0
, ξ < 1

β
. There can be zero or two steady states. If there are no steady states,

then V becomes infinite. If there are two steady states, one of them is stable and the
trajectories for sufficiently small initial bacterial populations approach the stable
steady state, where they persist.
We can find the boundary between these two cases by looking for a double root of
(16.94). We do this by solving (16.94) and the equation G′(V) � 0 simultaneously.
This gives a curve in the (β, ξ) parameter plane parametrized by V , as follows: For
each V, β is a root of the quadratic equation

α2V4β2 − V(−2α2V2β0 + αV − 2eαV + 2)β

+ β0(α2V2β0 − αV − 1+ eαV (1− V2α)) � 0, (16.96)

and then ξ is given by (16.94) for each V, β. It is an easy matter to determine this
curve numerically. The curve is plotted in Fig. 16.13 as a solid curve, shown for the
three values of α � 0.5,0.75, and 1.0.
Below this curve in the ( 1

β
, ξ) parameter space, there are no steady-state solutions.

The phase portrait for this case is similar to that of Fig. 16.8 and is left as an exercise
(see Exercise 13). For all trajectories starting at U � U0, V(τ)→ ∞.
Above the “double root” curve there are two steady solutions, one of which is sta-
ble. In this situation, some trajectories lead to persistent bacterial populations,
while others (with larger initial values) become infinite. This phase portrait has
similarities with Fig. 16.9 and is left as an exercise (see Exercise 13).
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2. ξ < 1
U0
, ξ > 1

β
. Here there is one stable steady state, which is a global attractor. All

trajectories evolve to this steady state, so that the bacterial population is controlled,
but it is not eliminated. The phase portrait for this case is quite similar to the
previous case, except that there is only one nontrivial steady state, and no saddle
point, so there is no separatrix, and all trajectories approach the persistent state.
It should be noted that with ξ < 1

U0
, the bacterial population can never be elimi-

nated. However, with α > 0, the population is more readily controlled than with
α � 0.

3. ξ > 1
U0
, ξ < 1

β
. There is a single steady state in the first quadrant, which is a saddle

point and which therefore divides the initial data into two types, those that are
eliminated and those that become unbounded. The phase portrait for this case is
similar to Fig. 16.9 and is left as an exercise (see Exercise 13).

4. ξ > 1
U0
, ξ > 1

β
. Here there are no steady-state solutions in the positive quadrant,

in which case the bacterial population is always eliminated. Here the effect of
chemotaxis can be seen in the transient behavior of the leukocyte population. If
the initial bacterial population is small, the leukocyte population initially increases
before it decreases back to its equilibrium. If the initial bacterial population is large,
then the leukocyte population initially decreases, then increases, and then finally
decreases back to steady state, having eliminated the bacterial population. The
phase portrait for this case has similarities with Fig. 16.11 and is left as an exercise
(see Exercise 13).

In summary, to control a bacterial invasion, the leukocytes must be sufficiently
lethal to the bacteria (ξ sufficiently large). They must also be able to recruit new troops,
and it is advantageous that they move chemotactically, since they are more effective
if α > 0. This result is not surprising. However, the significance of this approximate
analysis is that the model behaves as we want it to behave, suggesting that it is a
reasonable model, worthy of more detailed study and development.
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Figure 16.13 Parameter space for
the system (16.86)–(16.87) with β0 �
1.0, α > 0.
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16.4 Clotting

16.4.1 The Clotting Cascade

The need for a clotting system is obvious. In any higher organism with a circulatory
system, the loss of the transporters of vital metabolites and waste products has disas-
trous, perhaps fatal, consequences. However, the occurrence of clots in an otherwise
normal circulatory system is also potentially disastrous, as it prevents a flow that is
equally important to survival.

The clotting system must be fast reacting, and yet localized. Since all the ingre-
dients for clotting are carried in the blood, there must be some control that prevents
propagation. As we know from earlier chapters, a highly excitable system of diffusing
species has the possibility, indeed the strong likelihood, of supporting traveling waves.
For the clotting system, a propagating front would be as disastrous as failure of a clot
to form. Thus, the dilemma we face is to understand the mechanisms underlying a
highly excitable system of reacting and diffusing chemicals that does not support wave
propagation.

In fact, there are more than 50 substances in blood and tissue that play a role in
the clotting process. Crucial to the process is the enzyme thrombin. Thrombin acts
enzymatically on fibrinogen, converting it to fibrin, which then forms the meshwork of
the clot. However, this is not all, as thrombin is an extremely active enzyme, with many
other regulatory roles.

Thrombin is formed when prothrombin, which is carried in the blood, is converted
by an enzyme called prothrombin activator. Prothrombin activator is formed as the
end result of two different enzymatic cascades, which are, however, closely linked. The
fastest, called the extrinsic pathway, is initiated following tissue trauma. The second
pathway, called the intrinsic pathway, is initiated following trauma to blood or contact
of bloodwith collagen, or anynegatively charged surface, and is not dependent on tissue
trauma. However, this second pathway is much slower than the extrinsic pathway.
Classic hemophilia, a tendency to bleed that occurs in 1 in every 10,000 males in the
United States, results from a deficiency of one of the important enzymes in the intrinsic
pathway.

Herewedescribe only the extrinsic pathway. Thirteen of the important factors in the
clotting cascade are denoted using Roman numerals as factors I throughXIII, although
for historical reasons, they also have other names. Here we retain the Roman numeral
notation. Of those that have active and inactive states, the active state is denoted by
appending the letter “a” to its name. Thus, for example, Xa is the active form of factor X.

The extrinsic pathway can be described as follows: tissue trauma causes the release
of a combination of agents called, collectively, factor III (or tissue thromboplastin, or
tissue factor). Factor III consists primarily of certain phospholipids from the mem-
branes of the damaged tissues, and acts enzymatically to activate factor VII, converting
it to factor VIIa. Factor VIIa then acts enzymatically to activate factor X to Xa, which
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Figure 16.14 Schematic diagram of the extrinsic pathway for blood clotting.

then combines with factor V and other phospholipids to form prothrombin activator.
As mentioned above, prothrombin activator converts prothrombin to thrombin, from
which the clot eventually forms.

The speed of the extrinsic pathway is increased by various positive feedback
mechanisms. First, thrombin activates factor V, thus increasing the rate of formation
of prothrombin activator. Second, thrombin is one of the substances that activates
platelets (described below) to make them sticky and highly reactive. In their reactive
form, platelets are a source of the phospholipids with which factor X combines to pro-
duce prothrombin activator. Finally, factor Xa is known to activate molecules of factor
VII bound to factor III. The clotting cascade is summarized in Fig. 16.14.

Thrombin is also degraded, so that its activity is not permanent. One of the ways
that thrombin is degraded is by binding to the fibrin network, so that thrombin is even-
tually degraded by the result of its own activity, a negative feedback loop. There are also
anticoagulants that act to inactivate thrombin. Primary among these are antithrombin
III and heparin. Heparin by itself has little or no anticoagulant effect, but in complex
with antithrombin III, the effectiveness of antithrombin III is increased a hundred- to
a thousandfold. The concentration of heparin is normally quite slight, although it is
produced in large quantities bymast cells, located in the connective tissue surrounding
capillaries. They are especially abundant in tissue surrounding the capillaries of the
lung and of the liver. This is important, because these organs receive many clots that
form in the slowly moving venous blood and must be removed. Heparin is widely used
in medical practice to prevent intravascular clotting.

Using techniques that have been amply illustrated elsewhere in this book, it is
possible to write differential equations describing the dynamics of thrombin activation
and clot formation (Exercise 14).Models of certain aspects of this clotting network have
been developed and studied by Nesheim et al. (1984, 1992), Willems et al. (1991), and
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Jones and Mann (1994). Other models that are less specific but attempt to capture the
excitability of the system include those of Jesty et al. (1993) and Beltrami and Jesty
(1995).

The clotting system has the feature that wherever activated factor X binds with
phospholipid, there alsowill occur thrombin and clotting. Thus, diffusion and transport
of factor Xa could cause clots to spread in uncontrolled fashion. Similarly, if factor III
(tissue factor) were to spread via diffusion and transport, one can imagine the havoc
it would wreak on the circulatory system.

Clearly, it is dangerous to have the ingredients for an explosive (excitable) system
floating around and diffusing in the blood. There must be some mechanism by which
the rapid spread of clots is prevented. Indeed, there are several. First, the walls of
blood vessels are quite smooth, preventing the excitable ingredients in blood from
becoming activated. Second, when there is tissue trauma, factor III is exposed, but
not released. That is, factor III remains bound to the membrane surface and turns
tissue into a catalytic surface; it is not free to diffuse. Similarly, when platelets are
activated, the surfaces of the platelets become catalytic reactors that carry the catalyst
phospholipids. Thus, prothrombin activator is amembrane-bound catalyst: the clotting
cascade is activated only in the vicinity of this activated catalytic surface. In other
words, the clotting reaction is largely regulated by phospholipid surfaces (Fogelson
and Kuharsky, 1998). For this reason, it is necessary to discuss the activity of platelets.

16.4.2 Platelets

Platelets are minute round or oval discs 2 to 4 micrometers in diameter. They are
formed in the bone marrow from megakaryocytes, which are large cells in the bone
marrow that fragment into platelets. There are normally between 150,000 and 300,000
platelets per microliter of blood, constituting only a small percentage of the volume (≈
0.3 percent by volume).

A platelet is an active structure with a half-life of 8 to 12 days. Since platelets are
cell fragments with no nucleus, they cannot reproduce. A platelet normally circulates
with the blood in a dormant, or inactivated state, in which it does not adhere to other
platelets or to the blood vessel wall. However, when platelets come in contact with a
damaged vascular surface or sufficient chemical triggers, they become activated and
change their characteristics drastically, as follows:

1. The platelet’s surface membrane is altered so that the platelet becomes sticky,
capable of adhering to other activated platelets or the vessel wall.

2. The platelet secretes chemicals, including large amounts of ADP and thrombaxane
A2, which are capable of activating other platelets.

3. The platelets change from rigid discoidal to highly deformable, extending long,
thin appendages called pseudopodia.

An important requirement for controlled clotting is that the circulating bloodmust
be able to build a catalytic bed in the vicinity of the injury, even though there is fluid
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flow. The aggregation of platelets is the means by which a catalytic reactor bed is built,
and so is an important part of the process by which the flow of blood from a damaged
vessel is halted.

Amathematical model for the aggregation of platelets and the formation of platelet
plugs has been formulated and studied by Fogelson (1992). The model is a contin-
uum model that assumes that there is a concentration of activated and nonactivated
platelets, denoted by φa and φn, respectively. Platelets are immersed in blood and are
neutrally buoyant, moving with the local fluid velocity u. There is some chemical con-
centration c, say of ADP, that is released by platelets when they are activated and that
has the effect of stimulating nonactivated cells. Activated cells are sticky and form
aggregates when they come into contact with each other.

One can readily write conservation equations for the density of inactivated and acti-
vated platelets. However, because this is an exercise in fluid and continuummechanics,
which is beyond the scope of this text, we do not reproduce these here. Numerical sim-
ulation of these equations then demonstrates how platelet aggregates can form in the
vicinity of tissue trauma.

In Figs. 16.15 and 16.16 are shown two snapshots of a (two-dimensional) fluid flow
past an activated obstacle and a segment of damaged vessel wall. The figures show an
aggregate of activated platelets growing from the obstacle and damaged vessel wall
in a fluid flow moving from left to right, which, one surmises, gradually causes the
occlusion of the flow.

The question remains (and is not addressed by these simulations) ofwhy the platelet
system does not exhibit traveling fronts of aggregation. The putative answer is that
smooth (undamaged) vascular walls are nonsticky and that they contain inhibitors of

Figure 16.15 Growth of a platelet aggregate in a fluid flow. Fluid is flowing from left to right
with velocity vectors shown, (part 1). Contours in the aggregates depict the density of platelet
”stickiness.” (With permission of A. Fogelson).
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Figure 16.16 Growth of a platelet aggregate in a fluid flow, (part 2). Notice the increased
aggregate size and decreased fluid velocity, even though the total pressure drop is unchanged
from part 1. (With permission of A. Fogelson.)

ADP, the primary factor in the activation of platelets, and inhibitors of thrombin, and
these prevent the uncontrolled spread of activated platelets.

A complete model of clotting would combine platelet aggregation with the surface-
catalyzed production of thrombin via the pathway described above. This complete
model would take into account the controlled construction of a reactive catalytic sur-
face, the control of the reaction by the catalytic surface, and the ultimate construction
of a clot that shuts off the blood flow.

While it is feasible to write down a reasonable model of the entire clotting process
(since the biochemistry is reasonably well known), the understanding of such a model
is far from complete, primarily because of the complicated interaction with the fluid
flow. In fact, this is a subject of active research.

16.5 Exercises
1. What is the volume (per mole) of an ideal gas at room temperature (27◦ C) and 1 atm

pressure? What is its volume at body temperature (98◦ F)?

2. Suppose that a carrier (like hemoglobin) of a molecule (like oxygen) has n independent
binding sites, with individual binding and unbinding rates k+ and k−. Let cj denote the
concentrations of the state with j molecules bound. Assume concentrations are in steady
state.

(a) Show that cj �
(
n

j

)
xjc0, where

(
n

j

)
� n!

j!(n−j)! is the binomial coefficient where x �
s0/K, K � k−/k+, and s0 is the concentration of the carrier molecule.
Hint: Keep track of the total number of binding sites.

(b) Find the saturation function in the case that n � 4.
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Table 16.2 Approximate numerical data for the hemoglobin saturation curve.

PO2 (mm Hg) percent saturation
3.08 2.21
4.61 3.59
6.77 6.08

10.15 10.50
12.31 14.09
15.38 19.34
18.77 28.45
22.77 40.33
25.85 50.0
30.15 60.50
36.00 69.89
45.23 80.11
51.69 83.98
61.85 88.95
75.38 93.37
87.08 95.86

110.5 98.07

(c) Show that the four equilibrium constants K1, K2, K3, K4 defined in (16.11) are given by
(K1, K2, K3, K4) � K( 14 ,

2
3 ,

3
2 ,4).

(d) Estimate K to give a good fit of this model to the hemoglobin saturation curve. How
does this curve compare with the curve (16.13)?

(e) Determine whether the hemoglobin binding sites are independent. How close are the
equilibrium constants here to those found in the text?

3. Approximate numerical data for the hemoglobin saturation curve are found in Table 16.2.
Fit these data to a curve of the form (16.13).
Hint: Suppose we have data points {xi, yi}, i � 1, . . . , n, that we wish to fit to some function
y � f (x), and that the function f depends on parameters {αi}, i � 1, . . . ,m. A fit of the data
is achieved when the parameters are picked such that the function

F �
n∑
j�1
(f (xj)− yj)2 (16.97)

is minimized. To find this fit, start with reasonable estimates for the parameters and then
allow them to change dynamically (as a function of a time-like variable t) according to

dαk

dt
� −

n∑
j�1
f (xj)

∂f (xj)
∂αk

. (16.98)

With this choice,

dF

dt
�

m∑
k�1

n∑
j�1
f (xj)

∂f (xj)
∂αk

dαk

dt
≤ 0, (16.99)

so that F is a decreasing function of t. A fit is found when numerical integration reaches a
steady-state solution of (16.98).
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4. Construct a Monod–Wyman–Changeux model (Section 1.2.4) for oxygen binding to
hemoglobin and determine the saturation function. Fit to the experimental data given in
Table 16.2 and compare to the fit of (16.13).

5. (a) If a 25 mM solution of sodium bicarbonate is equilibrated with carbon dioxide at 40
mm Hg partial pressure, the pH is found to be 7.4. If the partial pressure of carbon
dioxide is increased until the pH is 6.0, what is the bicarbonate concentration?What is
the carbon dioxide partial pressure at this pH?What is the difference if this experiment
is carried out in whole blood instead of sodium bicarbonate solution?

(b) Pick reasonable values for K1, K2 and K̄1 and find the oxygen saturation curve as a
function of h. (Hint: the parameters must be chosen so that hemoglobin acts as a hy-
drogen ion buffer at physiological concentrations. Try K1/41 � 26 σ mmHg. Alternately,
pick K1, K2 and K̄1 so that (φ(h))1/4 � 26 σ mm Hg at pH � 7.4.)

(c) Solve (16.26) - (16.30) numerically and plot X , Y , Z, W and h as functions of O and
[CO2]. How much CO2 is transported from the tissues to the lungs? Remove the Bohr
and Haldane effects by setting K1 � K̄1. How does this change the amount of oxygen
and carbon dioxide transported? Typical parameter values are: PCO2 in arterial blood,
39 mm Hg ; PCO2 in venous blood, 46 mm Hg; PO2 in arterial blood, 100 mm Hg; PO2
in venous blood, 40 mmHg; R1R2 � 106.1M−1; THb � 3 mM; n � 10, [HCO−

3 ] � 25 mM
and pH = 7.4 in arterial blood.

6. Develop a detailed model of oxygen and carbon monoxide binding with hemoglobin. How
can the fact that COhas 210 times the affinity for binding be used to estimate the equilibrium
coefficients?

7. Find an analytic relationship for the critical stability curve (Section 16.2.4), relating dF(0)
to X/d as follows: Use that F(N) � F(0)

1+N7 to solve (16.46) for N0 as a function of X/d and then
determine dF(0) using that F(N0) � N0/X .

8. A deficiency of vitamin B12, or folic acid, is known to cause the production of immature red
blood cells with a shortened lifetime of one-half to one-third of normal. What effect does
this deficiency have on the population of red blood cells?

9. Suppose X → ∞ in the red blood cell production model. Show that

dN

dt
� F(N(t− d))− βN. (16.100)

(a) Find the stability characteristics for the steady-state solution of this equation.

(b) Show that the period of oscillation T � 2π/ω at a Hopf bifurcation point is bounded
between 2d and 4d.

Hint: Differentiate the equation N(t) � ∫∞
0 n(x, t)dx with respect to t and use the partial

differential equation nt+nx � −βn and the initial condition n(x, t) � F(N(t−d)) to eliminate
n(x, t).

10. Thematuration rate of red blood cells in bonemarrow varies as a function of erythropoietin
levels. Suppose that x denotes the maturity (rather than chronological age) of a red blood
cell. Suppose further that cells are initially formed at maturity x � −d, are released into
the bloodstream at maturity x � 0, age at the normal chronological rate, and die at age
x � X . Suppose further that the rate of maturation G is a decreasing function of the total
circulating red blood cell count N and that the rate of cell production at maturity x � −d
is F(N).
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(a) Replace the condition (16.33)with an evolution equation of the form (16.31) to account
for maturities x in the range −d < x < 0.

(b) Perform a stability analysis for this modified model. Does the variability of G make
the solution more or less likely to become unstable via a Hopf bifurcation?

11. SupposeX is finite and β � 0 in the red blood cell productionmodel. Show that the evolution
of N is described by the delay differential equation

dN

dt
� F(N(t− d))− F(N(t− d− X)). (16.101)

12. Numerically simulate (16.31) with boundary data (16.33) with parameters chosen from the
stable region and from the unstable region.

13. Sketch the phase portraits for the equations (16.86)–(16.87) in Case III (α > 0, β > 0) as
follows:

(a) ξ < 1
U0
, ξ < 1

β
. (For example,

i. ξ � 1.0, β � 0.5, α � 0.5, β0 � 1.0, γ0 � 0.2, and

ii. ξ � 1.5, β � 0.5, α � 1.3, β0 � 1.0, γ0 � 0.2.)

(b) ξ < 1
U0
, ξ > 1

β
(For example, ξ � 1.8, β � 0.6, α � 0.5, β0 � 1.0, γ0 � 0.2.)

(c) ξ > 1
U0
, ξ < 1

β
. (For example, ξ � 2.2, β � 0.3, α � 0.5, β0 � 1.0, γ0 � 0.2.)

(d) ξ > 1
U0
, ξ > 1

β
. (For example, ξ � 2.2, β � 2.0, α � 0.5, β0 � 1.0, γ0 � 0.2.)

Locate each of these cases in Fig. 16.13.

14. (a) Write a system of differential equations describing the clotting reaction.

(b) Suppose that the concentration of activated platelets is given by φa(x, t). Write a sys-
tem of diffusion–transport–reaction equations for the clotting cascade that takes into
account that phospholipid is bound to the membrane of activated platelets.
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Respiration

The respiratory system is responsible for gas transfer between the tissues and the out-
side air. Carbon dioxide that is produced by metabolism in the tissues must be moved
by the blood to the lungs, where it is lost to the outside air, and oxygen that is supplied
to the tissues must be extracted from the outside air by the lungs.

The nose, mouth, pharynx, larynx, trachea, broncheal trees, lung air sacs and res-
piratory muscles are the structures that make up the respiratory system (Fig. 17.1).
The nasal cavities are specialized for warming and moistening inspired air and for fil-
tering the air to remove large particles. The larynx, or “voice box,” contains the vocal
folds that vibrate as air passes between them to produce sounds. Below the larynx the
respiratory system divides into airways and alveoli. The airways consist of a series of
branching tubes that become smaller in diameter and shorter in length as they extend
deeper into the lung tissue. They terminate after about 23 levels of branches in blind
sacs, the alveoli. The terminal bronchioles represent the deepest point of the bronchial
tree to which inspired air can penetrate by flowing along a pressure gradient. Beyond
the terminal bronchioles, simple diffusion along concentration gradients is primarily
responsible for the movement of gases.

Alveoli are thin-walled air sacs that provide the surface across which gases are
exchanged (Fig. 17.2). Each lung contains about 300 million alveoli with a combined
surface area of about 70–85 square meters. The alveoli are surrounded by respiratory
membrane that serve to bring air and blood into close contact with a large surface area.
In the lung capillaries, from 70 to 140 ml of blood is spread over the surface area of
the lungs.
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Figure 17.1 Diagram of the respiratory passages. (Guyton and Hall, 1996, Fig. 37-9, p. 486.)

17.1 Capillary–Alveoli Gas Exchange

17.1.1 Diffusion Across an Interface

In Chapter 16 we discussed how the partial pressure of a gas is defined as the mole
fraction of the gas multiplied by the total pressure. If a gas with partial pressure Ps is
in contact with a liquid, the steady-state concentration U of gas in the liquid is given
by

U � σPs, (17.1)

where σ is the solubility of the gas in the liquid. Because of this, we can define the
partial pressure of a dissolved gas with concentration U to be U/σ.

Now suppose that a gas with partial pressure Pg is brought into contact with a
liquid within which that same gas is dissolved with concentration U, and thus partial
pressure U/σ. If U/σ is not equal to Pg, then there will be a net flow of gas across the
interface. The simplest model (but not necessarily the most accurate) assumes that the
flow is linearly proportional to the difference in partial pressures across the interface,
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Figure 17.2 The alveoli, or air sacs, of the lung are covered by an extensive network of capil-
laries that form a thin layer of blood for the exchange of gases. (Davis, Holtz, and Davis, 1985,
Fig. 19-4, p. 391.)

and thus

q � Ds

(
Pg − Ui

σi

)
, (17.2)

where q is the net flux per unit area of the gas (positive when gas is flowing from the
gaseous phase to the dissolved phase), and Ds is the surface diffusion constant.

17.1.2 Capillary–Alveolar Transport

To understand something about the transport of a gas across the capillary wall into the
alveolar space, we begin with the simplest possible model. We suppose that a gas such
as oxygen or carbon dioxide is dissolved in blood at some concentration U uniformly
across the cross-section of the capillary. The blood is flowing along a capillary that is
bounded by alveolar air space. The partial pressure of the gas in the alveolar space, Pg,
is taken to be constant.

Consider a segment of the capillary, of length L, with constant cross-sectional area
A and perimeter p. The total amount of the dissolved gas contained in the capillary at
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any time is A
∫ L
0 U(x, t)dx. Since mass is conserved, we have

d

dt

(
A

∫ L

0
U(x, t)dx

)
� v(0)AU(0, t)− v(L)AU(L, t)+ p

∫ L

0
q(x, t)dt, (17.3)

where v(x) is the velocity of the fluid in the capillary, and q is the flux (positive inward,
with units of moles per time per unit area) of gas along the boundary of the capillary.
This assumes that diffusion along the length of the capillary is negligible compared to
diffusion across the capillary wall. Differentiating (17.3) with respect to L and replacing
L by x gives the conservation law

Ut + (vU)x � pq

A
. (17.4)

Finally, if we assume that the flow velocity v is constant along the capillary, then using
(17.2), we obtain

Ut + vUx � pDs

A

(
Pg − U

σ

)
� Dm(σPg −U), (17.5)

whereDm � χDs/σ, and χ � p/A is the surface-to-volume ratio. Notice thatDm has units
of (time)−1, so it is the inverse of a time constant, the membrane exchange rate.

In steady state (independent of time), the conservation law (17.5) reduces to the
first-order, linear ordinary differential equation

v
dU

dx
� Dm(σPg −U). (17.6)

Note that, as one would expect intuitively, the rate of change of U at the steady state
is inversely proportional to the fluid velocity. Now we suppose that the concentration
U at the inflow x � 0 is fixed at U0 (at partial pressure P0 � U0/σ). In steady state, the
concentration at each position x is given by the exponentially decaying function

U(x) � σPg + (U0 − σPg)e−Dmx/v. (17.7)

If the exposed section of the capillary has length L, the total flux of gas across the wall
is Q � p

∫ L
0 q dx � vA[U(L)−U0], which is

Q � vAσ(Pg − P0)(1− e−DmL/v). (17.8)

Plotted in Fig. 17.3 is the nondimensional flux

Q̄ � Q

DmLAσ(Pg − P0)
� v

DmL
(1− e

−DmL
v ). (17.9)

Note that

Q → vAσ(Pg − P0) (17.10)
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Figure 17.3 Dimensionless transmural flux Q̄ as a function of dimensionless flow velocity v

DmL

from (17.9).

Figure 17.4 Loss of carbon dioxide from the pulmonary capillary blood into the alveolus. (The
curve in this figure was constructed from data in Milhorn and Pulley, Biophys. J. 8:337, 1968.
Figure from Guyton and Hall, 1996, Fig. 40-6, p. 515.)

in the limit DmL/v → ∞. Thus, an infinitely long capillary has only a finite total flux, as
the dissolved gas concentration approaches the alveolar concentration along the length
of the capillary.
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Data on the diffusion of carbon dioxide from the pulmonary blood into the alveolus
(Fig. 17.4) suggest that carbon dioxide is lost into the alveolus at an exponential rate,
consistent with (17.7). Furthermore, because the solubility of carbon dioxide in water
is quite high, the difference between the partial pressure for the entering blood and the
alveolar air is small, about 5 mm Hg.

In contrast, the solubility of oxygen in blood is small (about 20 times smaller than
carbon dioxide, see Table 16.1), and although the difference in partial pressures is
larger, this is not adequate to account for the balance of oxygen inflow and carbon
dioxide outflow. That is, if (17.10) is relevant, then a decrease in σ by a factor of 20
requires a corresponding increase by a factor of 20 for the partial pressure differences
tomaintain similar transport. Thus, if this is the correct mechanism for carbon dioxide
and oxygen transport, the difference P0 − Pg for oxygen should be about twenty times
larger than for carbon dioxide. Since 104 − 40 �� 20(45 − 40) (using typical numbers
from Figs. 17.4 and 17.5), there is reason to doubt this model.

Second, the data in Fig. 17.5 suggest that the uptake of oxygen by the capillary blood
is not exponential with distance, but nearly linear for the first third of the distance,
where it becomes fully saturated. We consider a model of this below. First, however,
we discuss the effects of blood chemistry on gas exchange, which was ignored in the
above model.

Figure 17.5 Uptake of oxygen by the pulmonary capillary blood. (The curve in this figure was
constructed from data in Milhorn and Pulley, Biophys. J. 8:337, 1968. Figure from Guyton and
Hall, 1996, Fig. 40-1, p. 514.)
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17.1.3 Carbon Dioxide Removal

Blood chemistry plays a significant role in facilitating the transport of gases between
blood and alveoli. To understand something of this facilitation, we first consider a
simple model for carbon dioxide transport that takes the carbon dioxide–bicarbonate
chemistry into account. We assume that carbon dioxide is converted to bicarbonate via
the reaction

CO2 +H2O
k1−→←−
k−1
HCO−

3 +H+.

This is the carbonic anhydrase reaction discussed in Section 16.2.3. For convenience
we ignore here the intermediary H2CO3. Since the dissociation of H2CO3 into HCO

−
3

and H+ is fast, this makes no difference to the model.
Now we write conservation equations for the two chemical species CO2 and HCO

−
3

(in steady state, and ignoring diffusion within the capillary) as

v
dU

dx
� DCO2(σCO2PCO2 −U)+ k−1[H+]V − k1U, (17.11)

v
dV

dx
� k1U − k−1[H

+]V, (17.12)

whereU � [CO2], V � [HCO−
3 ]. Notice thatDCO2 is a rate constant, similar toDm above.

Although this is a linear problem and it can be solved exactly, it is illustrative to use
an approximate, singular perturbation technique, as this technique will prove useful
in the next section. First notice that we can add (17.11) and (17.12) to obtain

v
d

dx
(U + V) � DCO2(σCO2PCO2 −U). (17.13)

Now we assume that V equilibrates rapidly, so that it can be taken to be in quasi-steady
state. Accordingly, we set V � KcU, where Kc � k1

k−1[H
+]
. It follows that, assuming that

[H+] is constant,

v(1+ Kc)
dU

dx
� DCO2(σCO2PCO2 −U). (17.14)

This equation is identical in form to (17.6). If we take the inlet conditions to be U �
U0 � σCO2P0 and V � V0 � KcU0, then the total flux Q is

Q � v(1+ Kc)σCO2 (P0 − PCO2) (1− e−DCO2L/(v(1+Kc))), (17.15)

and in the limit as DCO2L/v → ∞,
Q → v(1+ Kc)σCO2 (P0 − PCO2) , (17.16)

which is a factor of 1+Kc larger than in (17.10). The only difference between this flux
(17.15) and the original (17.8) is that the velocity v has been multiplied by the factor
1+Kc. In other words, the conversion of carbon dioxide to bicarbonate via the carbonic
anhydrase reaction effectively increases the flow rate by the factor 1+ Kc.
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The equilibrium constant for the bicarbonate–carbon dioxide reaction is given by
log10(

k1
k−1
) � −6.1. Thus (since pH � − log10[H+] with [H+] in moles per liter), at

pH � 7.4, we have Kc � 20, and the improvement in carbon dioxide transport because
of the carbonic anhydrase reaction is substantial.

In words, the improvement in total flux arises because the conversion of bicar-
bonate to carbon dioxide continually replenishes the carbon dioxide that is lost to the
alveolar air. Thus, the carbon dioxide concentration in the capillary does not fall so
quickly, leading to an increase in the total flux.

17.1.4 Oxygen Uptake

The chemistry for the absorption of oxygen by hemoglobin has a similar, but nonlinear,
effect. We take a simple model for the chemistry of hemoglobin (discussed in Section
16.2.1), namely

Hb+ 4O2
k2−→←−
k−2
Hb(O2)4.

Of course, there are more detailed models of hemoglobin chemistry, but the qualitative
behavior is affected little by these details. We write the conservation equations as

v
dW

dx
� DO2(σO2PO2 −W)+ 4k−2Y − 4k2ZW4, (17.17)

v
dY

dx
� k2ZW

4 − k−2Y, (17.18)

v
dZ

dx
� k−2Y − k2ZW

4, (17.19)

where W � [O2], Y � [Hb(O2)4], Z � [Hb], and DO2 is the oxygen exchange rate con-
stant. The last of these equations is superfluous, since total hemoglobin is conserved,
and so we take Z + Y � Z0. Notice further that (17.17) and (17.18) can be added to
obtain

v
d

dx
(W + 4Y ) � DO2(σO2PO2 −W). (17.20)

We expect oxygen uptake by hemoglobin to be fast compared to the transmural
exchange, so take Y to be in quasi-steady state, setting

Y � Z0
W4

K4O2 +W4
, (17.21)

where K4O2 � k−2/k2. On substitution into (17.20) we find

v
d

dx

(
W + 4Z0 W4

K4O2 +W4

)
� DO2(σO2PO2 −W). (17.22)
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More generally, if f (W) is the oxygen saturation curve for hemoglobin, then

v
d

dx
(W + 4Z0f (W)) � DO2(σO2PO2 −W). (17.23)

This equation is a nonlinear first-order ordinary differential equation, which, being
separable, can be solved exactly. The solution is given implicitly by∫ W2

W1

W + 4Z0f (W)
σO2PO2 −W

dW � DO2L

v
. (17.24)

However, this exact solution does not providemuch insight. It ismore useful to compare
(17.23) with (17.14), in which the flux of carbon dioxide was facilitated by the factor
Kc. Here, there is facilitation of oxygen flux by the factor 1+ 4Z0f ′(W). Clearly, the two
ways to exploit this facilitation are to have a high concentration of hemoglobin and to
use a saturation curve with a steep slope in the range of operating values.

The total flux of oxygen is given by

Q � A

∫ L

0
DO2(σO2PO2 −W)dx (17.25)

� Av

∫ L

0

d

dx
(W + 4Z0f (W))dx (17.26)

� Av(W + 4Z0f (W))|W1
W0
. (17.27)

For oxygen, this enhancement is substantial. For normal blood at 100 mm Hg oxygen
partial pressure, hemoglobin is 97% saturated, and the hemoglobin of 100 ml of blood
carries 19.4 ml of oxygen. By contrast, the same 100ml of blood contains only 0.3 ml of
dissolved (unbound) oxygen. When this hemoglobin is chemically pure, it can combine
with a total of 20 ml of oxygen. This implies that (using that 1 mole of a dissolved gas
fills 24.6 liters at room temperature) Z0 = 2.0 mM.

Incoming blood has a partial pressure of 40 mmHg, at which hemoglobin is about
75%saturated and alveolar air is at 104mmHg.A reasonable fit of the oxygen saturation
curve is given by the function f (W) � W4

K4O2
+W4 with KO2 � 30σ mm Hg. A slightly better

fit is obtained with the Hill equation f (W) � Wn

KnO2
+Wn , n � 2.5, KO2 � 26σmm Hg. Either

way, the oxygen flux is increased by hemoglobin by a factor of about 14.
Finally, using (17.24) we can find the rate of oxygen uptake as a function of length

along the capillary. In Fig. 17.6 is shown the partial pressure of oxygen, plotted as
a function of the dimensionless distance DO2x/v along the capillary. The significant
observation is that oxygen partial pressure rises steeply and nearly linearly, until it
saturates, comparing well with the experimental data shown in Fig. 17.5.

17.1.5 Carbon Monoxide Poisoning

Carbon monoxide poisoning occurs because carbon monoxide competes with oxygen
for hemoglobin binding sites. The goal of this section is to see how this competition
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for hemoglobin affects oxygen exchange and how carbon monoxide can be eliminated
from the blood.

To model this problem we assume that the chemistry for carbonmonoxide binding
with hemoglobin is the same as for oxygen, except that the affinity of carbon monox-
ide for hemoglobin is much larger (about 200 times) than the affinity of oxygen for
hemoglobin. Thus,

Hb+ 4CO
k2−→←−
k−2
Hb(CO)4.

The conservation equations for carbon monoxide gaseous exchange in the alveolus are
similar in form to those for oxygen, being (ignoring diffusion of the dissolved gases)

v
dU

dx
� DCO(σCOPCO −U)+ 4k−3S− 4k3ZU4, (17.28)

v
dS

dx
� k3ZU

4 − k−3S, (17.29)

where U � [CO], S � [Hb(CO)4], Z � [Hb], and DCO is the carbon monoxide exchange
rate constant. The balance of oxygen is governed by (17.17) and (17.18). Conservation
of hemoglobin implies that Z + Y + S � Z0.

As before, (17.20) holds, as does

v
d

dx
(U + 4S) � DCO(σCOPCO −U). (17.30)

Now we assume that both carbon monoxide and oxygen are in quasi-steady state, so
that

K4COS � ZU4, K4O2Y � ZW4, (17.31)
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where K4CO � k−3/k3, K4O2 � k−2/k2. It is convenient to introduce scaled variables w and
u with w � K−1

O2
W,u � K−1

COU. It follows from Z + Y + S � Z0 that

S � Z0
u4

1+w4 + u4
, (17.32)

Y � Z0
w4

1+w4 + u4
, (17.33)

so that

v
d

dx

(
w+ 4z0 w4

1+w4 + u4

)
� DO2(w

∗ −w), (17.34)

v
d

dx

(
u+ 4βz0 u4

1+w4 + u4

)
� DCO(u∗ − u), (17.35)

where z0 � Z0/KO2 , β � KCO/KO2 , w
∗ � K−1

O2
σO2PO2 , u

∗ � K−1
COσCOPCO.

While we cannot solve this system of differential equations explicitly, the difficulty
can be readily seen. Because β is large (on the order of 200), the total carbon monox-
ide concentration changes as a function of x slowly, much more slowly than does the
total oxygen concentration. Thus, w increases quickly to w∗, releasing some carbon
monoxide as it does so, while u + 4βz0 u4

1+w4+u4 remains essentially fixed. As a result,
in the length of the alveolus, oxygen is recharged, but very little carbon monoxide is
eliminated.

The lethality of carbon monoxide can be seen from a simple steady-state analysis.
Suppose thatu � u∗ is at steady statewith the environment, so that no carbonmonoxide
is gained or lost in the alveoli. The concentration of oxygen in the blood is proportional
to w+ 4z0 w4

1+w4+u4 , so that the rate of oxygen transport is proportional to

M � w∗ + 4z0 (w∗)4

1+ (w∗)4 + u4
−w0 − 4z0

w40

1+w40 + u4
,

where w0 is the alveolar input level and w∗ is the output level from the alveolus. When
there is no carbon monoxide present (i.e., when u � 0), the input and output levels
are 40 and 104 mm Hg, respectively, so that (with KO2 � 30σ mm Hg) w0 � 40/30 �
1.333, w∗ � 104/30 � 3.47. Thus, with normal metabolism, the required flow rate has
M � 53, where we have set z0 � 52. When carbon monoxide is present, this same flow
rate must be maintained (as the need of the tissues for oxygen remains unchanged),
but now the presence of u in the denominator changes things. KeepingM fixed, we see
that if u is greater than 4.64, then the incoming blood hasw0 < 0, so that the tissue is in
oxygen debt.With β � 200,u � 4.64 is equivalent to a carbonmonoxide partial pressure
of 0.7 mm Hg, a mere 0.1% by volume. In other words, an ambient concentration of
0.1% carbon monoxide leads to certain death because of oxygen depletion.
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Since βz0 is so large (on the order of 104), we can approximate the dynamics of
carbon monoxide by

4βz0v
d

dx

(
u4

1+ (w∗)4 + u4

)
� DCO(u∗ − u). (17.36)

If we set

F � u4

1+ (w∗)4 + u4
, (17.37)

we find that

dF

dx
� − DCO

4βz0v
(1+ (w∗)4)1/4

(
F

1− F

)1/4
, (17.38)

where we have taken u∗ = 0, assuming that the victim is placed in a carbon-monoxide-
free environment. Clearly, the rate of carbon monoxide elimination is proportional to
(1 + (w∗)4)1/4, which for large w∗ is linear in w∗. Thus, the rate of carbon monoxide
elimination can be increased by placing the victim in an environment of high oxygen.

In hospitals it is typical to place a carbon monoxide poisoning victim in an en-
vironment of oxygen at 2–2.5 atm. At 2 atmospheres (1 atm = 760 mm Hg), w∗ �
(2× 760/30) � 50.7, compared to w∗ = 3.5 at normal oxygen levels, giving an increase
in the rate of carbon monoxide elimination of about 14.

17.2 Ventilation and Perfusion

Gaseous exchange is mediated by the combination of ventilation of the alveoli with
inspired air and the perfusion of the capillaries with blood. It is the balance of these
two that determines the gas content of the lungs and of the recharged blood.

To see how this balance is maintained, suppose that V̇ is the volume flow rate
of air that participates in the exchange of the alveolar content. Not all inspired air
participates in this exchange, because some inspired air never reaches the terminal
bronchioles. The parts of the lung that are ventilated but do not participate in gaseous
exchange are called the anatomical dead space. In normal breathing, the total amount
of inspired air is about 500 ml per breath (men 630 ml; women 390 ml). Of this, 150
ml is anatomical dead space, so only 350 ml participates in alveolar gaseous exchange.
With 15 breaths per minute, V̇ is about 5250 ml/min.

Now suppose that Q is the volume flow rate of blood into and out of the alveolar
capillaries. Cardiac output is about 70ml per beat, so at 72 beats per minute,Q is about
5000 ml/min. The ratio V̇ /Q is called the ventilation–perfusion ratio, and it is the most
important determinant of lung–blood gas content.

If ci and ca are the concentrations of a gas in the inspired air and in the alveolar
air, respectively, then the flow of the gas is

V̇(ci − ca). (17.39)
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Similarly, the flow of the gas into the blood is given by

Q(cL − c0), (17.40)

where c0 and cL are the input and output capillary gas concentrations. The fact that
these two must be in balance leads to the equation

V̇

Q
� (cL − c0)
(ci − ca)

. (17.41)

From the previous section we learned that the two most important respiratory
gases, carbon dioxide and oxygen, are equilibrated when they leave the alveolus in the
capillaries. In other words, the partial pressures of carbon dioxide and oxygen in the
alveolus and in the blood leaving the pulmonary capillary are the same. Of course,
this is not true at high perfusion rates, but it is a satisfactory assumption at normal
physiological flow rates.

Because carbon dioxide is quickly converted to bicarbonate, the total blood carbon
dioxide (i.e., both free and converted) is given by

[CO2] � σCO2(1+ Kc)PCO2 . (17.42)

This implies that for carbon dioxide, the ventilation–perfusion ratio must satisfy

V̇

Q
� σCO2RT(1+ Kc)

(P0 − Pa)
Pa

, (17.43)

where P0 and Pa are the inflow and alveolar carbon dioxide partial pressures. Note that
we have taken the carbon dioxide partial pressure in the inspired air to be zero, we have
assumed that PL � Pa, and we have used the ideal gas law to express the atmospheric
carbon dioxide concentrations in terms of pressures.

For oxygen, the relationship between partial pressure and total blood oxygen (both
free and bound to hemoglobin) is determined from the hemoglobin saturation function
f (W) as

[O2] � W + 4Z0f (W), (17.44)

where Z0 is the total hemoglobin concentration, as in the previous section.
In these terms the ventilation–perfusion ratio must be

V̇

Q
� RT

(Pi − Pa)

{
Wa −W0 + 4Z0[f (Wa)− f (W0)]

}
, (17.45)

where the subscripts a, i, and 0 have the same interpretations as above. Here, as with
carbon dioxide, we assume that the partial pressure of oxygen in the alveolar air is the
same as the partial pressure in the blood leaving the alveolus, so thatWa � σO2Pa.

A plot of the alveolar partial pressures of carbon dioxide and oxygen as a function
of ventilation–perfusion ratio is shown in Fig. 17.7. This figure was determined as
follows. First, using Wa as a parameter and keeping W0 � 40σO2 mm Hg fixed, the
ventilation–perfusion curve for oxygen was found using (17.45). For this curve we used
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Figure 17.7 Alveolar partial pressure as a function of ventilation–perfusion ratio.

f (W) � W4

K4O2
+w4 with KO2 � 30σmm Hg, and Z0 � 2.2mM (RT � 1.7 × 104 mm Hg/M).

Then, we used (17.43) to find the carbon dioxide partial pressure as a function of
ventilation–perfusion. For this plot, PCO2 � 45mm Hg, and we chose Kc � 12 because
it gives a reasonable fit of the available data.

From this figure we see that the alveolar oxygen partial pressure is an increas-
ing function of V̇ /Q, while the alveolar carbon dioxide partial pressure is a decreasing
function thereof. In normal situations, the ventilation–perfusion ratio is about 1. An
increase in this ratio is called hyperventilation, and a decrease is called hypoventila-
tion. During hyperventilation, there is rapid removal of carbon dioxide, and the partial
pressure of carbon dioxide in the arterial blood drops below the normal level of 40
mm Hg. This results in less carbon dioxide available for carbonic acid formation, and
consequently blood pH rises above the normal level, resulting in respiratory alkalosis.
In hyperventilation there is no substantial change in oxygen concentration because the
hemoglobin is fully saturated.

The opposite situation, in which the ventilation–perfusion ratio drops, increases
carbon dioxide content and decreases oxygen content of the arterial blood. The in-
crease of carbon dioxide increases carbonic acid formation and decreases blood pH,
a condition referred to as respiratory acidosis. To compensate for these changes, the
blood gas concentration stimulates the carotid and aortic chemoreceptors to increase
the rate of ventilation.

In Fig. 17.8 is shown the volume fraction of gaseous exchange as a function of
ventilation–perfusion ratio. (Volume fraction of a gas is the fraction of gas in a given
volume, found as the ratio of partial pressure to total pressure.) Typical partial pressures
of the respiratory gases are shown in Table 17.1.

The oxygen that is taken in by the blood is consumed by metabolic processes to
produce carbon dioxide. However, the amount of carbon dioxide produced is generally
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Table 17.1 Partial pressures (in mm Hg) of respiratory gases as they enter and leave the
lungs.

Substance Atmospheric air Humidified air Alveolar air Expired air
N2 597.9 563.5 569.0 566.0
O2 159.0 149.3 104.0 120.0
CO2 0.3 0.3 40.0 27.0
H2O 3.7 47.0 47.0 47.0

less than the amount of oxygen consumed. The respiratory exchange rate R is the ratio
of carbon dioxide output to oxygen uptake, and is rarely more than one. When a person
is using carbohydrates for body metabolism, R is 1.0 because one molecule of carbon
dioxide is formed for every molecule of oxygen consumed. On the other hand, when
oxygen reacts with fats, a large share of the oxygen combines with hydrogen to form
water instead of carbon dioxide. In this mode, R falls to as low as 0.7. For a normal
person with a normal diet, R � 0.825 is considered normal.

Since the respiratory exchange rate is just the ratio of the two curves shown in Fig.
17.8, one can use that figure to determine the ventilation–perfusion ratio as a function
of the respiratory exchange rate, which is, in turn, determined by the metabolism.

For these figures, the inflow carbon dioxide and oxygen partial pressures were
fixed at 45 and 40 mm Hg, respectively. If, however, the metabolic rate and the type of
metabolismare taken into account, the inflowpartial pressures are determined by those
rates and are not fixed. For example, during strenuous exercise, the partial pressure of
oxygen in the tissue can drop to as low as 15 mmHg. However, the general result is the
same, namely that alveolar carbon dioxide partial pressure decreases with increasing
V̇ /Q and alveolar oxygen partial pressure increases.
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Figure 17.8 Volume fraction of gaseous exchange as a function of ventilation–perfusion ratio.
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Figure 17.9 Effects of increased arterial PCO2 and decreased arterial pH on the alveolar
ventilation rate. (Guyton and Hall, 1996, Fig. 41-3, p. 528.)

17.3 Regulation of Ventilation

While the exchange of gases takes place in the lungs, the control of the rate of ventilation
is accomplished in the brain. There, in the respiratory center, is located a chemosen-
sitive area that is sensitive to the concentrations of chemicals in the blood, primarily
carbon dioxide. Changes in blood PCO2 are detected, and this leads to changes in the
rate of breathing by activating or inhibiting the inspiratory neurons (described in the
next section). In Fig. 17.9 is shown the effect of carbon dioxide on ventilation rate.

To construct a model for this control, we let x denote the partial pressure of carbon
dioxide in the blood. Carbondioxide is produced at rate λbymetabolismand eliminated
by ventilation at the lungs. Thus,

dx

dt
� λ− αxV̇, (17.46)
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where V̇ is the ventilation rate, and we assume that the transport of carbon dioxide
through the lungs is linearly proportional to the concentration of carbon dioxide and
the ventilation rate.

Now we take the ventilation to be of the form shown in Fig. 17.9, for example, the
Hill equation

V̇(x) � Vm
xn

θn + xn
. (17.47)

Furthermore, we recognize that there is a substantial delay between ventilation of the
blood and the measurement of PCO2 at the respiratory center in the brain because the
transport of blood from the lungs back to the heart and then to the brain takes time.
Thus, our complete model becomes (Glass and Mackey, 1988)

dx

dt
� λ− αxV̇(x(t− τ)). (17.48)

Typical physical parameter values for the model are given in Table 17.2.
Before proceeding further with the analysis of this equation, it is worthwhile to

introduce dimensionless variables and parameters. We set x � θy, t � s
αVm

, τ � σ
αVm
, and

λ � θαVmβ and obtain

dy

ds
� β − yF(y(s− σ)), (17.49)

where F is a sigmoidal function, monotone increasing with a maximum of 1 as y → ∞.
Because the function yF(y) is monotone increasing in y, there is a unique steady-

state solution for (17.49). Furthermore, the steady-state solution is a monotone
increasing function of the parameter β, indicating that blood PCO2 and ventilation in-
crease as a function of steady metabolism. However, the dynamical (non-steady-state)
situation may be quite different.

To understand more about the dynamic behavior of this system of equations, we
perform a linear stability analysis. We suppose that the steady state is y � y∗, and set
y � y∗ + Y , substitute into (17.49), and assume that Y is small enough so that only
linear terms of the local Taylor series are necessary. The resulting linearized equation
for Y is

dY (s)
ds

� −F(y∗)Y (s)− y∗F′(y∗)Y (s− σ). (17.50)

Table 17.2 Physical parameters for the Mackey–Glass model of respiratory control.

λ � 6 mm Hg/min
Vm � 80 liter/min
τ � 0.25 min
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Figure 17.10 Sketch of the con-
struction of the function g(y ) �
F (y ) − yF ′(y ).
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Figure 17.11 Plots of F (y ) � yn

1+yn , F ′(y )
and g(y ), with n � 3.

Solutions of exponential formY � Y0e
µs exist provided thatµ satisfies the characteristic

equation

µ+ F(y∗)+ y∗F′(y∗)e−µσ � 0. (17.51)

Since there is a monotone relationship between y∗ and β, it is convenient to view y∗ as
an independent parameter.

The function

g(y) � F(y)− yF′(y) (17.52)

is important to the analysis that follows and has a nice geometrical interpretation.
This function is constructed by drawing a straight line from the point (y, F(y)) to y � 0
with slope F′(y), as illustrated in Fig. 17.10. The three functions F(y), F′(y), and g(y) are
shown in Fig. 17.11, in the case F(y) � y3

1+y3 .



534 17: Respiration

We wish to understand the behavior of the roots of the characteristic equation
(17.51). First, we observe that if g(y∗) is positive, then all roots of the characteristic
equation (17.51) have negative real part, so that the steady solution is stable. This
follows, because if the real part of µ is positive, then |µ + F(y∗)| > |µ + y∗F′(y∗)| >
|y∗F′(y∗)e−µσ |. Note that we are assuming that F, F′, and y are all positive.

The only real roots of (17.51) are negative. Thus, the only way the real part of a root
can change sign is if it is complex, a Hopf bifurcation. To see whether Hopf bifurcations
occur, we set µ � iω. If this is a root of (17.51), then of necessity, |iω+F(y∗)| � |y∗F′(y∗)|,
and thus |F(y∗)+ iω|2 � [F(y∗)]2+ω2 � [y∗F′(y∗)]2. In this case, it follows that y∗F′(y∗) >
F(y∗), which implies that g(y∗) < 0. We split (17.51) into real and imaginary parts,
obtaining

F(y∗)+ y∗F′(y∗) cosωσ � 0, (17.53)

ω − y∗F′(y∗) sinωσ � 0. (17.54)

It follows that ω �
√
(y∗F′(y∗))2 − (F(y∗))2 (provided that g(y∗) < 0) and that

tanωσ � − ω

F(y∗)
. (17.55)

The smallest root of this equation is on the interval π2 < ωσ < π, and for this root,

σ � 1
ω

[
π + tan−1

(
− ω

F(y∗)

)]
. (17.56)

We can view this information as follows. For a given y∗, we have the frequency ω
and the critical delay σ at which a Hopf bifurcation occurs. If the delay is smaller than
this critical delay, then the steady solution is stable, while if the delay is larger, then the
steady solution is unstable and an oscillatory solution is likely.

Plots of ω and σ are shown in Fig. 17.12. Steady solutions having σ greater than the
critical value of delay (17.56) are unstable. In this case, numerical simulations show
that there is a stable periodic solution of the governing equations, shown in Fig. 17.13.
Here is shown the dimensionless concentration y (shown solid) and the dimensionless
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ω

Figure 17.12 Plots of ω and σ at Hopf bifur-
cation points.
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Figure 17.13 Oscillatory solution of
the Mackey–Glass equation (17.49) with
parameters y ∗ � 0.8, σ � 10.0. Solu-
tion (carbon dioxide content) is shown
as solid curve, ventilation rate is shown
as dashed curve.

ventilation rate F(yσ) (shown dashed) as a function of time, with parameter values
β � 0.8, σ � 10.0.

An episode of periodic fluctuation of ventilation, depicted by this periodic solu-
tion, is called Cheyne–Stokes breathing. In this condition, the person breathes deeply
for a short interval and then breathes slightly or not at all for an additional interval,
then repeats the cycle, with a period of 40 to 60 seconds. Notice that Cheyne–Stokes
breathing can be caused by an increased delay in the transport of blood to the brain
or an increase in the negative feedback gain (the slope of F). The first type (delayed
transport) is likely to occur in patients with chronic heart failure, and the second type
(increased gain) occurs mainly in patients with brain damage, and is often a signal of
impending death.

17.4 The Respiratory Center

Breathing is controlled by a neural central pattern generator called the respiratory
center. The respiratory center is composed of three major groups of neurons located
at the base of the brain. The dorsal respiratory group, located in the dorsal portion of
the medulla, mainly causes inspiration; the ventral respiratory group can cause either
inspiration or expiration, depending upon which neurons in the group are stimulated;
and the pneumotaxic center, located above the medulla in the superior portion of the
pons, helps control the rate and pattern of breathing.

Thebasic rhythmof respiration is generatedmainly by the dorsal group, by emitting
repetitive bursts of inspiratory action potentials. While the basic cause of these bursts
is unknown, in primitive animals, neural networks have been found in which one set of
neurons stimulates a second set, which in turn inhibits the first set, leading to periodic
bursting activity that lasts throughout the lifetime of the animal.
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Figure 17.14 A mutual inhibition network for the
control of respiration.

The inspiratory signal is said to be a ramp signal, as it begins slowly and increases
steadily for about 2 seconds, whereupon it abruptly ceases for the next 3 seconds before
a new cycle begins. During normal quiet breathing, the ventral respiratory group is
almost totally inactive. Expiration results primarily from elastic recoil of the lungs and
thoracic cage.

In addition to neural mechanisms operating entirely within the brain, reflex signals
from the periphery also help control respiration. Located in the walls of the bronchi
and bronchioles throughout the lungs are stretch receptors that transmit signals to
the dorsal respiratory group. Thus, when the lungs become overly inflated, the stretch
receptors activate a feedback response that switches off the inspiratory ramp and stops
further inspiration. This reflex is called the Hering–Breuer inflation reflex.

The real mechanism for the generation of the respiratory pattern is not known.
However, a speculative, qualitative model for a neural network that can control breath-
ing can be built using two neurons, or clumps of neurons, that inhibit each other (von
Euler, 1980;Wyman, 1977), as illustrated in Fig. 17.14. (An alternatemodel is suggested
in Exercise 12.) We suppose that there are two neurons with time-dependent outputs
(their firing rates) I1 and I2 governed by

τ1
dI1

dt
+ I1 � F1, (17.57)

τ2
dI2

dt
+ I2 � F2, (17.58)

where F1 and F2 are related to the firing rates of inhibitory and excitatory inputs. For
simplicity we assume that the arrangement is symmetric, so that the time constants
of the neuronal output are the same, τ1 � τ2 � τ.We further assume that the neurons
have steady excitatory inputs, E1 and E2, respectively, and that they are cross-inhibited,
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so that the output from neuron 1 inhibits neuron 2, and vice versa. Thus we take
F1 � F(E1 − I2) and F2 � F(E2 − I1). The function F(x) is zero for x < 0 (so that the
input and output are never negative), and a positive, increasing function of x for x > 0.
Thus, we have the system of differential equations

τ
dI1

dt
+ I1 � F(E1 − I2), (17.59)

τ
dI2

dt
+ I2 � F(E2 − I1). (17.60)

At this point there is no feedback from the lungs.
Equations (17.59) and 17.60) are easily studied using phase-plane analysis. There

are three different possible phase portraits depending on the relative sizes of E1 and
E2, two of which are shown in Figs. 17.15 and 17.16. In what follows we assume that
F′ > 1 for all positive arguments, although this restriction can be weakened somewhat.
If E2 is much larger than E1, so that E1 < F(E2) and E2 > F(E1), then, as shown in Fig.
17.15, there is a unique stable fixed point at I2 � F(E1), I1 � 0, in which neuron 2 is
firing and neuron 1 is quiescent. If E1 is much larger than E2, then the reverse is true,
namely, there is a unique stable fixed point at I1 � F(E2), I2 � 0, with neuron 1 firing
and neuron 2 quiescent. There is an intermediate range of parameter values when E1
and E2 are similar in size, E1 < F(E2) and E2 < F(E1), shown in Fig. 17.16, for which
there are three steady states, the two on the axes, and one in the interior of the positive
quadrant. The third (interior) steady state is a saddle point, and is therefore unstable.

This neural network exhibits hysteresis. Supposewe slowlymodulate the parameter
E1. If it is initially small (compared to E2, which is fixed at some positive level), then
neuron 2 fires steadily and inhibits neuron 1. As E1 is increased, this situation remains
unchanged, even when E1 and E2 are of similar size, when two stable steady solutions
exist. However, when E1 becomes sufficiently large, the steady-state solution at I1 �
F(E2), I2 � 0 suddenly disappears, and the variables I1, I2 move to the opposite steady
state at I2 � F(E1), I1 � 0. Now if E1 is decreased, when E1 is small enough there

E2

E1

I2

I1

I2=F(E2-I1)

I1=F(E1-I2)

F(E2)

F(E1) Figure 17.15 Phase portrait for mutual inhibition
network with E1 < F (E2) and E2 > F (E1).
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F(E2)

F(E1)
Figure 17.16 Phase portrait for mutual inhibition
network with E1 < F (E2) and E2 < F (E1).

is a reverse transition back to the steady state at I1 � F(E2), I2 � 0, completing the
hysteresis loop.

To use this hysteresis to control breathing, we model the diaphragm as a damped
mass–spring system driven by I1, the (firing rate) output from neuron 1, the inspiratory
neuron:

m
d2x

dt2
+ µ

dx

dt
+ kx � I1. (17.61)

We model the effect of the stretch receptors by a function f (x) that is a monotone
increasing function of diaphragm displacement x. The stretch receptors are assumed
to excite only neuron 2, so that the output variables are governed by

τ
dI1

dt
+ I1 � F(E1 − I2), (17.62)

τ
dI2

dt
+ I2 � F(E2 − I1 + f (x)). (17.63)

We could allow stretch receptors to inhibit neuron 1 as well.
With this model, oscillation of the diaphragm is assured if the time constant τ is

sufficiently small. The stretch receptors act to modulate the excitatory inputs, so that
as the lung expands, they excite neuron 2. With E2 + f (x) sufficiently large, neuron
1, the inspiratory neuron, is switched off. With no inspiratory input, the lung relaxes,
returning f (x) toward zero and decreasing the excitation to neuron 2. This removes
the inhibition to neuron 1 and allows it to fire once again. Thus, if parameters are
adjusted properly, the hysteresis loop is exploited, and the inspiration–expiration cycle
is established. The oscillations are robust and easily established.

This oscillation can be externally controlled. For example, by increasing E2, the
cycle can be stopped after expiration, whereas by increasing E1 the inhibition of the
stretch receptors can be overridden and inspiration lengthened (as in, take a deep
breath). Decreasing E1 shortens the inspiration time and can stop breathing altogether.

In Fig. 17.17 is shown a plot of the two inhibitory variables I1 and I2 (shown dashed)
plotted as functions of time. Parameter values for this simulation were τ � 1.0,m �
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Figure 17.17 Neural output variables I1 and I2 (dashed) shown as functions of time.

0.5, µ � 5.0, k � 1.0, E1 � 0.5, E2 � 0.3. The function F was specified as F(x) � 2x2

0.2+x for
positive x and zero otherwise, and the stretch response curve was taken to be f (x) �
x3/(1+ x3).

17.5 Exercises
1. Give a “proper” mathematical derivation of (17.14) by introducing appropriate dimension-

less parameters. What dimensionless parameter must be small for this approximation to
be valid?
Answer: ε � DCO2

k−1[H+] .

2. (a) Develop a model of carbon dioxide and oxygen transport that includes the oxyhe-
moglobin buffering reaction and the effect of free hydrogen ions on the concentration
of bicarbonate. Does the inclusion of proton exchange improve or hinder the rate at
which oxygen and carbon dioxide are transported into or out of the blood?

(b) Estimate the overall effect of this exchange by assuming that the pH of pulmonary
venous blood is about 0.04 lower than that of arterial blood.

3. Develop a model of CO2 transport that accounts for its competitive binding with Hb. What
is the effect of this binding on total carbon dioxide and oxygen flux?

4. Construct a simple model for the total oxygen and total carbon monoxide in the blood.
Assume that the circulatory system is a well-mixed container and that oxygen is removed
by metabolism, while oxygen is added and carbon monoxide eliminated during transport
through the lungs. Use the models of Section 17.1.5 to determine reasonable transfer rate
functions. Estimate the parameters of the model and use numerical computations to de-
termine the half-clearance times for elimination of carbon monoxide at different oxygen
levels. How well does your model fit the experimental data shown in Table 17.3?
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Table 17.3 Experimental half-clearance times for elimination of carbon monoxide from the
blood (Pace et al., 1950; also see Exercise 4).

O2 in atm Half-clearance time (min)
0.21 249
1.0 47
2.5 22

Table 17.4 Alveolar gas concentration and oxygen saturation at different altitudes. The last
column shows the alveolar PO2 when breathing pure oxygen at atmospheric pressure. At this

pressure, O2 saturation is 100%. (Guyton and Hall, 1996, Table 43-1, p. 550.)

Barometric PO2 Alveolar O2 Alveolar
Pressure in air PO2 Saturation PO2

(in air) (in air) (in oxygen)
Altitude (ft) (mm Hg) (mm Hg) (mm Hg) (%) (mm Hg)

0 760 159 104 97 673
10,000 523 110 67 90 436
20,000 349 73 40 73 262
30,000 226 47 18 24 139

5. Suppose the respiratory exchange rate is fixed. Show that there is a linear relationship
between the alveolar carbon dioxide and oxygen partial pressures.

6. (a) Assume that regulatory mechanisms maintain the arterial oxygen partial pressure at
40 mm Hg and the ventilation–perfusion ratio at 1. Find the alveolar PO2 and the
oxygen saturation, leaving the alveolus as a function of atmospheric PO2 .

(b) Data are shown in Table 17.4 for breathing normal air or breathing pure oxygen. What
assumption from part 6a is apparently wrong? From the data, determine the arterial
oxygen partial pressure.

7. Devise a different model in which metabolism and ventilation are held fixed. How do the
alveolar PO2 and O2 saturation vary as a function of atmospheric pressure?

8. Using data from Table 17.4, estimate the altitude at which incoming alveolar blood has zero
PO2 , at normal metabolism.

9. Determine the red blood cell count (concentration of hemoglobin) that is necessary
to maintain constant venous oxygen partial pressure as a function of altitude at fixed
metabolism.

10. Find the rate of carbon monoxide clearance as a function of external PO2 , with fixed
metabolism and ventilation.

11. (a) Determine the structure of stable steady solutions of equations (17.59–17.60) in the
(E1, E2) parameter plane using F(x) � 2x2

0.2+x for positive x and zero otherwise.

(b) Numerically simulate the system of equations (17.61–17.63) using the parameters in
the text. Plot the function E2+ f (x) as a function of time in the above parameter plane
to see how hysteresis is exploited by this system.
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12. Consider the following as a possible model for the respiratory center. Two neural FitzHugh–
Nagumo oscillators have inhibitory synaptic inputs, so that

dvi

dt
� f (vi,wi)− sigs(vi − vθ), (17.64)

τv
dwi

dt
� w∞(v)−wi, (17.65)

for i � 1,2. The synaptic input si is someneurotransmitter that is releasedwhen the opposite
neuron fires:

dsi

dt
� αs(1− si)xjF(vj)− βssi, j �� i, (17.66)

and the amplitude of the release xj decreases gradually when the neuron is firing, via

dxi

dt
� αx(1− xi)− βxF(vi)xi. (17.67)

(a) Simulate this neural network with f (v,w) � 1.35v(1 − 1
3v

2) − w, w∞(v) � tanh(5v),
F(v) � 1

2 (1 + tanh 10v), and with parameters τv � 5, vθ � −2, αs � 0.025, βs � 0.002,
αx � 0.001, βx � 0.01, gs � 0.19.

(b) Give an approximate analysis of the fast and slow phase portraits for these equations
to explain how the network works.

(c) How does this bursting oscillator compare with those discussed in Chapter 6?

(d) What features of this model make it a good model for the control of the respiratory
system and what features are not so good?
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Muscle

Muscle cells resemble nerve cells in their ability to conduct action potentials along
their membrane surfaces. In addition, however, muscle cells have the ability to trans-
late the electrical signal into a mechanical contraction, which enables the muscle cell
to perform work. There are three types of muscle cells, namely skeletal muscle, which
moves the bones of the skeleton at the joints; cardiac muscle, whose contraction en-
ables the heart to pump blood; and smooth muscle, which is located in the walls of
blood vessels and contractile visceral organs. Skeletal and cardiac muscle cells have
a banded appearance under a microscope, with alternating light and dark bands, and
thus they are called striatedmuscle. They have similar (though not identical) contractile
mechanisms. Smooth muscle, on the other hand, is not striated, and its physiology is
considerably different from the other two types of muscle. Because of the tremendous
diversity of smooth muscle physiology, in this chapter we discuss only the contractile
mechanisms of striated muscle.

Single skeletal muscle cells are elongated cylindrical cells with several nuclei. Each
cell contains numerous cylindrical structures, called myofibrils, surrounded by the
membranous channels of the sarcoplasmic reticulum (Fig. 18.1). Myofibrils are the
functional units of skeletal muscle, containing protein filaments that make up the con-
tractile unit. Each myofibril is segmented into numerous individual contractile units
called sarcomeres, each about 2.5 µm long. The sarcomere, illustrated schematically in
Fig. 18.2, is made up primarily of two types of parallel filaments, designated as thin and
thick filaments. Viewed end on, six thin filaments are positioned around each central
thick filament in a hexagonal arrangement. Viewed along its length, there are regions
where thin or thick filaments are overlapping or nonoverlapping. At the end of the
sarcomere is a region, called the Z-line, where the line filaments are anchored. Thin
filaments extend from the Z-lines at each end toward the center, where they overlap
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Figure 18.1 Schematic diagram of a skeletal muscle cell. (Berne and Levy, 1993, p. 283, Fig.
17-2.)

with thick filaments. The regions where there is no overlap, containing only thin fil-
aments, are called I-bands, and the regions containing myosin (thick) filaments (with
some overlap with thin filaments) are called A-bands. The central region of the sar-
comere, containing only thick filaments, is called theH-zone. During contraction, both
the H-zone and the I-bands shorten as the overlap between thin and thick filaments
increases.

Muscle contraction is initiated by an action potential transmitted across a synapse
from a neuron. This action potential spreads rapidly across the muscle membrane,
spreading into the interior of the cell along invaginations of the cell membrane called
T-tubules. T-tubules form a network in the cell interior, near the junction of the A-
and I-bands, and increase the surface area over which the action potential can spread.
They enable the action potential to reach quickly into the cell interior. Voltage-gated
Ca2+ channels are opened by the action potential, and Ca2+ enters the cell, initiating
the release of further Ca2+ from the sarcoplasmic reticulum (Chapter 5). The resulting
high intracellular Ca2+ concentration causes a change in themyofilament structure that
allows the thick filaments to bind and pull on the thin filaments, resulting in muscle
contraction.

Excellent reviews of muscle physiology, and the development of models for muscle
are given by White and Thorson (1975) and Huxley (1980).

18.1 Crossbridge Theory

Thick filaments contain the protein myosin, which is made up of a polypeptide chain
with a globular head. These heads constitute the crossbridges that interact with the thin
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Figure 18.2 Longitudinal section (top panel) and cross-section (lower panels) of a sarcomere
showing its organization into bands. (Berne and Levy, 1993, p. 283, Fig. 17-3.)

filaments to form bonds that act in ratchet-like fashion to pull on the thin filaments.
In addition, the myosin heads have the ability to dephosphorylate ATP as an energy
source.

Thin filaments contain the three proteins actin, tropomyosin, and troponin. Each
actin monomer is approximately spherical, with a radius of about 5.5 nm, and they
aggregate into a double-strandedhelix,with a complete twist about every 14monomers.
Because the coil is double-stranded, this structure repeats every 7 monomers, or about
every 38 nm. Tropomyosin, a rod-shaped protein, forms the backbone of the double-
stranded coil. The troponin consists of a number of smaller polypeptides, which include
a binding site for calcium as well as a portion that blocks the crossbridge binding
sites on the actin helix. When calcium is bound, the confirmation of the troponin–
tropomyosin complex is altered just enough to expose the crossbridge binding sites. In
Fig. 18.3 we show a scale drawing of the probable way in which the actin, tropomyosin,
and myosin proteins fit together.

Contraction takes place when the crossbridges bind and generate a force causing
the thin filaments to slide along the thick filaments. A schematic diagram of the cross-
bridge reaction cycle is given in Fig. 18.4, with the accompanying physical arrangement
shown in Fig. 18.5. Before binding and contraction, ATP is bound to the crossbridge
heads of the myosin (M), and the concentration of calcium is low. When the calcium
concentration increases, calcium ions bind to the troponin–tropomyosin complex, ex-



18.1: Crossbridge Theory 545

Figure 18.3 A: Scale drawing of actin, myosin, and tropomyosin proteins. B: Scale drawing
of the thick and thin filaments (labeled the A and I filaments here), showing the probable way
in which the actin, myosin, and tropomyosin proteins fit together. Troponin, which is bound to
tropomyosin, is not included in the diagram. (White and Thorson, 1975, Fig. 9, parts A and B
(i).)

posing the crossbridge binding sites on the actin filament (A). Where possible, a weak
bond between actin and myosin is formed. Release of the phosphate changes the weak
bond to a strong bond and changes the preferred configuration of the crossbridge from
nearly perpendicular to a bent (foreshortened) position. While the crossbridge is in
anything but this energetically preferred, bent state, there is an applied force that acts
to pull the thin filament along the thick filament. The movement of the crossbridge to
its newly preferred configuration is called the power stroke. Almost immediately upon
reaching the preferred bent configuration, the crossbridge releases its ADP and binds
another ATP molecule, causing dissociation from the actin binding site and return to
its initial perpendicular and unbound position. ATP is then dephosphorylated, yield-
ing ADP, phosphate, and the stored mechanical energy for the next cycle. Thus, during
muscle contraction, each crossbridge cycles through sequential binding and unbinding
to the actin filament.

As we will see in the following sections, to construct quantitative models of cross-
bridge binding it is necessary to know how many actin binding sites are available to
a single crossbridge. One possibility is that the crossbridge must be precisely oriented
to the actin binding site, and thus, in each turn of the helix, only one binding site is
available to each crossbridge. In other words, from the point of view of the crossbridge,
the binding sites have an effective separation of about 38 nm. Because of the physical
constraints on each crossbridge, this means that at any time, there is only a single
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Figure 18.4 Major reaction steps in the crossbridge cycle. M denotes myosin, and A denotes
actin.

binding site available to each crossbridge. This is the assumption behind the Huxley
model, which we consider in detail below.

However, from the distribution of actin binding sites and crossbridges shown in
Fig. 18.3, it is plausible that this assumption is not correct. Perhaps, depending on the
flexibility of the actin filament, each crossbridge has a number of potential binding sites.
In our discussion we concentrate onmodels for the two extreme cases: first, where each
crossbridge has only a single available binding site, and second, where each crossbridge
has a continuous array of available binding sites. Intermediate models, in which the
crossbridge has a small number of discrete binding sites available, are considerably
more complex and are mentioned only briefly.

Because of the sarcomere structure, the tension a muscle develops depends on the
muscle length. In Fig. 18.6 we show a curve of isometric tension as a function of sar-
comere length. By isometric tension, wemean the tension developed by a muscle when
it is held at a fixed length and repeatedly stimulated (i.e., with a high-frequency peri-
odic stimulus). Under these conditions the muscle goes into tetanus, a state, caused by
saturating concentrations of calcium in the sarcoplasm, in which the muscle is contin-
ually attempting to contract. Note that the muscle cannot actually contract, because
it is held at constant length, although it must go through the chemistry cycle of the
power stroke, since the development of tension requires that energy be consumed.

At short lengths, overlap of the thin filaments causes a drop in tension, but as this
overlap decreases (as the length increases) the tension rises. However, when the length
is large, there is less overlap between the thick and thin filaments, so fewer crossbridges
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Figure 18.5 Position of crossbridge components during the major steps in the crossbridge
cycle.

bind, and less tension develops. When there is no overlap between the thick and thin
filaments, the muscle is unable to develop any tension.

Skeletal muscle tends to operate at lengths that correspond to the peak of the
isometric length–tension curve, and thus in many experimental setups the tension the
muscle develops does not depend significantly on themuscle length. However, the same
is not true for cardiac muscle, which considerably complicates theoretical studies of
this muscle type. For these reasons we restrict our attention to models based on data
from skeletal muscle. Peskin (1975) presents a detailed description of some theoretical
models of cardiac muscle.

18.2 The Force–Velocity Relationship: The Hill Model

One of the earliest models for a muscle is due to A.V. Hill (1938) and was constructed
before the details of the sarcomere anatomy were known. Hill observed that when a
muscle contracts against a constant load (an isotonic contraction), the relationship
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Figure 18.6 A: Isometric tension as a function of the length of the sarcomere. B: schematic
diagrams of the arrangement of the thick and thin filaments for the six different places indicated
in panel A. (Gordon et al., 1966, reproduced in White and Thorson, 1975, Fig. 14.)

between the constant rate of shortening v and the load p is well described by the force–
velocity equation

(p+ a)v � b(p0 − p), (18.1)
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Figure 18.7 The relationship between the load on a muscle and the velocity of contraction
(Hill, 1938; Fig. 12). The symbols are the data points, while the smooth curve is calculated from
(18.1) using the parameter values a � 357 grams (of weight) per square centimeter of muscle
fiber (g-wt/cm2), a/p0 � 0.22, b � 0.27 muscle lengths per second.

where a and b are constants that are determined by fitting to experimental data in a way
that we discuss presently. A typical force–velocity curve is plotted in Fig. 18.7. When
v � 0, then p � p0, and thus p0 represents the force generated by the muscle when the
length is held fixed; i.e., p0 is the isometric force. As we discussed above, the tension
generated by a skeletal muscle in isometric tetanus is approximately independent of
length, and thus p0 is approximately independent of length also. When p � 0, v � bp0/a,
which is the maximum speed at which a muscle is able to shorten.

contractile

elastic x

L

l Figure 18.8 Schematic diagram of Hill’s two-element
model for skeletal muscle. The muscle is assumed to
consist of an elastic element in series with a contractile
element with a given force–velocity relationship.
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In an attempt to explain these observations, wemodel amuscle fiber as a contractile
elementwith the given force–velocity relationship, in serieswith an elastic element (Fig.
18.8). In some versions of the model a parallel elastic element is included (see Exercise
1), but as it plays no essential role in the following discussion, it is omitted here. As
shown in Fig. 18.8, we let l denote the length of the contractile element, we let x denote
the length of the elastic element, and we let L � l+x denote the total length of the fiber.
Then, letting v denote the velocity of contraction of the contractile element, we have

v � −dl
dt
, (18.2)

where, by assumption, v is related to the load on the muscle by the force–velocity
equation (18.1). To derive a differential equation for the time dependence of p, we
note that because the elastic element is in series with the contractile element, the two
experience the same force. We assume that the load on the elastic element is a function
of its length p � P(x) and then use the chain rule and the force–velocity equation to
obtain

dp

dt
� dP

dx

dx

dt

� dP

dx

[
dL

dt
− dl

dt

]

� dP

dx

[
dL

dt
+ v

]

� dP

dx

[
dL

dt
+ b(p0 − p)

p+ a

]
. (18.3)

It remains to determine dP/dx.
Hill made the simplest possible assumption, that the elastic element is linear, and

thus

P � α(x− x0), (18.4)

where x0 is its resting length. Thus, dP/dx � α, and the differential equation for p is

dp

dt
� α

[
dL

dt
+ b(p0 − p)

p+ a

]
. (18.5)

18.2.1 Fitting Data

Suppose a muscle in tetanus is held at a fixed tension until it reaches its isometric
length, and then the tension is suddenly decreased and held fixed at a lower value. A
typical result is shown in Fig. 18.9A, where we plot the muscle length against time.
As soon as the tension is reduced, the muscle length decreases (plotted in the vertical
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direction) as the elastic element contracts. After a transition period during which the
length exhibits small oscillations, the muscle decreases in length at a constant rate.
Plotting the rate of decrease against the constant applied tension gives one point on
the force–velocity curve. More specifically, if the tension is jumped from p0 to p1, the
muscle contracts at the constant rate v, where

(p1 + a)v � b(p0 − p1). (18.6)

Repeating the experiment for tension jumps of different magnitudes (shown in Fig.
18.9B) one finds a series of points on the force–velocity curve, through which one can
fit the force–velocity equation to obtain values for a, b, and p0. Note that this procedure
is valid only if p0 does not change during the course of the experiment. In other words,
as the muscle shortens with constant velocity, it must be that p0 remains unchanged.
As we discussed above, this is an acceptable assumption for skeletal muscle operating
near the peak of the length–tension curve.

Similarly, the characteristics of the elastic element can be determined from the
initial jump in length. If one extrapolates the line of constant speed back to the time of
the tension jump (line xyz in Fig. 18.9A), then the distance 0z is the change in length
of the elastic element. This relies on the assumption that the force–velocity properties
of the muscle change instantaneously with the change in tension.

Figure 18.9 A: Plot of length change against time after a step decrease in tension. The length
decreases in a sudden jump, and then, after an initial oscillatory phase, decreases at constant
velocity. (Jewell and Wilkie, 1958; reproduced in White and Thorson, 1975, Fig. 5.) B: Length
change as a function of time from a series of tension step experiments. The baseline of each
trace has been shifted for clarity, and each dot on the horizontal axis denotes 1 ms. For each
step, the value to the right of the curve denotes the final value of the tension in grams of weight
(g-wt). (Jewell and Wilkie, 1958; reproduced in White and Thorson, 1975, Fig. 6.)
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18.2.2 Some Solutions of the Hill Model

Isometric tetanus solution
If a muscle at rest is put into tetanus by repeated stimulation, the isometric tension
builds up over a period of time. Because the tension is measured isometrically, the
length of the muscle does not change, and thus dL/dt � 0. Hence, the differential
equation for the tension is

dp

dt
� α

[
b(p0 − p)
p+ a

]
. (18.7)

This is a separable equation, so after separation, we integrate from 0 to t and use the
initial condition p(0) � 0 to obtain

− p− (p0 + a) log
(
p0 − p

p0

)
� αbt, (18.8)

which describes the time course of the change in tension. As t → ∞, p → p0, as
expected.

Release at constant velocity
Suppose amuscle, held originally at its isometric tension p0, is allowed to contract with
constant velocity u. It seems reasonable that the muscle tension should decrease until
it reaches the value pu determined from the force–velocity curve for a velocity u. The
differential equation for p is

dp

dt
� α

[
−u+ b(p0 − p)

p+ a

]
, (18.9)

with initial condition p(0) � p0. As before, we assume that p0 does not change during
the course of the contraction. The solution is

p0 − p+ (pu + a) log
(
p0 − pu

p− pu

)
� αt(b+ u), (18.10)

where pu is defined by (pu + a)u � b(p0 − pu). As t → ∞, p → pu, and thus our intuitive
reasoning is confirmed.

Response to a jump in length
Possibly the most interesting solution is the response to a step decrease in length, as
this solution has been used to show that the Hill model does not provide an accurate
description of all aspects of muscle behavior (Jewell and Wilkie, 1958).

First, Jewell and Wilkie determined the parameters of the Hill model by the series
of experiments described above (Fig. 18.9). They then used the Hill model to predict
the response of the muscle to a step decrease in muscle length. Suppose that a muscle,
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Length

Tension

Time

A

B

Figure 18.10 A: Schematic diagram of the response to a step decrease in length. B: Compar-
ison of the Hill model to the data of Jewell and Wilkie (1958). The closed circles are computed
from the Hill model, while the open circles are data points from two slightly different ex-
perimental procedures. (Jewel and Wilkie, 1958; reproduced in White and Thorson, 1975,
Fig. 7.)

originally held at its isometric tension p0, is suddenly decreased in length. One expects
the muscle tension to suddenly decrease, but then slowly increase back to p0. This is
because the isometric tension is independent of length but should take some time to
develop at the new length. A typical solution is sketched schematically in Fig. 18.10A.

More precisely, suppose that the length of the muscle as a function of time is given
by

L(t) � L1 + L0 − L0H(t), (18.11)
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whereH(t) is the usual Heaviside function, and where L1 and L0 are constants, L0 being
the magnitude of the length step. Thus

dL

dt
� −L0δ(t), (18.12)

where δ(t) denotes the Dirac delta function. Substituting this expression into the
differential equation for p gives

dp

dt
� α

[
−L0δ(t)+ b(p0 − p)

p+ a

]
, (18.13)

p(0−) � p0. (18.14)

If we integrate (18.13) (formally) from t � −ε to t � ε and then let ε → 0, we get

p(0+)− p(0−) � −αL0, (18.15)

and thus the delta function causes a jump of −αL0 in p at the origin. Hence, (18.13)
and (18.14) can be written as the initial value problem

dp

dt
� α

[
b(p0 − p)
p+ a

]
, t > 0, (18.16)

p(0) � p0 − αL0. (18.17)

Since we have reduced the problem to the isometric tetanus problem studied earlier
(although with a different initial condition), the solution is easily calculated.

When the solution is predicted from theHillmodel in thisway, it does not agreewith
experimental observations on the tension recovery following a step decrease in length.
In fact, the tension recovers less quickly than is predicted by the model, as illustrated
in Fig. 18.10B. Here, the model computations (shown as closed circles), consistently
lie above the data points (shown as open circles). These observations, made possible
by the improvements in experimental technique in the 20 years after Hill’s model was
first proposed, forced the conclusion that the Hill model has serious defects. In partic-
ular, the assumption that the force–velocity relationship (18.1) is satisfied immediately
after a change in tension is a probable major source of error. At the same time that
Hill’s model was shown to have problems, much more was being discovered about the
structure of the sarcomere. This motivated the construction of a completely different
type of model, based on the kinetics of the crossbridges rather than on heuristic elastic
and contractile elements. The first model of this new type was due to Huxley (1957),
and has been the basis for the majority of subsequent models of muscle behavior.

18.3 A Simple Crossbridge Model: The Huxley Model

To formulate amathematicalmodel describing crossbridge interactions in a sarcomere,
we suppose that a crossbridge can bind to an actin binding site at position x, where x
measures the distance along the thin filament to a binding site from the crossbridge,
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and x � 0 corresponds to the position in which the bound crossbridge exerts no force
during the power stroke on the thin filament (Fig. 18.11). Crossbridges can be bound
to a binding site with x > 0, in which case they exert a contractile force, or they can be
bound to a site with x < 0, in which case they exert a force that opposes contraction. A
crossbridge bound to a binding site at x is said to have displacement x. In his original
model Huxley assumed that the actin binding sites were sufficiently far apart that each
crossbridge could be associatedwith a unique binding site. If wemake this assumption,
each crossbridge, whether bound or not, can be associated with a unique value of x.
Let ρ denote the number of crossbridges (either bound or unbound) with displacement
x. For simplicity we assume that ρ is independent of x and t. Hence the distribution
of bound crossbridges changes with time, but the distribution of all crossbridges does
not change. We then define n(x, t) to be the fraction of crossbridges with displacement
x that are bound. Note that it is not correct to let ρ be a constant independent of x,
as this implies that there are crossbridges with unrealistically large displacements.
More accurately, one should assume that there is some constant x0 such that ρ(x) is a
constant on the interval −x0 < x < x0 and is zero everywhere else. This eliminates any
crossbridges with displacements that are unphysiologically large. However, as we will
see, one can achieve a similar effect by choosing the model functions appropriately.

Next, we drastically simplify the reaction mechanism, and assume that a cross-
bridge can be in one of two states, namely either unbound (U), or strongly bound (B)
and thereby generating a force. We suppose further that the binding and unbinding of
crossbridges is described by the simple reaction scheme

U
f (x)−→←−
g(x)

B,

where the rate constants are functions of the displacement x.

Thin
filament

Thick
filament

Crossbridge

Binding site

x

Unstressed
position

v  > 0 is contraction

Figure 18.11 Schematic diagram of the Huxley crossbridge model.
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The conservation law for the fraction of bound crossbridges is

∂n

∂t
− v(t)

∂n

∂x
� (1− n)f (x)− ng(x), (18.18)

where v(t) is the velocity of the actin filament relative to the myosin filament. For
notational consistency, we assume that v > 0 denotes muscle contraction.

Every time a crossbridge is bound, one ATP molecule is dephosphorylated, so the
rate of energy release, φ, for this process is given by

φ � ρε

∫ ∞

−∞
(1− n(x, t))f (x)dx, (18.19)

where ε is the chemical energy released by one crossbridge cycle. Sincen is, in general, a
function of the contraction velocity, φ is also. We also suppose that a bound crossbridge
is like a spring, generating a restoring force r(x) related to its displacement. Hence, the
total force exerted by the muscle is

p � ρ

∫ ∞

−∞
r(x)n(x, t)dx. (18.20)

To find the force–velocity relationship for muscle, we assume that the fiber moves
with constant velocity, so that ∂n/∂t � 0. Then, the steady distributionn(x) is the solution
of the first-order differential equation

− v
dn

dx
� (1− n)f (x)− ng(x). (18.21)

The solution of this differential equation is easily understood. The function n(x)
“tracks” the quasi-steady-state solution f (x)

f (x)+g(x) at a rate that is inversely proportional
to v. Thus, if v is small, n(x) is well approximated by the quasi-steady-state solution,
whereas if v is large, n(x) changes slowly as a function of x. From this we make two
observations. First, the force is largest at small velocities. In fact, at zero velocity, the
isometric force is

p0 � ρ

∫ ∞

−∞
r(x)

f (x)
f (x)+ g(x)

dx. (18.22)

Second, at large velocities, the distribution n(x) has small amplitude, and so the force
is small. The force decreases because the amount of time during which a crossbridge is
close to a binding site is small, and so binding is less likely, with the result that a smaller
fraction of crossbridges exerts a contractile force. Another factor is that at higher veloc-
ities a greater number of crossbridges are carried into the x < 0 region before they can
dissociate, hence generating a force opposing contraction. It is intuitively reasonable
that at some maximum velocity, the force generated by the crossbridges with x < 0
exactly balances the force generated by those with x > 0, at which point no tension
is generated by the muscle, and the maximum velocity of shortening is attained. We
have already seen that this occurs in the Hill force–velocity curve. Crossbridge theory
provides an elegant explanation of this phenomenon.



18.3: A Simple Crossbridge Model: The Huxley Model 557

xh

2

4g

gf
Figure 18.12 The attachment and detach-
ment functions, f and g, in the Huxley
model.

To obtain quantitative formulas, one must make some reasonable guesses for the
functions f (x) and g(x), and then calculate n(x) and p numerically or analytically. Al-
though numerical solutions can always be obtained, there are several choices of f (x)
and g(x) for which analytical solutions are possible. The functions that Huxley chose
are illustrated in Fig. 18.12 and have the form

f (x) �



0, x < 0,

f1x/h, 0 < x < h,

0, x > h,

(18.23)

g(x) �
{
g2, x < 0,

g1x/h, x > 0.
(18.24)

In this model, the rate of crossbridge dissociation, g, is low when the crossbridge exerts
a contractile force, but when x is negative, the crossbridge opposes contraction, and g
increases. Similarly, crossbridges do not attach at a negative x (f � 0 when x < 0), and
as x increases, the rate of crossbridge attachment increases as well. This ensures that
crossbridge attachment contributes an overall contractile force. At some value h, the
rate of crossbridge attachment falls to zero, as it is assumed that crossbridges cannot
bind to a binding site that is too far away.

The corresponding solution for n(x) is

n(x) �




f1

f1 + g1

[
1− exp(−φ/v)] exp(xg2/v), x < 0,

f1

f1 + g1

{
1− exp

[(
x2

h2
− 1

)
φ

v

]}
, 0 < x < h,

0, x > h,

(18.25)

where φ � (f1 + g1)h/2. This steady solution is plotted in Fig. 18.13 for four values of v.
Note the unphysiological implication of this solution, that n > 0 for all x < 0. However,
only a negligible number of crossbridges are bound at unphysiological displacements,
so that these may be ignored in the model.
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Figure 18.13 Steady-state distributions of n in the Huxley model, for different values of v .
(Huxley, 1957, Fig. 7.) In this figure and the next, the parameter values were chosen by trial and
error by Huxley so as to obtain a good fit with experimental data. The values are g1/(g1 + f1) �
3/16, g2/(f1 + g1) � 3.919, f1 + g1 � 1/2. Since x and v can be scaled by h, without loss of
generality we may take h � 1.

Assuming that the crossbridge acts like a linear spring, so that r(x) � kx for some
constant k, the force generated by the muscle (defined by (18.20)) can be calculated
as a function of the velocity of contraction, and the result compared to the Hill force–
velocity equation (18.1). The force–velocity equation calculated from the Huxleymodel
is

p � ρkf1

f1 + g1

h2

2

{
1− v

φ
(1− e−φ/v)

(
1+ 1

2

(
f1 + g1

g2

)2
v

φ

)}
, (18.26)



18.3: A Simple Crossbridge Model: The Huxley Model 559

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Tension

S
pe

ed
 o

f s
ho

rt
en

in
g

Figure 18.14 The force–velocity curve of the Huxley model (solid curve) compared to Hill’s
data (open circles). (Huxley, 1957, Fig. 8.) For simplicity, p has been scaled so that p(0) � 1. This
determines the value used for ρk . Further, the parameters have been scaled so that vmax � 1.

which for appropriate choice of parameters gives an excellent fit to the force–velocity
curve, as illustrated in Fig. 18.14. Huxley chose the model parameters by a process
of trial and error so that the rate of energy production also agreed with experimental
data (see the caption for Fig. 18.13). We discuss these experimental data in more detail
below when we consider a slightly different crossbridge model. We will also show how,
in a slightly simpler model, the process of parameter estimation can be made more
systematic.

18.3.1 Isotonic Responses

Thus far we have shown how theHuxleymodel can explain theHill force–velocity curve
using crossbridge dynamics. However, for the model to give an acceptable explanation
of muscle dynamics, there is a great deal of additional experimental data with which
it should agree. In particular, the model should explain the response of a muscle, first,
to a step change in tension (isotonic response) and second, to a step change in length
(isometric response). After all, the Hill model was rejected as a satisfactory explanation
because of its inability to explain all such data.
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It is instructive to consider how one calculates the response of the Huxley model to
a step change in tension, as the procedure is not obvious. Suppose a muscle exerts its
isometric tension, p0, at some length L. Then, the steady-state crossbridge distribution
is

ns(x) � f (x)
f (x)+ g(x)

. (18.27)

Now suppose the tension on the muscle is reduced to p1 < p0 so suddenly that no cross-
bridges are able to associate or dissociate during the reduction. In a typical experiment
of Civan and Podolsky (1966), a muscle fiber of length 15,000 µm was subjected to a
change in tension that changed the fiber length by less than 50 µm, a relative length
change of 1/300. Hence, a typical sarcomere of length 2.5 µm changed in length by
less than 10 nm, and so the length of each crossbridge was changed by less than 10
nm. A crossbridge is able to absorb such length changes without dissociating from the
binding site. The extension of each crossbridge decreases by an unknown amount HL,
and so the crossbridge distribution suddenly changes to ns(x+HL) and is no longer at
steady state. The change in length is found by constraining the new tension to be p1,
and hence HL satisfies

p1 �
∫ ∞

−∞
k(x)ns(x+HL)dx. (18.28)

Although (18.28) cannot in general be solved analytically, HL can be determined
numerically, since it is easy to determine p1 as a function of HL.

Following the sudden change in tension, the crossbridge population is not at steady
state, so it must change according to the differential equation (18.18) with initial con-
dition n(x,0) � ns(x + HL) and subject to the constraint that the tension is constant
at p � p1. However, during this evolution, v is not constant, as there is some transient
behavior before the muscle reaches its steady contraction velocity (cf. Fig. 18.9). How-
ever, we can determine an expression for v(t) in terms of n(x, t) that guarantees that the
tension remains constant at p1.

Since p1 is constant, it must be that
∂p1
∂t

� 0, or

0 �
∫ ∞

−∞
k(x)nt(x, t)dx �

∫ ∞

−∞
k(x)

(
v(t)

∂n

∂x
+ (1− n)f (x)− ng(x)

)
dx. (18.29)

We solve this for v(t) to get

− v(t) �
∫∞
−∞ k(x)

(
(1− n)f (x)− ng(x)

)
dx∫∞

−∞ k(x) ∂n
∂x
dx

. (18.30)

Thus, for the tension to remain constant, the partial differential equation (18.18) must
have the contraction velocity specified by (18.30).

Using a slightly different approach, Podolsky et al. (1969; Civan and Podolsky, 1966)
showed that the Huxley model does not agree with experimental data in its response
to a step change in tension. We saw in Fig. 18.9 that immediately after the tension
reduction the muscle length changes also, and after an initial oscillatory period, the
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muscle contracts with a constant velocity. However, the Huxley model does not show
any oscillatory behavior, the approach to constant velocity being monotonic.

Motivated by this discrepancy, Podolsky and Nolan (1972, 1973) and Podolsky et
al. (1969) altered the form of the functions f and g to obtain the required oscillatory
responses in the Huxley model. Of course, in Huxley’s original model no physiological
justification was given for the functions f and g, and modification of these functions is
therefore an obvious place to start when fiddling with the model to fit the data. Julian
(1969) also showed that the Huxley model can be adjusted to give the correct responses
to a step change in length. The details of these analyses do not concern us greatly; the
main point is that Huxley’s crossbridge model has enough flexibility to explain a wide
array of experimental data.

18.3.2 Other Choices for Rate Functions

The simple choices for rate functions made by Huxley yield interesting analytical re-
sults. However, there are numerous other ways that the rate functionsmight be chosen.
Suppose, for simplicity, that the rate functions f (x) and g(x) have nonoverlapping com-
pact support. Where it is nonzero, we take f (x) to be a constant, f (x) � α/ε, on a small
interval near the maximum displacement h, say h− ε ≤ x ≤ h, so that actin and myosin
bind rapidly in a small interval near h. We expect that α depends on the local calcium
concentration. On the support of f (x), n(x) � 1− exp[α(x− h)/(εv)].

The role of g(x) is to break crossbridge bonds. A simple way to accomplish this is
to assume that all bonds break at exactly x � δ < 0, in which case

n(x) �



1− eα(x−h)/εv, h− ε ≤ x ≤ h,

(1− e−α/v), δ ≤ x ≤ h− ε,

0, elsewhere.

(18.31)

It is left as an exercise (exercise 6) to show that in the limit as ε → 0 and δ → 0 the
force–velocity curve for this model with a linear restoring force does not produce zero
force at some positive velocity, a feature that appears in the Hill force–velocity curve.

A second option is to suppose that bonds break when x < 0, and thus to take
g(x) � κ/(δ− x) on δ < x < 0. Note that the rate of bond breakage is infinite at x � δ, and
thus all crossbridges are disassociated at distance x � δ. Then

n(x) �




1− eα(x−h)/εv, h− ε ≤ x ≤ h,

1− e−α/v, 0 ≤ x ≤ h− ε,

(1− e−α/v)
(
1− x

δ

)−κ/v
, δ ≤ x < 0,

0, elsewhere,

(18.32)

in which case n(x) is a continuous function of x with compact support.
To find a force–velocity curve that produces zero force at some positive velocity, we

note that to have zero force, the force generated by crossbridges with x < 0must exactly
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balance the force generated by crossbridges with x > 0. There are two modifications
that accomplish this balance of forces. The first is to shift the population n(x) so that
for large v, the density for x > 0 is increased, and the second is to allow those bonds
with x > 0 to exert a larger force than those with x < 0. Notice from (18.21) that as
v increases, n(x) responds less quickly to f (x) and g(x) (as a function of increasing x).
Thus, if the support of f (x) and/or g(x) is not zero, the distribution n(x) shifts to the left
as v increases, as illustrated in Fig. 18.13.

Yet another way to determine the functions f and g is to estimate the energy of the
bond as a function of position, and then from Eyring rate theory to determine the rates
of reaction of binding and unbinding. This is the approach followed, for example, by
Pate (1997). In fact, now that the biochemistry of the crossbridge reactions is known,
fairly sophisticated models of this type are possible (Marland, 1998).

18.4 Determination of the Rate Functions

So far we have seen that an ad hoc approach to the determination of the functions
f , g, and r can generate models that agree in varying degrees with experimental data.
Obviously, it is desirable to find some way in which these functions can be determined
more systematically, for example, to guarantee the correct form of the force–velocity
curve. One way that this can be accomplished is by using a slightly different model for
the crossbridge dynamics (Lacker and Peskin, 1986; Peskin, 1975, 1976).

18.4.1 A Continuous Binding Site Model

Recall that the Huxley model was based on the assumption that the actin binding sites
are sufficiently separated so that each crossbridge can be associated with a unique
binding site. Thus, even when a crossbridge is unbound, the distance of the crossbridge
to the nearest binding site is defined. We now make the opposite assumption, that the
actin binding sites are not discrete sites but are continuously distributed, so thatmyosin
can bind anywhere along a thin filament. By analogy, one can think of the thin filament
as flypaper, to which the myosin heads stick wherever they touch down. In this case,
the variable x denotes the distance between the crossbridge anchor and the binding
position, and the crossbridge distribution is described by a function n(x, t) such that∫ b
a
n(x, t)dx is the fraction of crossbridges (at time t) that are attached with distance

to the binding site x in the range [a, b]. Note that an unbound crossbridge cannot be
associated with a value of x, as x is meaningful only for a bound crossbridge. The total
fraction of bound crossbridges is

N �
∫ ∞

−∞
n(x, t)dx < 1, (18.33)

and the total fraction of unbound crossbridges is 1−N.
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To derive the differential equation for n, we consider the conservation of cross-
bridges with x in the interval [a, b]. Let P denote the pool of crossbridges that are
bound with x ∈ [a, b]. If the muscle is contracting at velocity v > 0, crossbridges move
out of P at the rate vn(a, t) and move into P at the rate vn(b, t). Further, if f is defined
such that

∫ b
a
f (x)dx is the rate at which new crossbridges are formed with x ∈ [a, b],

and if g(x) denotes the rate at which crossbridges with displacement x detach, then the
rate of change of crossbridges is

d

dt

∫ b

a

n(s, t)ds � v[n(b, t)− n(a, t)]+ (1−N)
∫ b

a

f (s)ds−
∫ b

a

g(s)n(s, t)ds. (18.34)

Replacing b by x and differentiating with respect to x, we obtain

∂n

∂t
− v(t)

∂n

∂x
� (1−N)f (x)− ng(x). (18.35)

Note that in the derivation of (18.35) we assume that the rate of crossbridge attachment
is proportional to the fraction of unattached crossbridges, 1−N.

The equations for the continuous binding site model are similar to those of the
Huxley model, the differences being, first, that the rate of crossbridge attachment is
given by (1 − N)f in the continuous binding site model and (1 − n)f in the Huxley
model, and, second, that n and f have different units in the two models. In the Huxley
model n is dimensionless, while in the continuous binding site model n has dimension
of length−1. Similarly, f has dimension of time−1 in the Huxley model and dimension
of length−1 time−1 in the continuous binding site model.

In the following discussion we restrict our attention to a simplified version of the
continuous binding site model in which all crossbridges attach at some preferred dis-
placement, say, x � h. In this case f (x) � Fδ(x − h), where F is the rate of crossbridge
attachment. For this choice of f it is most convenient to rewrite the differential equa-
tion to incorporate crossbridge attachment as a boundary condition. We do this by
integrating (18.35) from h− ε to h+ ε and letting ε → 0. The jump in n at x � h is then
given by F(1−N)/v, and so (18.35) can be written as

∂n

∂t
− v(t)

∂n

∂x
� −ng(x), x < h, (18.36)

n(h, t) � F(1−N)
v

. (18.37)

Although in general, N and v are functions of t, we consider only those cases in which
they are constant. However, N and n are also functions of v, and we sometimes write
N(v) and n(x, t; v) to emphasize this dependence.

18.4.2 A General Binding Site Model

Both the continuous binding sitemodel and theHuxleymodel canbe derived as limiting
cases of a more general model (Peskin, 1975). Suppose that on the thin filament there
are a discrete number of actin binding sites, with a regular spacing ofHx (as illustrated
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Figure 18.15 Schematic diagram of a
crossbridge model with discrete binding
sites. The actin binding sites are sepa-
rated by a distance &x , and xk denotes the
distance of the k th binding site from the
unstressed position of the crossbridge.

in Fig. 18.15). We denote the horizontal distance from the crossbridge (on the thick
filament) to the kth binding site by xk. Finally, let nk(t) denote the probability that the
crossbridge is attached to site k at time t. Then, if f (xk) and g(xk) are the rates at which
crossbridges attach and detach respectively from the kth site, we have

dnk(t)
dt

� f (xk)

[
1−

∑
i

ni(t)

]
− g(xk)nk(t). (18.38)

Note that the rate of crossbridge attachment is proportional to the fraction of
unattached crossbridges, 1−∑

i ni(t).
If we now assume that the nk(t) are samples of a smooth function, so that

nk(t) � n(xk(t), t), (18.39)

it follows that

dnk

dt
� −v ∂n

∂xk
+ ∂n

∂t
, (18.40)

where, for consistency with our assumption that v is positive for a contracting muscle,
we have defined v � −dxk/dt. Substituting (18.40) into (18.38) gives

− v
∂n

∂xk
+ ∂n

∂t
� f (xk)

[
1−

∞∑
i�−∞

n(xk + iHx, t)

]
− g(xk)n(xk, t). (18.41)

Since this holds for any binding site, the subscript k may be omitted, and thus

− v
∂n

∂x
+ ∂n

∂t
� f (x)

[
1−

∞∑
i�−∞

n(x+ iHx, t)

]
− g(x)n. (18.42)

By taking two different limits of (18.42) we obtain the continuous binding site and
Huxley models. Suppose first that the binding sites are so widely spaced that at any
given time only one is within reach of any crossbridge. This is modeled by assuming
that n(x, t) � 0 if |x| > Hx/2. In this case, the only nonzero term in the sum in (18.42) is
the term corresponding to i � 0. Thus (18.42) becomes

− v
∂n

∂x
+ ∂n

∂t
� f (x)[1− n(x, t)]− g(x)n(x, t), (18.43)

which is the Huxley model.
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If, however, wemake the assumption thatHx is small and ifwe letn � n̂Hx, f � f̂ Hx,
we then get

− v
∂n̂

∂x
+ ∂n̂

∂t
� f̂ (x)

[
1−

∞∑
i�−∞

n̂(x+ iHx, t)Hx

]
− g(x)n̂. (18.44)

In the limit as Hx → 0 the sum becomes a Riemann integral, so that

− v
∂n̂

∂x
+ ∂n̂

∂t
� f̂ (x)

[
1−

∫ ∞

−∞
n̂(s, t)ds

]
− g(x)n̂, (18.45)

which is the continuous binding site model.

18.4.3 The Inverse Problem

The continuous binding site model (18.36) and (18.37) can be used to determine F,
g(x), and r(x) directly from experimental data. (Recall that r(x) is the restoring force
generated by a crossbridge with extension x.) The steady-state solution of (18.36) and
(18.37) can be written as

n(x; v) �



F[1−N(v)]

v
exp

(∫ h

x

−g(s)
v

ds

)
, x < h,

0, x > h.

(18.46)

Integrating (18.46) from −∞ to∞, we obtain

N(v) �
∫ ∞

−∞
n(x; v)dx � F[1−N(v)]

v
I(v), (18.47)

where

I(v) �
∫ h

−∞
exp

(∫ h

x

−g(s)
v

ds

)
dx. (18.48)

Thus, we can solve for N(v) as

N(v) � FI(v)
FI(v)+ v

. (18.49)

Substituting (18.49) into (18.46) we obtain an explicit solution for n,

n(x; v) � F

FI(v)+ v
exp

(∫ h

x

−g(s)
v

ds

)
. (18.50)

Since the average force produced by a crossbridge is

p(v) �
∫ ∞

−∞
r(x)n(x; v)dx, (18.51)

it follows that if F, g, and r are known, then (18.50) can be used to derive an explicit
expression for the force–velocity curve. This is the direct problem that we considered
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in the context of the Huxley model. Here we want to solve the inverse problem of deter-
mining F, g, and r from our knowledge of p. However, we need additional information
to do this.

The energy flux during constant contraction can be measured experimentally; in
general it is a function of v. If we assume that the energy flux φ(v) is proportional to
the rate at which crossbridges go through the cycle of binding and unbinding to the
actin filament, then φ is proportional to the crossbridge turnover rate,

φ(v) � ρεF(1−N), (18.52)

where ρ is the total number of crossbridges and ε is the energy released during each
crossbridge cycle. If the fraction of attached crossbridges during isometric tetanus is
known, then F can be calculated from

φ0 � ρεF(1−N0), (18.53)

where φ0 � φ(0) and N0 � N(0). Next, I(v) can be calculated from φ(v) by substituting
(18.52) into (18.49), which gives

I(v) � v

(
Fρε− φ(v)
Fφ(v)

)
� ρεv[φ0 − (1−N0)φ]

φφ0
. (18.54)

Hence, from experimental knowledge of N0 and φ(v) we can calculate explicit
expressions for F and I(v).

To find g from I(v), we define the transformation

y(x) �
∫ h

x

g(s)ds. (18.55)

Since g is positive, y is a monotonic function of x and has an inverse that can be
calculated explicitly. Differentiating (18.55) with respect to x, we obtain

dy

dx
� −g(x), (18.56)

from which it follows that

x(y) � h−
∫ y

0

ds

ḡ(s)
, (18.57)

where ḡ is defined by g(x) � g(x(y)) � ḡ(y), and where we have used the condition
y(h) � 0, so that x(0) � h.

Using these definitions, and also defining σ � 1/v, we get

I(1/σ) �
∫ h

−∞
e−σy dx, (18.58)

�
∫ 0

∞
−e−σy dy

g(x)
, (18.59)

�
∫ ∞

0

1
ḡ(y)

e−σy dy. (18.60)
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The function I(1/σ) is the Laplace transform of 1/ḡ(y), and so 1/ḡ(y) is obtained as the
inverse Laplace transform of I(1/σ). Furthermore, g can be obtained as a function of x,
since x is defined as a function of y by (18.57). Thus, for given y we can calculate both
ḡ(y) and x(y). Since ḡ(y) � g(x(y)), we thus have a parametric representation for g(x).

An explicit formula for ḡ(y) can be obtained by using the inversion formula for
Laplace transforms. Thus,

1
ḡ(y)

� 1
2πi

∫ c+i∞

c−i∞
I(1/σ)eσy dσ, (18.61)

where c > 0 is arbitrary.
In a similar way, r(x) can be obtained from the force–velocity curve p(v). It is left

as an exercise to show that

εp(1/σ)
σφ(1/σ)

�
∫ ∞

0

r̄(y)
ḡ(y)

e−σy dy, (18.62)

where r̄(y) � r(x(y)). Hence

r̄(y) � εḡ(y)
2πi

∫ c+i∞

c−i∞

p(1/σ)
σφ(1/σ)

eσy dσ. (18.63)

A specific example
The above analysis can be used to calculate F, g, and r to fit the Hill force–velocity curve
and energy flux data (also observed by Hill). First, note that the force–velocity equation
(18.1) can be written in the form

p(v) � bp0 − av

v+ b
. (18.64)

Second, Hill (1938) observed that at constant rate of contraction, the heat flux q̇
generated by a contracting muscle is linear, given by

q̇ � av+ φ0, (18.65)

where the constant a is the same as in the force–velocity equation, and where φ0 is the
energy flux at zero velocity. The energy flux is the sum of two terms: the heat flux and
the power used by themuscle. The power of a muscle contracting at speed v is pv (force
times velocity), and thus the energy flux, φ(v), is given by

φ(v) � q̇+ pv � φ0 + bv(a+ p0)
v+ b

. (18.66)

Substituting the expression for φ into (18.54) and using (18.61), we find that

1
ḡ(y)

� ρε

φ0

1
2πi

∫ c+i∞

c−i∞

[
σ+ +N0(σ − σ∗)

σ(σ − σ∗)

]
eσy dσ (18.67)

and

r̄(y) � εḡ(y)
2πi

∫ c+i∞

c−i∞

[
p0σ − a/b

σ(σ − σ∗)

]
eσy dσ, (18.68)
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Figure 18.16 Contour for the evalua-
tion of the path integral in the continu-
ous binding site model. (Adapted from
Lacker and Peskin, 1986, Fig. 6.)

where σ+ � −(a + p0)/φ0 and σ∗ � −1/b + σ+. These integrals can be evaluated using
the contour S shown in Fig. 18.16.

From the residue theorem, we know that the integral around S is the sum of the
residues inside the contour. Further, it is not difficult to see that the integral over the
semicircular part of the contour goes to zero as the radius of the semicircle becomes
infinite. Hence

2πi
∑

residues �
∫
S

�
∫ c+i∞

c−i∞
. (18.69)

Both of the integrals (18.67) and (18.68) have two simple poles inside S, one at σ � 0,
the other at σ � σ∗. For the integral (18.67),

the pole at σ � 0 has residue N0 − σ+/σ∗; (18.70)

the pole at σ � σ∗ has residue σ+eσ∗y/σ∗; (18.71)

while for the integral (18.68),

the pole at σ � 0 has residue
a

bσ∗
; (18.72)

the pole at σ � σ∗ has residue
(
p0 − a

bσ∗

)
eσ∗y. (18.73)

Adding these residues for each integral gives, finally,

1
ḡ(y)

� ρε

φ0

[
N0 + σ+

σ∗
(eσ∗y − 1)

]
, (18.74)

r̄(y) � εḡ(y)
φ0

[
a

bσ∗
+
(
p0 − a

bσ∗

)
eσ∗y

]
. (18.75)
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To calculate x(y), since

x(y) � h−
∫ y

0

ds

ḡ(s)
, (18.76)

it follows that

x(y) � h− ρε

φ0

[(
N0 − σ+

σ∗

)
y+ σ+

σ2∗
(eσ∗y − 1)

]
. (18.77)

This gives a parametric definition of g(x) and r(x).
Finally, we note one important feature of this model. Each crossbridge exerts zero

force at some value of y � y0 such that r̄(y0) � 0. Solving for y0 gives

y0 � 1
σ∗
ln
(

a

a− p0bσ∗

)
. (18.78)

Hence, if we wish x � 0 to correspond to the equilibrium state of the crossbridge (i.e.,
when it exerts no force) as it was in the Huxley model, we cannot set h arbitrarily. In
fact, h must be chosen such that x(y0) � 0, and thus

h � ρε

φ0

[(
N0 − σ+

σ∗

)
y0 + σ+

σ2∗
(eσ∗y0 − 1)

]
. (18.79)

Plots of g and r are shown in Fig. 18.17. From these curves we note that as the
displacement of the crossbridge becomes more negative, its probability of detach-
ment increases, but the force it exerts decreases. This allows a high isometric force
without a corresponding reduction in the maximum contraction velocity; crossbridges
initially exert a large force, but tend not to be carried into the region where they oppose
contraction.

18.5 The Discrete Distribution of Binding Sites

TheHuxleymodel assumes that at any one time, each crossbridge has only a single actin
binding site available for binding, while the continuous binding site model assumes the
opposite, that crossbridges can bind anywhere. However, the real situation is probably
something in between these two extremes. Depending on the flexibility of the actin
filament, it is probable that each crossbridge has a selection of more than one binding
site, but it is unlikely that the binding sites are effectively continuous (cf. Fig. 18.3). T.L.
Hill (1974, 1975) has constructed a detailed series of models that treat, with varying
degrees of accuracy, the intermediate case when the actin binding sites are distributed
discretely but more than one is within reach of a crossbridge at any time. Detailed
consideration of models of this type is left for the exercises (Exercises 9 and 10).
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Figure 18.17 Crossbridge detachment rate (A) and force (B) in the continuous binding site
model, calculated from (18.74), (18.75), and (18.77), using the parameter values p0 � 3 kg-
wt/cm2, a/p0 � 0.25, b � 0.325 muscle lengths per second, φ0 � ab, F � 125 s−1, N0 � 0.9,
φ0/ρε � F (1 − N0) � 12.5 s−1. If we require that the crossbridge exert no force at x � 0, then all
crossbridges must attach at h � 4.78 nm, assuming that the length of a half-sarcomere is 1.1
µm.

18.6 High Time-Resolution Data

All the models discussed so far treat crossbridge binding as a relatively simple phe-
nomenon; either crossbridges are bound or they are not, and there is no consideration
of the possibility that each crossbridge might have a number of different bound states.
As we have seen, such assumptions do a good job of explaining muscle behavior on the
time scale of tens of milliseconds. However, as the development of new experimental
techniques allowed the measurement of muscle length and tension on much shorter
time scales, the initial models were improved to take this high time-resolution data
into account. One of the first models to do so was that of Huxley and Simmons (1971).
The Huxley–Simmons model is quite different from models discussed above, giving a
detailed description of how the force exerted by an attached crossbridge can vary with
time over a short period, but it does not take into account the kinetics of crossbridge
binding and unbinding to the thin filament.

18.6.1 High Time-Resolution Experiments

As we have already seen (Fig. 18.10B), when muscle length is decreased, the tension
immediately decreases, and then, over a time period of 100milliseconds or so, recovers
to its original level. When this tension recovery is measured at a higher time resolution,
two components of the recovery become apparent (Fig. 18.18). The initial drop in
tension (which occurs simultaneously with the change in length) is followed by a rapid,
partial recovery, followed in turn by a much slower complete recovery to the original



18.6: High Time-Resolution Data 571

Figure 18.18 Changes in tension after a sudden stretch (ii–iv) or a sudden shortening (v, vii–x).
Traces (i) and (vi) show the time course of the length change for traces (ii) and (vii), respectively.
The number to the left of each record denotes the amount of the length change (in nm) per
half-sarcomere. Note the high time-resolution of the measurements. (Huxley and Simmons,
1971, Fig. 2.)

tension. The slower recovery process is described by the other models discussed in this
chapter. Typical experimental results are shown in Fig. 18.19. In this figure, T1 denotes
the value of the tension after the initial drop, and T2 denotes the value of the tension
after the initial rapid recovery. For length increases (y > 0) T1 is a linear function of
the change in length, while for length decreases (y < 0), the decrease in tension is less
than might be expected from the linear relation. It is likely that because the length step
is not instantaneous but takes about a millisecond to complete, when a larger length
decrease is applied, the rapid recovery process has already begun to take effect by the
time the length decrease has been completed. If this is true (and it certainly appears
plausible from the curves shown in Fig. 18.18), T1 would be consistently overestimated
for larger, negative, y. From the linearity of the curve for y > 0, it is reasonable to
suppose that the relationship between T1 and y is linear over the entire range of y, as
denoted by the dashed line in the figure.
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Figure 18.19 Curves of T1 and T2 as functions of the length step. As depicted in the inset, T1 is
the minimal tension reached during the step, while T2 is the value of the tension reached after
the quick recovery phase. The upper trace of the inset depicts the time course of the length
change. (Huxley and Simmons, 1971, Fig. 3.)

In contrast, T2 is clearly a nonlinear function of y. For small length changes, the
rapid process restores the tension to its original level, but for steps of larger length, the
rapid process results in only partial recovery. The time course of the rapid recovery has
a dominant rate constant, r, which is a decreasing function of y,

r � r0

2

(
1+ e−αy

)
, (18.80)

where r0 � 0.4 and α � 0.5 are determined by fitting to experimental data.

18.6.2 The Model Equations

To model and give a possible explanation of the above results, we assume that a cross-
bridge consists of two parts: an elastic arm connected to a rotating head that can bind
to the actin filament in two different configurations. As illustrated in Fig. 18.20, the
head of the crossbridge contains three combining sites, M1,M2,M3, each of which has
the ability to bind to a corresponding site, A1,A2,A3, on the actin filament. (To avoid
confusion with previous terminology, the Ms and As are called combining sites, rather
than binding sites.) The affinity between the combining sites is greatest for M3A3, and
smallest for M1A1. As the head of the crossbridge rotates in the direction of increasing
θ, it moves through the sequence of binding configurations,M1A1 only, M1A1 andM2A2,
M2A2 only, M2A2 and M3A3, M3A3 only. During this progression the crossbridge arm is
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Figure 18.20 Schematic diagram of the Huxley-Simmons
crossbridge model. (Adapted from Huxley and Simmons,
1971, Fig. 5).

extended, and is thus under tension. The two stable configurations of the crossbridge
are those in which two consecutive combining sites are attached simultaneously. Be-
cause the binding affinity is greater for M3A3, the energetically most favorable position
for the crossbridge head is for M2 and M3 to be bound to A2 and A3 simultaneously.

An intuitive explanation of the experimental results is as follows. At steady state
there is a balance between the tension on the crossbridge arm and the force exerted
by the head of the crossbridge. The crossbridge head, in trying to rotate to a position
of lower energy, places the elastic crossbridge arm under tension, and so the cross-
bridge arm, in turn, exerts a contractile force on the muscle. When the muscle is held
at a constant length, the sum of all the crossbridge contributions gives the isometric
force. If the length of the muscle is suddenly reduced, the tension on the crossbridge
arm is suddenly reduced also, and this causes the instantaneous drop in tension seen
experimentally. However, over the next few milliseconds, the reduced tension on the
arm allows the crossbridge head to rotate to an energetically more favorable position,
thus restoring the tension on the arm, and consequently restoring the muscle tension.
Hence, the instantaneous drop in tension results from the fact that the elastic cross-
bridge arm responds instantaneously to a change in length, while the time course of
the tension recovery is governed by how fast the crossbridge head rotates, which is,
in turn, governed by the kinetics of attachment and detachment of the combining
sites.

It is important to note that this interpretation of the experimental evidence assumes
that during isometric tetanus, all crossbridges have a positive displacement, i.e., x > 0.
Otherwise, if some crossbridges had x < 0, a shortening of the muscle fiber would in-
crease the force exerted by these crossbridges, in conflict with the above interpretation.
However, in the models discussed so far, this happens to be the case. For example, in
the Huxley model the isometric tetanus solution is

n(x) � f (x)
f (x)+ g(x)

, (18.81)

which is zero when f (x) � 0. Since f is nonzero only when x > 0, it follows that all
crossbridges have a positive displacement during isometric tetanus. Although this is
the case for the Huxley model, this is not necessarily true in all experimental situations
or in all models.
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The model also neglects the effects of those few crossbridges that have such
small displacements that a small decrease in length serves to shift them to negative
displacements. However, the quantitative effects of this neglect are almost certainly
small.

To express the model mathematically, we construct a potential-energy diagram
for the crossbridge. Recall that the crossbridge head has two stable configurations, one
whenM1A1 andM2A2 bonds exist simultaneously, whichwe denote as position one, and
the otherwhenM2A2 andM3A3 bonds exist simultaneouslywhichwe denote as position
two. Because these configurations are stable, the potential energy of the crossbridge
head reaches a local minimum at positions one and two, and since position two is
energetically favored over position one, it has a lower potential energy (see Fig. 18.21A).
However, as the head rotates from position one to position two, the crossbridge arm is
extended, which increases the total potential energy of the crossbridge. Thus, adding

B1E1
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θ

1
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Figure 18.21 A: Potential energy of the crossbridge head. As the head rotates, with increasing
θ the combining sites bind consecutively. The potential energy decreases overall from left to
right, as it is assumed that M3 and A3 have the highest affinity. The two local minima correspond
to stable configurations when two consecutive combining sites are bound simultaneously;
these are called position one and position two. B: Potential energy due to the elastic energy of
the crossbridge arm. C: Total potential energy of the crossbridge, showing the notation used
in the model.
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the potential energy of the crossbridge arm (Fig. 18.21B) to the potential energy of the
crossbridge head, we get the total potential energy of the crossbridge (Fig. 18.21C).

Now let n1 and n2 � 1−n1 denote the fraction of crossbridges in positions one and
two, respectively, and let y denote the displacement of the thick filament relative to the
thin filament, such that y � 0 corresponds to the steady state before any length change is
applied (i.e., the isometric case). Also, let y1 and y2 denote the lengths of the crossbridge
arm when the head is at positions one and two respectively, let y0 � (y1 + y2)/2 (the
midway position), and let h � y2 − y1. Finally, let F1 and F2 denote the tension in the
crossbridge arm when the head is in positions one and two, respectively. Then,

F1 � K(y+ y0 − h/2), F2 � K(y+ y0 + h/2), (18.82)

where K is the stiffness of the crossbridge arm, assumed to follow Hooke’s law. Hence,
the tension, φ, on the crossbridge arm is given by

φ � n1F1 + n2F2 � K(y+ y0 − h/2+ hn2). (18.83)

As the crossbridge head moves from position one to position two, the extending
crossbridge arm does work, exerting an average force of approximately (F1+F2)/2 over
a distance h. Thus the work,W, is given by

W � h
F1 + F2

2
� Kh(y+ y0). (18.84)

Now suppose that a crossbridge moves from position one to position two at rate k+
andmoves in the opposite direction at rate k−. As with barrier models for the ionic cur-
rent through amembrane channel (Chapter 3), we assume that each of these rates is an
exponential function of the height of the potential-energy barrier that the crossbridge
must cross in order to jump from one combining configuration to the other. With this
assumption, k+ � exp(−B1

kT
) and k− � exp(−B2

kT
), where T is the absolute temperature

and k is Boltzmann’s constant. Note that kT has units of joules, and so the jumps in the
potential energy diagram must also be expressed in joules. Then,

k+
k−

� exp
(
B2 − B1

kT

)
(18.85)

� exp
(
B2 − E1 −W

kT

)
(18.86)

� exp
(
B2 − E1 − Kh(y+ y0)

kT

)
. (18.87)

We can now eliminate E1 and B2 by assuming that during isometric tetanus, n1 � n2.
In this case y � 0 by definition (since y is defined as the deviation from the isometric
case), and k+ � k−, and so

B2 − E1 � Khy0. (18.88)
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Substituting back into (18.87), we get

k+
k−

� exp
(−Khy

kT

)
. (18.89)

When the length of themuscle is changed, the crossbridges redistribute themselves
among the two configurations according to the differential equation

dn2

dt
� k+n1 − k−n2 � k+ − rn2, (18.90)

where

r � k+ + k− � k−

[
1+ exp

(−yKh
kT

)]
. (18.91)

Since r is the time constant for the redistribution of crossbridges, it follows that r is
also the time constant for the development of the tension T2 at the end of the quick
recovery. Equation (18.91) agrees with (18.80) if Kh � αkT, and thus the model has the
correct time course for tension development. At steady state,

n2 � k+
k+ + k−

� 1
2

[
1+ tanh

(αy
2

)]
, (18.92)

where we have used the fact that k+/k− � exp(−αy). Hence, the steady-state tension
(which corresponds to T2) is given by

φ � K(y+ y0 − h/2+ hn2) � αkT

h

[
y0 + y− h

2
tanh

(αy
2

)]
. (18.93)

A plot of φ is given in Fig. 18.22, from which it is seen that the model gives an excellent
qualitative description of the experimental data.

In summary, although the Huxley–Simmons model does not take later events, such
as crossbridge binding and unbinding, into account and is not intended to describe
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Figure 18.22 Plot of relative steady ten-
sion φ (18.93) in the Huxley–Simmons
model. Parameter values: α � 0.5 nm, y0 �
8 nm, h � 8 nm. Because we plot relative
tension, the value of kT has no effect on
the shape of the curve.
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the full tension recovery in the manner of the Huxley model, it nevertheless provides
an excellent qualitative description of the initial phase of tension recovery following a
step change in length.

18.7 Exercises
1. Derive a differential equation for the load in a three-element Hill model with an elastic

element in series with a contractile element (as shown in Fig. 18.8) in parallel with an
additional elastic element of length L.
Remark: The total load in the whole unit is divided between the two parallel subunits.

2. When a muscle cell dies, its ATP is depleted, with the result that the power stroke stalls and
calcium cannot be withdrawn using the Ca2+ ATPase. How does this explain rigor mortis?

3. Derive the force–velocity relationship (18.26) for the Huxley model.

4. Calculate the response of the Huxley model to a step change in length. In other words,
calculate how n changes as a function of t and x, and hence calculate how the tension
changes as a function of time.

5. Show that when

f (x) �
{
fmaxe

(x−h)/λ, x < h,

0, x > h,
(18.94)

g(x) � gmax

(
1− e(x−h)/λ

)
, (18.95)

r(x) � rmax
e(x−h)/h − α

1− α
, (18.96)

the Huxley model reproduces the Hill force–velocity curve exactly. Note that the behavior
of g and r for x > h are irrelevant, as no crossbridges are ever bound there. Unfortunately,
although this choice for f and g gives good agreement with the force–velocity curve, it gives
poor agreement with the energy flux data.

6. Assuming that the crossbridges act as linear springs, calculate the force–velocity curve for
(18.31) and show that in the limit as ε → 0 and δ → 0 it does not produce zero force for
some positive velocity. Give an intuitive explanation for this.

7. Use the exact solution for the continuous binding site model to calculate the maximal
shortening velocity vmax and the isometric tension. Show that vmax scales with g; i.e., if g is
multiplied by a constant factor, so is vmax. Give an intuitive explanation of this result. How
does g affect the isometric force? If g is constant, is it possible to design a muscle that has
both a high vmax and a high isometric force? How could one design a muscle that has both
a high vmax and a high isometric force?

8. Show that if g is a constant in the continuous binding site model, the force–velocity curve
is the Laplace transform of r(x).

9. This exercise and the next are based on the discrete binding site models of T.L. Hill
(1974,1975). Suppose that each crossbridge is within reach of no more than two binding
sites at one time, and that adjacent crossbridges do not “see” the same two binding sites.
Suppose also that adjacent binding sites are separated by a distance Hx, and let x denote
the distance of the crossbridge from one of the binding sites, binding site 0, say. Define x
such that if the crossbridge is bound to site 0 and has x � 0, it exerts no force. Also, let
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ni(x, t), i � 0,−1, denote the fraction of crossbridges with displacement x that are bound to
binding site i.

(a) Show that the conservation equations are

−vdn0
dx

� f (x)[1− n0(x)− n−1(x)]− g(x)n0(x), (18.97)

−vdn−1
dx

� f (x−Hx)[1− n0(x)− n−1(x)]− g(x−Hx)n−1(x), (18.98)

where as usual, v denotes the steady contraction velocity.

(b) Derive expressions for the isometric distributions of n0 andn−1. Compute the isometric
force. Show that if the Huxley model is modified to include two binding sites, the
isometric force is increased.

(c) Compute the force–velocity curve. Hint: For each v solve the differential equations
numerically, using the boundary conditions n0(h) � 0, n−1(h+Hx) � 0, then substitute
the result into the expression for the force and integrate numerically.

(d) Modify the model to include slippage of the crossbridge from one binding site to
another. Show that in the limit as slippage becomes very fast, the two differential
equations (18.97) and (18.98) reduce to a single equation.

10. Consider the general binding site model (18.42) that incorporates the discrete distribution
of binding sites. Why is this equation much harder to integrate than the models we have
discussed previously? The isometric solution is considerably easier to calculate. Let nu(x) �
1−∑∞

−∞ n(x+ iHx). Show that

1− nu(x) �
∞∑

−∞

f (x+ iHx)
g(x+ iHx)

. (18.99)

Hence calculate the isometric solution n(x). Details of this model, and others, are given by
T.L. Hill (1974, 1975).

11. A muscle fiber must be able to produce a force even at negative velocities. For example, if
you slowly lower a brick onto a table, your bicep is extending while simultaneously resisting
the freefall of the brick. How might the models presented here be modified to allow this
possibility? Hint: There must be some mechanism to break crossbridge bonds that are
extended, i.e., have x > 0.
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Hormone Physiology

Hormones control a vast array of bodily functions, including sexual reproduction and
sexual development, whole-body metabolism, blood glucose levels, plasma calcium
concentration, and growth. Hormones are produced in, and released from, diverse
places, including the hypothalamus and pituitary, the adrenal gland, the thyroid gland,
the testes and ovaries, and the pancreas, and they act on target cells that are often at
a considerable physical distance from the site of production. Since they are carried
in the bloodstream, hormones are capable of a diffuse whole-body effect, as well as a
localized effect, depending on the distance between the production site and the site of
action. In many ways the endocrine system is similar to the nervous system, in that it
is an intercellular signaling system in which cells communicate via cellular secretions.
Hormones are, in a sense, neurotransmitters that are capable of acting on target cells
throughout the body, or conversely, neurotransmitters can be thought of as hormones
with a localized action.

There are a number of basic types of hormones. Some, such as epinephrine and
norepinephrine, originate from the amino acid tyrosine. Other, water-soluble, hor-
mones are derived from proteins or peptides, while the steroid hormones are derived
from cholesterol and are thus lipid-soluble. The diversity of the chemical composition
of hormones results in a corresponding diversity of mechanisms of hormone action.

Steroid hormones, being lipid-soluble, diffuse across the cell membrane and bind
to receptors located in the cell cytoplasm. The resultant conformational change in the
receptor leads to activation of specific portions of DNA, thus initiating the transcription
of RNA, eventually (possibly hours or days later) resulting in the production of specific
proteins that modify cell behavior. An example of one such hormone is aldosterone,
whose effect on epithelial cells is to enhance the production of ion channel proteins,
rendering the cell more permeable to sodium.
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Other hormones, such as acetylcholine, act by binding to receptors located on the
cell-surfacemembrane and causing a conformational change that results in the opening
or closing of ionic channels.

Another important mechanism of hormone action is through second messengers,
of which there are several examples in this book. Many hormone receptors are linked
to G-proteins; binding of a hormone to the receptor results in the activation of the
G-protein, and the triggering of a cascade of enzymatic reactions. For example, in the
adenylate cyclase cascade, a wide variety of hormones (including adrenocorticotropin,
luteinizing hormone, and vasopressin) cause activation of the G-protein, which in turn
activates the membrane-bound enzyme adenylate cyclase. This activation results in
an increase in the intracellular concentration of cAMP, and the consequent activation
of a number of enzymes, with eventual effects on cell behavior; the specific effects
depend on the cell type and the type of hormonal stimulus. In Chapters 5 and 12 we
described the result of another signaling cascade, the phosphoinositide cascade, in
which activation of cell-surface receptors leads to the activation of phospholipase C,
the cleavage of phosphotidyl inositol 4,5-bisphosphate, and the resultant production
of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. As we saw, IP3 releases Ca

2+

from internal stores, and this can lead to intracellular Ca2+ oscillations and traveling
waves.

Hormones can also act by directly converting the receptors into activated enzymes.
For example, when insulin binds to a membrane receptor, the portion of the binding
protein that protrudes into the cell interior becomes an activated kinase, which then
promotes the phosphorylation of several substances inside the cell. The phosphoryla-
tion of proteins in the cell leads to a variety of other effects, including the enhanced
uptake of glucose.

Much hormonal activity is characterized by oscillatory behavior, with the period of
oscillation ranging from milliseconds (β-cell spiking) to minutes (insulin secretion) to
hours (β-endorphin). In Table 19.1 are shown examples of pulsatile secretion of various
hormones in man. The pulsatility of normal hormonal activity is not completely un-
derstood, but has significant implications for the treatment of hormonal abnormalities
with drug therapies.

Despite the analogy with neural transmission, there is a significant difference
between the endocrine and nervous systems that has important ramifications formath-
ematical modeling. Not only is the endocrine system extremely complicated, but the
data that are presently obtainable are less susceptible to quantitative analysis than, say,
voltage measurements in neurons. Further, the distance between the sites of hormone
production and action, and the complexities inherent in the mode of transport, make
it extraordinarily difficult to construct quantitative models of hormonal control. For
these reasons, models in endocrinology are less mechanistic than many of the models
presented elsewhere in this book, and thus, in some ways, are less realistic.
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Table 19.1 Examples of pulsatile secretion of hormones in man (Brabant et al., 1992.)
Different values correspond to different primary sources.

Hormone Pulses/Day
Growth hormone 9–16, 29
Prolactin 4–9, 7–22
Thyroid-stimulating hormone 6–12, 13
Adrenocorticotropic hormone 15, 54
Luteinizing hormone 7–15, 90–121
Follicle-stimulating hormone 4–16, 19
β-Endorphin 13
Melatonin 18–24, 12–20
Vasopressin 12–18
Renin 6, 8–12
Parathyroid hormone 24–139, 23
Insulin 108–144, 120
Pancreatic polypeptide 96
Somatostatin 72
Glucagon 103, 144
Estradiol 8–19
Progesterone 6– 6
Testosterone 8–12, 13
Aldosterone 6, 9–12
Cortisol 15, 39

19.1 Ovulation in Mammals

At birth, the human ovary contains approximately 2 million ovarian follicles, which
consist of germ cells, or oocytes, surrounded by a cluster of endocrine cells that pro-
vide an isolated and protected environment for the oocyte. In the first stage of follicle
development, occurring mostly before puberty, and taking anywhere from 13 to 50
years, the cells surrounding the oocyte (the granulosa cells) divide and form several
layers around the oocyte, forming the so-called secondary follicle. Subsequent to pu-
berty, these secondary follicles form a reserve pool from which follicles are recruited
to begin the second stage of development. In this second stage, follicles increase to a
final size of up to 20 mm before they rupture and release the oocyte to be fertilized.
The release of the oocyte is called ovulation. Although many follicles begin this second
developmental stage, few reach full maturity and ovulate, as the rest atrophy and die.
In fact, the number of oocytes reaching full maturity is carefully controlled, so that
litter sizes are generally restricted to within a relatively narrow range, and different
species have different typical litter sizes. For example, to quote some interesting, if
not particularly useful, facts from Asdell (1946), both the dugong and llama have a
typical litter size of 1, the crestless Himalayan porcupine typically gives birth to two
offspring, while the dingo produces, on average, 3. Different breeds of pigs have litter
sizes ranging from 6 to 11.
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Theremust therefore be a complex process that, despite the continuous recruitment
of secondary follicles into the second developmental stage, allows precise regulation
of the number remaining at ovulation. Further, the temporal periodicity of ovulation
is tightly controlled, with ovulation occurring at regularly spaced time intervals.

In addition to questions related to the nature of the control of ovulation, there is
the question of efficiency. It appears inefficient to regulate the final number of mature
follicles by initiating the growth of many and killing off most of them. One might
speculate that it would be more reasonable to initiate growth in only the required
number and ensure that they all progress through to ovulation.

Normal ovulation involves growth in both ovaries. However, since removal of one
ovary does not change the total number of eggs released during ovulation, the control
mechanism is not a local one, but a global one, known to operate through the circulatory
system. Maturation of follicles is stimulated by gonadotropin, which is released from
the pituitary gland. Gonadotropin consists of two different hormones called follicle-
stimulating hormone (FSH) and luteinizing hormone (LH).However, follicles themselves
secrete estradiol, which stimulates the production of gonadotropin, forming a feedback
control loop for the control of follicle maturation (Fig. 19.1).

19.1.1 The Control of Ovulation

One of themost elegant models of hormonal control is due to Lacker (1981; Lacker and
Peskin, 1981; Akin and Lacker, 1984) and describes a possible mechanism by which
mammals control the number of eggs released at ovulation. In the model it is assumed
that each follicle interactswith other follicles only through the hormone concentrations
in the bloodstream. As follicles mature they become more sensitive to gonadotropin,
and their secretion of estradiol increases. The model of this feedback control loop is
considerably oversimplified, since it does not incorporate a detailed mechanistic de-
scription of how estradiol production depends on gonadotropin or vice versa. However,
it provides a phenomenological description of how a global interactionmechanism can
be organized to give precise control over the final number of eggs reaching maturity.

The three basic assumptions of the model are that

1. The rate at which follicles secrete estradiol is a marker of follicle maturity.
2. The concentration of estradiol in the blood controls the release of FSH and LH
from the pituitary.

3. The concentrations of FSH and LH control the rate of follicle maturation, and at
any given instant, the response of each follicle to FSH and LH is a function of the
follicle’s maturity.

To express these assumptions mathematically, we define the following variables
and parameters:
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estradiol, ξ

hypothalamus-pituitary

FSH
LH

follicle 1 follicle 2

Figure 19.1 Schematic diagram of
the Lacker model for ovulation in
mammals. (Adapted from Lacker, 1981,
Fig. 1.)

ξ concentration of estradiol,
γ rate of clearance of estradiol from the blood,
V plasma volume,
si rate of secretion of estradiol from the ith follicle,
N number of interacting follicles.

Here, all concentrations refer to serum concentrations (i.e., concentrations in the
blood). Then, the rate of change of the total estradiol concentration is given by

V
dξ

dt
�

N∑
i�1

si(t)− γξ. (19.1)

Assuming that the rates of addition and removal of estradiol are much faster than the
rate of follicle maturation, we take ξ to be at pseudo-steady state, and thus

ξ � 1
γ

N∑
i�1

si(t) �
N∑
i�1

ξi(t), (19.2)

where ξi(t) � si(t)/γ is the contribution that the ith follicle makes to ξ. In general,
dξi/dt is a function of both ξi and ξ, but does not depend directly on any other ξj, j �� i.
This is because we assume that local follicle–follicle interactions are not an important
feature of the control mechanism, but that follicles interact only via the total estradiol
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concentration. Hence, the most general form of the model equations is

dξi

dt
� f (ξi, ξ), i � 1, . . . , N. (19.3)

The function f is called the maturation function. Note that the concentrations of FSH
and LH do not appear explicitly, as their effect on ξi is modelled indirectly by assuming
that dξi

dt
depends on ξ.

Here we discuss one particular form of the maturation function. This form is not
based on experimental evidence but is chosen such that the model behaves correctly.
Specifically, we take

dξi

dt
� f (ξi, ξ) � ξiφ(ξi, ξ), i � 1, . . . , N, (19.4)

where

φ(ξi, ξ) � 1− (ξ −M1ξi)(ξ −M2ξi). (19.5)

The constants M1 and M2 are parameters that are the same for every follicle, so that
each follicle obeys the same developmental rules. As a function of ξi, for fixed ξ, φ is an
inverted parabola with a maximum at

ξi,max � ξ

2

(
1
M1

+ 1
M2

)
. (19.6)

If ξi is large or small, the growth of ξi is negative, and so this growth rate is fastest for
those follicles with maturity within a narrow range, depending on the total estradiol
concentration. Thus, with a given initial distribution of follicle maturities, those with
ξi close to ξi,max grow at the expense of the others. Further, since the growth rate f
is proportional to ξi, the selective growth of the ith follicle leads to an autocatalytic
increase in ξi.

Numerical solutions
Before we study the behavior of the model analytically, it is helpful to see some typical
numerical solutions. The numerical solution of (19.4)–(19.5), withM1 � 3.85, andM2 �
15.15, starting with a group of 10 follicles with initial maturities randomly distributed
between 0 and 0.1, shows that the maturity of four or five follicles goes to infinity in
finite time, while the other follicles die (Fig. 19.2). Since ovulation is triggered by high,
fast-rising estradiol levels, solutions that become infinite in finite time are interpreted
as ovulatory solutions. Not only do a similar number of follicles ovulate in each run,
they also ovulate at the same time. Hence, ovulatory solutions for ξi and ξj, say, are ones
in which ξi(t) and ξj(t) → ∞ as t → T < ∞, with ξi/ξj → 1. These numerical solutions
show that the model has the correct qualitative behavior. However, analytic methods
give a deeper understanding of how this control is accomplished.
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Figure 19.2 Typical numerical solu-
tions of the ovulation model. Each
numerical simulation was started
with a group of 10 follicles with
maturities randomly distributed be-
tween 0 and 0.1. Parameter values
are M1 � 3.85, M2 � 15.15. In panels
A and D five follicles ovulate (their
maturity blows up in finite time),
while in panels B and C only four
ovulate. All other follicles atrophy
and die. (Lacker, 1981, Fig. 7.)

Symmetric solutions
Much of the behavior of the ovulation model can be understood by considering sym-
metric solutions, in which M of the follicles have the same maturity, while all others
have zero maturity. Thus, ξi � ξ/M, i � 1, . . . ,M, and ξi � 0, i � M + 1, . . . , N, in which
case the model simplifies to

dξ

dt
� ξ + µξ3, (19.7)

where µ � −(1−M1/M)(1−M2/M). The solution is given implicitly by

ξ

ξ0

√
1+ µξ20

1+ µξ2
� et, (19.8)

where ξ0 � ξ(0) is the initial value. When µ > 0, t → log
(√
(1+ µξ20)/(µξ

2
0)
)
as ξ → ∞,

while when µ < 0, t blows up to infinity as ξ → √−1/µ (Fig. 19.3). Thus, when µ > 0,
ξ becomes infinite in finite time, while when µ < 0, ξ goes to the steady state

√−1/µ
as t → ∞. The former solution corresponds to an ovulatory solution, and the time of
ovulation, T, is

T � log

(√
1+ µξ20

µξ20

)
. (19.9)

It follows that if M is between M1 and M2, all M follicles progress to ovulation at time
T and the other follicles are suppressed, but ifM is outside this range, allM follicles go
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Figure 19.3 Symmetric solutions of the ovu-
lation model for two values of µ. The initial
condition was set arbitrarily at ξ0 � 0.1. When
µ > 0, the solution blows up in finite time, while
when µ < 0, the solution approaches a steady
state as t → ∞.

to the steady (nonovulatory) state

ξM � 1
M

√
−1
µ

� 1√
(M−M1)(M−M2)

. (19.10)

Hence, in the symmetric case, ovulation numbers must be betweenM1 and M2.

Solutions in phase space
To understand these symmetric solutionsmore fully, and to understand how they relate
to the behavior of nonsymmetric solutions, it is helpful to consider the trajectories in
theN-dimensional phase space defined by ξi, i � 1, . . . , N. Each symmetric solution lies
on a line of symmetry lM of theM-dimensional coordinate hyperplane. This is illustrated
in Fig. 19.4 for the caseN � 3: the l1 lines are the ξ1, ξ2, and ξ3 axes, the l2 lines lie in the
2-dimensional coordinate planes, and the l3 line makes a 45 degree angle with the ξ1, ξ2
plane. Note that not all the l1 and l2 lines of symmetry are included in the diagram.
WhenM is betweenM1 andM2, lM contains no critical point, and any trajectory starting
on lM goes to infinity along lM, reaching infinity in finite time T. However, when M is
outside the range ofM1 andM2, lM contains a critical point, PM, and solutions that start
on lM stay on lM, approaching PM as t → ∞. In Fig. 19.4, M1 � 1.9 and M2 � 2.9, and
so the only possible ovulation number is 2. Thus, each l1 contains a critical point, P1,
that prevents the ovulation of single follicles, and similarly for l3. The l2 lines are the
only lines of symmetry not containing a critical point.

The relationship between the symmetric solutions and the general solutions ismost
easily seen by analyzing the stability of the critical points PM. Linearizing the model
equations (19.3) around PM gives the linear system (after rearranging the variables)

dP̃

dt
� AP̃, (19.11)

where P̃ is a small perturbation from PM and
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M

A �




a1 + b1 b1

·
· b1

·
b1 a1 + b1

a2 0

·
0 ·

·
0 a2




M. (19.12)

The components of A are the partial derivatives of the model equations evaluated at
PM, and so

a1 � ξM
∂φ

∂ξi

∣∣∣∣
(ξM,MξM)

, a2 � φ(0,MξM), b1 � ξM
∂φ

∂ξ

∣∣∣∣
(ξM,MξM)

. (19.13)

The stability of PM is determined by the eigenvalues of A, which, because of the block
structure of A, are the eigenvalues of the two diagonal block matrices of A. That is, if
we write

A �
(
A1 B1

0 A2

)
, (19.14)

then the eigenvalues of A are the eigenvalues of A1 and A2. Hence, A has an eigenvalue
λout � a2 of multiplicity N − M (from A2), an eigenvalue λs � a1 + Mb1 � −2 of
multiplicity 1, and an eigenvalue λin � a1 of multiplicity M − 1, the latter two coming
from A1.

In the following discussion we let Z � (δξ1, . . . , δξN) denote an eigenvector at PM,
and use subscripts to denote the different eigenvectors.

Perturbations along lM. Corresponding to the simple eigenvalue λs is the eigenvector
Zs whose components satisfy δξi � 1, i � 1, . . . ,M, δξi � 0, i � M+ 1, . . . , N. Hence,
Zs is in the direction of lM. Since λs < 0, it follows that lM is on the stable manifold
of PM. Since symmetry is preserved along lM, any solution that starts on lM goes to
PM as t → ∞.

Perturbations orthogonal to lM in the coordinate hyperplane. Corresponding to
the eigenvalue λin are the eigenvectors Z1, . . . , ZM−1 whose components satisfy∑M

i�1 δξi � 0, δξi � 0, i � M + 1, . . . , N. Z1 to ZM−1 are independent vectors that
lie in the coordinate hyperplane (since all have their lastM−N components equal
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Figure 19.4 Phase space for a system of 3 interacting follicles (N � 3) with M1 and M2 chosen
such that only two follicles ovulate. λout denotes eigenvalues with eigenvectors that point out
of the coordinate hyperplane, while λin denotes eigenvalues with eigenvectors that are in the
coordinate hyperplane. λs denotes the eigenvalue with eigenvector in the direction of the line
of symmetry.

to 0). Since they are also orthogonal to lM, they span the orthogonal complement
of lM in the coordinate hyperplane.

Perturbations orthogonal to lM and the coordinate hyperplane. Corresponding to
the eigenvalue λout are the eigenvectors ZM+1, . . . , ZN−1 whose components satisfy∑N

i�M+1 δξi � 0, δξi � 0, i � 1, . . . ,M. Finally, there is also the eigenvector ZN with
components δξi � (M−N)b1, i � 1, . . . ,M and δξi � (a1−a2)+Mb1, i � M+1, . . . , N.
All the eigenvectors corresponding to λout are orthogonal to both lM and the
coordinate hyperplane and span the orthogonal complement of the coordinate
hyperplane.

These eigenvectors are illustrated in Fig. 19.4. At the critical point P1, situated on
the ξ2 axis, there are two independent eigenvectors corresponding to λout, and these are
both orthogonal to l1, the ξ2 axis. Note that as the coordinate hyperplane is a line in this
case, there are no eigenvectors corresponding to λin. At P3 the converse is true. Here
there are no eigenvectors corresponding to λout, as the coordinate hyperplane is the
entire space. In three dimensions, the only critical point that could have eigenvectors
corresponding to all the eigenvalues λs, λin, and λout would be P2. However, for these
parameter values P2 does not exist, as 2 lies betweenM1 and M2.
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Figure 19.5 The eigenvalues of A as func-
tions of M , calculated with the parameter
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It remains to determine the stability of each critical point PM. This is easily done
by direct computation of the eigenvalues, which gives

λs � a1 +Mb1 � −2, (19.15)

λin � a1 � (M1 +M2)M− 2M1M2

(M−M1)(M−M2)
, (19.16)

λout � a2 � − (M1 +M2)M−M1M2

(M−M1)(M−M2)
. (19.17)

Plots of λin and λout as functions of M are shown in Fig. 19.5. Between M1 and M2, PM
does not exist, but for M > M2 and for M < M∗ � M1M2/(M1 +M2), λin and λout are of
opposite signs. For M∗ < M < M1, the eigenvalues are both negative. It follows that if
there are integers in the interval (M∗,M1), then there are stable critical points PM, with
M∗ < M < M1. All other symmetric critical points are unstable.

Finally, we note that there are critical points other than the symmetric ones
discussed so far, but they are all unstable.

In summary, when there are no integers in the interval (M∗,M1) all the critical
points are unstable and all the symmetric critical points are saddle points. In fact,
from any starting point, all solutions approach infinity along one of the symmetric
trajectories, lM, where M1 < M < M2. These trajectories become infinite in finite time
and are interpreted as ovulatory solutions. However, if there are integers in the interval
(M∗,M1), there are corresponding stable critical points. Any solution that starts in the
domain of attraction of one of these stable critical points, PMs

say, approaches PMs

as time increases, and the system becomes “stuck” there. No follicles ovulate, but Ms

follicles remain fixed at an intermediate maturity.

Stability of lM
Although one might expect to observe ovulation numbers anywhere in the range M1

to M2, numerical simulations show that only some of these actually occur. This is
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Figure 19.6 Typical solutions
when follicles begin to develop at
random times, generated by a Pois-
son process. Each small tick on the
horizontal axis marks the initiation
of development in a single follicle.
Although the parameter values are
M1 � 3.85, M2 � 15.15, and thus
one might expect to observe ovula-
tion numbers ranging from 4 to 15,
only the ovulation numbers 4 and
5 are observed. (Lacker and Peskin,
1981, Fig. 11.)

illustrated in Fig. 19.6, where M1 � 3.85 and M2 � 15.15. In the previous numerical
simulations (Fig. 19.2) we started with a fixed number of follicles with random initial
maturities normally distributed; in Fig. 19.6, however, follicles mature at random times
(generated by a Poisson process), so that the simulation more accurately reflects the
physiological situation.

Despite the random entry of follicles into the maturing pool, ovulation occurs at
regular intervals, and the ovulation number varies little. Hence, the model generates
periodic behavior from stochastic input. Furthermore, although we might expect to
see ovulation numbers anywhere in the range 4 to 15, only the ovulation numbers
4 and 5 are observed. An explanation of this observation is found by examining the
stability of the symmetric ovulatory solutions. This is done by transforming to a new
coordinate system in which the ovulatory solutions, which become infinite in finite
time, are transformed into finite critical points. The stability of these finite critical
points can then be analyzed using standard linear stability methods.

We begin by noting that the initial ordering of a solution can never change. That
is, if ξi starts above ξj, it remains above ξj for all time. This is true because

d

dt
(ξi − ξj) � ξiφ(ξi, ξ)− ξjφ(ξj, ξ) � h(ξi, ξj, ξ)(ξi − ξj) (19.18)

for some function h, and as long as ξi and ξj are bounded, so also is h(ξi, ξj, ξ). Clearly,

ln(ξi(t)− ξj(t)) � ln(ξi(0)− ξj(0))+
∫ t

0
h(ξi, ξj, ξ)dt. (19.19)
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If the right-hand side of this expression is bounded, so also is the left-hand side, so that
ξi(t) �� ξj(t).

Since the original ordering of thematurities is preserved, we arrange theN follicles
in order of maturity, with ξ1 denoting the follicle with the greatest maturity, and define
a new time scale by

τ(t) �
∫ t

0
ξ21(s)ds. (19.20)

As t → T (recall that T is the finite time of ovulation), τ(t) → ∞. For as ξ1 gets large,
dξ1/dt ≈ ξ31, and hence ξ

2
1 behaves like 1/(T − t) as t → T. Furthermore, ξ21 is positive,

and so τ is an increasing function of t that is therefore invertible. We use the inverse to
define new variables

γi(τ) � ξi(t(τ))
ξ1(t(τ))

, (19.21)

S(τ) � ξ(t(τ))
ξ1(t(τ))

. (19.22)

In terms of these new variables the model equations (19.4)–(19.5) become

dγi

dτ
� γiP(γi, S), i � 1, . . . , N, (19.23)

S �
N∑
j�1
γj, (19.24)

P(γi, S) � (1− γi)[M1M2(1+ γi)− S(M1 +M2)]. (19.25)

Note that γ1(τ) ≡ 1, and 0 ≤ γi(τ) ≤ 1 for each i.
All ovulatory and anovulatory solutions correspond to critical points of (19.23)–

(19.25) of the form

γi �
{
1, i � 1, . . . ,M,

0, i � M+ 1, . . . , N. (19.26)

Although ovulatory and anovulatory solutions now look the same, they can be distin-
guished by determining whether the original variable ξ is finite. If so, the critical point
corresponds to an anovulatory solution.

Equations (19.23)–(19.25) have only two distinct eigenvalues,

λ1 � (M1 +M2)M− 2M1M2, (19.27)

λ2 � −(M1 +M2)M+M1M2, (19.28)

which are plotted in Fig. 19.7. If M lies between M∗ and 2M∗, then both λ1 and λ2 are
negative, so that the critical point is stable. Otherwise, the critical point is unstable. It
follows that only ovulation numbers betweenM1 and 2M∗ are stable, and are therefore
observable.

In the numerical simulations shown in Fig. 19.6, M1 � 3.85 and M2 � 15.15, in
which case 2M∗ � 6.14. This is consistent with the numerical simulations in which
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only ovulation numbers 4 and 5 were observed. One possible reason why ovulation
number 6 is not observed is that it lies close to the stability boundary. Thus, its domain
of attraction is probably relatively small, and therefore the probability that a random
process finds this domain of attraction is small.

The effect of population size
With this model we can suggest an answer to the question of efficiency, namely, why do
so many follicles begin the maturation process, only to atrophy and die? The answer
appears to be that the mean time to ovulation is controlled more precisely by a large
population than by a small one. This is illustrated in Fig. 19.8. For this figure, themodel
was simulated for 80 cycles, and the distribution of ovulation numbers and times was
plotted for three different population sizes. Each population had the parameter values
M1 � 6.1,M2 � 5000, and thus the expected ovulation numbers lie in the range 7 to 12.
As the population size increases, the mean ovulation number decreases, but the shape
of the distribution does not change a great deal. However, although the mean ovulation
time (shown here centered at 0) does not change as the population size is increased,
the distribution sharpens dramatically, and the range of observed ovulation times is
dramatically reduced. Thus, while themajority of follicles atrophy and die, they have an
important, although not immediately obvious, function: helping to regulate the timing
of ovulation. This provides a possible explanation of why women near menopause (i.e.,
with fewer available oocytes) typically experience menstrual irregularities.

19.1.2 Other Models of Ovulation

Although this model of ovulation is one of the simplest and most elegant, other, more
complex, models have been constructed. For example, Schwarz (1969) and Bogumil
et al. (1972) have proposed models that incorporate large numbers of parameters and
are based more directly on experimental data.

A recentmodel of a different type is due toFaddy andGosden (1995). They construct
a compartmental model of follicle dynamics over the lifetime of an individual female
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Figure 19.8 The effect of the population size on the distribution of ovulation numbers. In
panels A, B, and C, there are, respectively, 10, 100, and 1000 follicles interacting. Parameter
values are M1 � 6.1, M2 � 5000. As the follicle population gets larger, the mean ovulation
time decreases only slightly, while the standard deviation of the distribution of ovulation times
decreases. Thus, larger populations allow more precise control over the ovulation number.
(Lacker, 1981, Fig. 13.)

and fit their model to experimental data to obtain follicle growth and death rates as
functions of the individual’s age. Although this compartmental model does not provide
insight into the mechanisms underlying periodic ovulation and a constant ovulation
number, it provides an understanding of follicle dynamics over a larger time span.

19.2 Pulsatile Secretion of Luteinizing Hormone

Luteinizing hormone and follicle-stimulating hormone, known collectively as gonado-
tropin, have amonthly cycle (in humans) related to ovulation, and also vary periodically
on a time scale of hours. Although the precise function of these hourly variations is
unclear, they occur in both males and females, and are crucial to development and
maturation in both sexes. Gonadotropin is produced by the pituitary gonadotrophs in
response to gonadotropin-releasing hormone (GnRH), sometimes called luteinizing-
hormone-releasing hormone, which is itself produced in the hypothalamus. Periodic
variations in gonadotropin secretion are therefore the result of periodic variations in
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GnRH secretion. In fact, if GnRH secretion is constant rather than pulsatile, the secre-
tion of gonadotropin is greatly reduced, and thus the pulsatility of GnRH secretion has
an important regulatory function (Knobil, 1981).

This observation has been used as the basis for clinical treatments of certain repro-
ductive disorders. In women suffering from abnormal GnRH secretion, the pulsatile
administration of GnRH can, in some cases, restore normal ovulation and fertility.
However, the frequency of the pulse must be controlled carefully. Wildt et al. (1981)
have shown that the secretion of gonadotropin in rhesus monkeys is approximately
maximized by the administration of GnRH pulses with a frequency of one per hour.
If the frequency of the GnRH pulse is increased to 2 per hour, gonadotropin secretion
is inhibited. Conversely, if the frequency is decreased to one pulse every three hours,
the rate of secretion of follicle-stimulating hormone (FSH) increases, while the rate of
secretion of luteinizing hormone (LH) decreases.

An example of pulsatile secretion of LH and testosterone in males is shown in Fig.
19.9. Although the testosterone secretion is not obviously oscillatory, the fluctuations
in LH secretion clearly are.

Similar mechanisms to those controlling ovulation are apparently at work here. In
males, gonadotropin stimulates the production of testosterone from the testes, while
in females it stimulates the production of estradiol from the ovaries. In the above
model for ovulation, we saw that estradiol can stimulate further production of go-
nadotropin, forming a positive feedback loop.However, estradiol can have both positive
and negative feedback effects on the production of gonadotropin. In models of pul-
satile testosterone and gonadotropin secretion, it appears that negative feedback from
estradiol and testosterone to gonadotropin production is the important mechanism.

An early model for LH levels in the rat is that of Shotkin (1974a,b), although this
model did not consider oscillatory aspects. There have been a number of models of os-
cillatory GnRH release, starting with the work of Smith (1980, 1983), and of Cartwright
and Husain (1986). These early models consisted of three compartments representing
the hypothalamus, the pituitary, and the reproductive gland, or gonad, and the os-
cillations arose, either from a fixed time delay in the response of the gonads to the
concentration of LH, or by feedback from LH and testosterone to the hypothalamus.
However, there is little experimental evidence to support the assumptions of thesemod-
els, and so they are essentially phenomenological. A more recent model of this type is
due to Liu and Deng (1991), and was the first to make a serious attempt to determine
model parameters by fitting to experimental data.

19.3 Pulsatile Insulin Secretion

Hormones secreted from cells in the pancreas are responsible for the control of glucose,
amino acids, and other molecules that are necessary for metabolism. The pancreas
contains a large number of secretory cells, grouped into about one million islets of
Langerhans consisting of approximately 2,500 cells each. There are three principal
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Figure 19.9 Pulsatile secretion of LH, FSH, and testosterone in men. (Berne and Levy, 1993,
Fig. 48-15, p. 912.)

secretory cell types: the α-cells secrete glucagon, the β-cells secrete insulin, and the δ-
cells secrete somatostatin. Glucagon and insulin have complementary actions. A high
concentration of glucose in the bloodstream (corresponding to an overabundance of
nutrients) stimulates the production of insulin, which in turn induces storage of excess
nutrient and decreases the rate at which nutrients are mobilized from storage areas
such as adipose tissue or the liver. Insulin acts principally on three tissues: striated
muscle (including the heart), liver, and adipose tissue. All the actions of insulin ap-
parently stem from its interaction with a specific receptor in the plasma membrane of
insulin-sensitive cells. How this interaction leads to the many actions of insulin on the
cell is not fully understood. In striatedmuscle and adipose tissue, one important action
of insulin is to stimulate the transport of glucose into the cell by a specific carrier (or
carriers) in the plasma membrane. It appears to do this by recruiting glucose carriers
to the plasma membrane from intracellular sites where they are inactive. Insulin thus
increases the Vmax of transport, often as much as 10- to 20-fold. When glucose enters
the cell it is rapidly phosphorylated and metabolized.

In the case of the liver, insulin does not increase the rate of transport of glucose into
the cell (although it increases the net uptake of glucose). In the liver, insulin acts on a
number of intracellular enzymes to increase glucose storage and decreasemobilization
of glucose stores. The details of how insulin does this are far from clear.

Glucagon raises the concentration of glucose in the bloodstream. It acts mainly but
not entirely on the liver, where it stimulates glycogen breakdown and the formation of
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glucose from noncarbohydrate precursors such as lactate, glycerol, and amino acids.
Glucagon released in the islets stimulates the beta cells in the vicinity to secrete insulin.

Insulin secretion oscillates on a number of different time scales, ranging from
tens of seconds to more than 100 minutes. The fast oscillations are caused (at least in
part) by bursting electrical activity described in Chapter 6. During each burst of action
potentials the cytosolic Ca2+ concentration rises as Ca2+ flows in through voltage-gated
Ca2+ channels, and this rise in Ca2+ stimulates insulin secretion. Oscillations with a
much larger period of around 100 minutes are also observed, and are called ultradian
oscillations (Fig. 19.10). Finally, oscillations with intermediate frequencies of around
10 minutes or so also occur. One of the earliest observations of these oscillations was
made in the rhesus monkey by Goodner et al. (1977), and some of their results are
reproduced in Fig. 19.11. Glucagon and insulin oscillate out of phase, while insulin
and glucose are in phase, with the increase of glucose leading the increase of insulin
by an average of about one minute. Oscillations with intermediate frequency are also
observed in isolated rat islets (Bergstrom et al., 1989; Berman et al., 1993), although,
as can be seen from Fig. 19.12, spectral analysis is usually necessary to determine the
principal underlying frequency. Once the underlying trend has been removed, a spectral
decomposition of the data shows a frequency peak at about 0.07 min−1, corresponding
to a period of 14.5 minutes.

Insulin units
Historically, a unit (U) of insulin was defined to be that amount of insulin (in cubic
centimeters) that lowers the percentage of blood sugar in a normal rabbit to 0.045 in 2
to 6 hours. The crudity of such a unit was the natural result of the fact that it was not
possible to purify insulin until relatively recently, and thus a bioassay was the only way
of determining the amount. An excellent discussion of historical insulin units is given
by Lacy (1967).

Later, mouse units became more convenient, and a unit was defined to be the
amount of insulin required to produce convulsions in half the mice under standard
conditions. A mouse unit is about 1/600 of a rabbit unit. Fortunately, insulin extracted
from most animals has equivalent activity in rabbits, mice, and men, although the
guinea pig and capybara are exceptions to this rule. Various modifications were made
to the conditions of these assays, but with the advent of reasonably pure preparations
of insulin the unit was redefined as 1/24 milligrams.

19.3.1 Ultradian Oscillations

Ultradian insulin oscillations have a number of observable features. First, oscillations
occur during constant intravenous glucose infusion and are not dependent on periodic
nutrient absorption from the gut. However, damped oscillations occur after a single
stimulus such as a meal. Second, glucose and insulin concentrations are highly corre-
lated, with the glucose peak occurring about 10–20minutes earlier than that of insulin.
Third, the amplitude of the oscillations is an increasing function of glucose concentra-
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Figure 19.10 Oscillations of insulin and glucose. A: During the ingestion of 3 meals. B: During
oral glucose. C: During continuous nutrition. D: During constant glucose infusion. Oscillations
with a period of around 120 minutes occur even during constant stimulation (i.e., constant
glucose infusion), and occur in a damped manner after a single stimulus such as ingestion of
a meal. (Sturis et al., 1991, Fig. 1.)

tion, while the frequency is not; and fourth, the oscillations do not appear to depend
on glucagon.

Although there are many possible mechanisms that are consistent with the above
observations, they can all be explained by a relatively simple model (Sturis et al., 1991)
in which the oscillations are produced by interactions between glucose and insulin.

A schematic diagram of the model is shown in Fig. 19.13. There are three pools in
the model, representing remote insulin storage in the interstitial fluid, insulin in the
blood, and blood glucose. As we will see, two insulin pools are necessary, which is, by
itself, an interesting model prediction. There are two delays, one explicit and the other
implicit. Although plasma insulin regulates glucose production, it does so only after a
delay of about 36 minutes. This delay is incorporated explicitly as a three-stage linear
filter. An additional implicit delay arises because glucose utilization is regulated by the
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Figure 19.11 Intermediate frequency os-
cillations of glucose, insulin, and glucagon
in monkeys. (Goodner et al., 1977, Fig. 1A.)

remote (interstitial) insulin, and not by the plasma insulin, while glucose has a direct
effect (through insulin secretion from the pancreas) on plasma insulin levels.

We let x, y, in units ofmU, denote the amounts of plasma insulin and remote insulin,
respectively, and we let z, in units of mg, denote the total amount of glucose. Then the
model equations follow from the following assumptions:

1. Plasma insulin is produced at a rate f1(z) that is dependent on plasma glucose. The
insulin exchange with the remote pool is a linear function of the concentration
difference between the pools x/V1 − y/V2 with rate constant E, where V1 is the
plasma volume and V2 is the interstitial volume. In addition, there is linear removal
of insulin from the plasmaby the kidneys and the liver, with rate constant 1/t1. Thus,

dx

dt
� f1(z)−

(
x

V1
− y

V2

)
E− x

t1
. (19.29)

Note that this equation and the two that follow arewritten in terms of total amounts
of insulin and glucose, rather than concentrations. Formulations using concentra-
tions or total quantities are equivalent, provided that the blood and interstitial
volumes remain constant, which we assume.

2. Remote insulin accumulates via exchange with the plasma pool and is degraded in
muscle and adipose tissue at rate 1/t2:

dy

dt
�
(
x

V1
− y

V2

)
E− y

t2
. (19.30)

3. Plasma glucose is produced at a rate f5 that is dependent on plasma insulin, but
only indirectly, as f5 is a function of h3, the output of a three-stage linear filter. The
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Figure 19.12 A: Oscillations of insulin release in perifused islets. The data indicate a slow time
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Figure 19.13 Schematic diagram of the model of ultradian insulin oscillations.

input to the filter is x, so glucose production is regulated by plasma insulin but
delayed by the filter. There is input I from the addition of glucose from outside the
system, by eating a meal, say. Finally, glucose is removed from the plasma by two
processes. Thus,

dz

dt
� f5(h3)+ I − f2(z)− f3(z)f4(y). (19.31)

Glucose utilization is described by two terms: f2(z) describes utilization of glu-
cose that is independent of insulin, as occurs, for instance, in the brain, and is
an increasing function that saturates quickly. The second removal term, f3(z)f4(y),
describes insulin-dependent utilization of glucose. Both f3 and f4 are increasing
functions, with f3 linear and f4 sigmoidal.

4. The three-stage linear filter sastifies the system of differential equations

t3
dh1

dt
� (x− h1), (19.32)

t3
dh2

dt
� (h1 − h2), (19.33)

t3
dh3

dt
� (h2 − h3). (19.34)
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The specific functional forms used for f1, . . . , f5 are

f1(z) � 209
1+ exp(−z/(300V3)+ 6.6) , (19.35)

f2(z) � 72
[
1− exp

( −z
144V3

)]
, (19.36)

f3(z) � 0.01z
V3

, (19.37)

f4(y) � 90

1+ exp
(
−1.772 log

{
y
[
1
V2

+ 1
Et2

]}
+ 7.76

) + 4, (19.38)

f5(h3) � 180
1+ exp(0.29h3/V1 − 7.5) , (19.39)

and these are graphed in Fig. 19.14. The remaining model parameters are given in the
caption to Fig. 19.15.

Numerical solution of the model equations shows that a constant infusion of
glucose causes oscillations in insulin and glucose. As I increases, the oscillation pe-
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Figure 19.14 Graphs of f1, . . . , f5 in the model for ultradian insulin oscillations. The exact
forms of these functions are not physiologically significant, but are chosen to give the correct
qualitative behavior.
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Figure 19.15 Ultradian insulin oscillations in the model. The glucose infusion rates are A:
I � 108 mg/min, and B: I � 216 mg/min. Note that insulin and glucose are expressed in units
of concentration. An amount is easily converted to a concentration by dividing by the volume
of the appropriate space. Parameter values are V1 � 3 liters, t1 � 6 min, V2 � 11 liters, t2 � 100
min, V3 � 10 liters, t3 � 12 min, E � 0.2 liter/min. (Sturis et al., 1991, Fig. 5.)

riod remains practically unchanged, but the amplitude increases (Fig. 19.15), in good
qualitative agreement with experimental data. However, it is interesting that these os-
cillations disappear if the compartment of remote insulin is removed from the model.
This indicates that the division of insulin into two functionally separate stores could
play an important role in the dynamic control of insulin levels. Another prediction of
themodel is that the oscillations are dependent on the delay in the regulation of glucose
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Figure 19.16 Schematic diagram of a typical perifusion system.

production. If the delay caused by the three-stage filter is either too large or too small,
the oscillations disappear.

19.3.2 Insulin Oscillations with Intermediate Frequency

Insulin also oscillates with a period of about 10–20minutes (Figs. 19.11 and 19.12). Be-
cause these oscillations occur in islets and the isolated pancreas, it appears that unlike
the ultradian oscillations, they are caused by a mechanism intrinsic to the pancreatic
islets.

These oscillations also occur in the experimental perifusion system depicted in
Fig. 19.16. A thin layer of insulin-secreting β-cells is sandwiched between beads and
exposed to the flow of a solution, the perifusate, with flow rate f . By collecting the
solution exiting the bottom of the perifusion system, one can determine how the rate
of insulin release of the cells in the bed depends on the composition and flow rate of
the influx solution.

After a step increase in perifusate glucose concentration (to synchronize the cells),
regular oscillations in the rate of insulin release are seen (Fig. 19.12). The insulin oscil-
lations are influenced by both the flow rate and glucose concentration of the perifusate.
This suggests that secretions from the cells into the fluid affect the rate of secretion.
If the oscillatory mechanism were confined to the interior of the cells, differing flow
rates (with the same glucose concentrations) should not alter the properties of the
oscillations.

The release of insulin from a β-cell depends on the uptake of glucose by the cell.
Glucose is taken up into cells by a family of glucose transporters, called GLUT-type
transporters. They operate by mechanisms discussed in Chapter 2, and come in five
subtypes distinguished by their affinities, capacities, and kinetic properties; the par-
ticular subtypes of concern to us here are the GLUT-1 and GLUT-2 transporters. The
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GLUT-1 transporters are assumed to be activated by insulin, providing a positive feed-
back. Furthermore, in the presence of insulin, GLUT-1 carrier protein is recruited into
the cell membrane from the cytoplasm. There is also evidence that insulin promotes the
synthesis of GLUT-1 protein, thereby adding to the positive feedback effect. It is also
proposed that insulin inhibits the uptake of glucose by GLUT-2 transporters, producing
negative feedback.

Model equations
Amodel for the release of insulin from β-cells using these assumptions was constructed
byMaki andKeizer (1995a,b). If the volumeflow rate, f , is large compared to the volume
of the cells in the bed, Vbed, it is reasonable to approximate the bed as a continuously
stirred mixture, and thus ignore spatial dependencies in the bed (see Exercise 4). We
let G and I denote the concentrations of glucose and insulin, respectively, in the efflux
solution, and let the subscript 0 denote the concentrations in the influx solution. Also,
we let k0 � f/Vbed. Then, the rate at which glucose flows out of the bed is k0G, and the
rate at which it flows into the bed is k0G0. Hence, we have the conservation laws for
glucose and insulin,

dG

dt
� −R1 − R2 − k0(G−G0), (19.40)

dI

dt
� Rs − k0(I − I0), (19.41)

where R1 is the rate of glucose uptake by GLUT-1 receptors, R2 is the rate of glucose
uptake by GLUT-2 receptors, and Rs is the rate of insulin secretion by the cells in the
bed.

When the flow rate is large enough and when the concentration of insulin in the
influx is small enough, both G and I may be replaced by their pseudo-steady states.
For if k0G is large compared to R1 and R2, and k0I/Rs is order 1, a simple asymptotic
argument shows that

G � G0, (19.42)

I � I0 + Rs

k0
. (19.43)

Inside the cell, glucose ismetabolized at the rateRm. Thus, ifGi denotes the interior
concentration of glucose, then

dGi

dt
� R1 + R2 − Rm. (19.44)

To complete the model equations we introduce a variable J, an inhibition variable
(similar to h or n in the Hodgkin–Huxley context), which measures the extent to which
insulin inhibits its own release. J does not correspond directly to a measured physio-
logical process, but is a phenomenological representation of a slow negative feedback
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process. The variable J obeys the differential equation

τ
dJ

dt
� J∞ − J, (19.45)

where

J∞ � Kinh

Kinh + I
. (19.46)

Note that J∞ decreases as the concentration of insulin increases, and thus an increase
in insulin leads to a decrease in J, with a time delay related to the time constant τ.

In summary, the model equations are

G � G0, (19.47)

I � I0 + Rs

k0
, (19.48)

dGi

dt
� R1 + R2 − Rm, (19.49)

τ
dJ

dt
� J∞ − J. (19.50)

To complete themodel description, it remains to discuss the functional forms of the
various rate terms. First, the rate of glucose metabolism is assumed to be an increasing
function of glucose concentration. Thus,

Rm � VmGi

Km +Gi
, (19.51)

for some constants Vm and Km. In a similar way, the rates of the GLUT-1 and GLUT-2
transporters are assumed to be simple increasing functions of the external concentra-
tion of glucose G0. R1 is assumed to be an increasing function of I, which models the
recruitment of GLUT-1 transporters by insulin and results in positive feedback,

R1 �
(
V1G0

K1 +G0

)(
I

Ki + I

)
. (19.52)

R2 is assumed to be an increasing function of J, and thus a decreasing function of I, at
least at steady state,

R2 � Jm
V2G0

K2 +G0
− LgGi. (19.53)

A leak term LgGi describes the leak of glucose out of the cell and is appended to R2.
Finally, the rate of insulin secretion, Rs, is described by an empirical function de-

termined by fitting to experimental data. By combining data on how Rm depends on
G0 with data on how Rs depends on G0, one can determine the relationship between
Rs and Rm. We are then able to express Rs in terms of Rm and hence in terms of Gi. By
doing so we circumvent the inconvenient fact that although the rate of insulin secre-
tion depends in some way on internal glucose concentrations, this relationship has not



606 19: Hormone Physiology

Table 19.2 Standard parameter values of the model for intermediate insulin oscillations.

Fixed by experiment Vm 0.24 mM/min
Km 9.8 mM
Vs 0.034 mM/min
Ks 0.13 mM/min
V1 34.7 mM/min
K1 1.4 mM
V2 32 mM/min
K2 17 mM

Experimentally variable k0 550/min
I0 0 mM
G0 8–19 mM

Adjustable Kinh 1 × 10−7 mM
Ki 6 × 10−8 mM
τ 20 min
Lg 20/min

been measured directly. The result is

Rs � Vs(R4m + L)
R4m + K4s + L

Jn. (19.54)

The factor Jn does not follow from the experimental data but is included here so that
insulin exerts a direct negative feedback effect on the rate of insulin secretion.

Most of the model parameters can be determined from experimental data, and are
summarized in Table 19.2. The adjustable parameters are Kinh, Ki, τ, and Lg. With the
exception of Lg, these are parameters associated with the various types of insulin feed-
back. Since this is the part of the model for which there is the least direct evidence, it is
not surprising that these parameters cannot be determined directly from experimental
data.

By choosing different values form and n, it is possible to vary the type of negative
feedback. If m � 0 and n � 1, insulin directly inhibits the rate of insulin secretion,
whereas if m � 2 and n � 0, insulin decreases the rate of glucose uptake by GLUT-2
receptors. Since this reduces the concentration of glucose inside the cell, it indirectly
decreases the rate of insulin secretion.

In the direct inhibition model (m � 0, n � 1), as the concentration of glucose
in the influx solution, G0, is increased, the steady-state concentration of insulin in
the efflux solution increases. This corresponds to an increase in the rate of insulin
secretion.WhenG0 is large enough, oscillations with a period of about 16minutes arise
via a Hopf bifurcation, and as G0 increases further, the amplitude of the oscillations
decreases until they disappear via another Hopf bifurcation. Although the period of the
oscillations agreeswell with experimental data, and oscillations occur at approximately
the correct glucose concentrations, the decrease in amplitude with increasing G0 is
opposite to what is observed experimentally.
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In the indirect inhibition model the opposite effect is seen. As before, the oscil-
lations appear and disappear at Hopf bifurcations, but here the amplitude of the
oscillations increases as G0 increases, in better agreement with experiment. It thus
appears that of the two hypotheses, indirect inhibition is the more plausible.

19.4 Adaptation of Hormone Receptors

It remains to answer the question of why hormone secretion is pulsatile in the first
place. As with many oscillatory physiological systems, there is no completely satisfac-
tory answer to this question. However, one plausible hypothesis has been proposed by
Li and Goldbeter (1989). Based on a model of a hormone receptor first constructed
by Segel, Goldbeter, and their coworkers (Segel et al., 1986; Knox et al., 1986), Li and
Goldbeter constructed a model of a hormone receptor that responds best to stimuli of
a certain frequency, thus providing a possible reason for the importance of pulsatility.

Closely linked to this hypothesis is the phenomenon of receptor adaptation. Often,
the response to a constant hormone stimulus is much smaller than the response to a
time-varying stimulus. In the extreme case, the receptor responds to a time-varying
input, but has no response to a steady input, regardless of the input magnitude, a
phenomenon called exact adaptation.We have seen a number of examples of adaptation
in this book; for example, the models of the IP3 receptor discussed in Chapter 5 show
adaptation in their response to a step-function increase in Ca2+ concentration; i.e.,
their response is an initial peak in the Ca2+ release, followed by a decrease to a lower
plateau as the receptor is slowly inactivated by Ca2+. Similarly, in Chapter 22 we will
see how biochemical feedback in photoreceptors can result in a system that displays
remarkably precise adaptational properties, as embodied in Weber’s law. Because of
the importance of adaptation in physiological systems, it is interesting to study how
adaptation arises in a simple receptor model.

The key assumption is that the hormone receptor can exist in two different con-
formational states, R and D, and each conformational state can have hormone bound
or unbound (Fig. 19.17). For simplicity we assume that the active form of the receptor
has hormone bound to the receptor in state R. The addition of hormone to the receptor
system causes a change in the proportion of each receptor state, but the total receptor
concentration stays fixed.

Letting r, x, y, d denote [R]/RT, [RH]/RT, [DH]/RT and [D]/RT respectively, where RT
is the total receptor concentration, we find the following equations for the receptor
system:

dr

dt
� −[k1 + krH(t)]r + k−rx+ k−1d, (19.55)

dx

dt
� krH(t)r − (k2 + k−r)x+ k−2y, (19.56)

dy

dt
� k2x− (k−2 + k−d)y+ kdH(t)d. (19.57)
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Figure 19.17 Schematic diagram of a model of a
hormone receptor.

Because of the conservation condition r+x+y+d � 1 there are only three independent
variables, so only three equations are needed. The function H(t) denotes the hormone
concentration as a function of time, and is assumed known.

Each state of the receptor is assumed to have an intrinsic activity, and the total
activity of the receptor is given by the sum over all the receptor states, weighted by the
intrinsic activity of the state. Thus, if we let A denote the total activity of the receptor,
we have

A � a1r + a2x+ a3y+ a4d, (19.58)

for some constants a1, . . . , a4. Here, a1 is the intrinsic activity of the receptor in state
R, and similarly for the other a’s.

For simplicity, we assume that the binding of the ligand is essentially instantaneous,
and thus

x � H(t)r
Kr

, (19.59)

y � H(t)d
Kd

, (19.60)

where Kr � k−r/kr and Kd � k−d/kd. In this case, we have a single differential equation
for the receptor,

1
k1

dr

dt
� K1Kd

H + Kd
− r

(
1+ K1Kd(Kr +H)

(H + Kd)Kr

)
, (19.61)

where K1 � k−1/k1. The steady states are given by

r0 � 1
Kd+H
K1Kd

+ Kr+H
Kr

, (19.62)

x0 � Hr0

Kr
, (19.63)

y0 �
H
(
1− Kr+H

Kr
r0

)
Kd +H

. (19.64)
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If for simplicity we assume that a4 � 0, so that the state d is completely inactive,
the steady-state activity of the receptor is

A � a1r0 + a2x0 + a3y0 (19.65)

� a1K1KdKr +H(a2K1Kd + a3Kr)
KrKd(K1 + 1)+HK1KdKr(Kr + K1Kd)

. (19.66)

In general, this is a saturating curve as a function of H. However, exact adaptation
occurs if A is independent of H, in which case

A � A|H�0 � lim
H→∞

A, (19.67)

so that

K1a1

1+ K1
� a3Kr + K1Kda2

Kr + K1Kd
. (19.68)

Note that since the right-hand side of (19.68) is the weighted average of a2 and
a3, exact adaptation is possible only when a1 is greater than the smaller of a2 and a3.
In general, a2 is larger than a3 (as the RH form of the receptor has a greater intrinsic
activity than its inactivated formDH), and thus a1 > a3 is required for exact adaptation.
In other words, the intrinsic activity of the unbound receptor (R form) must be higher
than the intrinsic activity of the inactivated receptor, even when the hormone is bound.

In response to a step increase in hormone concentration, the receptor state is first
quickly converted to the RH form,which has a high activity, and thus the overall activity
initially increases. However, over a longer time period, the RH form gradually converts
to the DH form, which has a lower activity than the R (unbound) form. This receptor
inactivation decreases the activity back to the basal level. Thus, exact adaptation arises
from a process of fast activation and slow inactivation, a mechanism that has appeared
in many forms throughout this book.

19.5 Exercises
1. By taking partial derivatives of f (ξ, ξi) with respect to ξi confirm that the model (19.3), when

linearized about PM, takes the form given in (19.11)–(19.13). Calculate the eigenvalues and
eigenvectors of the matrix A.

2. This exercise works through the derivation of a Lyapunov function for the Lacker model
(Akin and Lacker, 1984). Define δ(ξ) � ξ2, ρ(ξ) � ξ−2 − 1, and φ(pi) � pi(M1 +M2 −M1M2pi),
where pi � ξi/ξ. Show that

dξi

dt
� δ(ξ)ξi[ρ(ξ)+ φ(pi)], (19.69)

dξ

dt
� δ(ξ)ξ[ρ(ξ)+ φ̄], (19.70)

dpi

dt
� δ(ξ)pi[φ(pi)− φ̄], (19.71)



610 19: Hormone Physiology

where

φ̄ �
n∑
i�1
piφ(pi). (19.72)

Also, define a new time scale τ by

dτ

dt
� δ(ξ), (19.73)

and show that
dpi

dτ
� pi[φ(pi)− φ̄]. (19.74)

Finally, show that

V(p1, . . . , pn) �
n∑
i�1

∫ pi

0
φ(s)ds (19.75)

is a Lyapunov function for the model by showing that

dV

dτ
�

n∑
i�1
pi[ξ(pi)− φ̄]2 ≥ 0. (19.76)

Hint: derive and use the fact that
∑
pi(ξ(pi)− φ̄) � 0.

3. Since γ1 ≡ 1, (19.23)–(19.25) provide no information about ξ1. Use the original variables to
show that ξ̄1(τ) � ξ(t(τ)) satisfies the differential equation

1
2
d

dτ
ξ̄21 � 1− ξ̄21(S−M1)(S−M2). (19.77)

Find t as a function of τ. Describe how the original variables ξi(t) may be obtained once the
γi(τ) have been obtained by numerical solution of (19.23)–(19.25). Why is it preferable to
solve the model in the transformed variables γi rather than the original variables ξi?

4. Show that the conservation equation for a species in the perifusion column of Fig. 19.16 is

∂ρ

∂t
+ v

∂ρ

∂x
� r, (19.78)

where ρ is the concentration of the species, v is the velocity of the flow, and r is the rate of
change due to reactions in the column. Integrate over the cell volume, Vbed, to get

∂ρ̄

∂t
� r̄ − k0(ρ̄ − ρ0), (19.79)

where r̄ and ρ̄ are the average values of r and ρ in the cell layer, ρ0 is the inflow value of
ρ, and k0 � vAbed/Vbed � f/Vbed. Hint: use the approximation that the outflow value of ρ is
approximately equal to the average value of ρ in the cell layer.

5. Use phase-plane analysis to discuss the behavior of the insulin secretion model (19.47)–
(19.50).

6. For the model of a hormone receptor assuming fast ligand binding (Section 19.4), calculate
the response to a step function, and then to a stimulus of the form H(t) � 1 for 0 < t < t0,
H(t) � 0 otherwise (call this stimulus a step pulse). Calculate the response to a series of step
pulses, and calculate the width of the pulse and the time between pulses so as to obtain the
greatest average activity. Li and Goldbeter (1989) give the details.

7. (From Loeb and Strickland, 1987.) Many cells respond maximally to a hormone concen-
tration that is much too low to saturate the hormone receptors. This can be explained by
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assuming that the response is dependent on a secondary mediator. Suppose that the hor-
mone, H, combines reversibly with its receptor, Ro, to form the complex HRo. Suppose
that the secondary mediator M is formed at a rate proportional to [HRo] and is degraded
with linear kinetics. Finally, suppose that M combines reversibly with its own receptor, R,
to form MR, and that the cellular response is linearly proportional to [MR]. What is the
fractional receptor occupancy as a function of [H]? Show that the fractional response (as a
function of [H]) has the same shape as the fractional receptor occupancy curve, shifted to
the left by a constant factor (when plotted against log[H]). Give a biological interpretation.
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Renal Physiology

The kidneys perform two major functions. First, they excrete most of the end prod-
ucts of bodily metabolism, and second, they control the concentrations of most of the
constituents of the body fluids. The main goal of this chapter is to gain some under-
standing of the process by which the urine is formed and waste products removed from
the bloodstream. The control of the constituents of the body fluids is discussed only
secondarily.

The primary operating unit of the kidney is called a nephron, of which there are
about a million in each kidney (Figs. 20.1 and 20.2). Each nephron is capable of form-
ing urine by itself. The entrance of blood into the nephron is by the afferent arteriole,
located in the renal cortex, and the tubules of the nephron and the associated peritubu-
lar capillaries extend deep into the renal medulla. The principal functional units of the
nephron are the glomerulus, through which fluid is filtered from the blood; the juxta-
glomerular apparatus, by which glomerular flow is controlled; and the long tubule, in
which the filtered fluid is converted into urine.

20.1 The Glomerulus

The first stage of urine formation is the production of a filtrate of the blood plasma.
The glomerulus, the primary filter, is a network of up to 50 parallel branching and
anastomosing (rejoining) capillaries covered by epithelial cells and encased by Bow-
man’s capsule. Blood enters the glomerulus by way of the afferent arteriole and leaves
through the efferent arteriole. Pressure of the blood in the glomerulus causes the fluid
to filter into Bowman’s capsule, carrying with the filtrate all the dissolved substances of
small molecular weight. The glomerular membrane is almost completely impermeable
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Figure 20.1 The kidney. (Guyton and Hall, 1996, Fig. 26-2, p. 317.)

Figure 20.2 The nephron. (Guyton and Hall, 1996, Fig. 26-3, p. 318.)

to all plasma proteins, the smallest of which is albumin (molecular weight 69,000). As a
result, the glomerular filtrate is identical to plasma except that it contains no significant
amount of protein.

The quantity of filtrate formed each minute is called the glomerular filtration rate,
and in a normal person averages about 125ml/min. The filtration fraction is the fraction
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Figure 20.3 Schematic diagram of the glo-
merular filtration.

of renal plasma flow that becomes glomerular filtrate and is typically about 20 percent.
Over 99 percent of the filtrate is reabsorbed in the tubules, with the remaining small
portion passing into the urine.

There are three pressures that affect the rate of glomerular filtration. These are
the pressure inside the glomerular capillaries that promote filtration, the pressure
inside Bowman’s capsule that opposes filtration, and the colloidal osmotic pressure
(cf. Chapter 2, Section 2.7) of the plasma proteins inside the capillaries that opposes
filtration.

A mathematical model of the glomerular filter can be described simply as follows.
We assume that the glomerular capillaries comprise a one-dimensional tube with flow
q1 and that the surrounding Bowman’s capsule is also effectively a one-dimensional
tube with flow q2 (Fig. 20.3). Since the flow across the glomerular capillaries is pro-
portional to the pressure difference across the capillary wall, the rate of change of the
flow in the capillary is

dq1

dx
� Kf (P2 − P1 + πc), (20.1)

where P1 and P2 are the hydrostatic fluid pressures in tubes 1 and 2, respectively, πc is
the osmotic pressure of suspended proteins and formed elements of blood, and Kf is
the capillary filtration rate. The osmotic pressure of the suspended proteins is given by

πc � RTc, (20.2)

where c, the concentration expressed in moles per liter, is a function of x, since the
suspension becomes more concentrated as it moves through the glomerulus. Since the
large proteins bypass the filter, we have the conservation equation

ciQi � cq1, (20.3)

where ci is the input concentration and Qi is the input flux. It follows that

πc � πi
Qi

q1
, (20.4)

where πi � RTci is the input osmotic pressure. Since the hydrostatic pressure drop
in the glomerulus is small compared to the pressure drop in the efferent and afferent
arterioles, we take P1 and P2 to be constants.
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Equation (20.1) along with (20.4) gives a first-order differential equation for q1,
which is easily solved. Setting q1(L) � Qe we find that

Qe

Qi
+ α ln

(
Qe
Qi

− α

1− α

)
� 1− Kf L

πi

αQi
, (20.5)

where Qe is the efflux through the efferent arterioles, L is the length of the filter, and
α � πi/(P1 − P2).

Finally, we assume that the pressures and flow rates are controlled by the input
and output arterioles, via

Pa − P1 � RaQi, (20.6)

P1 − Pe � ReQe, (20.7)

and that the flow out of the glomerulus into the proximal tubule is governed by

P2 − Pd � Rd(Qi −Qe), (20.8)

where Pa, Pe, and Pd are the afferent arteriole, efferent arteriole, and descending tubule
pressures, respectively, andRa,Re, andRd are the resistances of the afferent and efferent
arterioles and proximal tubule, respectively. Typical values are P1 � 60, P2 � 18, Pa �
100, Pe � 18, Pd � 14− 18, πi � 25 mm Hg, with Qi � 650, Qd � Qi −Qe � 125 ml/min.

The flow rates and pressures vary as functions of the arterial pressure. To under-
stand something of this variation, in Fig. 20.4 is shown the renal blood flow rateQi and
the glomerular filtration flow rate as functions of the arterial pressure. It is no surprise
that both of these are increasing functions of arterial pressure Pa.

The strategy for numerically computing this curve is as follows: with resistances
Ra and Re and pressures Pe, Pd, and πi specified and fixed at typical levels, we pick a
value for glomerular filtrateQd � Qi−Qe. For this value, we solve (20.5) (using a simple
bisection algorithm) to find both Qi and Qe. From these, the corresponding pressures
Pa, P1, and P2 are determined from (20.6) and (20.7), and plotted.

For this model, the filtration rate varies substantially as a function of arterial pres-
sure.However, in reality (according to data shown in Fig. 20.5), the glomerular filtration
rate remains relatively constant even when the arterial pressure varies between 75 to
160 mm Hg, indicating that there is some autoregulation of the flow rate.

20.1.1 The Juxtaglomerular Apparatus

The need for autoregulation of the glomerular filtration rate is apparent. If the flow
rate of filtrate is too slow, then we expect reabsorption to be too high, and the kidney
fails to eliminate necessary waste products. On the other hand, at too high a flow rate,
the tubules are unable to reabsorb those substances that need to be preserved and not
eliminated, so that valuable substances are lost into the urine.

The idea of how to regulate the flow of filtrate is simple to understand. If you had a
leaky hose and wanted to control the leakage rate precisely, regardless of the total flow
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Figure 20.4 Unregulated glomerular filtration and renal blood flow plotted as functions of
arterial pressure, with Pd � 18, Pe � 0 mm Hg.

Figure 20.5 Autoregulation of renal blood flow and glomerular filtration rate but lack of au-
toregulation of urine flow during changes in renal arterial pressure. (Guyton and Hall, 1996,
Fig. 26-13, p. 327.)

rate, you could do so by regulating the outflow pressure at the end of the hose. The way
the glomerulus controls the rate of filtration is similar. After its descent into the renal
medulla, the long tubule returns to the proximity of the afferent and efferent arterioles
at the glomerulus. The juxtaglomerular complex consists of macula densa cells in the
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Figure 20.6 Structure of the juxtaglomerular apparatus. (Guyton and Hall, 1996, Fig. 26-14,
p. 328.)

distal tubule and juxtaglomerular cells in the walls of the afferent and efferent arterioles
(as depicted in Fig. 20.6).

A low flow rate causes excessive reabsorption of Na+ and chloride ions in the as-
cending limb of the loop of Henle, resulting in too large a decrease of these ionic
concentrations at the end of the loop. The macula densa cells respond to decreases
of Na+ concentration (by a mechanism not completely understood), by releasing a
vasodilator that decreases the resistance of the afferent arterioles. Simultaneously,
the juxtaglomerular cells release renin, an enzyme that enables the formation of an-
giotensin II, which constricts the efferent arterioles. The simultaneous effect of these
is to increase the flow of filtrate through the glomerulus.

A simple model to incorporate the effects of the vasodilator and vasoconstrictor
(angiotensin) is to allow the arteriole resistances to depend on the rate of filtration,
Qd � Qi −Qe, via some functional dependence

Ra � fa(Qd −Qt), (20.9)

Re � fe(Qd −Qt), (20.10)
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whereQt is the target flow rate, about 125ml/min. Amore realisticmodel would takeRa
and Re to be functions of the Na+ concentration at the distal end of the loop of Henle.
However, since we do not yet have a model relating flow rate to Na+ concentration, we
leave this to interested readers to pursue on their own.

We take fa to be an increasing function of its argument, and we take fe to be a
decreasing function of its argument. As a specific example, we take

Ra � ra[1+ tanh(δa(Qd −Qt))], (20.11)

Re � re[1− tanh(δe(Qd −Qt))], (20.12)

where δa and δe are parameters that determine the sensitivity of the model to changes
in flow rates, and ra and re are “normal” values of the resistances. With δa and δe zero,
the flow is unregulated. There is no direct evidence for these functional forms, so these
results are qualitative at best. Plots of the functions Ra/ra and Re/re are shown in Fig.
20.7, with δa � 0.1, δe � 0.01, Qt � 125ml/min. With these parameters, control of
afferent resistance is stronger than that of efferent resistance.

In Fig. 20.8 are shown the glomerular filtration and the renal bloodflowas functions
of the arterial pressure, in the case δa � 0.1, δe � 0.01. This simple model gives accept-
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able agreement with data, although there was no attempt to find a good quantitative
fit.

20.2 Urinary Concentration: The Loop of Henle

The challenge of anymodel of urine formation is to see how concentrating and diluting
mechanisms work together to determine the composition of the urine and to regulate
the interstitial contents, and then to account quantitatively for the concentrating ability
of particular species. The challenge is substantial. For example, for humans, the maxi-
mal urine concentrating ability is 1200 mOsm/liter, while some desert animals, such as
the Australian hopping mouse, can concentrate urine to as high as 10,000 mOsm/liter.
It is not understood how such high urine concentrations can be obtained. It is also
necessary that the kidney be able to produce a dilute urine under conditions of high
fluid intake.

A normal 70 kg human must excrete about 600 mOsm of solute (waste products of
metabolism and ingested ions) every day. The minimal amount of urine to transport
these solutes, called the obligatory urine volume is

obligatory volume � total solute/day
maximal urine concentration

(20.13)

� 600 mOsm/day
1200 mOsm/L

� 0.5L/day. (20.14)

This explains why severe dehydration occurs from drinking seawater. The concentra-
tion of salt in the oceans averages 3% sodium chloride, with osmolarity between 2000
and 2400mOsm/liter. Drinking 1 liter of water with a concentration of 2400mOsm/liter
provides 2400 mOsm of solute that must be excreted. If the maximal urine concentra-
tion is 1200mOsm/liter, then 2 liters of urine are required to rid the body of this ingested
solute, a deficit of 1 liter, which must be drawn from the interstitial fluid. This explains
why shipwreck victims who drink seawater are rapidly dehydrated, while (as Guyton
and Hall have kindly pointed out) the victim’s pet Australian hopping mouse can drink
all the seawater it wants with impunity.

Urinary concentration or dilution is accomplished primarily in the loop of Henle.
After leaving Bowman’s capsule, the glomerular filtrate flows into a tubule having five
sections: the proximal tubule, the descending limb of the loop ofHenle, the ascending limb
of the loop of Henle, the distal tubule, and, finally, the collecting duct. These tubules are
surrounded by capillaries, called the peritubular capillaries, that reabsorb the fluid that
has been extracted from the tubules. In Fig. 20.9 are shown the relative concentrations
of various substances at different locations along the tubular system.

The purpose of the proximal tubule is to extract much of the water and dissolved
chemicals (electrolytes, glucose, various amino acids, etc.) to be reabsorbed into the
bloodstream while concentrating the waste products of metabolism. It is this con-
centrate that eventually flows as urine into the bladder. The proximal tubular cells
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Figure 20.9 Relative concentrations of various substances as functions of distance along the
renal tubule system. (Guyton and Hall, 1996, Fig. 27-11, p. 341.)

have large numbers of mitochondria to support rapid active transport processes. In-
deed, about 65 percent of the glomerular filtrate is reabsorbed before reaching the
descending limb of the loop ofHenle. Furthermore, glucose, proteins, amino acids, ace-
toacetate ions, and the vitamins are almost completely reabsorbed by active cotransport
processes through the epithelial cells that line the proximal tubule.

Any substance that is reabsorbed into the bloodstream must first pass through the
tubularmembrane into the interstitium and then into peritubular capillaries. There are
three primary mechanisms by which this transport takes place, all of which we have
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Figure 20.10 Schematic diagram of the reabsorption of water and solutes in the proximal
tubule. (Guyton and Hall, 1996, Fig. 27-1, p. 332.)

seen before (Fig. 20.10). First, there is active transport of Na+ from the interior of the
epithelial cells into the interstitium, mediated by a Na+–K+ ATPase pump. Although
this pump actively pumps K+ into the cell from the interstitium, both sides of the
tubular epithelial cells are so permeable to K+ that virtually all of the K+ leaks back
out of the cell almost immediately.

There are secondary transporters that use the gradient of Na+ ions (established by
the ATPase) to transport other substances from the tubular lumen into the interior of
the epithelial cell. Themost important of these are cotransporters of glucose and amino
acid ions, but the epithelial cells of the proximal tubule also contain transporters of
phosphate, calcium, and magnesium ions. There is also a transporter that exchanges
hydrogen ions for Na+ ions across the membrane of the epithelial cell membrane into
the tubule. The third mechanism of transport is that of water across cell membranes,
mediated by osmotic pressure (see Chapters 2 and 21).

The descending limb of the loop of Henle is lined with thin epithelial cells with few
mitochondria, indicating minimal metabolic activity; it is highly permeable to water
andmoderately permeable to Na+, urea, andmost ions. The ascending limb of the loop
of Henle begins with a thin wall but then about halfway up becomes grossly thickened.
In contrast to the descending limb, the ascending limb is highly impermeable to water
and urea. The cells of the thick ascending limb are similar to those of the proximal
tubule, suited for strong active transport of Na+ and Cl− ions from the tubular lumen
into the interstitial fluid.
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The thick segment travels back to the region of the glomerulus, where it passes
between the afferent and efferent arterioles, forming the juxtaglomerular apparatus,
where much of the feedback control of the flow rate takes places. Passing beyond this
point, the tubule becomes the distal tubule, the function of which is similar to that of
the ascending limb of the loop of Henle.

Finally, the flow enters the descending collecting duct, which gathers the flow from
several nephrons and descends back through the cortex and into the outer and inner
zones of the medulla. The flow from the collecting duct then flows out of the kidney
through the ureter on the way to the bladder. The cells lining the collecting duct are
sensitive to a number of hormones that act to regulate their function as well as the final
chemical composition of the urine. Primary among these hormones are aldosterone
and antidiuretic hormone (ADH). Aldosterone determines the rate at which Na+ ions
are transported out of the tubular lumen, and ADH determines the permeability of the
collecting duct to water, and thereby determines the final concentration of the urine.
When there is no ADH present, the collecting duct is impermeable to water, but with
ADH present, the permeability of the collecting duct allows water to be reabsorbed out
of the collecting duct, leaving behind a more highly concentrated urine.

Putting this all together, we arrive at a qualitative summary of how a nephron op-
erates. Along the ascending limb of the loop of Henle portion of the tubule, Na+ is
absorbed into the interstitium, either passively (in the thin ascending limb) or actively
(in the thick ascending limb). This creates a high Na+ concentration in the intersti-
tium, which then serves to draw water out of the descending limb and allows Na+ to
reenter the descending limb. Hence, fluid entering the descending limb is progressively
concentrated until, at the turning point of the loop, the fluid osmolarity is about 1200
mOsm/liter (compared to the entering fluid, which is about 300 mOsm/liter). Clearly,
because the fluid entering the ascending limb is so concentrated, Na+ extraction from
the ascending limb is enhanced, which further enhances water extraction from the
descending limb, and so on. This positive feedback process is at the heart of the coun-
tercurrent mechanism, to be discussed in more detail below. As the fluid ascends the
ascending limb, Na+ is continually extracted until, at the level of the juxtaglomerular
apparatus, the fluid in the tubule is considerably more dilute than the original filtrate.
However (and this is the crucial part), the dilution process results in a steep gradient of
Na+ concentration in the interstitium, a gradient that can, when needed, concentrate
the urine.

When there is no ADH present, the dilute urine formed by the loop of Henle pro-
ceeds through the collecting duct essentially unchanged, resulting in a large quantity
of dilute urine. In the presence of large amounts of ADH, the collecting duct is highly
permeable to water, so that by the time the filtrate reaches the level of the turning point
of the loop of Henle, it is essentially at the same concentration as the interstitium,
about 1200 mOsm/liter, thus giving a small quantity of concentrated urine.

It is important to emphasize that the principal functions of the loop of Henle are,
first, the formation of dilute urine, which allows water to be excreted when necessary,
and, second, the formation of the interstitial gradient in Na+ concentration, which
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allows for the formation of a concentrated urine when necessary. The importance of the
loop of Henle in creating the interstitial gradient of Na+ concentration is underlined by
the fact that although all vertebrates can produce dilute urine, only birds andmammals
can produce hyperosmotic urine, and it is the kidneys of only these animals that contain
loops of Henle.

20.2.1 The Countercurrent Mechanism

Solutes are exchanged between liquids by diffusion across their separating mem-
branes. Since the rate of exchange is affected by the concentration difference across
the membrane, the exchange rate is increased if large concentration differences can be
maintained. One important way that large concentration differences can bemaintained
is by the countercurrent mechanism. As we will see, the countercurrent mechanism is
important to renal function. Other examples of the countercurrent mechanism include
the exchange of oxygen from water to blood through fish gills and the exchange of
oxygen in the placenta between mother and fetus.

Suppose that two gases or liquids containing a solute flow along parallel tubes
separated by a permeable membrane. We model this in the simplest possible way as
a one-dimensional problem, and we assume that solute transport is a linear function
of the concentration difference. Then the concentrations in the two one-dimensional
tubes are given by

∂C1

∂t
+ q1

∂C1

∂x
� d(C2 − C1), (20.15)

∂C2

∂t
+ q2

∂C2

∂x
� d(C1 − C2). (20.16)

The mathematical problem is to find the outflow concentrations, given that the inflow
concentrations, the length of the exchange chamber, and the flow velocities are known.
It is a relatively easy matter to generalize this model to allow for an interstitium (see
Exercise 4).

We assume that the flows are in steady state and that the input concentrations are
C01 and C

0
2. Then, if we add the two governing equations and integrate, we find that

q1C1 + q2C2 � k (a constant). (20.17)

Pretending that k is known, we eliminate C2 from (20.16) and find the differential
equation for C1,

dC1

dx
� d

q1q2

(
k− (q1 + q2)C1

)
, (20.18)

from which we learn that

C1(x) � κ + (C1(0)− κ)e−λx, (20.19)

where κ � k
q1+q2 and λ � d

(
q1+q2
q1q2

)
.
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There are two cases to consider, namely when q1 and q2 are of the same sign and
when they have different signs. If they have the same signs, say positive, then the input
is on the left at x � 0, and it must be that C1(0) � C01, C2(0) � C02, from which, using
(20.17), it follows that

C1(L)

C01
� 1+ γρ

1+ ρ
+ ρ

1− γ

1+ ρ
e−λL, (20.20)

where γ � C02/C
0
1, ρ � q2/q1, λ � d

q1
(1+ 1

ρ
).

Suppose that we are attempting to transfer material from vessel 1 to vessel 2, so
that γ < 1. We learn from (20.20) that the output concentration from vessel 1 is an
exponentially decreasing function of the residence length dL/q1. Furthermore, the best
that can be done (i.e., as dL/q1 → ∞) is 1+γρ1+ρ .

In the case that q1 and q2 are of opposite sign, say q1 > 0, q2 < 0, the inflow for
vessel 1 is on the left at x � 0, but the inflow for vessel 2 is on the right at x � L. In this
case we calculate that

C1(L)

C01
� −γρ + (1− ρ + γρ)e−λL

e−λL − ρ
, (20.21)

where γ � C2(L)/C01 � C02/C
0
1, ρ � −q2/q1 > 0, λ � d

q1
(1 − 1

ρ
), provided that ρ �� 1. In the

special case ρ � 1, we have

C1(L)

C01
� q1 + γdL

q1 + dL
. (20.22)

Now we can see the substantial difference between a cocurrent (q1 and q2 of the
same sign) and a countercurrent (q1 and q2 with the opposite sign). At fixed parameter
values, if γ < 1, then the expression for C1(L)/C01 in (20.20) is always larger than that
in (20.21), implying that the total transfer of solute is always more efficient with a
countercurrent than with a cocurrent.
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In Fig. 20.11 is shown a comparison between a countercurrent and a cocurrent.
The dashed curves show the transfer fraction C1(L)/C01 for a cocurrent, plotted as a
function of the residence length dL/q1, with input in tube 2, C2(0) � 0. The solid curves
show the same quantity for a countercurrent, with input concentration C2(L) � 0.

In the limit of a long residence time (large dL/q1), the transfer fraction becomes
1 − ρ + γρ if ρ < 1, and γ if ρ > 1. Indeed, this is always smaller than the result for a
cocurrent, 1+γρ1+ρ .

20.2.2 The Countercurrent Mechanism in Nephrons

The countercurrent mechanism works slightly differently in nephrons because the two
parallel tubes, the descending branch and the ascending branch of the loop of Henle,
are connected at their bottom end. Thus the flow and concentration of solute out of the
descending tube must match the flow and concentration of solute into the ascending
tube.

Mathematical models of the urine-concentrating mechanism have been around for
some time, but all make use of the same basic physical principles, namely, the estab-
lishment of chemical gradients via active transport processes, the movement of ions
via diffusion, and the transport of water by osmosis. The unique feature of the nephron
is its physical organization, which allows it to eliminate waste products while control-
ling other quantities. In what follows we present a model similar to that of Stephenson
(1972, 1992) of urinary concentration that represents the gross organizational features
of the loop of Henle. A number of other models are discussed in a special issue of the
Bulletin of Mathematical Biology (volume 56, number 3, May 1994), while two useful
reviews of mathematical work on the kidney are Knepper and Rector (1991) and Roy
et al. (1992).

We view the loop of Henle as consisting of four compartments, including three
tubules, the descending limb, the ascending limb, and the collecting duct, and a single
compartment for the interstitium and peritubular capillaries (Fig. 20.12). The intersti-
tium/capillary bed is treated as a one-dimensional tubule that accepts fluid from the
other three tubules and loses it to the venules. It is an easy generalization to separate
the peritubular capillaries and interstitium into separate compartments, but little is
gained by doing so. In each of these compartments, one must keep track of the flow of
water and the concentration of solutes. For the model presented here, we track only
one solute, Na+, because it is believed that the concentration of Na+ in the interstitium
determines over 90 percent of the osmotic pressure.

We assume that the flow in each of the tubes is a simple plug flow (positive in the
positive x direction) with flow rates qd, qa, qc, qs for descending, ascending, collecting,
and interstitial tubules, respectively. Similarly, the concentration of solute in each of
these is denoted by cd, ca, cc, cs. The tubules are assumed to be one-dimensional, with
glomerular filtrate entering the descending limb at x � 0, turning from the descending
limb to the ascending limb at x � L, turning from the ascending limb to the collecting
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Figure 20.12 Diagram of the simple
four-compartment model of the loop of
Henle.

duct at x � 0, and finally exiting the collecting duct at x � L. We assume that the
interstitium/capillary compartment drains at x � 0 with no flow at x � L.

Descending limb: The flux of water from the descending limb to the interstitium is
controlled by the pressure difference and the osmotic pressure difference; hence

1
kd

dqd

dx
� Ps − πs − Pd + 2RT(cd − cs), (20.23)

where Pd and Ps are the hydrostatic pressures in the descending tubule and in-
terstitium, πs is the colloidal osmotic pressure of the interstitium, and kd is the
filtration rate for the descending tubule. The factor two multiplying the osmotic
pressure due to the solute is to take into account the fact that the fluid is electrically
neutral, and the flow of Na+ ions is followed closely by a flow of chloride ions, both
of which contribute to the osmotic pressure. The transport of Na+ ions from the
descending limb is governed by simple diffusion, so that at steady state we have

d(qdcd)
dx

� hd(cs − cd), (20.24)

where hd is the permeability of the descending limb to Na
+ ions.

Ascending limb: The ascending limb is assumed to be impermeable to water, so that

dqa

dx
� 0, (20.25)

and the flow of Na+ out of the ascending limb is by an active process, so that

d(qaca)
dx

� −p. (20.26)
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The pump rate p certainly depends in nontrivial ways on the local concentrations
of various ions. However, for this model we take p to be a constant. This simplifying
assumption causes problems with the behavior of the model at low Na+ concentra-
tions, because it allows the Na+ concentration to become negative. Although the
Na+ ATPase is actually a Na+–K+ pump, the epithelial cells are highly permeable
to K+, and so we assume that K+ can be safely ignored. For simplicity, we also
ignore the fact that the Na+ transport properties of the thin ascending limb are
different from those of the thick ascending limb, and we assume active removal
along the entire ascending limb.

Collecting duct: The flow of water from the collecting duct is also controlled by the
hydrostatic and osmotic pressure differences, via

1
kc

dqc

dx
� Ps − πs − Pc + 2RT(cc − cs), (20.27)

and the transport of Na+ from the collecting duct is governed by

d(qccc)
dx

� hc(cs − cc). (20.28)

Here, kc and hc are the permeability of the collecting duct to water and Na+, and
are controlled by ADH and aldosterone, respectively.

Conservation equations: Finally, because total fluid is conserved,

dqs

dx
� − d

dx
(qd + qa + qc), (20.29)

and because total solute is conserved,

d(qscs)
dx

� − d

dx
(qdcd + qaca + qccc). (20.30)

To complete the description, we have the relationship between pressure and flow
in a tube,

dPj

dx
� −Rjqj, (20.31)

for j � d, a, c, s. However, for renal modeling it is typical to take each pressure to be
constant. Typical values for the pressures are Pd � 14–18 mm Hg, Pa = 10–14 mm Hg,
Pc = 0–10 mm Hg, Ps = 6 mm Hg, and πs � 17 mm Hg.

This description of the nephron consists of eight first-order differential equations
in the eight unknowns qj and cj, for j � d, a, c, s. To complete the description, we need
boundary conditions. We assume that the inputs qd(0) and cd(0) are known and given.
Then, because the flow from the descending limb enters the ascending limb, qd(L) �
−qa(L) and cd(L) � ca(L). Furthermore, qs(L) � 0. At x � 0, flow from the ascending
limb enters the collecting duct, so that qa(0) � −qc(0) and ca(0) � cc(0). Finally, since
total fluid must be conserved, what goes in must go out, so that qd(0)+ qs(0) � qc(L).
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It is useful to nondimensionalize the equations by normalizing the flows and solute
concentrations. Thus, we let

x � Ly,Qj � qj

qd(0)
, Cj � cj

cd(0)
for j � d, a, c, s,

and the dimensionless parameters are

ρj � qd(0)
2LRTcd(0)kj

,HPj � Pj + πs − Ps

RT2cd(0)
, Hj � Lhj

qd(0)
, for j � d, c.

In this scaling Qd(0) � Cd(0) � 1.
Three of these equations are trivially solved. In fact, it follows easily from (20.25),

(20.29), and (20.30) that

Qa � Qa(0) � Qa(L), (20.32)

Qd +Qa +Qc +Qs � Qc(L), (20.33)

QdCd +QaCa +QcCc +QsCs � Qc(L)Cc(L). (20.34)

Two more identities can be found. If we use (20.24) to eliminate cd − cs from (20.23),
we obtain

ρd
dQd

dy
+HPd � Cd − Cs � − 1

Hd

d(QdCd)
dy

, (20.35)

from which it follows that

ρd(Qd − 1)+ 1
Hd

(QdCd − 1) � −HPdy. (20.36)

Similarly, we use (20.28) to eliminate cc − cs from (20.27) to obtain

ρc
dQc

dy
+ 1
Hc

d(QcCc)
dy

� −HPc, (20.37)

which integrates to

ρc(Qc −Qc(0))+ 1
Hc

(QcCc −Qc(0)Cc(0)) � −HPcy. (20.38)

As discussed above, we assume that the Na+ concentration in the ascending limb
is always sufficiently high so that the Na+–K+ pump is saturated and the pump rate is
independent of concentration, in which case the solution of (20.26) (in nondimensional
variables) is

QaCa � QaCa(0)− Py, (20.39)

where P � pL

cd(0)qd(0)
is the dimensionless Na+ pump rate.

Having solved six of the original eight differential equations, we are left with a
system of two first-order equations in two unknowns. The two equations are

ρd
dQd

dy
� −HPd + Cd − Cs, (20.40)
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ρc
dQc

dy
� −HPc + Cc − Cs, (20.41)

subject to boundary conditions Qd � 1, Qc � −Qa at y � 0, and Qd � −Qa at y � 1,
where Cc, Cs, and Cd are functions of Qd and Qc. Although there are three boundary
conditions for two first-order equations, the number Qa is also unknown, so that this
problem is well posed. Our goal in what follows is to understand the behavior of the
solution of this system.

Formation of urine without ADH
The primary control of renal dialysis is accomplished in the collecting duct, where the
amount of ADH determines the permeability of the collecting duct to water and the
amount of aldosterone determines the permeability of the collecting duct to Na+. Im-
pairment of normal kidney function is often related to ADH. For example, the inability
of the pituitary to produce adequate amounts of ADH is called “central” diabetes in-
sipidus, and results in the formation of large amounts of dilute urine. On the other hand,
with “nephrogenic” diabetes insipidus, the abnormality resides in the kidney, either as
a failure of the countercurrent mechanism to produce an adequately hyperosmotic in-
terstitium, or as the inability of the collecting ducts to respond to ADH. In either case,
large volumes of dilute urine are formed.

Various drugs and hormones can have similar effects. For example, alcohol, cloni-
dine (an antihypertensive drug), and haloperidol (a dopamine blocker) are known to
inhibit the release of ADH. Other drugs such as nicotine andmorphine stimulate the re-
lease of ADH.Drugs such as lithium (used to treatmanic-depressives) and the antibiotic
tetracyclines impair the ability of the collecting duct to respond to ADH.

The second important controller of urine formation is the hormone aldosterone. Al-
dosterone, secreted by zona glomerulosa cells in the adrenal cortex, works by diffusing
into the epithelial cells, where it interacts with several receptor proteins and diffuses
into the cell nucleus. In the cell nucleus it induces the production of the messenger
RNA associated with several important proteins that are ingredients of Na+ channels.
The net effect is that (after about an hour) the number of Na+ channels in the cell
membrane increases, with a consequent increase of Na+ conductance. Aldosterone is
also known to increase the Na+–K+ ATPase activity in the collecting duct, as well as in
other places in the nephron (a feature not included in this model), thereby increasing
Na+ removal and also K+ excretion into the urine. For persons with Addison’s disease
(severely impaired or total lack of aldosterone), there is tremendous loss of Na+ by the
kidneys and accumulation of K+. Conversely, excess aldosterone secretion, as occurs
in patients with adrenal tumors (Conn’s syndrome), is associated with Na+ retention
and K+ depletion.

To see the effect of these controls we examine the behavior of our model in two
limiting cases. In the first case, we assume that there is no ADH present, so that ρc � ∞,
and that there is no aldosterone present, so that Hc � 0. In this case it follows from
(20.37) that Qc � Qc(0) � −Qa and that Cc � Cc(0) � Ca(0). In other words, there is no
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loss of either water or Na+ from the collecting duct: the collecting duct has effectively
been removed from the model.

It remains to determine what happens in the descending and ascending tubules.
The flow is governed by the single differential equation

ρd
dQd

dy
� Cd − Cs −HPd � f (Qd,Qa, y), (20.42)

where, from (20.34), (20.36), and (20.39),

Cd � 1
Qd
(1+ ρdHd(1−Qd)−HPdHdy), (20.43)

Cs � (P+HPdHd)(1− y)
Qd +Qa

− ρdHd, (20.44)

subject to the boundary conditionsQd(0) � 1, Qd(1) � −Qa. As before,Qa is a constant,
as the ascending limb is impermeable to water, and Ca is a linearly decreasing function
of y.

We view this problem as a nonlinear eigenvalue problem, since it is a single first-
order differential equation with two boundary conditions. The unknown parameter
Qa is the parameter that we adjust to make the solution satisfy the two boundary
conditions. It is reasonable to take ρd to be small, since the descending tubule is quite
permeable to water. In this case, however, the differential equation (20.42) is singular,
since a small parametermultiplies the derivative.We overcome this difficulty by seeking
a solution in the form y � y(Qd, ρd) satisfying the differential equation

f (Qd,Qa, y)
dy

dQd
� ρd (20.45)

subject to boundary conditions y � 0 at Qd � 1 and y � 1 at Qd � −Qa.
With ρd small we have a regular perturbation problem in which we seek y as a

function of Qd as a power series of ρd, which is solved as follows. We assume that y has
a power series representation of the form

y � y0 + ρdy1 + ρ2dy2 +O(ρ2d), (20.46)

substitute into (20.45), expand in powers of ρd, collect like powers of ρd, and then solve
these sequentially. We find that

y � 1− Qa +Qd

PQd −HPdHdQa

[
1−HPd(Qd +Hd)

]
+O(ρd). (20.47)

Notice that y � 1 at Qd � −Qa. Now we determine Qa by setting y � 0, Qd � 1 in
(20.47), and solving for Qa. To leading order in ρd we find that

−Qa � 1− P+HdHPd

1−HPd
+O(ρd). (20.48)

It is now a straightforward matter to plot y as a function of Qd, and then rotate
the axes so that we see Qd as a function of y. This is depicted with a dashed curve
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in Fig. 20.13 (using formulae that include higher-order correction terms for ρd). For
comparison we also include the curves calculated for the case where ADH is present;
the details of that calculation are given below. Note that in either the presence or
absence of ADH, Qa is always independent of y, while in the absence of ADH, Qc is also
independent of y. Once Qd is determined as a function of y, it is an easy matter to plot
the concentrations Cd and Ca as functions of y, as shown in Fig. 20.14.

From these we can draw some conclusions about how the loop of Henle works in
this mode. Sodium is extracted from the descending limb by simple diffusion and from
the ascending loop by an active process. The Na+ that is extracted from the ascending
loop creates a large osmotic pressure in the interstitial region that serves to enhance the
extraction of water from the descending loop. This emphasizes the importance of the
countercurrent mechanism in the concentrating process. As the fluid proceeds down
the descending loop, its Na+ concentration is continually increasing, and during its
passage along the ascending loop, its Na+ concentration falls. At the lower end of the
loop the relative concentration of the formed urine (i.e., of substances that are imper-
meable, such as creatinine) is 1

Qd(1)
. This quantity represents the “concentrating ability”

of the nephron in this mode. Since Ca(0) < Cd(0), as can be seen from Fig. 20.14, by the
time the fluid reaches the top of the ascending loop, it has been diluted. Furthermore,
comparing the value ofQd(1)(� Qc) in the absence of ADH (dashed curve in Fig. 20.13)
to the value of Qc(1) in the presence of ADH (solid curve in Fig. 20.13) shows that
the flux out of the collecting duct is higher in the absence of ADH. Hence, combining
these two observations, we conclude that in the absence of ADH, the nephron produces
a large quantity of dilute urine, while in the presence of ADH, it produces a smaller
quantity of concentrated urine. This is consistent with the qualitative explanation of
nephron function given earlier in the chapter.

In Fig. 20.15 are shown the solute concentration Ca and the flow rateQ at the upper
end of the ascending tubule as functions of dimensionless pump rate P. The formed
urine is dilute whenever this solute concentration is less than one. The fact that this
concentration can become negative at larger pump rates is a failure of the model, since
the pump rate in the model is not concentration dependent.

Formation of urine with ADH
In the presence of ADH, the collecting tube is highly permeable to water, so that, since
the concentration of Na+ in the interstitium at the lower end of the tube is high, addi-
tional water can be extracted from the collecting duct, thereby concentrating the dilute
urine formed by the loop of Henle.

To solve the governing equations in this case is much harder than in the case with
no ADH. This is because the equations governing the flux (20.40) and (20.41) are both
singular in the limit of zero ρd and ρc. Furthermore, one can show that the quasi-steady
solution (found by setting ρd � ρc � 0 in (20.40) and (20.41)) cannot be made to satisfy
the boundary conditions at y � 1, suggesting that the solution has a boundary layer.
To avoid the difficulties associated with boundary layers, it is preferable to formulate
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Figure 20.13 The flux of fluid in the loop of Henle, with ADH present (solid curve, ρc � 2.0)
and without ADH present (dashed curve, ρc � ∞). Parameter values are P � 0.9, &Pd � 0.15,
Hd � 0.1, ρd � 0.15, Hc � 0.
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Figure 20.14 The solute concentration in the descending (Cd ) and ascending (Ca) tubules with
no ADH present (ρc � ∞), plotted as a function of distance y for the parameter set as in Fig.
20.13.

the problem in terms of the solute flux Sd � QdCd, because according to (20.35) this
function is nearly linear and does not change rapidly when ρd is small.

In the case that ADH is present but there is no aldosterone (Hc � 0), the governing
equations are

dSd

dy
� Hd

(
Ss

Qs
− Sd

Qd

)
� HdFd(Sd,Qc), (20.49)
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end of the ascending tubule plotted as
functions of pump rate P when there
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ρc
dQc

dy
� −HPc + Sc(0)

Qc
− Ss

Qs
� Fc(Sd,Qc), (20.50)

where

Ss � P(y− 1)+ Sd(1)− Sd, (20.51)

Qs � −1−Qa −Qc +Qc(1)− 1− Sd −HPdHdy

ρdHd

, (20.52)

Qd � 1+ 1− Sd −HPdHdy

ρdHd

, (20.53)

subject to boundary conditions Sd(0) � 1, Qc(0) � 1+ 1−Sd−HPdHd
ρdHd

, and Qd(1) � −Qa.
These equations are difficult to solve because there are two unknown functions,

Sd and Qc, and an unknown constant Qa, subject to three boundary conditions. One
way to solve them is to introduce the constants Qa and Qc(1) as unknown variables
satisfying the obvious differential equations dQa

dy
� dQc(1)

dy
� 0, and to solve the ex-

panded fourth-order system of equations in the four unknowns Sd,Qc,Qa,Qc(1) with
four corresponding boundary conditions (adding the requirement that Qc � Qc(1) at
y � 1).

These equations were solved numerically using a centered difference scheme for
the discretization and Newton’s method to find a solution of the nonlinear equations
(see Exercise 8). Typical results are shown in Fig. 20.16. Here we see what we expected
(or hoped), namely that the collecting duct concentrates the dilute urine by extracting
water. In fact, we see that the concentration increases on its path through the descend-
ing loop, decreases in the ascending loop, and then increases again in the collecting
duct. This behavior is similar to the data for Na+ concentration shown in Fig. 20.9.

The effect of the parameter ρc is shown in Figs. 20.17 and 20.18. In these figures
are shown the solute concentrations and the flow rates at the bottom and top of the
loop of Henle and at the end of the collecting duct. Here we see that the effect of ADH
is, as expected, to reconcentrate the solute and to further reduce the loss of water.
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Figure 20.16 Solute concentrations in the loop of Henle and the collecting duct, plotted as
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loop of Henle and at the end of the
collecting duct plotted as functions
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The asymptotic value of Cc(1) as ρc → 0 is the maximal solute concentration
possible and determines, for example, whether or not the individual can safely drink
seawater without dehydration. The asymptotic value of 1/Qc(1) represents the highest
possible relative concentration of impermeable substances such as creatinine.

Further generalizations
This model shows the basic principles behind nephron function, but the model is
qualitative at best, and there are many questions that remain unanswered and many
generalizations that might be pursued. For example, the model could be improved by
incorporating a better representation of the interstitial/capillary bed flow, taking into
account that the peritubular capillaries issue directly from the efferent arteriole of the
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Figure 20.18 Fluid flow rates at the
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at the end of the collecting duct
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glomerulus, thus determining the hydrostatic and osmotic pressures in the capillary
bed. The model is also incorrect in that the active pumping of Na+ out of the ascending
limb is not concentration dependent, and as a result negative concentrations can occur
for certain parameter values.

It is a fairly easy matter to add equations governing the flux of solutes other than
Na+, as the principles governing their flux are the same. One can also consider a
time-dependent model in which the flow of water is not steady, by allowing the cross-
sectional area of the tubules to vary.Nonsteadymodels are difficult to solve because they
are stiff, and there is a substantial literature on the numerical analysis and simulation
of time-dependent models (Layton et al., 1991).

Nephrons occur in a variety of lengths, and models describing kidney function
have been devised that recognize that nephrons are distributed both in space and in
length. These models are partial differential equations, and again, because of inherent
stiffness, their simulation requires careful choice of numerical algorithms (Layton et
al., 1995).

20.3 Exercises
1. The flow of glomerular filtrate and the total renal blood flow increase by 20 to 30 percent

within 1 to 2 hours following a high-protein meal. How can you incorporate this feature
into a model of renal function and regulation of glomerular function?
Hint: Amino acids, which are released into the blood after a high protein meal, are cotrans-
ported with Na+ ions from the filtrate in the proximal tubule. Thus, high levels of amino
acids leads to high reabsorption of Na+ in the proximal tubule, and therefore, lower than
normal levels of Na+ at the macula densa.

2. How much water must one drink to prevent any dehydration after eating a 1.5 oz bag of
potato chips? (See Exercise 10 in Chapter 2.) Remark: A mole of NaCl is 58.5 grams and it
dissociates in water into 2 osmoles.



636 20: Renal Physiology

q1

q2 Figure 20.19 Diagram of a countercur-
rent flow mediated by an interstitium, for
Exercise 4.

3. Why is alcohol a diuretic? What is the combined effect on urine formation of drinking
beer (instead of water) while eating potato chips? What is the combined effect on urine
formation of drinking beer while smoking cigarettes?
Hint: Alcohol inhibits the release of ADH, while nicotine stimulates ADH release.

4. Construct a simple model of the countercurrent mechanism that includes an interstitial
compartment (Fig. 20.19). Show that inclusion of the interstitium has no effect on the
overall rates of transport. Allow the solute to diffuse in the interstitium, but not escape the
boundaries.
Hint: View the interstitium as a tube with zero flow rate.

5. Generalize the four-compartmentmodel for the loop ofHenle by separating the interstitium
and peritubular capillaries into separate compartments, allowing no flow across x � 0 or
x � L for the interstitium.

6. What changes in the exchange rates of the four compartment model for the loop of Henle
might better represent the geometry of the loop of Henle, as depicted in Fig. 20.2?
Remark: Some features you might want to consider include the location of the thickening
of the ascending and descending limbs and the location of the junction of the peritubular
capillaries with the arcuate vein.

7. Formulate a time-dependent four-compartment model of urine concentration that tracks
the concentration of both Na+ ions and urea.

8. Develop a numerical computer program to solve the equations of renal flow in the case that
both ADH and aldosterone are present. It is preferable to formulate the problem in terms
of the unknowns Sd and Sc and to expand the system of equations to a fourth-order system
by allowing Sd(1) and Sc(1) to be unknowns that satisfy the simple differential equations
dSd(1)
dy

� 0 and dSc(1)
dy

� 0. With the 4 unknowns, Sd(y), Sc(y), Sd(1), and Sc(1), the Jacobian
matrix is a banded matrix, and numerical algorithms to solve banded problems are faster
and more efficient than full matrix solvers.

9. Generalize the renal model to include a concentration-dependent Na+ pump in the ascend-
ing tubule. Does this change in the model guarantee that the flux and concentrations are
nowhere negative?
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The Gastrointestinal System

Although the detailed structure of the gastrointestinal tract varies from region to region,
there is a common basic structure, outlined in the cross-section shown in Fig. 21.1. It is
surrounded by a number of heavily innervated muscle layers, arranged both circularly
and longitudinally. Contraction of these muscle layers can mix the contents of the tract
andmove food in a controlledmanner in the appropriate direction. Beneath themuscle
layer is the submucosa, consisting mostly of connective tissue, and beneath that is a
thin layer of smooth muscle called themuscularis mucosae. Finally, there is the lamina
propria, a layer of connective tissue containing capillaries and many kinds of secreting
glands, and then a layer of epithelial cells, whose nature varies in different regions of
the tract.

21.1 Fluid Absorption

The primary function of the gastrointestinal tract is to absorb nutrients from themix of
food and liquid that moves through it. To accomplish this, the absorptive surface of the
intestines consists of many folds and bends called valvulae conniventes, which increase
the surface area of the absorptive mucosa about threefold. Located over the entire
surface of the mucosa of the small intestine are millions of villi, which project about 1
mm from the surface of the mucosa and enhance the absorptive area another tenfold.
The absorptive surface of the villi consists of epithelial cells that are characterized by
a brush border, consisting of as many as 1000microvilli 1 µm in length and 0.1 µm in
diameter. The brush border increases the surface area exposed to the intestinalmaterial
by another twentyfold. The combination of all surface protrusions yields an absorptive
surface area of about 250 square meters—about the surface area of a tennis court.
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Figure 21.1 Cross-section of the gastrointestinal tract. The outermost layers of the tract consist
of smooth muscle, while the innermost layer consists of epithelial cells. The epithelial cell layer
contains many gastric pits, glands that secrete hydrochloric acid, and thus the stomach lumen
is highly acidic. (Berne and Levy, 1993, Fig. 38-1, p. 616.)

Epithelial cells are responsible for the absorption of nutrients and water from the
intestine. The absorption of chemical nutrients, for example glucose and amino acids,
is by the same process as in the kidney, via cotransporters with sodium. The absorption
of water, however, is driven by osmosis.

The epithelial cells are not permeable to water on their lumenal side. However,
there are 0.7–1.5 nm pores through the tight junctions between epithelial cells that
permit water to diffuse readily between the lumen and the interstitium. The absorption
of water through these pores is driven primarily by the sodium gradient between the
lumen and the interstitium. Sodium is transported to the interior of the epithelial cell by
passive transport and then is removed from the interior to the interstitiumby a sodium–
potassium ATPase. The sodium is transported from the interstitium by capillary blood
flow.

To model the transport of water by the epithelial cell lining, we consider a small
section of the epithelial gastrointestinal tract as two well-mixed compartments, the
lumen and the interstitium, separated by a membrane (Fig. 21.2). We suppose that
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Figure 21.2 Diagram for osmotic trans-
port of water across the epithelial cell wall.
J denotes the flow of Na+, q denotes the
flow of water, and Q denotes capillary
blood flow.

the sodium concentration in the lumen is nl and in the cell interior is ni, and that the
concentration of all osmolites in the interstitium is n. The flow of sodium J from the
lumen to the interior of the cells is assumed to be passive (i.e., we ignore the effects of
the membrane potential; see Exercise 1), and so

J � g(ni − nl), (21.1)

for some constant g. Sodium flux from the cell interior to the interstitium is via an
active sodium–potassium ATPase,

J � f (ni), (21.2)

for some saturating function f . The flow of water q through the tight junctions is driven
by the osmotic pressure difference between the lumen and the interstitium, so that

Rq � n− nl, (21.3)

whereR is the resistance (in appropriate units) of the tight junctions. Finally, we assume
that there is a flow into and out of the interstitium provided by capillary flow. The
influx of fluid is Q with an incoming concentration of osmolites n0, while the outflow
of osmolites is Q + q at concentration n. At steady state, the conservation of sodium
implies that

g(nl − ni) � f (ni) (21.4)

and

(Q+ q)n−Qn0 � f (ni). (21.5)

The behavior of this system of three algebraic equations is relatively easy to sort
out. Since f is a positive, monotone increasing function of its argument, there is a
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one-to-one relationship between nl and ni,

nl � ni + 1
g
f (ni). (21.6)

We can use (21.3) to eliminate n from (21.5) and obtain

Rq2 + (RQ+ nl)q+Q(nl − n0)− f (ni) � 0. (21.7)

Because the rate of sodium removal is dependent on the sodium concentration, we

take f (n) � Qf n
3

N3+n3 , for some constants Qf and N.
It is valuable to nondimensionalize this problem by scaling all concentrations by

N, setting uj � nj/N and y � q/Q. Then (21.7) becomes

ρy2 + (ρ + ul)y+ κ � 0, (21.8)

where κ � ui − u0 + (1 − γ)βF(ui) � 0, ρ � RQ/N, γ � g/Q, and β � Qf

gN
, and (21.6)

becomes

ul � ui + βF(ui), (21.9)

whereF(u) � u3

1+u3 . There are four nondimensional parameters, namelyu0, the (relative)
concentration of incoming interstitial osmolites; ρ, the resistance of the tight junctions
to water; γ, the relative permeability of the lumenal cell wall to sodium; and β, the
maximal velocity of active sodium transport (which depends primarily on the density
of sodium pumps).

Observe that (21.8) is a quadratic polynomial in y that has atmost one positive root.
In fact, the larger root of this polynomial is positive if and only if κ < 0. Furthermore,
the positive root is a monotone decreasing function of κ.

There are several behaviors of the solution depending on the parameter values.
However, the behavior that is of most interest here occurs when β(γ − 1) is a large
positive number. In this case, κ is an “N”-shaped function of ui, negative at ui � 0,
increasing for small values of ui, then decreasing and finally increasing and eventually
becoming positive for large ui.

For much of parameter space this “N”-shaped behavior for κ translates into “N”-
shaped behavior for the positive root of (21.8). That is, with ul � 0, there is a positive
root. This root initially decreases to a minimal value and then increases to a maximal
value, whereupon it decreases and eventually becomes negative, as a function of ul.
This behavior is depicted in Fig. 21.3, with parameter values ρ � u0 � β � 1, γ � 10.

The implications of this are interesting. It implies that one can maximize the ab-
sorption of water by adjusting the sodium level. Thus, hydration occurs more quickly
with fluids containing electrolytes than with pure water, as many high-performance
athletes (such as road cyclists and long-distance runners) already know. However, too
much sodium has the opposite effect of dehydrating the interstitium. This is a local
effect only, as water is reabsorbed further along the tract.

When a person becomes dehydrated, large amounts of aldosterone are secreted by
the adrenal glands. Aldosterone greatly enhances the transport of sodium by epithelial
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Figure 21.3 Flux of water through the epithelial membrane plotted as a function of lumenal
sodium concentration.

cells by activating the production of channel and pump proteins, which increases the
passive and active transport of sodium. Indeed, a person can acclimatize to heavy
exercise in hot weather, as over a period of weeks increased aldosterone secretion from
the adrenal cortex will prevent excessive sodium loss in sweat, thus dispensing with
the need for dietary sodium supplements. Loss of potassium can still, however, be a
problem.

In this model the presence of aldosterone can be modeled by increasing g, the
conductivity of sodium transport from the lumen, and/or by increasingQf , themaximal
rate of active sodium pumping. It is easy to see that the total flux of sodium J � f (ni)
and the flux of water q both increase if either g or Qf (or both) are increased. However,
this increase is not without bound, since in the limit g → ∞, we have ni → nl, so that

lim
g→∞ J � f (nl) (21.10)

and

lim
g→∞ q � Q

(
n0

nl
− 1

)
+ f (ni)

nl
(21.11)

when R � 0. Thus, if a person is dehydrated, aldosterone production works to increase
sodium absorption and decrease water loss.

Now we can construct a simple model of water content and sodium concentration
as a function of distance along the intestinal length. We suppose that the chyme (the
mixture of food, water, and digestive secretions entering from the stomach) moves as
a plug flow with constant velocity. Water is removed from the chyme by osmosis and
sodium is removed by the epithelial cells at local rates determined by the local sodium
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concentration. In steady state,

dQw

dx
� −q(nl), (21.12)

d(nlQw)
dx

� −J(nl), (21.13)

where Qw is the flow of water in the intestine, x is the distance along the intestine,
and q(nl) and J(nl) are the removal rates of water and sodium, such as those suggested
above. The analysis of this system of equations is straightforward and is left as an
exercise (Exercise 2).

There are two common abnormalities that can occur in this process. Constipation
occurs if themovement of feces through the large intestine is abnormally slow, allowing
more time for the removal of water and therefore hardening and drying of the feces.
Any pathology of the intestines that obstructs normal movement, including tumors,
ulcers, or forced inhibition of normal defecation reflexes, can cause constipation.

The opposite condition, in which there is rapid movement of the feces through the
large intestine, is known as diarrhea. There are several causes of diarrhea, the most
common of which is infectious diarrhea, in which a viral or bacterial infection causes
an inflammation of the mucosa. Wherever it is infected, the rate of secretion of the
mucosa is greatly increased, with the net effect that large quantities of fluid are made
available to aid in the elimination of the infectious agent.

For example, the toxins of cholera and other diarrheal bacteria stimulate imma-
ture epithelial cells (which are constantly being produced) to release large amounts
of sodium and water, presumably to combat the disease by washing away the bacte-
ria. However, if this excess secretion of sodium and water cannot be overcome by the
absorption of mature, healthy cells, the result can be lethal because of serious dehy-
dration. In most instances, the life of a cholera victim can be saved by intravenous
administration of large amounts of sodium chloride solution to make up for the loss.

21.2 Gastric Protection

The inner surface of the gastrointestinal tract is a layer of columnar epithelial cells that
actively secrete mucus and a fluid rich in bicarbonate. The mucus is highly viscous and
coats the cells with a 0.5–1.0mm thick layer that is insoluble by other gastric secretions
and creates a lubricating boundary for the intestinal wall. In addition, this layer of
cells is studded with a large number of gastric pits (Fig. 21.4). Each gastric pit contains
parietal cells that secrete hydrochloric acid through an active transport process, leading
to a pHof about 1 in the stomach lumen. Since the pHof the blood supplying the surface
epithelium is about 7.4, there is a large H+ concentration gradient (approximately a
millionfold increase in concentration of hydrogen) across each epithelial cell. Clearly,
the epithelial cells must be protected from the high lumenal acidity. It is believed that
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Figure 21.4 Closeup view of the gastric mucosa and two gastric pits. The epithelium of the
gastric wall contains large numbers of gastric pits, each of which is lined by parietal cells that
secrete HCl. (Berne and Levy, 1993, Fig. 39-9, p. 659.)

the secretion of mucus and bicarbonate by epithelial cells plays an important role in
gastric protection.

21.2.1 A Steady-State Model

To model gastric protection (following Engel et al., 1984) we assume that the lumenal
surface of the gastric mucosa is a plane located at x � 0, where x is a coordinate
measured perpendicular to the mucosal wall, while the mucus layer is of uniform
thickness l. Thus, the mucus–lumen interface lies at x � l, as illustrated in Fig. 21.5.
Inside the mucus layer H+ and HCO−

3 react according to

H+ +HCO−
3

k+
−→←−
k−

H2O+ CO2. (21.14)

This bicarbonate buffering system is one of the most important buffering systems in
the body, and its role in the transport of carbon dioxide was discussed in Chapter 17.
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Figure 21.5 Schematic diagram of the mucus layer in the model for gastric protection.

In the time-dependent problem, each species obeys a reaction–diffusion equation,
such as

∂
[
H+]
∂t

� DH+
∂2
[
H+]
∂x2

− k+
[
H+] [HCO−

3

]+ k− [CO2] , (21.15)

where DH+ is the diffusion coefficient of H+ in the mucus layer. However, at steady
state the time derivatives are zero, and the partial derivatives with respect to x become
ordinary derivatives. Thus, at steady state,

DH+
d2
[
H+]
dx2

� DHCO−
3

d2
[
HCO−

3

]
dx2

� k+
[
H+] [HCO−

3

]− k− [CO2] , (21.16)

DCO2
d2 [CO2]
dx2

� −k+
[
H+] [HCO−

3

]+ k− [CO2] . (21.17)

To complete the formulation of the problem we add boundary conditions at the ep-
ithelial and lumenal boundaries of the mucus layer. On the lumenal side we assume
that

[
H+] � [

H+]
l
and [CO2] � [CO2]l are constant and known, determined by the

concentration of the contents of the gastrointestinal tract, while
[
HCO−

3

]
is given by

the equilibrium relation [
HCO−

3

]
l
� k−
k+
[CO2]l
[H+]l

. (21.18)
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On the epithelial side we assume that the fluxes of HCO−
3 and CO2 are known, as these

chemicals are actively secreted by the epithelial cells, and thus, from Fick’s law,

DHCO−
3

d
[
HCO−

3

]
dx

� −J̄, (21.19)

DCO2
d [CO2]
dx

� −Ī, (21.20)

at x � 0, for some known constants J̄ and Ī. Finally, we assume that the flux of H+

across the boundary at x � 0 is proportional to the concentration difference across the
boundary; i.e.,

DH+
d
[
H+]
dx

� PH+
([
H+]− [

H+]
epi

)
, (21.21)

where PH+ is the permeability and
[
H+]

epi is the concentration of H
+ in the epithe-

lial cells. Since the concentration of H+ in the epithelial cells is low compared to the
concentration external to the cell, we set

[
H+]

epi to zero, and thus require

DH+
d
[
H+]
dx

� PH+
[
H+] (21.22)

at x � 0.
To study this system of equations, we introduce nondimensional variables y �

x/l, u � [
H+] / [H+]

l
, v � [

HCO−
3

]
/
[
H+]

l
, w � [CO2] /

[
H+]

l
, in terms of which the

model becomes

ε
d2u

dy2
� uv− ζw, (21.23)

d2u

dy2
� γ

d2v

dy2
� −βd

2w

dy2
, (21.24)

where β � DCO2 /DH+ , γ � DHCO−
3
/DH+ , ε � DH+

k+l2[H+]l
, ζ � k−

k+[H+]l
. The boundary conditions

at y � 1 (x � l) are

u(1) � 1, v(1) � ζα, w(1) � α, (21.25)

and the boundary conditions at y � 0 are

du

dy
(0) � λu(0), γ

dv

dy
(0) � −J, β

dw

dy
(0) � −I, (21.26)

where α � [CO2]l
[H+]l

, J � J̄l
DH+ [H+]l

, I � Īl
DH+ [H+]l

, λ � PH+ l
DH+ . Integrating (21.24) from 0 to y and

using the boundary conditions (21.26) we obtain

du

dy
− λu(0) � γ

dv

dy
+ J � −βdw

dy
− I. (21.27)

Integrating (21.26) from y to 1 and applying the boundary conditions (21.25) gives

u− 1− λu(0)(y− 1) � γ(v− ζα)+ J(y− 1) � −β(w− α)− I(y− 1). (21.28)
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From this we obtain v and w as functions of u and y:

v(y) � ζα + 1
γ
[u(y)− 1− (λu(0)+ J)(y− 1)] (21.29)

and

w(y) � α− 1
β
[u(y)− 1+ (I − λu(0))(y− 1)]. (21.30)

Thus, we can write the model as

ε
d2u

dy2
� uv− ζw � f (u(y), y), (21.31)

du

dy
(0) � λu(0), u(1) � 1. (21.32)

From the molecular weights of the chemicals, we estimate β ≈ 0.14 and γ ≈ 0.13.
The forward and reverse rates of the bicarbonate reaction are, respectively, k− � 11 s−1

and k+ � 2.6×1010 cm3·mol−1·s−1. Other experimentally determined quantities include
J̄ � 1.4×10−10 mol·cm−2 ·s−1, [H+]

l
� 140mM, l � 0.05 cm,DH+ � 1.75×10−5cm2 ·s−1,

and PH+ � 1.3 × 10−5cm · s−1. From these parameter values we see that ε � O(10−7)
and ζ � O(10−6) are small parameters, while λ � 0.037 and J � 0.0003.

We now use singular perturbation theory to solve this two-point boundary value
problem. This approach is possible because ε, which is the ratio of the rate of diffusion
through themucus to the rate of reaction, is small. Outside of a thin layer the bicarbon-
ate reaction is in a pseudo-steady state at each point in space; in this region, diffusion
of hydrogen ions or bicarbonate plays little role. It is only within the thin layer that
the bicarbonate concentration is determined by the balance of reaction and diffusion.
This allows the representation of the solution in two different spatial variables, one
describing the solution outside this thin layer, and one describing the solution inside
it. The solutions are then matched to obtain a uniformly valid solution. As we will see,
although the bicarbonate reaction is in local chemical equilibrium outside the thin
layer, the bulk of the reaction actually occurs within the thin layer. For the parameter
values used here, the thin layer occurs at y � 0, but this need not necessarily be so. If
the acidity of the lumen is low enough, the thin reaction layer occurs within the mucus
layer (see Exercise 3).

The outer solution
We look for a solution of the form

u � u0 + εu1 + · · · , (21.33)

substitute into the differential equation, and equate coefficients of powers of ε. This
gives a hierarchy of equations for the outer solution. To lowest order in ε we have

0 � f (u0, y), (21.34)

du0

dy
(0) � λu0(0), u0(1) � 1. (21.35)
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Obviously, both boundary conditions cannot be satisfied, so we drop the boundary
condition at y � 0 and keep the boundary condition at y � 1. There are good physical
reasons for this choice. As we discussed above, the balance of reaction and diffusion
is important only in a thin layer around y � 0. Thus, if we ignore diffusion (by setting
ε � 0) we do not expect to be able to satisfy the boundary condition at y � 0. (This is
also the correct mathematical choice, because, as we will see, there is a “corner layer”
at y � 0; the other choice, ignoring the boundary condition at y � 1, fails to produce a
viable solution.)

The equation f (u0, y) � 0 is the quadratic polynomial in u0,

βu20 + [ζγ(αβ + 1)− β + β(J + λu0(0))(1− y)]u0

+ ζγ[(λu0(0)− I)(1− y)− αβ − 1] � 0, (21.36)

so it can be solved exactly. The easiest way to represent this solution is to find y as a
function of u0, since (21.36) is linear in y. However, because ζ is small, we find that

u0(y) � 1+ (λu0(0)+ J)(y− 1)+O(ζ) (21.37)

and

v � O(ζ). (21.38)

If we put y � 0 in (21.36), we can solve for u0(0) to get

u0(0) � 1− J

1+ λ
+O(ζ), (21.39)

from which it follows that

u0(y) � 1− λ+ J

λ+ 1(1− y)+O(ζ), (21.40)

w(y) � α+ J + I

β
(1− y)+O(ζ). (21.41)

Hence, to leading order, there is no HCO−
3 in the mucus layer, and H

+ and CO2 vary
linearly with distance through the mucus layer.

The inner solution
The outer solution (21.40) does not satisfy the boundary condition at y � 0. A uniformly
valid solution of this problem must include a “corner layer,” that is, a solution with
large second derivative, which therefore changes slope, but not value (at least to lowest
order), in a small region close to y � 0. The corner layer here results from the fact
that the boundary condition at y � 0 is expressed in terms of the derivative of u at 0.
Hence, to satisfy the boundary condition, the derivative of umust change quickly. It is
beyond the scope of this book to give a detailed description of the construction of this
corner layer (see Engel et al., 1984, or, for a more general description, Keener, 1988, or
Holmes, 1995). Suffice it to say that the corner layer is found by introducing a scaled
variable ỹ � y/

√
ε (which eliminates the ε from the second derivative term in (21.31))
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Figure 21.6 Sketch (not to scale) of the solution to the model for gastric protection. (Adapted
from Engel et al., 1984, Fig. 10.)

and then seeking a power series solution in powers of
√
ε. The result is a modification

of the outer solution by the addition of a term of the form
√
εe−µy/

√
ε, (21.42)

which is of small amplitude and satisfies the boundary condition at the origin. As a
result, to leading order in ε, the outer solution provides a uniformly valid representation
of the solution on the entire interval 0 < y < 1. A sketch of the solution is given in Fig.
21.6.

Physical interpretation of the corner layer
There is an interesting interpretation of the corner layer in terms of the physiology of
the problem. Recall that the boundary conditions at y � 0 for the original problem are

du

dy
(0) � λu(0), γ

dv

dy
(0) � −J, β

dw

dy
(0) � −I. (21.43)

The outer solution does not satisfy these boundary conditions. Instead, if we evaluate
the derivatives of the outer solution to leading order, we find that

du0

dy
(0) � λu0(0)+ J,

dv0

dy
(0) � 0, β

dw0

dy
(0) � −I + J. (21.44)
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In other words, to lowest order, the bicarbonate flux J can be replaced by a flux of
hydrogen ions in the opposite direction with the same magnitude, and the CO2 flux
must be altered to compensate. Thus the original problem, which has a bicarbonate
source at y � 0, is replaced by a simpler problem that has a H+ sink and a CO2 source
at y � 0 and no H+–HCO−

3 reaction. This implies that each bicarbonate molecule
that exits the epithelium reacts immediately with a hydrogen ion, with the consequent
disappearance of the hydrogen ion. Hence, to lowest order, all the chemical reaction
occurs within the corner layer.

In dimensional variables, the outer solution is

[
H+] � [

H+]
l
− J̄ + PH+

[
H+]

l

DH+ + PH+ l
(l − x), (21.45)

[CO2] � [CO2]l +
J̄ + Ī

DCO2
(l − x), (21.46)

and thus, at the epithelial surface,

[
H+]

0 � DH+
[
H+]

l
− J̄l

DH+ + PH+ l
. (21.47)

Using experimentally determined values for the parameters, we find that
[
H+]

0 � 135
mM, a decrease of only 3.5%, which is too small to protect the epithelial cells from high
lumenal acidity. Thus, this simple model of the mucus layer is insufficient to explain
how the epithelial layer is protected.

21.2.2 Gastric Acid Secretion and Neutralization

The primary difficulty with the above model for gastric protection is that the flux of
bicarbonate, J, is too small to cause a sufficient reduction of hydrogen ions at the
surface of the epithelial cells. A model that addresses this shortcoming by examining
the relationship between hydrochloric acid secretion and the release of bicarbonate
was constructed by Lacker and his coworkers (de Beus et al., 1993).

Hydrochloric acid is secreted from the parietal cells of the oxyntic glands using a
number of reactions. First, water in the cells is dissociated into hydrogen and hydroxyl
ions in the cell cytoplasm. The hydrogen ions are actively secreted via a hydrogen–
potassium ATPase. In addition, chloride ions are actively secreted and sodium ions
are actively absorbed, via separate ATPases. The result is a high concentration of hy-
drochloric acid in the lumen. At the same time, carbon dioxide combines with hydroxyl
ions (catalyzed by carbonic anhydrase) to form carbonic acid and thence bicarbonate.
This bicarbonate diffuses out of the cell into the extracellular medium and is trans-
ported by the capillary blood flow. The direction of capillary blood flow is from the
oxyntic cell in the gastric pit to the epithelial lining of the lumen. Since the epithelial
cells are downstream of the oxyntic cells, they absorb bicarbonate from the blood and
then secrete it into the mucus. Thus, as acid production increases, so does the rate at
which bicarbonate is secreted into the lumen by the epithelial cells. According to de
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Beus et al., the lack of this feature in the Engel model caused an underestimation of
the rate of bicarbonate secretion from the epithelial layer.

De Beus et al. estimated the model parameters from the available experimental
literature and showed that analytic solutions in certain simplified cases agreed well
with the full solution. Of particular interest is their reproduction of the alkaline tide.
As the rate of H+ secretion into the lumen increases, the downstream

[
H+] (i.e., the

gastric venous
[
H+]) decreases. This reinforces the major idea behind this model, that

secretion of HCO−
3 by the epithelial cells is driven by H

+ secretion by the oxyntic cells,
so that gastric protection is automatically increased as the lumenal

[
H+] increases.

21.3 Coupled Oscillators in the Small Intestine

One principal function of the gastrointestinal tract is to mix ingested food and move it
through the tract in the appropriate direction. It does this by contraction of the layers
of smooth muscle illustrated in Fig. 21.1, contractions that are controlled on a number
of different levels. At the lowest level, each smooth muscle cell has intrinsic electrical
activity, which can be oscillatory in nature. At higher levels, the properties of the local
oscillations are modified by extrinsic and intrinsic neuronal stimulation, or chemical
stimuli. Different parts of the tract have different kinds of contractile behavior. Here,
we focus on the electrical activity of the smooth muscle of the small intestine. The
small intestine is itself divided into three different sections: the first 25 cm or so after
the pylorus (the passage from the stomach to the small intestine, controlled by the
pyloric sphincter) is called the duodenum; the next section, comprising about 40% of
the length of the small intestine, is called the jejunum; while the remainder is called
the ileum. However, although this nomenclature is useful for understanding some of
the experimental results we present here, we do not distinguish between the electrical
activity of different sections of the small intestine.

21.3.1 Temporal Control of Contractions

Smooth muscle cells throughout the gastrointestinal tract exhibit oscillations in their
membrane potential, with periods ranging from 2 to 40 cycles/min. A typical example
of this electrical control activity, or ECA, is shown in Fig. 21.7. Although depolarization
of the cell membrane potential can cause muscular contractions, this happens only if
the membrane potential is depolarized past a threshold, in which case the potential
begins to oscillate, or burst, at a much higher frequency. Whether or not bursting
occurs depends on the level of neuronal or chemical stimulation. In thisway, contractile
activity depends on the local oscillatory properties of the smooth muscle cells, as well
as on the higher-level control processes. Electrical bursts are termed electrical response
activity, or ERA. Muscular contractions cannot occur with a frequency greater than
that of the ECA, and thus the properties of the local ECA constrain the possible types
of muscular contraction.
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Figure 21.7 Schematic diagram of electrical control activity (ECA), electrical response activity
(ERA), and muscular contraction. (Adapted from Sarna, 1989, Fig. 2.)

Often, when faced with cellular oscillators, modelers seek to understand the cellu-
lar mechanisms that cause such behavior; this book contains many examples of this
approach. Here, by contrast, we study what happens when a large number of oscilla-
tors are coupled to one another, without being concerned with the exact mechanisms
underlying each oscillation. Although this approach cannot determine a direct rela-
tionship between cellular properties and global behavior, it gives much greater insight
into how coupled oscillators can give rise to organized wave activity of the type that is
frequently seen in the stomach and small intestine.

21.3.2 Waves of Electrical Activity

If each local oscillator were uncoupled from its neighbors, we expect there would be no
organized waves of contraction moving along the intestine. However, the main point
of this section is that weak coupling between the oscillators causes the propagation of
waves of ECA and ERA along the intestine.

The importance of coupling between the local oscillators is demonstrated in the top
panel of Fig. 21.8, where we show the experimentally measured frequency of segments
of the small intestine in the intact intestine, and in segments that have been dissociated
from one another by circumferential cuts across the intestine. In the intact intestine,
the frequency of the ECA is constant over the entire region close to the pylorus, even
though the intrinsic frequency is steadily decreasing over this region. At approximately
60 cm from the pylorus the ECA frequency begins to decrease. In the frequency plateau
(the region of constant frequency) region, each oscillator is phase-locked to its neighbor,
resulting in organized waves that move along the intestine away from the pylorus. This
is illustrated in the top panel of Fig. 21.9, where the oscillation peaks in neighboring
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parts of the intestine are connected by solid lines. The slope of the solid line gives the
speed of the wave along the intestine, and the fact that subsequent lines are regularly
spaced, parallel and straight, shows that the waves are repetitive and highly organized.
Following the frequency plateau is a region where the ECA frequency decreases along
the intestine, and the corresponding waves are not phase-locked and therefore much
less regular (lower panel of Fig. 21.9).

Note that phase locking (i.e., oscillation with the same frequency) does not neces-
sarily imply that there is a regular wave. A phase wave occurs when there is a constant
advance (or delay) of phase from one point to the next along the length of the intestine.

When the segments are uncoupled, each shows oscillatory ECA, but with an in-
trinsic frequency that decreases with distance from the pylorus; the frequency plateau
disappears in the isolated segments. It appears that in the intact intestine, the highest-
frequency segment closest to the pylorus entrains the nearby oscillators, which have
similar but lower frequencies. However, when the difference in intrinsic frequency is
too large, entrainment is not possible: the frequency plateau breaks down, and the
waves lose regularity. This is illustrated further in the lower panel of Fig. 21.8, which
shows the effect of a single cut in the intestine part of the way along the frequency
plateau. To the left of the cut, the ECA frequency is entrained to the same high fre-
quency as that of the frequency plateau in the intact intestine. To the right of the cut,
a new frequency plateau emerges as the highest-frequency oscillator again entrains its
neighbors. In this case the frequency of the second plateau is lower than that of the
first, as it is entrained to an oscillator with a lower frequency, but it extends further to
the right, into the region where the intact intestine has a variable ECA frequency.

There is some evidence to suggest that ECA frequency decreases along the intestine
in a stepwise fashion, and this is illustrated in Fig. 21.10. The frequency plateaus are
separated by regions where the amplitude of the oscillation is variable. Often, how-
ever, the wave activity in subsequent plateaus is less organized than in the first, as the
oscillations are not so closely phase-locked.

21.3.3 Models of Coupled Oscillators

The two primary means by which the waves of electrical activity in the intestine have
been studied are with numerical simulations of large coupled systems of oscillators
and with rigorous mathematical analysis of approximating “phase equations.”

Numerical investigations
A number of investigators have used numerical simulations to study the behavior of
chains of coupled oscillators in the small intestine (Nelsen and Becker, 1968; Diamant
et al., 1970; Sarna et al., 1971; Robertson-Dunn and Linkens, 1974; Brown et al., 1975;
Patton and Linkens, 1978). As a typical example, Diamant et al. (1970) coupled from
5 to 25 van der Pol oscillators with frequencies that decreased along the chain. Each
oscillator was coupled to its nearest neighbor with the lower frequency in a procedure
called forward coupling, and the coupling was assumed to be resistive. Numerical
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Figure 21.8 A: Intact (circles) and intrinsic frequency (crosses) of ECA in dog small intestine.
The intrinsic frequencies were obtained by cutting across the small intestine at the places
indicated by the arrows so as to disrupt oscillator coupling. B: The effect of a single cut (at the
arrow) across the small intestine. To the right of the cut a frequency plateau still occurs, but
now at a lower frequency than in the intact intestine. To the left of the cut the frequencies are
unchanged. (Sarna, 1989, Fig. 10.)
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Figure 21.9 Experimental recordings from dog small intestine. A: Recordings taken from the
frequency plateau region close to the pylorus. Solid lines connect the peaks of the ERA; these
lines are straight and parallel, thus indicating the propagation of regular wave trains in this
region. B: Recordings taken from the variable frequency region. The peaks of the ERA are
no longer well organized, indicating that regular wave propagation has broken down. (Sarna,
1989, Fig. 11 A and B.)

simulations showed that the oscillators are organized into frequency plateaus, whose
lengths increased as the coupling strength increased. Because the coupling was in the
forward direction only, the frequency plateaus lay above the intrinsic frequencies of
the individual oscillators. The frequency plateaus were separated by regions in which
the local frequency waxed and waned.

The phase equations
The mathematical study of waves of electrical activity on the small intestine begins
with the assumption that there are n + 1 coupled oscillators, described by the system
of equations

dui

dt
� Fi(ui)+ ε

n+1∑
j�1
aijH(uj), (21.48)
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Figure 21.10 Frequency of the ECA in the cat. As the distance from the ligament of Treitz
increases, the in vitro measurements (crosses) show a steady decline in frequency, while the
in vivo measurements (open and filled circles) show clear frequency plateaus. (Diamant and
Bortoff, 1969, Fig. 2.) (The ligament of Treitz marks the beginning of the jejunum.)

where ui is the vector of independent variables describing the ith oscillator, and where
aij are the coupling coefficients. The oscillators are assumed to be nearly identical,
so that the behavior of each oscillator is described approximately by some periodic
function, denoted by ui � U(ω(ε)t+ δθi(t)), where δθi is the phase shift of the oscillator
and is presumed to be slowly varying. Then, the equations (21.48) can be reduced to
equations describing the phase shifts of the individual oscillators, of the form

d

dτ
δθi � ξi −61 +

n+1∑
j�1
aijh(δθj − δθi)+O(ε2), i � 1, . . . , n+ 1, (21.49)

for some periodic function h, where τ � εt is a slow time. The phase equations are
asymptotically valid in the limit that the coupling is weak and the oscillators are similar.
A derivation of the phase equations is given in Section 14.5, where the function h and
the constants ξi and 61 are determined. As a reminder, recall that 2π(1 + εξi) is the
natural (uncoupled) frequency of the ith oscillator, and that ω(ε) � 1+ ε61 +O(ε2).

When each oscillator is coupled only to its nearest neighbors in a linear chain, the
equations are

dui

dt
� Fi(ui)+ ε(ui+1 − ui)+ ε(ui−1 − ui). (21.50)
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Here, the term ε(ui+1 − ui) is deleted if i � n+ 1, and the term ε(ui−1 − ui) is deleted if
i � 1. Then, the phase equations are of the form (21.49), where aij � 1 if j � i+ 1 or if
j � i − 1, aii � −ai,i+1 − ai,i−1, and all other elements of aij are zero. We find equations
for the consecutive phase differences φi � δθi+1 − δθi to be

dφi

dτ
� [Hi + h(φi+1)+ h(−φi)− h(φi)− h(−φi−1)]+O(ε2), (21.51)

where Hi � ξi+1 − ξi is a measure of the amount of detuning of the oscillators, i.e.,
how much the natural frequencies vary along the chain. The term h(−φi−1) is omitted
if i � 1, and the term h(φi+1) is omitted if i � n. Finally, we take h to be odd, in which
case the phase difference equation becomes

φ̇ � βH+ KH(φ), (21.52)

where φ � (φ1, . . . , φn), βH � (H1, . . . , Hn), and H � (h(φ1), . . . , h(φn)), and K is a tridi-
agonal matrix with −2 on the diagonal and 1 above and below the diagonal. Here, the
dot denotes differentiation with respect to the slow time τ � εt. The parameter β has
been introduced so that the gradient in the uncoupled oscillator frequency (i.e., the
strength of the detuning) can be readily modified.

Some simple solutions
Before discussing how frequency plateaus arise in the phase equation, it is useful to
consider the solution in some simpler cases.

Two coupled oscillators
For two coupled oscillators there is only a single phase equation,

dφ

dτ
� βH− 2h(φ). (21.53)

A phase-locked solution is one for which the phase difference between neighboring
oscillators does not change, i.e., φ is constant. Thus, phase-locked solutions are found
by setting dφ/dτ � 0 and solving for H. This gives

βH � 2h(φ). (21.54)

Since h is 2π-periodic and odd, we can solve (21.54) only if βH is not too large, as
otherwise it would be greater than the maximum value of 2h. In a common example,
h(φ) is taken to be sin(φ), in which case |βH| must be less than two for a phase-locked
solution to exist. Since βH measures the amount of detuning, a phase-locked solution
exists if andonly if the twooscillators have natural frequencies that are not too different.
If βH is small enough, the phase difference established between the oscillators (at least
to lowest order in ε) is given by the solution of (21.54).
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Three coupled oscillators
When three oscillators are coupled, the two phase difference equations are

dφ1

dτ
� βH1 − 2h(φ1)+ h(φ2), (21.55)

dφ2

dτ
� βH2 − 2h(φ2)+ h(φ1), (21.56)

and so a phase-locked solution occurs if

2βH1 + βH2

3
� h(φ1), (21.57)

2βH2 + βH1

3
� h(φ2). (21.58)

Clearly, this can be solved only if |β(2H1 +H2)| and |β(2H2 +H1)| are small enough.
It is important to note that if solutions for φ1 and φ2 exist, φ1 does not necessarily

equal φ2. Thus, although the oscillators are phase-locked, the phase difference between
the first and second oscillators is not necessarily the same as the phase difference
between the second and third. If the phase differences are unequal, there is not a
regular (constant speed) phase wave moving along the chain. Hence, phase locking
does not necessarily imply a wavelike appearance.

Tohave a regular phasewave, the phase differencesmust be both constant and equal
along the chain of oscillators. In this case, the peak of the wave moves at a constant
speed down the oscillator chain. For the case of three coupled oscillators, phase wave
solutions exist if H1 � H2. In other words, if the frequency difference between the first
and second oscillators is the same as the difference between the second and third, and
if this difference is not too large, then a phase wave solution exists.

This highlights the fact that in general, we can specify the frequency gradient along
the oscillator chain and then solve for the phase differences, or we can specify the phase
differences and then solve for the required frequency gradient, but we cannot specify
the phase difference and the frequency gradient, expecting a phase wave.

A chain of coupled oscillators
The equations for a phase-locked steady-state solution for a chain of n + 1 coupled
oscillators are given by

βH+ KH(φ) � 0. (21.59)

This is a system of n equations in n unknowns. In general, we can view the frequencies
as given and the phase differences as unknown, or we can specify the phase differences
and view the frequency differences as unknown. For example, if we seek a solution
that is both phase-locked and has a phase wave, we need φ1 � φ2 � · · · � φn. Letting
h(φi) � η, we obtain H1 � Hn � η/β and Hi � 0 for i � 2, . . . , n− 1. Thus, a phase wave
solution exists only if all the middle oscillators have the same frequency, ω say, while
the first oscillator is tuned to ω−η/β and the last oscillator to ω+η/β. Note that η can be
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either positive or negative, as different signs correspond to waves moving in opposite
directions.

This observation poses a dilemma for the application of the phase equation to the
electrical waves in the small intestine. Recall that ECA in the small intestine has a fre-
quency plateau in the region close to the pylorus, and in this plateau, waves appear
to be traveling away from the pylorus. These are phase-locked, with constant phase
difference along the intestine. However, each segment of the small intestine has a nat-
ural oscillation frequency that decreases with distance from the pylorus. These two
observations are inconsistent with the phase equations, for which a constant phase
difference implies a constant natural frequency on the interior of the chain.

Frequency plateaus
One partial solution to this dilemma was given by Ermentrout and Kopell (1984). They
showed that on each plateau, the phase differences are not exactly constant, but make
small oscillations, being locked only in an average sense, a phenomenon sometimes
called phase trapping.

For simplicity, we assume that h(φ) is odd and 2π-periodic, with a maximumM at
φM and a minimum m at φm, qualitatively like sin φ (Fig. 21.11). Critical points of the
differential equation (21.52) are solutions of

H(φ) � K−1(−βH), (21.60)

which has a solution if and only if every component of K−1(−βH) lies between m and
M. Let

β0 �max{β : m ≤ (K−1(−βH))i ≤ M, for every i}. (21.61)

When β < β0, for every i there are two solutions to the scalar equation h(φi) �
(K−1(−βH))i. These solutions, which we denote by φ+

i and φ
−
i , are shown in Fig. 21.11.

Since each component of φ can have one of two values, there are 2n possible steady
states when β < β0. Because of the definition of β0, there is some value j such that the
roots φ+

j and φ
−
j coalesce and disappear as β crosses β0. Thus, as β crosses β0, all the

critical points coalesce in pairs and disappear. This follows because every critical point
can be matched with another that agrees with it in every component i �� j, one having
jth component φ+

j , the other having jth component φ
−
j . When β < β0 the members of

the pair differ only in the jth component; when β � β0 the members of the pair are
identical, and when β > β0 there is no solution for the jth component, and so both
solutions fail to exist.

There is one particular pair of critical points that is of interest for reasons that are
explained below. Let ξj(β) denote the critical point whose kth component is φ

−
k
for all

k �� j, and whose jth component is φ+
j . Also, let ξ0(β) denote the critical point with the

kth component equal to φ−
k
for all k. Clearly, as β → β0, ξj coalesces with ξ0 and the two

critical points disappear.
Finally, to complete the preliminaries, we restrictH to be of a particular form. Since

experimental data suggest that the natural frequencies of the oscillators decrease ap-
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+ φM

Figure 21.11 The roots of the i th component of the phase difference equation.

proximately linearly along the small intestine, it is reasonable to takeH � (−1, . . . ,−1),
corresponding to a linear decrease in frequency along the oscillator chain. We also as-
sume that there is an even number of oscillators in the chain (an odd number of phase
differences), i.e., that n is odd, with n � 2j−1, and thus the central phase difference is at
position j. For this choice ofH and n, the solution of (21.60) fails first at the jth compo-
nent; that is, if j is the position of the middle phase difference, then φ+

j → φ−
j as β → β0.

This is easily seen by noting that K−1(βH) has kth component −βk(n + 1 − k)/2 < 0
(Exercise 4). Hence φ±

k
(β) < 0 for all k as long as β < β0. Further, when n � 2j − 1,

k(n+1−k) � k(2j−k), which is greatest when k � j. Since the jth component of the so-
lution to (21.60) is the one with the greatest modulus, it follows that the jth component
will be the first to “hit” the minimum and disappear.

We now return to the particular pair of steady states, ξ0 and ξj, defined above. Linear
stability analysis of the system (21.52) shows that ξ0 is a sink (a stable node), while ξj is
a saddle point with one positive and n−1 negative eigenvalues. Further, both branches
of the unstable manifold at ξj tend to ξ0 as τ → ∞, and thus the closure of the unstable
manifold forms a closed loop.

We can get some insight into themeaning of this last statement andwhy it is true by
considering the special case n � 2. It is convenient to introduce the change of variables
ψ � K−1φ, in which case the system of differential equations (21.52) becomes

ψ̇ � K−1βH+H(Kψ), (21.62)

or, in the specific case that n � 2,

ψ̇1 � β + h(ψ2 − 2ψ1), (21.63)

ψ̇2 � β + h(ψ1 − 2ψ2). (21.64)
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This is a two-dimensional system whose phase portrait is easily studied. First, note
that since (21.52) is a flow on a torus, so also is this system. The torus for (21.52) is
the domain 0 ≤ φi ≤ 2π, i � 1, . . . , n, with the boundary at φi � 0 “identified” with, or
equivalent to, the boundary at φi � 2π. Here, however, the boundaries of the torus are
modified, being the four straight lines

ψ1 − 2ψ2 � 0,−2π, (21.65)

ψ2 − 2ψ1 � 0,−2π. (21.66)

These bounding lines are shown dashed in Fig. 21.12. Now, the flow on this torus can
be understood by first examining the nullclines ψ̇1 � 0 and ψ̇2 � 0. There are four such
curves,

ψ2 − 2ψ1 � −φ±, (21.67)

ψ1 − 2ψ2 � −φ±, (21.68)

where the numbers −φ± satisfy h(−φ±) � −β, as depicted in Fig. 21.11. The nullclines
are shown in Fig. 21.12 by solid lines.

Clearly, there are four critical points. By sketching in a few elements of the vector
field, we can see that the critical point at the leftmost and lowest position is the only
stable critical point (denoted by a filled circle), two of the critical points are saddle
points (denoted by open circles), and the fourth is an unstable node. We also see that
the stable critical point is a global attractor. That is, every trajectory, excluding the
other critical points, tends to the unique stable critical point as time goes to infinity.
It follows that the unstable manifold of each saddle point forms a closed loop; both
closed loops are therefore invariant manifolds.

In general, for arbitrary n, when β < β0 there is a closed invariant manifold con-
taining the two steady states, ξj and ξ0. Furthermore, this loop is a smooth invariant
attracting cycle on which φj completes a full rotation from 0 to 2π but on which the

Ψ1

Ψ2

Ψ2 = 0
.

Ψ1 = 0
.

Figure 21.12 Phase portrait for the
two-dimensional system of equations
(21.65)–(21.66). The stable critical point
is denoted by a filled circle, and the two
saddle points by open circles.
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θ1

θ2

0
0

2π
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B

2π

Figure 21.13 Schematic diagram of two
orbits on a torus, drawn two different
ways. The upper panel shows the orbits
on a torus, while the lower panel has un-
folded the torus into a square, periodic
in both directions. Orbit A is homotopic
to the circle θ2 � 0, while orbit B is not.

other φs do not. In other words, as φjmoves through the 2π-cycle, all the other φk, k �� j,
vary without making a full cycle. This is illustrated in Fig. 21.13 by orbit A. Orbit B,
however, experiences a full 2π cycle in angle θ2 for every 2π cycle of θ1. It follows that
the invariant attracting manifold formed by the two branches of the unstable manifold
of ξj is homotopic to (i.e., is continuously deformable into) the circle φk � 0, k �� j,
0 ≤ φj ≤ 2π.

The crucial result proved by Ermentrout and Kopell is that this invariant attracting
manifold exists even when β > β0. Thus, although steady states of the phase difference
equations disappear when β > β0, a smooth, invariant, attracting manifold that is
homotopic to the circle φk � 0, k �� j, 0 ≤ φj ≤ 2π, persists. Since it contains no critical
points, this manifold is an attracting limit cycle. This stable limit cycle corresponds to
a pair of frequency plateaus in the chain of coupled oscillators. To see this, define the
average frequency of the kth oscillator to be

ω(ε)+ lim
T→∞

1
T

∫ T

0
δθ′k(t)dt, (21.69)

provided that the limit exists. Here, a prime denotes differentiation with respect to t.
Note that if δθ′

k
is constant, the frequency is exactly ω(ε)+ δθ′

k
, as expected. Subtracting

δθ′
k
from δθ′

k+1 gives the average phase difference as

lim
T→∞

ε

T

∫ T

0
φ′
k(τ)dτ. (21.70)
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Around the attracting limit cycle, this simplifies to

ε

T0

∫ T0

0
φ′
k(τ)dτ, (21.71)

where T0(β) is the period of the limit cycle on the torus. However, we readily calculate
that

∫ T0

0
φ′
k(τ)dτ �

{
0, k �� j,

2π, k � j.
(21.72)

It follows that the first j oscillators all have the same average frequency, as do the
oscillators from j+1 to n. Between the jth and the (j+1)st oscillators there is a frequency
jump of 2πε/T0(β).

It is important to note that the phase differences φk, k �� j, make small oscilla-
tions about the constant φ−

k
, but are not identically constant. Thus, on each frequency

plateau, the phases are not locked, but only “trapped” on average over each cycle. In
contrast to some experimental data, one therefore does not expect to see exactly regular
propagating waves appearing on each plateau, since such waves require phase locking
at each instant and a constant phase difference along the plateau. The precise reasons
for this discrepancy are, as yet, unknown.

Figure 21.14 Frequency plateaus in a chain of 32 coupled oscillators. For these numerical
simulations the phase equation was chosen to be φ̇k � −10/31+δ(sin φk+1 −2 sin φk +sin φk−1).
(a): δ � 32, (b): δ � 18. Note that decreasing δ while leaving the intrinsic oscillator frequencies
unchanged is equivalent to increasing β. (Ermentrout and Kopell, 1984, Fig. 4.1.)
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Numerical solutions
Numerical solutions of the phase equation for two different values of β are shown in
Fig. 21.14. Once β is greater than the critical value β0 a pair of plateaus emerges, and
as β is increased still further, multiple plateaus appear. Comparison of Fig. 21.8 with
Fig. 21.14 shows that the above model differs from experimental results in an impor-
tant way. In the model, the frequency of the plateau lies between the maximum and
minimum natural frequencies of the oscillators in the plateau; a plateau cannot have
a higher frequency than all of its constituent oscillators, as is seen in the experimental
data. However, the above simple model can be extended to obtain better qualitative
agreement with experiment. For instance, the coupling between cells can be made
stronger in one direction than the other (nonisotropic coupling) or it can be made
nonuniform along the oscillator chain, in which case the phase difference equation
can reproduce the asymmetrical behavior exhibited by the experimental system.

However, despite this qualitative agreement, it must be admitted that the simple
model presented here does not give a quantitative explanation of the properties of
frequency plateaus in the small intestine. It is an excellent example of how, to obtain
an analytical understanding of a particular phenomenon, it is often necessary to study
a model that has been reduced to caricature by successive approximations. Although
hope of quantitative agreement is thereby lost, such simple models often permit a
substantial understanding of the underlying structure.

21.4 Exercises
1. Modify (21.1) to account for the effects of the membrane potential on sodium flux. How

does membrane potential affect the transport of water?

2. Use the model of local sodium removal and osmotic transport of water to analyze the
removal of water and sodium along the length of the intestinal tract.

(a) Give a phase-plane analysis for the system. What is the trajectory of sodium and water
if sodium is initially quite high? What is the trajectory of sodium and water if sodium
is initially quite low? How does this compare with the trajectory when there is no
sodium?

(b) If the flow of water from the intestine is assumed to depend solely on the sodium
concentration, then the flow can become negative, which is clearly unphysiological.
How might you modify this assumption and how might you justify it on physical
grounds?
Hint: As the chyme dries, one expects the continued extraction of water to become
more difficult.

3. (a) Find two terms of the power series representation of the solution of (21.36) in powers
of ζ. Find u(0) to the same order in ζ.

(b) It appears from the leading-order solution that u(0) is negative if J > 1. Show that this
is not correct, but that u(0) > 0 for all positive values of J. Show that when J > 1, the
bulk of the reaction occurs in a thin layer contained within the mucus layer, and that
the epithelial surface is completely protected. What is the physical interpretation of
the condition J > 1?
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4. Show that the kth component of K−1(βH) in (21.60) is αk � −βk(n+ 1− k)/2.
Hint: Verify that (Kα)i � β.

5. What steady phase-locked solutions are possible for two coupled identical oscillators?What
stable, steady, phase-locked solutions are possible?

6. Describe the behavior expected from two coupled oscillators when βH � −2− ε and h(φ) �
sin φ for ε � 1. Check your prediction numerically. This behavior is called rhythm splitting,
and is discussed in more detail in Murray (1989).

7. In Exercise 17 of Chapter 14 the coupling function h(θ) was calculated for a collection
of coupled FitzHugh–Nagumo equations. Using this coupling function, pick any initial
conditions you wish, and solve the phase equation numerically to determine φ(t). How
quickly do identical FitzHugh–Nagumo oscillators synchronize?

8. Extend the previous question (and refer to Chapters 5 and 7) to study the synchronization
of intracellular calcium oscillations. Suppose two cells, each with a well-mixed interior,
are coupled by a membrane through which Ca2+ can diffuse through gap junctions. Sup-
pose further that each cell exhibits intracellular calcium oscillations of slightly different
periods (i.e., each cell has a slightly different background IP3 concentration). Using your
favorite model for calcium oscillations, determine the coupling function numerically, and
thus determine how fast such synchronization occurs, as a function of the intercellular
permeability of Ca2+. (As of writing, these calculations have not yet been performed, even
though they have direct relevance to the measurement of the intercellular permeability of
Ca2+ in glial and epithelial cell cultures. If you do this soon enough, compare your results
to experimental data and publish them!)
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The Retina and Vision

The visual system is arguably the most important system through which our brain
gathers information about our surroundings, and forms one of ourmost complex phys-
iological systems. In vertebrates, light entering the eye through the lens is detected by
photosensitive pigment in the photoreceptors, converted to an electrical signal, and
passed back through the layers of the retina to the optic nerve, and from there, through
the visual nuclei, to the visual cortex of the brain. At each stage, the signal passes
through an elaborate system of biochemical and neural feedbacks, the vast majority of
which are poorly, if at all, understood.

There are a number of phenomena that we would like to understand:

• One striking feature of the visual system is its ability to adapt to widely varying
levels of background light. Thus, it has the ability to operate in both dim and bright
situations, from a starlit night to a bright sunny day.

• The eye is more sensitive to flashing light than to steady light. When a space-
independent pulse of light is shone on the entire eye, the retina responds with a
large-amplitude signal at the beginning followed by a decrease to a lower plateau.
Similarly, at the end of the impulse, the off-transient is nearly the negative image of
the on-transient, with a large negative transient followed by a return to a plateau.
Response to transients with adaptation in steady conditions is characteristic of
inhibitory feedback, or self-inhibition, which occurs at a number of levels in the
retina.

• When a time-independent strip of light is applied to the retina, the response is
greatest at the edges of the pattern. These response variations are known asMach
bands and are due to lateral inhibition, which plays a similar role in space as self-
inhibition plays in time. For example, in the interior of a uniformly bright part
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Figure 22.1 Test pattern with which
to observe the effects of self-inhibition
and lateral inhibition.

of the visual field, neurons are inhibited from all sides, while regions near the
edge receive little inhibition from their dimly illuminated neighbors and therefore
appear brighter. The result is contour enhancement. The effect of lateral inhibition
can be seen in the white intersections of Fig. 22.1. In particular, if one looks intently
at one of the white intersections, the remaining intersections will appear to have
a gray or darkened interior, and the center of the white strips will appear slightly
darkened compared to their edges, because of lateral inhibition.

The visual system has been studied on verymany levels, ranging from the biochem-
istry of the photopigments, to the cellular electrophysiology of the individual retinal
cells, to the neural pathways responsible for image processing, to the large-scale struc-
ture of the visual cortex. Obviously, there is insufficient space here for a detailed study
of all these aspects of the visual system. For a more comprehensive view of the visual
system, the reader is referred to the excellent book by Nicholls, Martin, and Wallace
(1992); other discussions of visual processing can be found in Blakemore (1990), Landy
and Movshon (1991), and Spilmann and Werner (1990).

22.1 Retinal Light Adaptation

The first stage of visual processing occurs in the retina, a structure consisting of at least
five major neuronal cell types (Fig. 22.2). After entering the eye, light passes through
all the cell layers of the retina before being absorbed by photosensitive pigments in the
photoreceptors in the final layer of cells. (A functional reason for this arrangement is
not known.) Photoreceptors come in two varieties: rods, which operate in conditions
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Figure 22.2 Schematic diagram of the layers of the retina. (Nicholls et al., 1992, Chapter 16,
Fig. 14, p. 583.)

of low light, and cones, which operate in bright light conditions and detect color. In
the dark, photoreceptors have a resting membrane potential of around −40 mV, and
they hyperpolarize in response to light. The light response is graded, with larger light
stimuli resulting in larger hyperpolarizations. Note that this is different behavior from
typical neurons, in which the action potential is a depolarization and is all-or-nothing,
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as described in Chapter 4. Photoreceptors make connections to both horizontal cells
and bipolar cells. Each horizontal cell makes connections to many photoreceptors
(and, often, to bipolar cells), and is coupled to other horizontal cells by gap junctions.
The bipolar cells form a more direct pathway, coupling photoreceptor responses to
ganglion cells, but this is also a simplification. Amacrine cells connect only to bipolar
cells and ganglion cells, and their precise function is unknown. Ganglion cells (which
fire action potentials, unlike photoreceptors and horizontal cells) are the output stage
of the retina and form the optic nerve. The interconnections among the retinal cells
are complex and not well understood; there has been a great deal of work done on how
the retina detects features such as moving edges and orientation, while ignoring much
of the information presented to it. Here, we study only the simplest models.

22.1.1 Weber’s Law and Contrast Detection

One of the basic features of the retina is light adaptation, the ability to adapt to varying
levels of background light. Over a wide range of light levels, the sensitivity of the retina
is observed to be approximately inversely proportional to the background light level.
This fact is known as Weber’s law, or the Weber–Fechner law. There are three common
definitions of sensitivity. It can mean psychophysical sensitivity, defined as 1/threshold,
where the threshold is the minimal stimulus necessary to elicit an observable response
when superimposed on a given background. Weber’s law describes the fact that in
psychophysical experiments (i.e., with human subjects who report what they detect)
the threshold increases as the background light level increases.

A second definition of sensitivity is the one used most in this chapter. In response
to a light step increase, the membrane potential of a photoreceptor (or horizontal cell)
first decreases and then increases back to a steady level. If V(I, I0) is the maximum
deviation of the membrane potential in response to changing the amplitude of the
background light from I0 to I, then the peak sensitivity is

S(I0) � ∂V

∂I

∣∣∣∣
I�I0

. (22.1)

The third definition of sensitivity is the steady-state sensitivity. If V0(I0) is the steady
response as a function of the background light level, then the steady-state sensitivity is
defined to be dV0/dI0.

Light adaptation serves two fundamentally important purposes. First, it helps the
retina handle the wide range of light levels in which the eye must operate. The eye
functions in a range of light levels that spans about 10 log units, from a starlit night to
bright sunlight. (Light intensities are typically plotted on a dimensionless logarithmic
scale. For example, if I0 is a standard unit of light intensity, and the intensity of the
light stimulus is I, then log( I

I0
) � log I − log I0, so that on a logarithmic scale, the unit

scale I0 only shifts log I
I0
). Further, the retina is so sensitive that it can reliably detect

as few as 20 photons, and can even, although less reliably, detect single photons.
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The two requirements of operation over a wide range of light levels and high sensi-
tivity in the dark are in conflict. Without control mechanisms, a retina that can detect
single photons would be saturated, and hence blinded, by bright light. In bright light,
there is a saturation catastrophe, in which every photoreceptor is saturated, each send-
ing the same signal to the brain, so that no contrast in the scene can be detected.
However, for the human retina this saturation catastrophe is about 10 log units above
the level of no response. This range of light sensitivity is achieved partly by the use
of two different types of photoreceptors, rods and cones, having different sensitiv-
ities, rods operating in dim light and cones in bright light. However, by itself, two
types of photoreceptors are inadequate to account for the observed range of light
sensitivity.

The second effect of light adaptation is to send a signal to the brain that is dependent
only on the contrast in the scene, not on the background light level. When a scene is
observed with different background light levels, the amount of light reflected from an
object in that scene varies considerably.Hence, the eye shouldmeasure something other
than the total amount of light from an object. In fact, the eye measures the contrast
in the scene, which, since it is dependent only on the reflectances of the objects, is
independent of the background light level.

Contrast detection is a consequence of Weber’s law, as can be seen from the fol-
lowing argument of Shapley and Enroth-Cugell (1984). Suppose we observe an object
superimposed on a background, where the background reflectance is Rb, the object
reflectance is Ro, and the background light level is I. As the receptive field of a reti-
nal neuron moves across the boundary of the object, the stimulus it receives changes
from IRb to IRo, a difference of IRo − IRb. Since according to Weber’s law, the sen-
sitivity of the cell is inversely proportional to IRb (the amount of light reaching the
cell from the background), the cell’s response will be approximately proportional to
(IRo − IRb)/(IRb) � (Ro −Rb)/Rb, which is dependent only on the contrast in the scene.

22.1.2 Intensity–Response Curves and the Naka–Rushton Equation

Light adaptation in photoreceptors is elegantly summarized by intensity–response
curves (Fig. 22.3), a set of curves that repays careful consideration. For a fixed back-
ground light level I0, we consider the response to a family of superimposed light steps.
For each light step, the photoreceptor membrane potential shows a large transient
response, followed by a slower change to the steady-state level, as the photoreceptor
adapts to the maintained stimulus. For instance, in response to a step increase in light,
the photoreceptor membrane potential shows a large transient decrease, followed by a
slower increase to the steady level (note that the vertical axis in Fig. 22.3 is reversed).
We denote the final light amplitude after the step by I (and thus the amplitude of the
step is I − I0), and the turning point of the voltage response (which may be either a
maximum or a minimum) by V(I, I0). For each I0, we then plot V(I, I0) against I to get
the set of curves shown in Fig. 22.3.
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Figure 22.3 Intensity response curves measured in a red-sensitive cone of the turtle. The
peak of the response to a step of light (either increasing or decreasing) is plotted against the
log of the intensity of the light at the end of the step. Each data set corresponds to a different
background light level, and the smooth curves are drawn by using the Naka–Rushton equation,
(22.2), as a template, and shifting it across and down for the higher background light levels.
The short horizontal lines denote the resting hyperpolarization for each background light level.
The membrane potential has been scaled to be zero in the dark. (Normann and Perlman, 1979,
Fig. 7.)

It is observed experimentally that around each background light level, V(I, I0) can
be approximately described by using the Naka–Rushton equation

V(I, I0)
Vmax

� I

I + Is(I0)
(22.2)

as a template andmoving it across and down slightly to describe the higher background
light levels. Here, Is is the light level at which the photoreceptor’s response is half max-
imal. From Fig. 22.3 it can be seen that Is is an increasing function of the background
light level. Thus, as the background light level increases, the response curve maintains
its shape, but shifts to higher light levels and moves down slightly (although this shift
is not accounted for in (22.2)). Note that since I and Is are positive, the Naka–Rushton
equation is always well defined.

In contrast to the peak response, the steady response, depicted by the small hori-
zontal lines in Fig. 22.3, is a much shallower function of the background light level. In
this way retinal neurons can detect contrast over awide range of light levels without sat-
urating. The steep Naka–Rushton intensity–response curves around each background
light level give a high sensitivity to changes superimposed on that background, but the
shallower dependence of the steady response on the background light level postpones
saturation.



22.1: Retinal Light Adaptation 671

The fact that the Naka–Rushton equation provides a good template for the
intensity–response curves has one particularly interesting consequence. Let V0(I0) de-
note the steady response to a steady background light level I0. Then, since this point
must lie on the intensity–response curve corresponding to I0, it follows that

V0(I0) � I0

I0 + Is(I0)
. (22.3)

Note that since Is is a function of I0, this is not the Naka–Rushton equation, although it
looks similar. Next, notice that for given a background light level I0, the peak sensitivity
is (from (22.2))

S(I0) � ∂V

∂I

∣∣∣∣
I�I0

� Is

(I0 + Is)2
, (22.4)

where Is also depends on I0. For simplicity, we have set Vmax � 1. Clearly, the peak
sensitivity S(I0) is inversely proportional to the background light level I0 if and only if Is
is a constantmultiple of I0, i.e., Is � kI0 for some constant k, inwhich caseV0 � 1/(1+k).
It thus follows that Weber’s law is followed exactly when the steady-state response
is independent of the background light level, a feature called exact adaptation, and
one that was discussed previously in the context of adaptation of hormone receptors
(Chapter 19). Of course, in reality peak sensitivity cannot always be proportional to 1/I0,
as then it would be infinite in the dark, and the steady response of a photoreceptor is
not independent of the stimulus. Thus, Weber’s law is only an approximation to reality,
but one that is extremely useful.

22.1.3 A Linear Input–Output Model

Turtle horizontal cells respond linearly to modulations about a mean light level, pro-
vided that the modulations are not too large. Thus, at each background light level I0,
their behavior can be described by a first-order transfer function (see Section 22.6 for a
brief summary of linear systems theory and transfer functions). The transfer function
depends on I0, and so the behavior of the horizontal cell over all light levels is described
by a family of transfer functions, parametrized by I0.

Typical experimental data are shown in Fig. 22.4. The light input to the system
is modulated around a mean level, and the output is the membrane potential of the
horizontal cell. Gain is measured in units of mV photon−1 and plotted relative to gain
in the dark. Since the experiments were performed under conditions that minimized
feedback from horizontal cells to photoreceptors, it is reasonable to suppose that the
observed transfer functions are determined by the photoreceptor responses, rather than
intrinsic to the horizontal cell.

As can be seen from Fig. 22.4, when the background light level increases by one
log unit in intensity (indicated by moving from filled squares to open circles, or from
open circles to filled triangles, etc.), the relative gain at low frequency decreases by
approximately one log unit. Hence, over a range of light levels the low-frequency gain
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Figure 22.4 A family of temporal frequency re-
sponses from turtle horizontal cells, measured at
different mean light levels. (From top to bottom, the
filled square, open circle, filled triangle, open square,
and filled circle denote, respectively, −4, −3, −2, −1,
and 0 log units.) Symbols are experimental data, and
the smooth curves are from the model described in the
text. The data are presented in a typical Bode plot for-
mat, with the amplitude plotted in the upper panel, the
phase difference in the lower. (Tranchina et al., 1984,
Fig. 1.)

is inversely proportional to I0, and thus the steady-state sensitivity obeys Weber’s law.
At high frequencies and low background light levels, Weber’s law breaks down, and the
gain becomes nearly independent of the background light level. It is important to note
that the steady-state sensitivity is not the sameas the peak sensitivity. In photoreceptors,
however, for reasons that are not clear, both the steady state and peak sensitivity follow
Weber’s law approximately.

A model to describe these data was constructed by Tranchina et al. (1984). Their
model, shown in Fig. 22.5, consists of two linear filters, with transfer functions P(ω)
andQ(ω), and amultiplicative feedback proportional to I0, where the parameters of the
linear filters are determined by fitting to the experimental data shown in Fig. 22.4. The
transfer function of this linear system can be calculated as follows. For a light stimulus
of the form eiωt, the output from the first filter is P(ω)eiωt. If the output from the second
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filter is G, then the input into the second filter is P(ω)eiωt − I0G, so that

G � Q(ω)(P(ω)eiωt − I0G). (22.5)

Solving for G we find that

G � P(ω)Q(ω)eiωt

1+ I0Q(ω)
, (22.6)

so that the transfer function for the feedback system is T(ω) � −P(ω)Q(ω)/(1+ I0Q(ω)).
The I0 in the denominator gives Weber’s law behavior over the range of light levels and
frequencies for which I0Q(ω) � 1, since then the transfer function is approximately
P(ω)/I0.

The transfer functions P and Q, were determined by fitting to the experimentally
measured transfer function shown in Fig. 22.4. This gives P(ω)Q(ω) � P0(1+iωτ1)−3(1+
iωτ2)−7, Q(ω) � Q0(1 + iωτ3)(1 + iωτ4)3(1 + iωτ5)−1(1 + iωτ6)−3, where P0 ≈ 4 × 10−10

mV s cm2 per photon, and the time constants τ1, . . . , τ6 are, respectively, 46, 5.4, 12.7,
6.8, 0.4, and 76.3 ms. Q0I0 ≈ 900 at the 0 log unit background light level. Results from
the model are plotted in Fig. 22.4 as smooth curves.

22.1.4 A Nonlinear Feedback Model

The close agreement between the above model and the experimental data suggests
that Weber’s law behavior and light adaptation are the result of a feedback mechanism
that is proportional to the background light level. However, we are now faced with
the question of how to construct a model that incorporates the desired behavior at
each light level but does not require feedback that depends explicitly on I0. To answer

P(ω)

Q(ω)

×

I(t ) = I0 + I1(t )

V(t)

- +

-

I0

Light stimulus

Linear filter

Sign inversion

Response

Linear filter

Figure 22.5 A family of linear models, which de-
scribes the linear responses of turtle horizontal
cells around a mean light level. (Adapted from
Tranchina and Peskin, 1988.)
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Figure 22.6 A nonlinear model
that embeds the family of linear
models shown in the previous fig-
ure. (Adapted from Tranchina and
Peskin, 1988.)

this question, Tranchina and Peskin (1988) constructed a nonlinear model that has the
same linear behavior as the above model but does not depend explicitly on I0. Their
model, shown in Fig. 22.6, is similar to that in Fig. 22.5, but the feedback amplification
is through a static nonlinearity rather than by the factor I0.

Suppose that the input to this system is I(t) � I0 + εeiωt, and the output V is given
by

V(t) � V0(I0)+ εV1(ω; I0)eiωt, (22.7)

to leading order in ε. V1(ω; I0) is the first-order transfer function of the system, and
remains to be calculated.

The output from the first filter is P(0)I0+εP(ω)eiωt, and thus the input to the second
filter is

u(t) � P(0)I0 + εP(ω)eiωt − g(V0 + εV1e
iωt) (22.8)

� P(0)I0 − g(V0)+ ε[P(ω)− g′(V0)V1]eiωt +O(ε2). (22.9)

Putting u through the filter Q, changing its sign, and adding C gives

V(t) � C−Q(0)[P(0)I0 − g(V0)]− εQ(ω)[P(ω)− g′(V0)V1]eiωt +O(ε2). (22.10)

Equating this with (22.7) gives

V0 � C−Q(0)[P(0)I0 − g(V0)] (22.11)
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and

V1(ω; I0) � −P(ω)Q(ω)
1− g′(V0)Q(ω)

. (22.12)

Thus, for (22.12) to have the same frequency response as the linear model, wemust
have

g′(V0) � −I0. (22.13)

Eliminating I0 between (22.13) and (22.11), we find the differential equation for g(V0),

Q(0)P(0)g′(V0)+Q(0)g(V0)− V0 + C � 0. (22.14)

This linear differential equation can be solved for g, with the result that

g(V) � P(0)
Q(0)

{ey − (1+ y)}, (22.15)

where y � (C − V)/P(0), and the constant of integration is chosen such that g(C) � 0
when I0 � 0. The feedback function g is an exponentially increasing function of its
argument y � (C− V)/P(0). Typically, C− V is an increasing function of light intensity,
because photoreceptors hyperpolarize in response to light, and V is interpreted as the
membrane potential.

To find the steady-state output V0, we differentiate (22.11) with respect to I0 and
use that g′(V0) � −I0 to get

dV0

dI0
� −P(0)Q(0)
1+ I0Q(0)

, (22.16)

which can be integrated to give

V0 � C− P(0) ln(1+ I0Q(0)). (22.17)

Thus, the steady-state output is a logarithmic function of I0, and is therefore much
shallower than the Naka–Rushton equation (22.2) describing the peak response around
each light level. This expression agrees well with experimental data when I0 is not too
large.

22.2 Photoreceptor Physiology

The previous models show that Weber’s law can be duplicated by a nonlinear feedback
control system. However, we would like some indication of how this control is estab-
lished by biochemical processes, rather than the “black box” proposal of the previous
models. This requires a more detailed, mechanistic, model of the molecular events
underlying the light response. As a preliminary to the construction of such a model,
we present a brief discussion of the physiology of the vertebrate photoreceptor. More
detailed discussions are given in Fain and Matthews (1990), McNaughton (1990), and
Pugh and Lamb (1990). A selection of detailed articles is given in Hargrave et al. (1992).
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Vertebrate photoreceptors are composed of two principal segments: an outer seg-
ment that contains the photosensitive pigment, and an inner segment that contains the
necessary cellular machinery. A connecting process, called an axon, connects the inner
segment to a synaptic pedicle, which communicates with neurons (such as horizontal
and bipolar cells) in the inner layers of the retina. In rods, the photosensitive pigment is
located on a stack of membrane-enclosed disks that take up themajority of the space in
the outer segment, while in cones, the pigment is located on invaginations of the outer
segment membrane. The connecting process does not transmit action potentials, and
hence the name “axon” is somewhat misleading. Photoreceptors respond in a graded
manner to light, and give an analogue, rather than a digital, output.

In the dark, the resting membrane potential is about −40 mV. Current, carried by
Na+ and Ca2+ ions, flows into the cell through light-sensitive channels in the outer
segment, and is balanced by current, carried mostly by K+ ions, flowing out through
K+ channels in the inner segment. Thus, in the dark there is a circulating current of
about 35–60 pA. In the dark, the light-sensitive channels are held open by the binding
of 3 molecules of cGMP. Ionic balance is maintained by a Na+–K+ pump in the inner
segment that removes 3 Na+ ions for the entry of 2 K+ ions, and a Na+–Ca2+,K+

exchanger in the outer segment that removes 1 Ca2+ and 1 K+ for the entry of 4 Na+

ions. The Na+–Ca2+,K+ exchanger is the principal method for Ca2+ extrusion from the
cytoplasm.

The light response begins when a photon of light strikes the photosensitive pig-
ment, initiating a series of reactions (described in more detail below) that results in
the activation of rhodopsin, and its subsequent binding to a G-protein, transducin.
The bound transducin exchanges a molecule of GDP for GTP and then binds to cGMP-
phosphodiesterase (PDE), thereby activating PDE to PDE∗. Since the rate of hydrolysis
of cGMP by PDE∗ is greater than by PDE, this leads to a decline in [cGMP] and subse-
quent closure of some of the light-sensitive channels. As the light-sensitive conductance
decreases, the membrane potential moves closer to the reversal potential of the inner
segment K+ conductance (about −65 mV), hyperpolarizing the membrane.

Light adaptation ismediated by the cytoplasmic free Ca2+ concentration.When the
light-sensitive channels close, the entry of Ca2+ is restricted, as about 10–15% of the
light-sensitive current is carried by Ca2+. However, since the Na+–Ca2+,K+ exchanger
continues to operate, the intracellular [Ca2+] falls. This decrease in [Ca2+] increases
the activity of an enzyme called guanylate cyclase that makes cGMP from GTP. Thus, a
decrease in [Ca2+] results in an increase in the rate of production of cGMP, reopening
the light-sensitive channels, completing the feedback loop. A schematic diagram of the
reactions involved in adaptation is given in Fig. 22.8. Although it is likely that there
are other important reactions involved in phototransduction (for instance, Ca2+ may
affect the activity of PDE), the above scheme incorporates many essential features of
the light response.

The mechanisms of phototransduction are similar in rods and cones, with one
important difference being the light-sensitive pigment contained in the cell. In rods,
rhodopsin consists of retinal and a protein called scotopsin, while in cones, the
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major reactions involved in light adap-
tation. The initial cascade, leading to the
activation of PDE, is condensed into a
single step here, but is considered in
more detail in Fig. 22.9. (Adapted from
Sneyd and Tranchina, 1989.)
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rhodopsin consists of retinal and different proteins, called photopsins. The primary
effect of this compositional difference is that in rods, rhodopsin absorbs light in a
range of wavelengths centered at 505 nm, while the rhodopsin in cones absorbs light
in a range of wavelengths centered at 445 (blue cones), 535 (green cones), and 570 (red
cones) nm. Night blindness is caused by insensitivity of rods because of inadequate
amounts of rhodopsin, often associated with vitamin A deficiency. Colorblindness, on
the other hand, occurs when green or red cones are missing or when blue cones are un-
derrepresented. Colorblindness is a genetically inherited disorder. Another important
difference between rods and cones is that the light response of a cone is much faster
than that of a rod, due principally to its smaller size.

There are a number of models of phototransduction, some of which (Baylor et
al., 1974a,b; Carpenter and Grossberg, 1981) were constructed before the molecular
events underlying adaptation were well known. More detailed recent models include
those of Tranchina and his colleagues for turtle cones (Sneyd and Tranchina, 1989;
Tranchina et al., 1991), Forti et al. (1989) for newt rods, and Tamura et al. (1991) for
primate rods. These models have confirmed that feedback of Ca2+ onto the activity of
guanylate cyclase is indeed sufficient to explain many features of the light response in
both rods and cones. Detailed models of the initial cascade and the activation process
have been constructed by Cobbs and Pugh (1987) and Lamb and Pugh (1992).

22.2.1 The Initial Cascade

Although the main consequence of the absorption of light by a photoreceptor is the
conversion of PDE to a more active form, and a resultant decline in the concentration
of cGMP, there aremany biochemical steps between these events (Fig. 22.9). Absorption
of a photon causes the isomerization of 11-cis retinal to the all-trans form, and this in
turn causes a series of isomerizations of rhodopsin, ending with metarhodopsin II.
Metarhodopsin II is converted to metarhodopsin III, which is, in turn, hydrolyzed to
opsin and all-trans retinal. The activated form of rhodopsin is metarhodopsin II, called
R∗ here. In the dark, the G-protein transducin is in its deactivated form, T-GDP. After
absorption of a photon, R∗ binds to T-GDP and catalyzes the exchange of GDP for GTP.
This exchange reduces the affinity of R∗ for transducin, and also causes transducin to
split into an α subunit, Tα-GTP, and a βγ subunit, Tβγ . It is Tα-GTP that then binds
to PDE, forming the complex PDE∗-Tα-GTP, which is the activated form of the PDE.
The cycle is completed when the GTP is dephosphorylated to GDP, the PDE leaves the
complex, and the Tα subunit recombines with the Tβγ subunit forming the deactivated
form of transducin again. All of these reactions occur in the membrane that contains
rhodopsin, and are thus influenced by the speed at which the various proteins can
diffuse within the membrane, an aspect that we do not consider (but see Lamb and
Pugh, 1992).

Although it is possible to model this sequence of reactions in detail (Exercise 1),
we do not do so here, as it appears that nonlinearities in the initial stages of the light
response have little effect on adaptation at low light levels. This allows the considerable
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simplification of modeling the initial stages of the light response as a simple multistage
linear filter.

We model the initial cascade as a sequence of linear reactions,

dr

dt
� l1I(t)− l2r, (22.18)

dg1

dt
� l3r − l4g1, (22.19)

dg2

dt
� l5g1 − l6g2, (22.20)

dg

dt
� l7g2 − l8g, (22.21)

where l1, . . . , l8 are rate constants, r is the concentration of R∗, g is the concentration of
transducin, and g1 and g2 are hypothetical intermediate states between the formation
of activated rhodopsin and the activation of transducin. These intermediate states need
not occur in this specific location, but could be included anywhere preceding the acti-
vation of PDE. Two intermediate states are used because there is evidence that to get
acceptable agreement with data, at least four stages are needed before the activation
of PDE (Cobbs and Pugh, 1987). The transfer function of this linear system is

H(ω) � η

(1+ iωτ1)4
, (22.22)
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where η � l1l3l5l7τ
4
1 , and where we have assumed that l2 � l4 � l6 � l8 � 1/τ1. The

impulse response K(t) of the system is given by

K(t) � η

τ13!

(
t

τ1

)3
e−t/τ1 . (22.23)

Finally, we let p denote the concentration of PDE∗, and let P0 denote the total
concentration of PDE, to get

dp

dt
� s(t)P0 − k1p, (22.24)

where

s(t) �
∫ t

−∞
I(τ)K(t− τ)dτ. (22.25)

Note that we have assumed that the amount of PDE∗ is small enough so that P0−p ≈ P0,
and that the deactivation of PDE∗ is linear (Hodgkin and Nunn, 1988).

22.2.2 Light Adaptation in Cones

We can now incorporate the model of the initial cascade into a complete model for
excitation and adaptation by including equations for the concentrations of cGMP, Ca2+,
and Na+, as well as the membrane potential. First, we scale p by P0, and then let
x � [cGMP]/[cGMP]dark, y � [Ca2+]/[Ca2+]dark, and z � [

Na+] / [Na+]
dark, so that x �

y � z � 1 in the dark. We also shift the membrane potential V so that V � 0 in the dark.
cGMP is produced at some rate dependent upon calcium concentration, given by

g(y), an unknown function to be determined. cGMP is hydrolyzed by both the active
(at rate proportional to xp) and the inactive (at rate proportional to x(1− p)) forms of
PDE, although the rate of hydrolysis by PDE∗ is faster than by PDE. Thus,

dx

dt
� g(y)− γxp− δx(1− p) � g(y)− (γ − δ)xp− δx. (22.26)

Note that the units of g(y), γ, and δ are s−1. (The assumptions behind (22.26) are not as
simple as they may seem; see Exercise 2.)

The light-sensitive channel is held open by three cGMP molecules, and, in the
physiological regime, has a current–voltage relation proportional to e−V/V

∗
, for some

constant V∗. In general, one expects the number of open light-sensitive channels to be
a sigmoidal function of x, as in (1.45), with a Hill coefficient of 3. However, since x is
very small in the dark (and becomes even smaller in the presence of light), few light-
sensitive channels ever open, and thus the light-sensitive current Jls is well represented
by

Jls � Jx3e−V/V
∗
, (22.27)

for some constant J, with units of current.
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Calcium enters the cell via the light-sensitive current, of which approximately 15%
is carried by Ca2+, and is pumped out by the Na+–Ca2+,K+ exchanger. Assuming
that the Na+–Ca2+,K+ exchanger removes Ca2+ with first-order kinetics, the balance
equation for calcium is

β
dy

dt
� κ

2Fνyd
Jx3e−V/V

∗ − k2y, (22.28)

where ν is the cell volume, κ is the fraction of the light-sensitive current carried by
Ca2+, F is Faraday’s constant, k2 is the rate of the exchanger, and yd denotes [Ca2+]dark.
To incorporate Ca2+ buffering, we assume that the ratio of bound to free Ca2+ is β, and
that the buffering is fast and linear. This means that the rate of change of [Ca2+] must
be scaled by β (Section 12.3). Typically, β is approximately 99.

Similarly, the balance equation for Na+ is derived by assuming that the exchanger
brings 4 Na+ ions in for each Ca2+ ion it pumps out, and that the rate of the Na+ −K+

pump is a linear function of Na+. Further, most of the light-sensitive current not carried
by Ca2+ is carried by Na+. Thus,

dz

dt
� 1− κ

Fνzd
Jx3e−V/V

∗ + 4k2yd
zd

y− k3z, (22.29)

where zd denotes
[
Na+]

dark.
Some parameter relationships can be determined and the equations for y and z

simplified by using the fact that x � y � 1, V � 0 must be a steady state. From this it
follows that

k2 � Jκ

2Fνyd
(22.30)

and

k3 � (1− κ)J
Fνzd

+ 4k2yd
zd

� J(1+ κ)
Fνzd

, (22.31)

so that

τy
dy

dt
� x3e−V/V

∗ − y, (22.32)

τz
dz

dt
�
(
1− κ

1+ κ

)
x3e−V/V

∗ +
(
2κ
1+ κ

)
y− z, (22.33)

where τz � Fνzd
J(1+κ) and 1/τy � βk2.

Finally, we derive an equation for the membrane potential. Since the exchangers
and pumps transfer net charge across the cell membrane, there are four sources of
transmembrane current: the light-sensitive current, the Na+–K+ pump current, the
Na+–Ca2+,K+ exchange current, and the light-insensitiveK+ current, which ismodeled
as an ohmic conductance. Also note that for every 1 Ca2+ ion pumped out of the cell,
one positive charge enters, and for every 3 Na+ ions pumped out, one positive charge
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leaves. Thus

Cm
dV

dt
� Jx3e−V/V

∗ − Fk3zdν

3
z−G(V − E)+ (Fk2ydν)y, (22.34)

where G and E are, respectively the conductance and reversal potential of the light-
insensitive K+ channel, and Cm is the capacitance of the cell membrane. Recall that
the potential V is measured with respect to the potential in the dark. Using (22.30) and
(22.31), the voltage equation becomes

Cm
dV

dt
� Jx3e−V/V

∗ − J(1+ κ)
3

z−G(V − E)+ Jκ

2
y, (22.35)

and then using that V � 0, y � z � 1 must be a steady state, we get

J � −6GE
4+ κ

. (22.36)

Substituting this expression back into the voltage equation gives

τm
dV

dt
� −

(
6E
4+ κ

)
x3e−V/V

∗ + 2
(
1+ κ

4+ κ

)
Ez− (V − E)−

(
3Eκ
4+ κ

)
y, (22.37)

where τm � Cm/G is the membrane time constant.

Determination of the unknowns
The unknown function g(y) is determined by forcing the steady-state membrane
potential to be the logarithmic function

V0 � −s1 log(1+ s2I0), (22.38)

for some constants s1, s2. The form of this steady-state relation is suggested by (22.17),
and (22.38) gives very good agreement with experimental data (although it does not
give exact Weber’s law behavior). This results in a long and complicated expression
that we do not give here, as its analytic form has no physiological significance (see
Exercise 4). Its shape, however, is of interest, and that can be determined only after the
parameters are determined by fitting to experimental data.

Someof the parameters are known fromexperiment. For instance, κ, the proportion
of the light-sensitive current carried by Ca2+, is known to be 0.1–0.15, while τz, the time
constant forNa+ extrusion, is known to be around 0.04 s. Similarly, frommeasurements
of the current/voltage relation of the light-sensitive channel, V∗ is known to be 35.7 mV.
The remaining unknown parameters (s1, s2, E, τy, k4, γ, δ, η, τ1, and τm) are determined
by fitting the first-order transfer function of the model to experimental data (typical
experimental data are shown in Fig. 22.4). The results of this parameter estimation are
given in Table 22.1.
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Table 22.1 Parameter values for the model of light adaptation in turtle cones. (Tranchina et
al., 1991.)

s1 = 1.59 mV s2 = 1130
E = -13 mV V ∗ = 35.7 mV
τy = 0.07 s k1 = 35.4s−1

γ = 303 s−1 δ = 5s−1

κ = 0.1 η = 52.5s−1

τ1 = 0.012 s τm = 0.016 s
τz = 0.04 s

Model predictions and behavior
The most interesting prediction of the model is the shape of the feedback function g(y)
that mediates light adaptation. A plot of g is given in Fig. 22.10. In the physiological
regime, g(y) is well approximated by the function A(y), where

A(y) � 4+ 91
1+ (y/0.34)4 . (22.39)

In other words, as [Ca2+] falls, the rate of cGMP production by guanylate cyclase rises
along a sigmoidal curve, with a Hill coefficient of 4. This prediction of the model has
been confirmed experimentally (Koch and Stryer, 1988), thus lending quantitative sup-
port to the hypothesis that the modulation of guanylate cyclase activity by [Ca2+] is
sufficient to account for light adaptation in turtle cones.
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Figure 22.10 Predicted and measured activities of guanylate cyclase as functions of the Ca2+

concentration. The solid line denotes g(y ) (theoretical prediction), and the dotted line de-
notes A(y ) (experimental measurement). For convenience, the activity of guanylate cyclase
is expressed in units of [cGMP]dark per second.
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Figure 22.11 Intensity–response curves from the model for adaptation in turtle cones. The
dotted line is the Naka–Rushton equation, and the solid lines are the model results. The open
symbols denote the steady states for 4 different light levels.

The model exhibits constant contrast sensitivity over a range of lower light lev-
els. As I0 increases, the contrast sensitivity first increases and then decreases slightly,
in agreement with the results of Daly and Normann (1985); the impulse response be-
comes biphasic; and the time-to-peak decreases as the response speeds up. Further, the
intensity–response curves agree well with the Naka–Rushton equation (22.2) and shift
to the right and slightly down as I0 increases (Fig. 22.11), again in good agreement with
experimental data.

An unexpected prediction of the model is that [cGMP] does not fall much as
the background light level is increased. For example, if the background light level is
changed so that the sensitivity decreases by a factor of 1000, [cGMP] decreases by
less than a factor of two (see Sneyd and Tranchina, 1989, Fig. 4). This gives a possible
explanation for the puzzling observation that even though a decrease in [cGMP] is be-
lieved to underlie light adaptation, such decreases are sometimes not experimentally
observed (DeVries et al., 1979; Dawis et al., 1988). In other words, the model predicts
that even though a decrease in [cGMP]may indeedmediate light adaptation, the actual
decrease may be too small to measure reliably.

The model agrees quantitatively with experiment in a number of other ways (dis-
cussed in detail by Tranchina et al., 1991), lending further support to the hypothesis
that it provides an excellent description of many features of light adaptation. Similar
conclusions have been reached by Forti et al. (1989), who modeled phototransduction
in newt rods, and Tamura et al. (1991), who modeled adaptation in primate rods. It
thus appears that although Ca2+ feedback onto the activity of guanylate cyclase cannot
explain all features of light adaptation in rods and cones, it is likely to be one of the
principal mechanisms.
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22.3 Photoreceptor and Horizontal Cell Interactions

Thus far we have considered only the responses of individual photoreceptors. However,
spatial interactions in the retina also play an important role in regulation of the light
response.

Photoreceptors and horizontal cells form layers of cells through which their po-
tential can spread laterally. The output from the photoreceptors is directed toward the
horizontal cells, but the response of the horizontal cells also influences the photorecep-
tors, forming a feedback loop with spatial interactions. Here we examine two models
of this structure. The simpler, due to Peskin (1976), was originally constructed as a
model for the horseshoe crab eye, but has wider applicability.

22.3.1 Lateral Inhibition: A Qualitative Model

We suppose that E is the excitation of a receptor by light and that I is the inhibition of
the receptor from the layer of horizontal cells. The photoreceptor response isR � E−I.
A light stimulusL causes an excitationE in the receptor andE decayswith time constant
τ. The response of the receptorR provides an input into a layer of inhibitory cells, which
are laterally connected, and so the inhibition spreads laterally by diffusion and decays
with time constant 1. The model equations are

τ
∂E

∂t
� L− E, (22.40)

∂I

∂t
� ∇2I − I + λR, (22.41)

R � E− I. (22.42)

Space-independent behavior
If we assume that the light stimulus is spatially uniform, then spatial dependence can
be ignored, and the model equations reduce to the ordinary differential equations

τ
dE

dt
� L− E, (22.43)

dI

dt
+ (λ+ 1)I � λE. (22.44)

If L is a unit step applied at time t � 0, then the response at subsequent times is

R � E− I (22.45)

� 1
λ+ 1 − k− 1

k− λ− 1e
−kt + λk

(k− λ− 1)(λ+ 1)e
−(λ+1)t, (22.46)

where k � 1/τ. R is graphed in Fig. 22.12A, from where it can be seen that the response
is an initial peak followed by a decay to a plateau.
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Time-independent behavior
If the input is steady, so that time derivatives vanish, then E � L and

∇2I � (λ+ 1)I − λL. (22.47)

Suppose there is an edge in the pattern of light, represented by

L(x, y) �
{
1, x > 0,

0, x < 0.
(22.48)

Then the solution for I is

I �




λ

λ+ 1
(
1− 1

2
e−x

√
λ+1
)
, x > 0,

λ

λ+ 1
1
2
ex

√
λ+1, x < 0,

(22.49)
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Figure 22.12 Solutions of the qualitative model for lateral inhibition in the retina, calculated
with the parameters λ � 1, k � 20. A: The space-independent response. B: The steady response
to a band of light extending from x � 0 to x � ∞.
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Figure 22.13 Schematic diagram of the lateral inhibition model of Krausz and Naka. (Adapted
from Krausz and Naka, 1980.)

where I and dI/dx are required to be continuous at x � 0. Graphs of E and R � E − I

are shown in Fig. 22.12B. R exhibits Mach bands at the edge of the light stimulus.

22.3.2 Lateral Inhibition: A Quantitative Model

A more detailed model of receptor/horizontal cell interactions was constructed by
Krausz and Naka (1980), and the model parameters were determined by fitting to
experimental data from the catfish retina. The model is depicted in Fig. 22.13.

In thismodel, receptor and horizontal cells are assumed to form continuous sheets,
within which voltage spreads continuously. The coupling coefficient for voltage spread
in the sheet of receptors differs from that in the horizontal cell sheet. The receptors feed
forward to the horizontal cells, with transfer function Â, and the horizontal cells feed
back to the receptors with transfer function k̂. The receptor response is the excitation
due to light minus that due to horizontal cell feedback.

We first consider themodel where the voltage spreads laterally in the horizontal cell
layer, but not in the photoreceptor layer. To specify this model we must first determine
how voltage spreads within a cell layer. The primary assumption is that the horizontal
cell layer is effectively a continuous two-dimensional sheet of cytoplasm, and spread
of current within this layer can be modeled by the passive cable equation (Chapter 8),
with a source term describing the current input from the photoreceptor layer. If the
variations of light around the mean are small it is reasonable to assume that the ionic
currents are passive and that the governing equation is linear. Thus, from (8.12) we
have

τh
∂V

∂t
+ V � λ2h∇2V + RhIph, (22.50)
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where τh is the membrane time constant, λh is the membrane space constant, Rh is the
membrane resistivity, and Iph is the current input from the photoreceptor layer.

To simplify themodel, we assume that the light input, and all subsequent responses,
are radially symmetric, functions only of the distance from the center of the stimu-
lus. We suppose that the light input is Ii(t)p(r), i.e., modulated temporally by i(t) and
spatially by p(r). We let Û(r, ω) denote the Fourier transform of receptor potential at
position r, and let ĝ(ω) denote the transfer function of the linear stages of receptor
phototransduction. Then, in the frequency domain we have

Û � Ip(r)ĝ(ω)î(ω)− k̂(ω)V̂ . (22.51)

U is influenced by two terms, the first due to excitation by light, and the second due to
inhibitory feedback from horizontal cells, with transfer function k̂(ω). Finally, taking
the feedforward transfer function to be Â(ω), and taking V � V̂eiωt, we obtain

λ2h∇2V̂ − (1+ iωτh)V̂ � −Â(ω)Û. (22.52)

Although we expect the qualitative behavior of the Krausz–Naka model to be similar to
that of Peskin’s model, the goal of this model is to obtain quantitative agreement with
experiment by fitting it directly to data.

We simplify (22.51) and (22.52) by a change of variables. We set

P � Û

Iĝ(ω)î(ω)
, (22.53)

X � V̂

Iĝ(ω)î(ω)Â(ω)
, (22.54)

and from (22.52) find that

∇2X − 1
α2(ω)

X � −p(r)
λ2
h

, (22.55)

where

α2(ω) � λ2
h

1+ iωτh + Â(ω)k̂(ω)
. (22.56)

It is left as an exercise (Exercise 7) to show that the solution of (22.55), assuming
an infinite domain, is

X � 1

λ2
h

∫ ∞

0
p(s)G(r, s) s ds, (22.57)

where G, the fundamental solution, is given by

G(r, s) �
{
I0(r/α)K0(s/α), r < s,

K0(r/α)I0(s/α), r > s.
(22.58)

Here I0 and K0 are modified Bessel functions of the first and second kind of order zero.
(Unfortunately, I0 is standard notation for themodified Bessel function of the first kind,
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but it should not be confused with the background light level.) Of particular interest is
the case of a circular spot of light of radius R,

p(s) �
{
1, s < R,

0 s > R.
(22.59)

In this case, we can use the identities d
dz
(zK1(z)) � zK0(z) and d

dz
(zI1(z)) � zI0(z) to

evaluate the integral (22.57) with the result that

X(r, ω) � 1

λ2
h

F(r, R, ω), (22.60)

where

F(r, R, ω) �
{
α2[1− (R/α)I0(r/α)K1(R/α)], r < R,

αRI1(R/α)K0(r/α), r > R.
(22.61)

Fitting to data
Krausz and Naka determined the model parameters by fitting the ratio of the uniform
field response to the spot response to experimental data (Fig. 22.14). The field response
(i.e., taking R → ∞) can be calculated from (22.55) by setting p(r) ≡ 1, in which case
the constant solution for X is easily seen to be X(r, ω)field � α2/λ2

h
. Thus,

V̂spot

V̂field
� X(r, ω)spot
X(r, ω)field

� 1
α2
F(r, R, ω). (22.62)

For fixed values of r and R, α(ω) can be determined to give good agreement between
model and experiment. Note that by taking response ratios, any dependence on the
feedforward steps within each photoreceptor is eliminated. Thus, attention is focused
on the interactions between the horizontal cells and the photoreceptors. However, the
model cannot distinguish between Â and k̂, since only the product of these terms appear.
So, for simplicity, it is assumed that Â is a constant gain, with no frequency dependence,
and that k̂ has unity gain. Values for k̂(ω) are obtained at each frequency, and then k(t)
determined by an inverse Fourier transform. The result is well approximated by

k(t) � 3
τ
e−(t−t0)/τ[1− e−(t−t0)/τ]2, (22.63)

an S-shaped rising curve followed by exponential decay. The parameters t0 and τ are,
respectively, the feedback delay and the feedback time constant. The function k(t) has
an important physiological interpretation, as it describes the feedback from horizontal
cells to photoreceptors; in response to a delta function input from the horizontal cells,
the photoreceptor response is given by −k(t). Parameters resulting from the fit are
given in Table 22.2. The membrane time constant of the horizontal cells was found to
be small in all cases, and so was set to zero. Hence, the potential of the horizontal cell
layer responds essentially instantaneously to a stimulus. However, the time constant
for the response of the photoreceptor layer to horizontal cell feedback is significant.
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Table 22.2 Parameters of the Krausz–Naka model for catfish retinal neurons. These
parameters correspond to the model in which there is no coupling between photoreceptors.

λh � 0.267 mm
τh � 0 ms
Â � 3.77
τ � 24.8 ms
t0 � 0.022 ms
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Figure 22.14 Spot-to-field transfer
function measured in the catfish retina.
The wavy traces are the experimen-
tal results, and the two smooth curves
are results from the model, using two
slightly different parameter sets, one of
which is given in Table 22.2. (Krausz and
Naka, 1980, Fig. 4.)

Predicting the response to a moving grating
As a test of the model, Krausz and Naka calculated the response to a 1-dimensional
moving grating, and compared the result to experimental data. A moving grating pro-
vides a light stimulus of the form l � l(t− x/c), where c is the speed of the grating. We
look for solutions of the form V � V(ξ), where ξ � t−x/c, in which case the differential
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equation (22.50) becomes

λ2hV
′′ − τhV

′ − V � −RhIph, (22.64)

where a prime denotes differentiationwith respect to ξ. Taking Fourier transformswith
respect to ξ, and recalling that in the frequency domain the input to the horizontal cell
layer is given by ÂÛ, we find that

(1+ iωτh)V̂ � −ω
2λ2
h

c2
V̂ + ÂÛ. (22.65)

As before, Û satisfies (22.51). Assuming the light input is a periodic function of ξ, we
can replace p(x)i(t) by eiωξ, and thus replace p(x)î(ω) by 1, since we are now taking
Fourier transforms with respect to ξ. Hence,

X(ω) � V̂

Īĝ(ω)Â

� 1

1+ iωτh + Âk̂+ ω2λ2
h
/c2

�
(
α2

λ2
h

)
c2

c2 + ω2α2
. (22.66)

Krausz andNaka showed that themodel predictions for the rectilinear stimulus predict
experimental results accurately, confirming that the model provides a general quanti-
tative description of the horizontal cell response that is not limited to the data upon
which it was based.

Receptor coupling
Receptors are electrically coupled by gap junctions, and the potential spreads through
the receptor layer in a continuous fashion, as it does in the horizontal cell layer, but with
a different space constant, λr (Lamb and Simon, 1977; Detwiler and Hodgkin, 1979).
To incorporate receptor coupling, we need only add spatial coupling for the receptor
layer. In the frequency domain, we have

λ2r∇2P− (1+ iωτr)P− k̂(ω)Â(ω)X � −p(r), (22.67)

λ2h∇2X − (1+ iωτh)X � −P, (22.68)

where τr is the membrane time constant for the receptor cell layer. Writing qr � (1 +
iωτr)/λ2r and qh � (1+ iωτh)/λ2h and substituting (22.68) into (22.67) gives(

∇2 − 1
γ2

)(
∇2 − 1

δ2

)
X � p(r)

λ2
h
λ2r
, (22.69)

where 1/γ2 and 1/δ2 are defined by

1
γ2

+ 1
δ2

� qr + qh, (22.70)
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1
γ2δ2

� qrqh + Â(ω)k̂(ω)

λ2
h
λ2r

. (22.71)

Note that γ and δ are analogous to α in (22.55).
Now we define χ(r, γ) to satisfy(

∇2 − 1
γ2

)
χ(r, γ) � −p(r). (22.72)

Since the operator
(
∇2 − 1

γ2

)
has a unique inverse, we use χ(r, γ) to eliminate p in

(22.69) and find that (
∇2 − 1

δ2

)
X � −χ(r, γ)

λ2
h
λ2r

. (22.73)

Similarly, by symmetry (
∇2 − 1

γ2

)
X � −χ(r, δ)

λ2
h
λ2r

. (22.74)

Subtracting these two equations, we obtain

X(r, ω) � 1

λ2
h
λ2r

(
γ2δ2

γ2 − δ2

)
[χ(r, γ)− χ(r, δ)]. (22.75)

Solving (22.73) for ∇2X, substituting into (22.68), and using the expression for X then
gives

P(r, ω) � 1
λ2r

(
γ2δ2

γ2 − δ2

)[(
qh − 1

γ2

)
χ(r, γ)−

(
qh − 1

δ2

)
χ(r, δ)

]
. (22.76)

Since (22.72) for χ is of the same form as (22.55) forX, its solution takes the same form.
Thus, (22.75) and (22.76) give an explicit solution to the general problem of electrical
flow in two coupled cell layers connected by reciprocal pathways.

22.4 Receptive Fields

The output stage of the retina is the layer of ganglion cells, which extend through the
optic nerve to the lateral geniculate nucleus, from there transmitting signals to the
visual cortex. Each ganglion cell responds by a series of action potentials, with the
information encoded in the frequency and duration of the wave train. Thus, ganglion
cells transmit a digital signal typical of neurons. The input stage of ganglion cells is
highly organized (Kuffler, 1953, 1973; Rodieck, 1965). Each ganglion cell responds only
to light in a well-defined part of the retina, called the receptive field of the cell, and these
receptive fields are organized into two concentric, mutually antagonistic regions, the
center and the surround (Fig. 22.15).

The center can be either excitatory (on-center) or inhibitory (off-center). A white
figure moved across the receptive field of an on-center cell gives the same response as
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on

off

Receptive field ResponseLight bar

Figure 22.15 Diagram of the center-surround arrangement of the receptive field of an on-
center retinal ganglion cell, and its response to a wide bar moving across the receptive field.
(Adapted from Rodieck, 1965, Fig. 1.)

a black figure moved across the receptive field of an off-center cell. A typical response
curve for a bar moving across the receptive field is shown in Fig. 22.15. Note that
the ganglion cell has a large response to the edges of the bar, but responds much less
to the maintained stimulus in the middle of the bar. This is reminiscent of the Mach
bands seen in the Krausz–Naka model. There are different types of on/off responses for
ganglion cells. Some respond to both “on” and “off,” while others respond only to one
or the other. Some ganglion cells are directionally dependent, responding to a stimulus
only if it enters the receptive field from a particular direction. Other ganglion cells are
color dependent.

One of the earliest models of ganglion cell behavior was constructed by Rodieck
(1965). In this model it is assumed that the response of a ganglion cell is a weighted
sum of the responses from each part of the receptive field, with negative weights for the
inhibitory part of the field and positive weights for the excitatory part. Herewe consider
only on-center cells, as the model is the same for off-center cells, with reversed signs.
We also consider the model in one spatial dimension only, as the extension to two
dimensions introduces greater algebraic complexity, but no new concepts.
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f(x) = g1(x) + g2(x)g1(x)
g2(x)

Figure 22.16 The addition of two
Gaussian distributions, one with pos-
itive sign denoting the excitatory cen-
ter, and one with negative sign de-
noting the inhibitory surround, gives
the response function f (x ), which
weights the light stimulus according
to its position in space. Computed
using σ1 � 3, σ2 � 1, g1 � 3, g2 � 1.
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Suppose that the steady response to a step change in illumination of a small area
dx centered at the point x is given by f (x)dx. From consideration of experimental data,
Rodieck showed that f (x) can be described as the sum of two Gaussians, one con-
tributing a positive component from the center and the other contributing a negative
component from the surround. Thus,

f (x) � g1σ1√
π
e−σ

2
1x
2 − g2σ2√

π
e−σ

2
2x
2
, (22.77)

which is plotted in Fig. 22.16. The constants g1 and g2 are the gains of the excitatory
center and inhibitory surround, respectively, and the parameters σ1 and σ2 control their
radial size. Now we suppose that the response of the ganglion cell is infinitely fast, and
we stimulate the cell with a semi-infinite bar, extending from x � −∞ to x � ct, so that
the edge of the bar is moving from left to right with speed c. Then, the response of the
ganglion cell, R(t), is

R(t) �
∫ ct

−∞
f (x)dx (22.78)

� g1

[
1
2

+ 1√
π
erf(ct/σ1)

]
+ g2

[
1
2

+ 1√
π
erf(ct/σ2)

]
, (22.79)

where erf(x), the error function, is defined by

erf(x) � 2√
π

∫ ∞

0
e−x

2
dx. (22.80)

From the plot of R given in Fig. 22.17 (solid line) it can be seen that the ganglion cell
responds preferentially to the edge of the bar, as is seen in experimental data.

In reality, the response of the ganglion cell is not infinitely fast, but the response to
a step of light has an initial peak followed by a decrease to a lower plateau. Thus, in
Rodieck’s model, the time-dependent response to a step input is taken to be

h(t) � [
1+ te−t

]
H(t), (22.81)
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Figure 22.17 Response of a gan-
glion cell to a moving bar of semi-
infinite width. Solid line assuming
that the response at each point x is
infinitely fast; dotted line assuming
that each point x responds to the
light stimulus according to (22.81).
Both curves were calculated with
σ1 � 3, σ2 � 1, g1 � 3, g2 � 1, c � 1.
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where H(t) is the Heaviside function. This is a simple way to incorporate the dynamic
behavior of the earlier retinal stages. More general forms for the response produce little
difference in the overall response.

To illustrate the temporal behavior of the overall response, we calculate the re-
sponse to the moving bar, extending from x � −∞ to x � ct. Since the edge of the
moving bar reaches an element at position x at time t � x/c, the response of an element
at position x is f (x)h(t− x/c)dx. Integrating over the entire domain then gives

R(t) �
∫ ∞

−∞
f (x)h(t− x/c)dx, (22.82)

�
∫ ct

−∞
f (x)dx︸ ︷︷ ︸

steady term

+
∫ ct

−∞
f (x)(t− x/c)ex/c−t dx,︸ ︷︷ ︸
transient term

(22.83)

which is graphed in Fig. 22.17 (dotted line). If f (x) decays sufficiently rapidly at±∞, the
transient term goes to zero as t → ∞, leaving only the steady response. Of course, since
real retinas are not infinite in extent, f is zero outside a bounded domain, and so such
decay is guaranteed. Further, in the limit as c → 0, keeping ct fixed, the transient term
again approaches zero. That is, if the bar moves slowly, the effect of h(t) is small, again
as expected. On the other hand, as c → ∞, R(t) approaches h(t) ∫∞

−∞ f (x)dx, which is
exactly the response to a space-independent flash. Proofs of these statements are left
for the exercises (Exercise 9).

Cells higher up in the visual pathway, in the lateral geniculate nucleus and the visual
cortex, have progressively more complex receptive fields, designed to make particular
cells respond maximally to stimuli of particular orientation or direction of movement.
The above model serves as a brief introduction to the type of modeling involved in the
analysis of receptive fields. A more detailed discussion of receptive fields is given by
Kuffler et al. (1984) and the references therein.

22.5 The Pupil Light Reflex

The control of pupil size is yet another way in which the eye can adjust to varying levels
of light intensity. While the adjustment of pupil size accounts for much less of visual
adaptation than those mechanisms described earlier, it is nonetheless an important
control mechanism.

The size of the pupil of the eye is determined by a balance between constricting
and dilating mechanisms. Pupil constriction is caused by contraction of the circularly
arranged pupillary constrictor muscle, which is innervated by parasympathetic fibers.
The motor nucleus for this muscle is the Edinger–Westphal nucleus located in the ocu-
lomotor complex of the midbrain. Dilation is controlled by contraction of the radially
arranged pupillary dilator muscle innervated by sympathetic fibers and by inhibition
of the Edinger–Westphal nucleus.
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The effect of the pupil light reflex is to control the retinal light flux

φ � IA, (22.84)

where I is the illuminance (lumen mm−1) and A is the pupil area (mm2). It performs
this function by acting like the aperture of a camera. When light is shined on the retina,
the pupil constricts, thereby decreasing φ. However, there is a latency of ≈ 180–400 ms
following a change in light input before changes in pupil size are detected.

This combination of negative feedback with delay may lead to oscillations of pupil
size. These oscillations were first observed by a British army officer, Major Stern, who
noticed that pupil cycling could be induced by carefully focusing a narrow beam of
light at the pupillary margin. Initially, the retina is exposed to light, causing the pupil
to constrict, but this causes the iris to block the light from reaching the retina, so that
the pupil subsequently dilates, reexposing the retina to light, and so on indefinitely.

Longtin andMilton (1989) developed amodel for the dynamics of pupil contraction
and dilation. In theirmodel it is assumed that the light flux φ is transformed after a time
delay τr into neural action potentials that travel along the optic nerve. The frequency
of these action potentials is related to φ by

N(t) � ηF

(
ln
[
φ(t− τr)

φ̄

])
, (22.85)

where F(x) � x for x ≥ 0 and F(x) � 0 for x < 0, φ̄ is a threshold retinal light level (the
light level below which there is no response), and η is a rate constant. The notation
φ(t− τr) is used to indicate dependence on the flux at time τr in the past.

This afferent neural action potential rate is used by the midbrain nuclei, after an
additional time delay τt, to produce an efferent neural signal. This signal exits the mid-
brain along preganglionic parasympathetic nerve fibers, which terminate in the ciliary
ganglion where the pupillary sphincter is innervated. Neural action potentials at the
neuromuscular junction result in the release of neurotransmitter (ACh), which diffuses
across the synaptic cleft, thus generatingmuscle action potentials and initiatingmuscle
contraction. These events are assumed to require an additional time τm.

The relationship between iris muscle activity x and the rate of arriving action
potentials E(t) is not known. We take a simple differential relationship

τx
dx

dt
+ x � E(t), (22.86)

where

E(t) � γF

(
ln
[
φ(t− τ)

φ̄

])
, (22.87)

and τ � τr + τt + τm is the total time delay in the system.
Finally, we close the model by assuming some relationship between iris muscle

activity x and pupil area A as A � f (x). For example, one reasonable possibility is the
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Hill equation

A � f (x) � J0 + Jθn

xn + θn
, (22.88)

for which area is a decreasing function of activity, with maximal area J + J0 and
minimal areaJ0. It follows that the differential equation governing iris muscle activity
is

τx
dx

dt
+ x � γF

(
ln
[
I(t− τ)f (x(t− τ))

φ̄

])
(22.89)

� g(x(t− τ), I(t− τ)). (22.90)

22.5.1 Linear Stability Analysis

Because f (x) is a decreasing function of x, a steady solution of (22.90) is assured when
the input I(t) is constant. We identify this value of x as x∗, satisfying x∗ � g(x∗, I).
Linearized about x∗, the delay differential equation becomes

τx
dX

dt
+ X � −GX(t− τ), (22.91)

where G � −gx(x∗, I) � −γ f ′(x∗)
f (x∗) is called the gain of this negative feedback system. If

we set X � X0e
µt, we find the characteristic equation for µ to be

τxµ+ 1 � −Ge−µτ. (22.92)

If |G| < 1, there are no roots of this equation with positive real part; the solution
is linearly stable. Since G > 0, there are no positive real roots of this characteristic
equation. The only possible way for the solution to become unstable is through a Hopf
bifurcation, whereby a root of (22.92) with nonzero imaginary part changes the sign
of its real part. If we set µ � iω, we can separate (22.92) into real and imaginary parts,
obtaining

G cosωτ � −1, (22.93)

G sinωτ � τxω. (22.94)

From these two expressions, we readily find a parametric representation of the critical
stability curve to be

G � −1
cos η

,
τ

τx
� −η
tan η

. (22.95)

The first instability curve is plotted in Fig. 22.18, with the gainG plotted as a function of
the dimensionless delay τ/τx. It is easily seen that on the critical curve G is a decreasing
function of τ/τx. If the delay is larger than the critical delay, the steady solution is
unstable and there is a stable periodic solution of the full differential delay equation
(22.90), corresponding to periodic cycling of pupil size with constant light stimulus.
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Figure 22.18 Critical stability curve
for the pupil light reflex.

22.6 Appendix: Linear Systems Theory

One of the most widely used tools in the study of the visual system is linear systems
analysis. Here we have assumed that the basic tools of linear function theory, such as
Fourier transforms, delta functions, and the convolution theorem, are familiar to read-
ers. There are numerous books that provide the necessary background, for example,
Papoulis (1962).

The essential idea of linear systems theory is that for any linear differential equa-
tion L[u] � f (t), where L[·] is a time-autonomous differential operator, the Fourier
transform of the solution can be written as

û(ω) � T(ω)f̂ (ω), (22.96)

where f̂ (ω) is the Fourier transform of the input function f (t), and T(ω) is called the
transfer function for this linear system. Note that if f (t) is the delta function, then
û � T(ω), and thus the transfer function is the Fourier transform of the impulse re-
sponse. The transfer function can also be found by assuming an input of the form
f � eiωt and looking for an output of the form u � T(ω)eiωt. Thus, the amplitude and
phase of the sinusoidal input are modulated by the amplitude and phase of the transfer
function. Such sinusoidally varying inputs are commonly used in experimental studies
of the visual system; by varying the frequency of the stimulus and measuring (at each
fixed frequency) the amplitude and phase of the output, the transfer function can be
experimentally determined. Typical experimental data collected in this way are shown
in Fig. 22.4.

One significant problem is that most realistic systems are nonlinear, so a transfer
function cannot be defined (since solutions are not the linear superposition of funda-
mental solutions). However, if the amplitude of the sinusoidal input is small, so that
I(t) � εeiωt, then the response should also be small, of the form εT(ω)eiωt +O(ε2). If ε is
small enough, and higher-order terms can be neglected, the response of the system is
well described by the first-order transfer function T(ω).
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Of course, the response of retinal cells to stimuli is not linear, and therefore one can
determine only their first-order frequency response. An example of this is plotted in Fig.
22.4. However, measurement of the amplitudes of higher harmonics (e2iωt, e3iωt, e4iωt,
etc.) in response to an input of the form eiωt indicates that nonlinearities have little
effect for the light stimuli used in the experiments. Thus, the behavior of retinal cells
can be described well by their first-order frequency responses.

Suppose V0(x) denotes the response to a steady input x. If the input is of the form
I(t) � I0 + εeiωt, then the output will be of the form V(t) � V0(I0) + εV1(w; I0)eiωt +
O(ε2). The function V1(w; I0) is the first-order transfer function, or first-order frequency
response. When ω � 0, this becomes V0(I0 + ε) � V0(I0)+ εV1(0; I0)+O(ε2). However,
expandingV0(I0+ε) in a Taylor series around I0 givesV0(I0+ε) � V0(I0)+εV ′

0(I0)+O(ε2),
from which it follows that the steady-state sensitivity is

dV0

dI0
� V1(0; I0), (22.97)

an identity that is of considerable use.

22.7 Exercises
1. Using the reaction scheme shown in Fig. 22.9, construct a more detailedmodel of the initial

stages of the light response. Under what conditions does this model reduce to the linear
model (22.18)–(22.21)? Compute the impulse response of themodel at different background
light levels, and compare to (22.23).

2. cGMP is hydrolyzed to GMP by PDE or PDE∗ in an enzymatic reaction, and as we saw in
Chapter 1, such reactions do not necessarily follow the law of mass action. So, assume that
cGMP reacts with PDE according to

cGMP+ PDE
k1
−→
←−
k−1

complex
k2→GMP+ PDE. (22.98)

Derive the conditions under which (22.26) may be expected to apply, keeping in mind that
[PDE] is much larger than [cGMP], and thus the usual approximation of enzyme kinetics
does not apply. (See also Exercise 6 of Chapter 1, and Sneyd and Tranchina, 1989.)

3. By writing down the balance equations for Na+, Ca2+, and K+, show that the outward cur-
rent generated by the electrogenic Na+ − K+ pump must be approximately a third of the
total inward light-sensitive current. Thus, show that the current generated by the electro-
genic pumps cannot be ignored in the modeling. Must the electrogenic pumps be included
in the model if the model is compared to photocurrent measurements and not to voltage
measurements?

4. Calculate the explicit expression for g(y) in the model for adaptation in turtle cones. Also
calculate g′(y) by using the identity (22.97). Show that g′(y) can be calculated even if no
explicit expression can be found for g(y).

5. Calculate the response of the Peskinmodel (Section 22.3.1) when the light stimulus is a strip
of width 2a, modulated sinusoidally with frequency ω. Show that as a increases (i.e., as the
stimulus goes from a spot to a uniform field), the gain at x � 0 becomes more band-pass in
nature. Calculate the spot-to-field response ratio and compare it to that of the Krausz–Naka
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model. Hint: Show that the solution for Î is of the form

Î �




λL̂

(iωτ + 1)(1+ λ+ iω)
[1+ A cosh[x

√
1+ λ+ iω], |x| < a,

B exp(−|x|√1+ λ+ iω), |x| > a,
(22.99)

and then require that Î and its derivative be continuous at |x| � a.

6. Calculate the response of the Peskin model (Section 22.3.1) to a moving step of light. Show
that as the speed tends to zero, the response approaches the response to a steady step,
while as the speed goes to infinity, the response behaves like the response to a step of light
presented simultaneously to the entire retina.

7. Derive (22.58) and verify (22.60). Hints: Show first that everywhere except r � s, G satisfies
themodified Bessel equation of order zero, z2 d

2u

dz2
+z du

dz
−z2u � 0. Two independent solutions

of the modified Bessel equation are the modified Bessel functions of the first and second
kind. Then show that the jump condition at r � s is

dG

dr

∣∣∣∣
r�s+

− dG

dr

∣∣∣∣
r�s−

� −1
s
, (22.100)

and use the fact that the WronskianW is

W(Kν, Iν) � Kν(z)
d

dz
Iν(z)− Iν(z)

d

dz
Kν(z) � 1

z
. (22.101)

8. Show that the Krausz–Naka model (Section 22.3.2) is essentially the same as the Peskin
model (Section 22.3.1), with a few more details. Thus, investigate the response of the
Krausz–Naka model to a space-independent light step and a time-independent bar of light.
Demonstrate Mach bands and adaptation, as in the Peskin model.

9. Prove the statements made about (22.83).
Hint: Suppose that f (x) is bounded and absolutely integrable so that for any ε > 0 there is
a C0 so that ∫ ∞

C0

∣∣f (x)∣∣ dx < ε. (22.102)
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The Inner Ear

In humans (and other mammals) the ear has three major components: the outer, mid-
dle, and inner ears (Fig. 23.1A). The outer ear consists of a cartilaginous flange, the
pinna, incorporating a resonant cavity that connects to the ear canal and finally to the
tympanic membrane. It performs an initial filtering of the sound waves, increasing the
sound pressure gain at the tympanic membrane in the 2 to 7 kHz region. It also aids
sound localization. Bats, for instance, have highly developed pinnae, with a high de-
gree of directional selectivity. Although less efficient in humans, the outer ear accounts
for our ability to distinguish whether sounds come from above or below, in front or
behind.

The function of the middle ear is to transmit the sound vibrations from the tym-
panicmembrane to the cochlea. Because of themuch higher impedance of the cochlear
fluid, the middle ear must also function as an impedance-matching device, focusing
the energy of the tympanic membrane on the oval window of the cochlea. If not for
impedance matching, much of the energy of the sound waves in air would be reflected
by the cochlear fluid. This impedance matching is carried out by the ossicles, three
small bones, the malleus, incus, and stapes, that connect the tympanic membrane to
the oval window. The tympanic membrane has a much higher surface area than the
oval window, and the ossicles act as levers that increase the force at the expense of
velocity, resulting in the required concentration of energy at the oval window.

Most of the events central to hearing occur in the inner ear, in particular the cochlea.
The vestibular apparatus (the semicircular canals and the otolith organs) are also in the
inner ear, but their principal function is the detection of movement and acceleration,
not sound. The cochlea is a tube, about 35 mm long, divided longitudinally into three
compartments and twisted into a spiral (Fig. 23.1B). The three compartments are the
scala vestibuli, the scala tympani, and the scala media, and they wind around the spiral
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Figure 23.1 Location and structure of the cochlea. A: Location of the cochlea in relation to the
middle ear, the tympanic membrane, and the outer ear. B: Diagram of the cochlea at increased
magnification, showing its spiral structure and the relative positions of the two larger internal
compartments, the scala vestibuli and the scala tympani. (Berne and Levy, 1993, Fig. 10-6.)
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Figure 23.2 Location and structure of the cochlea, continued. A: Cross-section of the cochlea in
the plane indicated by the inset in Fig. 23.1B. B: Enlarged view of the organ of Corti, including the
basilar membrane, the tectorial membrane, and the hair cells. (Berne and Levy, 1993, Fig. 10-6.)
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together, preserving their spatial orientation. Reissner’s membrane separates the scala
vestibuli from the scalamedia, which in turn is separated from the scala tympani by the
spiral lamina and the basilar membrane (Fig. 23.2A). The scala vestibuli and the scala
tympani are filled with perilymph, a fluid similar to extracellular fluid, while the scala
media is filled with endolymph, a fluid with a high K+ concentration and a low Na+

concentration. Sound waves transmitted through the middle ear are focused by the
stapes onto the oval window, an opening into the scala vestibuli. The resultant waves
in the perilymph travel along the length of the scala vestibuli, creating complementary
waves in the basilar membrane and the scala tympani. At the end of the cochlea, an
opening between the scala vestibuli and the scala tympani, the helicotrema, equalizes
the local pressure in the two compartments. Because the perilymph is essentially in-
compressible, it is necessary for the scala tympani also to have an opening analogous
to the oval window; otherwise, conservation of mass would preclude movement of the
stapes. The opening in the scala tympani is called the round window. Inward motion
of the stapes at the oval window is compensated for by the corresponding outward
motion of fluid at the round window.

Transduction of sound into electrical impulses is carried out by the organ of Corti
(Fig. 23.2B), which sits on top of the basilar membrane. Hair cells in the organ of
Corti have hairs projecting out the top, and these hairs are attached to a flap called the
tectorial membrane that sits over the organ of Corti. Waves in the basilar membrane
create a shear force on these hairs, which in turn causes a change in the membrane
potential of the hair cell. This is transmitted to nerve cells, and from there to the brain.

23.1 Frequency Tuning

The task of the cochlea is to identify the constituent frequencies of a sound wave, and
thus identify the sound. The different ways in which this is accomplished in different
animals fall into three principal groupings:mechanical tuning of the hair cells,mechan-
ical tuning of the basilar membrane, and electrical tuning of the hair cells (Hudspeth,
1985).

In many lizards, the length of the hair bundles on the hair cells increases system-
atically from the base to the apex. In much the same way that a longer string produces
notes of lower pitch, the longer hair cell bundles respond preferentially to inputs of
lower frequency, while the short bundles are tuned to higher frequencies. Thus, the
input frequency can be determined by the position of maximal stimulation. In mam-
mals, the basilar membrane itself acts as a frequency analyzer, and this is discussed
in the next section. The third tuning mechanism results from the properties of ionic
channels in the hair cell membrane. Each hair cell is an electrical resonator, with a
band-pass frequency response. The input frequency that gives the greatest response is
a function of the biophysical properties of the hair cell, and the systematic variation
of these properties along the length of the cochlea allows the cochlea to distinguish
between frequencies based on the position of maximal response.
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We do not discuss the first tuning mechanism further, but concentrate on the
remaining two. We begin by looking at models of the basilar membrane that demon-
strate mechanical tuning, and then briefly discuss models for resonance of the hair cell
membrane potential.

23.1.1 Cochlear Mechanics and the Place Theory of Hearing

Inmammals, vibrations of the stapes set up awavewith a particular shape on the basilar
membrane. The amplitude envelope of the wave is first increasing, then decreasing,
and the position of the peak of the envelope is dependent on the frequency of the
stimulus (von Békésy, 1960), as illustrated in Fig. 23.3. The wave speed decreases as it
moves along themembrane, resulting in a continual decrease in phase, and an apparent
increase in frequency. Low-frequency stimuli have a wave envelope that peaks closer to
the apex of the cochlea (i.e., near the helicotrema), and as the frequency of the stimulus
increases, the envelope peakmoves toward the base of the cochlea, as illustrated in Fig.
23.4.

The amplitude of the envelope is a two-dimensional function of distance from the
stapes and frequency of stimulation; the curves shown in Fig. 23.4 are cross-sections of
the function for fixed frequency. Anotherway to present the data is to give cross-sections
for a fixed distance. This gives the envelope amplitude as a function of frequency, for
a fixed distance from the stapes, i.e., the frequency response of the basilar membrane
for that fixed distance. Frequency responses measured by von Békésy are shown in
Fig. 23.5, from which it can be seen that each part of the basilar membrane responds
maximally to a certain frequency, and as the frequency increases, the site of maximum

Figure 23.3 Membrane waves and their envelope in the cochlea. The solid lines show the
deflection of the basilar membrane at successive times, denoted (in order of increasing time)
by 1, 2, 3, 4. The dashed line is the envelope of the membrane wave, and remains constant
over time. (von Békésy, 1960, Fig. 12-17.)
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Figure 23.4 Amplitude and phase of the cochlear membrane wave for four different frequen-
cies. As the frequency of the wave increases, the peak of the wave envelope moves toward the
base of the cochlea (i.e., toward the oval and round windows). (von Békésy, 1960, Fig. 11-58.
p. 462.)
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Figure 23.5 Frequency responses of the basilar membrane measured at different distances
from the stapes. Only the amplitude is shown. Close to the stapes, the basilar membrane
responds preferentially to tones of high frequency, while farther away from the stapes, the
membrane responds preferentially to tones of lower frequencies. (von Békésy, 1960, Fig. 11-49.)

response moves toward the stapes. In this way the cochlea determines the frequency
of the incoming signal from the place on the basilar membrane of maximal amplitude,
the so-called place theory of hearing.

Although questions have been raised concerning the accuracy of von Békésy’s re-
sults (he performed his experiments, somewhat gruesomely, on cadavers, but it is
believed that the properties of the basilar membrane in a living person are differ-
ent), in all theoretical studies of cochlear mechanics, the experimental results of von
Békésy, and the associated place theory, have been the gold standard by which model
performance has been judged.

The name “basilar membrane” is misleading, as it is not a true membrane. This
is shown by the fact that when it is cut, the edges do not retract. Thus it is not under
tension; resistance to movement comes from the bending elasticity. The stiffness of
the basilar membrane decreases exponentially from the base to the apex, with a length
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constant of about 7 mm. Although the width of the cochlea decreases from the base to
the apex, the width of the basilar membrane increases in this direction.

Models for waves on the basilar membrane can be distinguished by the types of
equations used for the membrane and the fluid. Early models by Ranke (1950) and
Zwislocki (1965) assumed the perilymph to be incompressible and inviscid, and mod-
eled the basilar membrane as a damped, forced harmonic oscillator, with no elastic
coupling along the length of the membrane. Ranke used deep-water wave theory, while
Zwislocki used shallow-water wave theory, leading to considerable controversy over
which is the best approach. These models were developed by many authors, the best
known being due to Peterson and Bogert (1950), Fletcher (1951), Lesser and Berkley
(1972), and Siebert (1974). Subsequent models by Steele (1974), Inselberg and Chad-
wick (1976), Chadwick et al. (1976), Chadwick (1980), and Holmes (1980a,b, 1982)
used more sophisticated representations of the basilar membrane as an elastic plate
and incorporated fluid viscosity and the geometry of the plate. A survey of recent ex-
perimental and theoretical results can be found in Dallos et al. (1990). Here we give
an overview of some of the earlier and simpler models, as they provide elegant demon-
strations of how the basilar membrane and the perilymph can interact to give the types
of waves observed by von Békésy.

23.2 Models of the Cochlea

23.2.1 Equations of Motion for an Incompressible Fluid

The fluid in the cochlea surrounding the basilar membrane is incompressible, and
assumed to be inviscid. The equations of motion of this fluid are well known, and are
derived in many places (e.g., Batchelor, 1967).

We letu � (u1, u2, u3) be the fluid velocity, p the pressure, and ρ the constant density
of the fluid. The mass of fluid in a fixed volume V can change only in response to fluid
flux across the boundary of the volume. Thus,

d

dt

∫
V

ρdV � −
∫
S

ρ(u · n)dS � 0, (23.1)

where S is the surface of V , and n � (n1, n2, n3) is the outward unit normal to V .
Similarly, the momentum of the fluid in a fixed domain V can change only in response
to applied forces or to the flux of momentum across the boundary of the domain. Thus
(for an inviscid fluid) conservation of momentum implies that

d

dt

∫
V

ρui dV � −
∫
S

[(u · n)ρui + pni]dS. (23.2)

Using the divergence theorem to convert surface integrals to volume integrals, we
obtain ∫

V

(
ρ
∂ui

∂t
+ ρ∇ · (uiu)+ ∂p

∂xi

)
dV � 0, (23.3)
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∫
V

∇ · u dV � 0. (23.4)

Finally, since V is arbitrary, it follows that

ρ
∂u
∂t

+ ρ(∇ · u)u + ∇p � 0, (23.5)

∇ · u � 0. (23.6)

When the fluid motions are of small amplitude, as we expect to be true in the cochlea,
the nonlinear terms may be ignored, yielding

ρ
∂u
∂t

+ ∇p � 0, (23.7)

∇ · u � 0. (23.8)

An important special case is when u � ∇φ for some potential φ (an irrotational flow),
in which case (23.7) and (23.8) become

ρ
∂φ

∂t
+ p � 0, (23.9)

∇2φ � 0, (23.10)

where we let p denote the deviation from the steady-state pressure.

23.2.2 The Basilar Membrane as a Harmonic Oscillator

One of the simplest models of the cochlea combines (23.9) and (23.10) with the
equation of a damped, forced harmonic oscillator. One of the clearest presentations of

y =l

y =-l
x=L

η(x,t)

Oval
window

Round
window

Basilar membrane

x = 0

y=0

Figure 23.6 Schematic diagram of the cochlea, adapted from the model of Lesser and Berkley
(1972). The cochlea is modeled as having two rectangular compartments filled with fluid, sep-
arated by the basilar membrane. The upper compartment corresponds to the scala vestibuli,
and the lower compartment to the scala tympani. For simplicity, the scala media, shown in Fig.
23.1, is omitted from the model.
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this model is due to Lesser and Berkley (1972). In their model, the cochlea is assumed
to have a configuration as shown in Fig. 23.6. Thus, letting subscripts 1 and 2 denote
quantities in the upper and lower compartments, respectively, we have two copies of
(23.9) and (23.10),

ρ
∂φ1

∂t
+ p1 � ρ

∂φ2

∂t
+ p2 � 0, (23.11)

∇2φ1 � ∇2φ2 � 0, (23.12)

where the pressure is determined only up to an arbitrary constant.
Each point of the basilar membrane is modeled as a simple damped harmonic

oscillatorwithmass, damping, and stiffness that vary along the length of themembrane.
Thus, the movement of any part of the membrane is assumed to be independent of the
movement of neighboring parts of the membrane, as there is no direct lateral coupling.
The deflection of the basilar membrane, η(x, t), is specified by

m(x)
∂2η

∂t2
+ r(x)

∂η

∂t
+ k(x)η � p2(x, η(x, t), t)− p1(x, η(x, t), t), (23.13)

where m(x) is the mass per unit area of the basilar membrane, r(x) is its damping
coefficient, and k(x) is its stiffness (Hooke’s constant) per unit area.

Since the vertical displacement of the membrane is small, the driving force is taken
to be the pressure difference at y � 0, rather than at y � η. Thus, we have

m(x)
∂2η

∂t2
+ r(x)

∂η

∂t
+ k(x)η � p2(x,0, t)− p1(x,0, t), (23.14)

which is a considerable simplification.
Boundary conditions are specified as follows. Since ∂φ/∂y is the y component of the

fluid velocity, the boundary conditions on the basilar membrane are

∂η

∂t
� ∂φ1

∂y
� ∂φ2

∂y
, y � 0, 0 < x < L. (23.15)

We further assume that there is no vertical motion at the top, so that

∂φ1

∂y
� 0, y � l, 0 < x < L. (23.16)

There are a number of ways to specify how the system is externally forced. One
way, due to Lesser and Berkley, is to assume that the motion of the stapes in contact
with the oval window determines the position of the oval window. Since ∂φ/∂x is the x
component of the fluid velocity, the boundary condition at x � 0 is

∂φ1

∂x
� ∂F(y, t)

∂t
, 0 < y < l, (23.17)

where F(y, t) is the specified horizontal displacement of the oval window. Further, we
assume that there is no horizontal motion at the far end, so that at x � L

∂φ1

∂x
� 0, 0 < y < l. (23.18)



710 23: The Inner Ear

23.2.3 A Numerical Solution

Because of the inherent symmetry of the problem, we seek solutions that are odd in
y (Exercise 1). Thus, we consider only the problem in the upper region and drop the
subscript 1.

When the input has a single frequency, F(y, t) � F̂(y)eiωt, then φ(x, y, t) is of the form
φ̂(x, y;ω)eiωt and similarly for the other variables. Looking for solutions of this form for
all the variables, we obtain the equations

∇2φ̂ � 0, p̂+ iωρφ̂ � 0, (23.19)

∂φ̂

∂y
� iωη̂, iωη̂Z � −p̂ on y � 0, (23.20)

∂φ̂

∂x
� U0 on x � 0, (23.21)

∂φ̂

∂x
� 0 on x � L, (23.22)

∂φ̂

∂y
� 0 on y � l, (23.23)

where Z � iωm + r + k/(iω) and U0 � iωF̂. By looking for solutions in the frequency
domain, we have transformed the differential equations on the basilar membrane into
algebraic equations. The term iωZ is the frequency response of the damped harmonic
oscillator, and Z, the impedance, is a function of x. Also note that in (23.20) we have
assumed that the pressure is an odd function of y.

Finally, we nondimensionalize the model equations by scaling x and y by L, Z by
iωρL, and φ̂ by U0L; rearranging; and dropping the hats we get

∇2φ � 0, (23.24)

∂φ

∂y
� 2φ
Z
, on y � 0, (23.25)

∂φ

∂x
� 1 on x � 0, (23.26)

∂φ

∂x
� 0 on x � 1, (23.27)

∂φ

∂y
� 0 on y � σ, (23.28)

where σ � l/L.
An analytical solution of this problem can be found using standard Fourier series

(Lesser and Berkley, 1972). We look for solutions of the form

φ � x
(
1− x

2

)
− σy

(
1− y

2σ

)
+

∞∑
n�0

An cosh[nπ(σ − y)] cos(nπx), (23.29)
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for some unknown constants An. Since φ satisfies all the boundary conditions except
(23.25), we use (23.25) to determine the unknown coefficients An. This gives

σ+
∞∑
n�0

nπAn sinh(nπσ) cos(nπx)

− 2
Z

[
x(1− x/2)+

∞∑
n�0

An cosh(nπσ) cos(nπx)

]
� 0. (23.30)

Truncating the series at N terms, multiplying by cos(mπx), and integrating from 0 to
1, we obtain the system of linear equations

N∑
n�0

Anαnm � fm, (23.31)

where

αmn � 2 cosh(nπσ)
∫ 1

0

cos(nπx) cos(mπx)
Z

dx− 1
2
nπ sinh(nπσ)δnm (23.32)

and

fm � σδm0 −
∫ 1

0

x(2− x) cos(mπx)
Z

dx. (23.33)

Here, δij � 1 if i � j, and 0 otherwise. Since fm and αmn can be evaluated explicitly,
we get a set of N linear equations for An,1 ≤ n ≤ N, which as N → ∞ should give
the solution of the model equations when substituted into (23.29). Typical results are
shown in Fig. 23.7. The wave envelope has the same qualitative shape as von Békésy’s
results (Fig. 23.3), and the peak of the wave envelope moves toward the base of the
cochlea as the frequency is increased.

23.2.4 Long-Wave and Short-Wave Models

Although the approximate Fourier solution of the Lesser and Berkley model shows
that it is qualitatively correct, it would be nice to get a better analytic understanding
of the behavior of the basilar membrane. There are two classic approximations of the
model equations that allow further analytic investigation. The long-wave approxima-
tion, studied by Zwislocki and others, assumes that the wavelength is long compared
to the depth of the cochlea, and the short-wave approximation of Ranke assumes the
opposite, that the cochlea is effectively infinitely deep. Experiments suggest that the
depth of the cochlea has little effect on the cochlear wave, supporting the short-wave
theory. Indeed, even if one side of the cochlea is completely removed, there is little
effect on the wave. However, neither model gives a complete description of cochlear
behavior (Zwislocki, 1953).
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Figure 23.7 Results from the Lesser and Berkley model, showing a typical wave on the basilar
membrane and the wave envelope. Parameters are m � 0.05 g/cm2, k � 107e−1.5x dynes/cm3,
r � 3000e−1.5x dynes sec/cm3, ω � 1000/sec. The perilymph was assumed to have the same
density as water, 1 g/cm3. (Lesser and Berkley, 1972, Fig. 6.)

Both short-wave and long-wave models can be derived as approximate cases of
the model described in Section 23.2.2. To show this, we use a generalized form of the
previous model (Siebert, 1974), as illustrated in Fig. 23.8. The only change is to assume
that there is a direct mechanical forcing at the two ends of the basilar membrane.
Modifying the equation of membrane motion (23.14) to include this direct forcing
gives

m(x)
∂2η

∂t2
+ r(x)

∂η

∂t
+ k(x)η � p2(x,0, t)− p1(x,0, t)+ F0(t)δ(x)− FL(t)δ(x− L). (23.34)

As before, we assume that the forcing is at a single frequency with F0(t) � F0e
iωt

and FL(t) � FLe
iωt. It follows from (23.15), (23.34), and (23.19) that

∇2p(x, y) � 0, (23.35)

−iωη � 1
iωρ

∂p(x,0)
∂y

, (23.36)

Y (x)p(x,0) � −iωη(x)+ η0δ(x)− ηLδ(x− L), (23.37)

where Y � 2/Z, η0 � F0
Z(0) , ηL � FL

Z(L) , and where we have dropped the hats associated
with the Fourier transform.
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Figure 23.8 Schematic diagram of the cochlea model of Siebert (1974). It differs from the
model of Lesser and Berkley in the boundary conditions at x � 0 and x � L, where it is
assumed that there is direct mechanical forcing at both ends of the membrane.

Because Laplace’s equation is separable on a rectangular domain, we use Fourier
series to write the solution of (23.35) as

p(x, y) �
∞∑

n�−∞
αn
cosh[2πn(y− l)/L]
cosh(2πnl/L)

e2πinx/L, (23.38)

where we have used the boundary condition ∂p/∂y � 0 on y � l. It follows that

− iωη � 1
iωρ

∂p(x,0)
∂y

� − 1
iωρ

∞∑
n�−∞

αn
2πn
L
tanh(2πnl/L)e2πinx/L. (23.39)

Since our only interest is in the behavior of the basilar membrane, from now on we
restrict our attention to p(x,0), which we denote by p(x).

Equation (23.39) has been approximated in two principal ways. The first assumes
that the depth of the cochlea is small compared to the wavelengths of the waves
on the basilar membrane, the so-called long-wave, or shallow-water, approximation.
The second approach, the short-wave, or deep-water, approximation, assumes that the
wavelengths of the membrane waves are short compared to the cochlear depth.

The shallow-water approximation
In the shallow-water approximation, we assume that the wavelengths of the waves on
the basilar membrane are greater than the depth of the cochlea. As a consequence,
we assume that αn � 0 for all n > N, for some integer N such that Nl/L � 1. Since
the sum over n includes only those terms with nl/L � 1, it follows that for each term
in the sum, tanh(2πnl/L) can be approximated by the lowest-order term in its Taylor
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expansion. Thus, tanh(2πnl/L) ≈ 2πnl/L, and so the sum becomes

− iωη ≈ − l

iωρ

∞∑
n�−∞

αn

(
2πn
L

)2
e2πinx/L. (23.40)

However, it follows from (23.38) that

p(x) �
∞∑

n�−∞
αne

2πinx/L, (23.41)

and thus, combining this with (23.40), we have

− iωη ≈ l

iωρ

d2p

dx2
. (23.42)

Combining this with (23.36) and (23.37), we get a single equation for p(x),

Y (x)p(x) � l

iωρ

d2p(x)
dx2

+ η0δ0(x)− ηLδL(x). (23.43)

To convert the delta functions in this equation into boundary conditions, we inte-
grate the differential equation (23.43) from x � −ε to x � +ε and let ε → 0 and find
that

dp

dx
� −iωρη0 at x � 0, (23.44)

where we have assumed that dp/dx � 0 at x � 0−, which is outside the boundaries of
the cochlea. Similarly, integrating from x � L− ε to x � L+ ε and letting ε → 0 gives

dp

dx
� iωρηL at x � L. (23.45)

Note that when η0 � 1 and ηL � 0 (and since p+ iωρφ � 0), these boundary conditions
are the same as (23.26) and (23.27) used in the Lesser–Berkley model.

The analysis of this equation exploits the fact that Y (x) is a slowly varying function.
To see what this means mathematically, note that iωρY (x)/l has dimensional units of
length−2, which determines the length scale (wavelength) of the spatial oscillations of
p(x). On the other hand, Y (x) varies exponentially with a length constant of λ−1 ≈ 0.7
cm. If the ratio of these two length constants is small, then we assert that Y (x) is a
slowly varying function. Furthermore, there is a rescaling of space, x � z/q, of (23.43),
putting it into the dimensionless form

d2p

dz2
+ g2(εz)p(z) � 0, (23.46)

where ε is a small positive number and g2(εz) � −iωρY (z/q)
lq2

is of order one in amplitude

and slowly varying in z. Note that q is an arbitrary length scale, chosen so that g2 is of
order one in amplitude; by assumption, λ/q � 1.
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As a specific example, suppose that m � 0, k(x) � k0e
−λx, r(x) � r0e

−λx, in which
case

iωρY (x)
l

� −2ω2ρ
lk0

eλx

1+ iωr0/k0
. (23.47)

We set q2 � 2ω2ρ
lk0
, and then define ε by

ε � λ

2q
. (23.48)

If the parameters are such that ε � 1, we have a slowly varying oscillation.
Problems of this type are well known in the theory of oscillations and can be solved

approximately using multiscale analysis (Kevorkian and Cole, 1996; Keener, 1988). We
wish to find approximate solutions of (23.46). If g were a constant (ε � 0), the solution
of (23.46) would be simply

p(z) � Aeigz + Be−igz. (23.49)

However, since g is assumed to be slowly varying, we expect this basic solution to be
a reasonable local (but not global) approximation. To find a solution that has a longer
range of validity, we introduce two scales, a slow scale variable σ � εz and a fast
variable τ for which dτ

dz
� f (εz), where f is a function to be determined. It follows that

the derivative d
dz
must be replaced by partial derivatives

d

dz
� f (σ)

∂

∂τ
+ ε

∂

∂σ
. (23.50)

In terms of these two variables the original ordinary differential equation (23.46)
becomes the partial differential equation

f 2(σ)
∂2p

∂τ2
+ εf (σ)

∂2p

∂σ∂τ
+ ε

∂

∂σ

(
f (σ)

∂p

∂τ

)
+ ε2

∂

∂σ

(
f (σ)

∂p

∂σ

)
+ g2(σ)p � 0. (23.51)

The obvious choice for f is f � g, because then the solution to leading order (with
ε � 0) is simple, being

P0 � Aeiτ + Be−iτ . (23.52)

However, because the equation is a partial differential equation, the parameters A and
B are allowed to be functions of the slow variable σ.

To determine the variation of A and B, we set p � P0 + εP1 + O(ε2), collect like
powers of ε, and determine that the equation for P1 is

g2(σ)
(
∂2P1

∂τ2
+ P1

)
� −g(σ)∂

2P0

∂σ∂τ
− ∂

∂σ

(
g(σ)

∂P0

∂τ

)
. (23.53)

Now we require that P1 be “nonsecular,” that is, that the right-hand side of (23.53)
contain no terms proportional to eiτ or e−iτ . It follows that

∂

∂σ
(gA2) � 0,

∂

∂σ
(gB2) � 0, (23.54)
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or that

A(σ) � A0√
g(σ)

, B(σ) � B0√
g(σ)

, (23.55)

from which we obtain, to lowest order in ε,

p � 1√
g(σ)

(A0eiG(z) + B0e
−iG(z)), (23.56)

where G(z) � ∫ z
0 g(εz)dz.

In terms of the original dimensioned variables, this is

p(x) � φ−1/2
(
A1 exp

[
i

∫ x

0
φ(s)ds

]
+ B1 exp

[
−i
∫ x

0
φ(s)ds

])
, (23.57)

where

φ(x) �
√

−iωρY (x)
l

. (23.58)

The constants A1 and B1 are determined from boundary conditions (23.44) and (23.45),
and then the membrane displacement is found from the identity iωη(x) � −Y (x)p(x).

The key feature of this solution is that it is oscillatory with an envelope, whose
maximal amplitude and position are determined by the frequency ω. We get some idea
of this behavior in the special case m � 0, k(x) � k0e

−λx, and r(x) � r0e
−λx in which

case φ(x) � αeλx/2, where α2 � 2ω2ρ
l(k0+iωr0) . If we let α � αr + iαi and suppose that

αi
λ

� 1
(not valid at low frequencies), then with ηL � 0, we find that

η(x) � − 1
iω
Y (x)p(x) ≈ Â exp

(
3λx
4

− 2αi
λ
eλx/2 + 2iαr

λ
eλx/2

)
. (23.59)

This represents an oscillation with exponentially increasing phase and amplitude

|η| ≈ |Â| exp
(
3λx
4

− 2αi
λ
eλx/2

)
. (23.60)

The maximal value of this envelope occurs at

xp � −2
λ
ln
(
4αi
3λ

)
. (23.61)

The location of this maximum is dependent on frequency, as

αi ≈
√
ρω

lr0
, (23.62)

provided that ω is sufficiently large. Thus, for large ω we have

xp � −1
λ
ln
(
16ρω
9lλ2r0

)
. (23.63)
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The deep-water approximation
The second approach, the short-wave, or deep-water, approximation, assumes that the
wavelength of themembranewaves is short compared to the cochlear depth. In this case
the Fourier expansion of p(x) includes only high frequencies, and so αn � 0 whenever
|n| < N for some large integerN. However, when |n| > N and l � L, then tanh(2πnl/L) ≈
sign(n). Thus, (23.39) becomes

− iωη ≈ − 1
iωρ

∞∑
n�−∞

αn
2π
L

|n|e2πinx/L. (23.64)

Now we separate the sum into two pieces by defining two functions,

p+(x) �
∞∑
n�0

αne
2πinx/L (23.65)

and

p−(x) �
−1∑

n�−∞
αne

2πinx/L, (23.66)

and then we observe that (23.37) becomes

Yp � Y (p+ + p−) ≈ 1
ωρ

[
dp+
dx

− dp−
dx

]
+ η0δ0(x)− ηLδL(x), (23.67)

which we take to be the governing equation for p.
We can remove the delta function influence from this equation by integrating across

the boundaries at x � 0 and x � L, and assuming that outside the cochlea, p � 0. This
gives

1
ωρ
[p+(0)− p−(0)] � η0, (23.68)

1
ωρ
[p+(L)− p−(L)] � ηL. (23.69)

Although p+ is a linear combination of only positive (spatial) frequencies, the same
is not true of Yp+. However, if we assume that Y is a slowly varying function of x, then
the Fourier series of Y with Fourier coefficients bk has bk ≈ 0 whenever |k| > k0, for
some number k0 that is small compared to the dominant frequency of p+. It follows
that

Yp+ �
∞∑

k�−∞
cke

2πikx/L, (23.70)

where ck � ∑∞
j�o αjbk−j. If the dominant frequencies of p+ and Y are separated, as stated

above, then ck is small for k ≤ 0. Thuswe can approximateYp+ by its Fourier series with
positive frequencies. A similar argument applies for Yp−. With these approximations,
(23.67) separates into a pair of differential equations for the positive and negative
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frequencies separately,

Y (x)p±(x) ≈ ±1
ωρ

dp±
dx

, 0 < x < L. (23.71)

These first-order linear equations can be integrated directly to get

p±(x) � A± exp
[
±ωρ

∫ x

0
Y (ζ)dζ

]
(23.72)

for some constants A±, so that

p � A+ exp
[
ωρ

∫ x

0
Y (ζ)dζ

]
+ A− exp

[
−ωρ

∫ x

0
Y (ζ)dζ

]
. (23.73)

We use the boundary conditions at x � 0 and x � L to determine the constants A±.
From (23.68) and (23.69) it follows that these constants must satisfy the equations

A+ − A− � ωρη0, γA+ − 1
γ
A− � ωρηL, (23.74)

where γ � exp[ωρ
∫ L
0 Y (ζ)dζ], from which it follows that

A+ � ωρ

γ2 − 1[γηL − η0], (23.75)

A− � ωρ

γ2 − 1[γηL − γ2η0]. (23.76)

For physiological values of Y , |γ| � 1 for all except the lowest frequencies; for
instance, for the parameter values in Fig. 23.7, |γ| � 40 when ω � 800, and |γ| � 109

when ω � 1500. Since on physical grounds η0 and ηL do not get large, it follows that
|A−| ≈ −ωρη0 � |A+|. Finally, from (23.37) and (23.73), we find that the membrane
displacement is given by

η � −iρη0Y (x) exp
[
−ωρ

∫ x

0
Y (ζ)dζ

]
. (23.77)

The amplitude of η can be plotted as a function of x to give the envelope of the wave on
the basilar membrane. The frequency response is similarly obtained, by fixing x and
plotting |η| as a function of ω. Typical results are shown in Fig. 23.9. The qualitative
agreement with data is good, with the peak of the wave envelope moving toward the
stapes as the frequency increases.

In the special casem � 0, k(x) � k0e
−λx, r(x) � r0e

−λx, we can calculate thewaveform
(23.77) to be

η � 2η0ξ exp[λx+ β(1− eλx)], (23.78)

where

β � 2ω3ρr0
λ(k20 + ω2r20)

+ i
2ω2ρk0

λ(k20 + ω2r20)
� βr + iβi (23.79)
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and

ξ � ωρ

iωρ + k0
. (23.80)

Here we again see an oscillatory waveform with an envelope of amplitude

|η| � 2η0|ξ| exp[λx+ βr(1− eλx)], (23.81)

the maximum of which occurs at

xp � −1
λ
ln

(
2ω3ρr0

λ(k20 + ω2r20)

)
. (23.82)

According to this expression, the peak of the envelope moves to the left (toward the
base of the cochlea) as ω increases. The principal fault of the short-wave model is that
the phase of the model waves increases much more than is observed experimentally.

A similar solution was found by Peskin (1976, 1981), who calculated an exact solu-
tion to a special case of the cochlear model. In his model the cochlear membrane was
taken to be infinitely long, with r(x) and k(x) chosen to be decaying exponential func-
tions with decay rate λ and a fluid container of height λl � π/2. With these assumptions
and simplifications, Peskin found the exact solution using conformal mapping and
contour integration techniques.

23.2.5 More Complex Models

In this chapter we have concentrated on the simpler models of the basilar membrane
that assume that the cochlea is two-dimensional and that the basilar membrane can
be described by a point impedance function, i.e., that each point of the basilar mem-
brane acts as a damped harmonic oscillator, with no coupling along the length of the
membrane except for that imposed indirectly via the fluid motion.

Although the wave motion on the basilar membrane is an important component of
the hearing process,many other factors are involved (Pickles, 1982; Rhode, 1984; Huds-
peth, 1985). Nonlinearities in the cochlear response and acoustic emissions suggest the
presence of active feedback processes that modulate the waveform. This feedback may
occur in the outer hair cells and the organ of Corti. Simple hydrodynamic models do
not reproduce the degree of tuning observed in themammalian cochlea, and the precise
tuning mechanism is still controversial. Many other, more complex, models have been
constructed (see, for instance, Steele, 1974; Steele and Tabor, 1979a,b; Inselberg and
Chadwick, 1976; Chadwick et al., 1976; Chadwick, 1980; Holmes, 1980a,b, 1982). In
general, these models use similar equations for the fluid flow, but model the basilar
membrane in greater detail, including spatial coupling in the membrane. The resultant
membrane equations are of fourth order in space, and heavy use is made of asymptotic
expansions in the solution of themodel equations. Perhaps themost detailed study was
performed by Steele (1974), who constructed a series of models ranging from a plate
in an infinite body of fluid right up to a tapered elastic basilar membrane, a cochlea
with rigid walls, and flexible arches of Corti.
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Figure 23.9 Plots of the amplitude of the wave on the basilar membrane for two different
frequencies. The envelope of the wave is shown as a dotted line. Calculated from the deep-
water approximation (23.73) using the same parameter values as in the Lesser and Berkley
model (given in the caption to Fig. 23.7).

23.3 Electrical Resonance in Hair Cells

Inmany lower vertebrates frequency decomposition is performed, not by a wave on the
basilar membrance, but by the hair cells themselves. Hair cells in the turtle cochlea and
the bullfrog sacculus (to name but two examples) respond preferentially to stimuli of a
certain frequency, and this band-pass response is mediated by the ionic channels in the
hair cell membrane. At the top of each hair cell is the hair bundle, a group of stereocilia
connected to each other at the tips by a thin fiber, called a tip link. Each stereocilium
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is rigid and, in response to a force applied at the tip, pivots around its base rather than
bending. It is postulated that the tip links act like elastic springs connected directly to
ionic channels such that when the hair bundle is deflected in one direction, the tip links
pull channels open,whilewhen the hair bundle is deflected in the opposite direction, the
tip links relax and allow channels to close. The mechanically sensitive ion channels are
nonselective, and the modulation of current flow through these channels results in hy-
perpolarization or depolarization of the hair cell membrane. The membrane potential
is then modulated by other ionic channels, including K+ channels, Ca2+-sensitive K+

channels, and voltage-sensitive Ca2+ channels. The structure, tuning, sensitivity, and
function of hair cells are reviewed by Hudspeth (1985, 1989; Hudspeth and Gillespie,
1994), and these papers give a readable summary of recent work.

In response to a step current input, the membrane potential of hair cells exhibits
damped oscillations, with a period and amplitude dependent on the size of the step.
Thus, each cell has a natural frequency of oscillation and responds best to a stimulus at
a similar frequency. Crawford and Fettiplace (1981) and Ashmore and Attwell (1985)
have developed simple models for electrical resonance that while not based on the
details of known mechanisms, provide a good description of the experimental results.
Laterwork by Lewis andHudspeth (1988a,b), using amore detailedmodel, showed that
the measured properties of the ionic conductances are sufficient to explain resonance
in the hair cells of the bullfrog sacculus.

23.3.1 An Electrical Circuit Analogue

The models of Crawford and Fettiplace (1981) and Ashmore and Attwell (1985) are
based on the electrical circuit shown in Fig. 23.10A. In response to a current input I,

gL
C

VLVK

gK(V)
gp

R

L
C

gL
C

VLVK

gK(c)

A B C

outside

inside

m m m

Figure 23.10 Electrical circuits for electrical tuning, adapted from Ashmore and Attwell (1985).
A: The basic model, with an inductance in place of ionic currents. B: Voltage-gated K+ current,
with a conductance that is increased by membrane depolarization. C: Ca2+-gated current, with
the K+ conductance controlled by the intracellular concentration of Ca2+, denoted by c.
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the voltage V is given by

d2V

dt2
+ γ

dV

dt
+ ω20V � f (t), (23.83)

where

γ � gp

Cm
+ R

L
, (23.84)

ω20 � gpR+ 1
LCm

, (23.85)

f (t) � 1
Cm

dI

dt
+ IR

LCm
. (23.86)

It is simplest to demonstrate resonancewhen f (t) � eiωt, inwhich caseV � V1(ω)eiωt,
where

V1(ω) � 1

ω20 − ω2 + iγω
. (23.87)

Thus, |V1| has a band-pass frequency response, with a maximum at ω̂, where ω̂2 �
ω20− γ2/2. Solutions of (23.83) are of the form exp(−γt/2) exp (± i√ω20 − γ2/4

)
, and thus

ω̂ is slightly smaller than the natural frequency of oscillation of the system. However, if
damping is small (i.e., if γ is small), the maximum amplitude of the frequency response
occurs at approximately the natural frequency of oscillation. The sharpness of the peak
of |V1| is a measure of the degree of tuning of the electrical circuit, with sharper peaks
giving greater frequency selectivity. Since

d2

dω2
[(ω20 − ω2)2 + γ2ω2]

∣∣∣∣
ω�ω̂

� 4γ2(2Q2 − 1), (23.88)

where

Q � ω0

γ
, (23.89)

it follows that Q, often called the quality factor, is a useful measure of the degree of
tuning. As Q increases, so does the frequency selectivity of the circuit.

We now consider the response of the circuit when the input is a sinusoidally varying
current. When I � eiωt,

V1(ω) �
R
LCm

+ iω
Cm

ω20 − ω2 + iγω
, (23.90)

which again corresponds to a band-pass filter, with the maximum response occurring
at ω̂, where

(ω̂2)2 + 2
(
R

L

)2
ω̂2 +

(
R

L

)2
(γ2 − 2ω20) � 0. (23.91)

Crawford and Fettiplace (1981) used a model of this type (without the leak conduc-
tance gp) to determine the electrical tuning characteristics of hair cells from the turtle
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cochlea. By comparison of these tuning curves with tuning curves obtained by acoustic
stimulation of the hair cells they were able to determine that electrical resonance can
account for most of the frequency selectivity of the hair cell.

Although the above circuit exhibits the required resonance, it would bemuchmore
satisfactory to explain electrical resonance in terms of components that have a more
direct connection to the hair cell. This can be done in at least two ways. In Fig. 23.10B
and C we show two circuits, one involving a voltage-sensitive K+ conductance, the
other a Ca2+-sensitive K+ conductance, that, formally at least, are equivalent to the
circuit in Fig. 23.10A.

We consider the circuit in Fig. 23.10B first. If the leak has a constant conductance,
but the K+ conductance is a function of time and voltage, then

I � Cm
dV

dt
+ gL(V − VL)+ fgK(V − VK), (23.92)

τ
df

dt
� f∞ − f, (23.93)

where we take a linear approximation for f∞,

f∞ � fr + µ(V − Vr). (23.94)

Here, Vr is assumed to be the resting membrane potential, fr is the value of f when
V � Vr, and µ is the slope of the activation curve at the steady state. Note that at steady
state,

0 � gL(Vr − VL)− gKfr(VK − Vr), (23.95)

and thus VL can be eliminated.
It follows that

dI

dt
+ I

τ
� Cm

d2Ṽ

dt2
+
(
gL + gKfr + Cm

τ

)
dṼ

dt
+
(
gL + gKfr + gK(Vr − VK)µ

τ

)
Ṽ , (23.96)

where Ṽ � V − Vr and where we have linearized the equation around Vr by assuming
that V ≈ Vr. Equation (23.96) is equivalent to (23.83)–(23.86) if

L � τ

gK(Vr − VK)µ
, (23.97)

R � 1
gK(Vr − VK)µ

, (23.98)

gp � gL + gKfr. (23.99)

A similar procedure can be followed for the circuit in Fig. 23.10C, in which the K+

conductance is Ca2+-dependent rather than voltage-dependent, but extra assumptions
about the Ca2+ kinetics must bemade. As a first approximation, it is assumed that Ca2+

enters the cell through channels at a rate that is a linear function of voltage, with slope θ,
and is removed with first-order kinetics, i.e., at a rate proportional to its concentration.
Finally, it is assumed that the proportion of open K+ channels is linearly related to the
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Ca2+ concentration. Thus,

I � Cm
dV

dt
+ gL(V − VL)+ gKkc(V − VK), (23.100)

W
dc

dt
� Ir + θ(V − Vr)

F
− pc, (23.101)

where c denotes Ca2+ concentration, F is Faraday’s constant,W is the cell volume, p is
the rate of Ca2+ pumping, and Ir is the steady Ca2+ current when V � Vr. The constant k
is the rate at which Ca2+ activates the K+ current. Again, linearizing this system about
the steady state gives a system that is equivalent to (23.83)–(23.86), provided that

L � WF

gK(Vr − VK)kθ
, (23.102)

R � pF

gK(Vr − VK)kθ
, (23.103)

gp � gL + gKkcr, (23.104)

where cr is the steady Ca
2+ concentration at the resting potential.

Ashmore and Attwell showed that although themodel with the voltage-sensitive K+

conductance can generate a wide range of optimal frequencies, physiological values for
the parameters result in values for the quality factor Q that are an order of magnitude
too low. Thus, for reasonable parameters, the model can distinguish between frequen-
cies, but not sharply enough. Experimental values for Q are often 5 or more, while Q
values in the model are not above 0.7. This, they argue, is the result of the low value of
µ: a physiological value for µ is about 0.33 mV−1, but Q is large enough in the model
with µ about 3 mV−1. Thus, it appears that the activation of the K+ current by voltage
is not steep enough to account for the observed resonance in hair cells.

In the third model, however, the activation of the K+ current by Ca2+ can be made
much steeper. Here, the effective activation slope of the K+ channel is kθ/(pF), which
can be made large by decreasing the pump rate p or by increasing the sensitivity of the
K+ channel to Ca2+. Ashmore and Attwell conclude that frequency tuning in hair cells
is more likely the result of a Ca2+-sensitive K+ conductance than of a voltage-sensitive
conductance.

23.3.2 A Mechanistic Model of Frequency Tuning

This conclusion has been upheld by the more recent, and more detailed, work of Huds-
peth and Lewis (1988a,b). Based on a series of experiments in which they measured
the kinetic properties of the ionic conductances in saccular hair cells of the bullfrog,
Hudspeth and Lewis constructed a detailed model for electrical resonance in these
cells. They concluded that the observed properties of the Ca2+-sensitive K+ conduc-
tance, in concert with a voltage-sensitive Ca2+ conductance and a leak, are a sufficient
quantitative explanation of frequency tuning in these cells.
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Mechanical
stimulation

K+

Ca2+

Ca2+

K+

Hair bundle

Figure 23.11 Schematic diagram
of a model for electrical tuning in
hair cells, adapted from Hudspeth
(1985).

A schematic diagram of their model is given in Fig. 23.11. Mechanical deflection of
the hair bundle opens transduction channels in the hair bundle allowing the entry of
positive ions, mostly K+. The consequent depolarization of the cell activates voltage-
gated Ca2+ channels, and the intracellular Ca2+ concentration rises. This, in turn, opens
Ca2+-sensitive K+ channels. K+ ions flow out of the cell, and the cell repolarizes. Ca2+

balance is maintained by pumps that remove Ca2+ from the hair cell. One crucial,
and rather unusual, feature of the model is that K+ can both enter and leave the cell
passively. Since the hair bundle projects into the scala media, the fluid surrounding
the hair bundle (the endolymph in the case of hair cells in the cochlea) is of different
composition from that surrounding the base of the hair cell, having a high K+ and a
low Na+ concentration.

We do not present all the many details of the model here. Suffice it to say that it is
assumed that there are three significant ionic currents contributing to resonance in the
hair cell: a voltage-gated Ca2+ current, a Ca2+-activated K+ current, and a leak current.
Thus, for an applied current I,

I � Cm
dV

dt
+ Ic + Ikc + IL. (23.105)

The voltage-gated Ca2+ current Ic and the leak currents are described by similar equa-
tions as in the Hodgkin–Huxley model (Chapter 4). The model for the Ca2+-activated
K+ channel, Ikc, is considerably more complicated. It is assumed that the channel has
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55 pA

110 pA

165 pA

220 pA

20 pA

40 pA

60 pA

80 pA

Figure 23.12 A: Responses of bullfrog saccular hair cells to depolarizing current steps. As
the current step increases in size, the hair cells show more pronounced oscillatory behavior.
(Adapted from Hudspeth and Lewis, 1988b, Fig. 3.) B: Responses of the model to current steps.
(Adapted from Hudspeth and Lewis, 1988b, Fig. 6.)

three closed states and two open states: binding of two Ca2+ ions converts the channel
into a state in which it can spontaneously open, while the binding of an additional
Ca2+ ion can prolong opening. The transition rate constants are dependent on Ca2+

and voltage. Finally, Ca2+ handling is treated simply by assuming that Ca2+ comes in
through the Ca2+ channel and is removed by a first-order process.

The parameters (of which there are about 30) were determined by constraining the
model to agree with voltage-clamp data from a single cell, and then the response of the
model to current pulses was investigated. It was found that depolarizing current steps
induced damped membrane potential oscillations in the model, with a frequency and
amplitude dependent on the magnitude of the current step, in close agreement with
experimental data (Fig. 23.12).

To simulate a transduction current, a term IT � gT(V − VT) is added to the right-
hand side of (23.105). The transduction conductance is assumed to be a function of hair
cell displacement, which, in turn, is assumed to vary sinusoidally. The resultant model
frequency response is band-pass in nature, with the maximal response at frequency
112 Hz and a quality factor of 3. The frequency at which the response is maximal (the
resonant frequency) is a function of the model parameters, and realistic changes in
the model parameters can account for the range of experimentally observed resonant
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frequencies in the bullfrog sacculus. In particular, because the resonant frequency is
sensitive to gkc, the model predicts that controlling the number of Ca

2+-sensitive K+

channels is one simple way in which cells could tune their frequency response.

23.4 Exercises
1. Show that if F(y, t) in the Lesser and Berkley model is an odd function of y, it is sufficient

to consider only the solution in the region 0 < y < l. Hint: show that φ2(y, t) � −φ1(−y, t)
and p2(y, t) � −p1(−y, t) satisfy the differential equations for φ2 and p2. Hence the potential
and pressure are odd functions of y.

2. Formulate a model of the cochlea in which the basilar membrane is spatially coupled in the
x direction as if it were a damped string. How does the Fourier transform of this problem
differ from the Lesser–Berkley model (23.24)–(23.28)?

3. Show that (23.73) describes two waves moving in opposite directions. Hint: Y has an imag-
inary component, and thus the terms in (23.73) have phases with opposite signs. What are
the envelopes of the waves?

4. If the functions m(x), r(x), and k(x) are proportional to the same exponential, then the
solution of (23.43) can be found exactly.

(a) Suppose that m � m0e
−λx, k(x) � k0e

−λx, r(x) � r0e
−λx, and show that (23.43) becomes

d2p

dx2
+ α2eλxp � 0, (23.106)

where α2 � 2ω2ρ
l(iωr0+k0−ω2m0) .

(b) Show that the transformation s � 2α
λ
eλx/2 transforms (23.106) into

s
d

ds

(
s
dp

ds

)
+ s2p � 0, (23.107)

which is Bessel’s equation of order zero. Thus, the general solution of (23.106) is

p(x) � AJ0

(
2α
λ
eλx/2

)
+ BY0

(
2α
λ
eλx/2

)
, (23.108)

where J0 and Y0 are the zeroth-order Bessel functions of the first and second kind, or
equivalently,

p(x) � ÃH
(1)
0 (s)+ B̃H

(2)
0 (s), (23.109)

where H(1)
0 (s) and H

(2)
0 (s) are the zeroth-order Hankel functions of first and second

kind. Use the boundary conditions (23.44) and (23.45) to determine the coefficients Ã
and B̃.

(c) Use the asymptotic behavior of the Hankel functions (Keener, 1988)

H
(1)
0 (s) ∼

(
2
πs

)1/2
ei(s−π/4), H

(2)
0 (s) ∼

(
2
πs

)1/2
e−i(s−π/4) (23.110)

to approximate p(x) in the case that B̃ � 0. Show that η(x) is approximated by (23.59).
Under what conditions is this approximation valid?

5. For the long-wave model it was claimed that the phase of η, where η is given by (23.78),
does not agree with experimental data. Confirm this by showing that for a fixed ω, the phase
increases exponentially with x, and that the phase does not go to zero as ω goes to zero.
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6. Compare the location of the envelope maximum xp for the shallow-water approximation
(23.63) in the case lλ � π/2 with that for the deep-water approximation (23.82), for large ω.

7. Let η0 � 1, ηL � 0, and m � 0.05e−1.5x, and let the other parameters be the same as
in the Lesser and Berkley model. Use the boundary conditions to solve for A1 and B1 in
(23.57), and thus calculate the displacement of the basilar membrane for the shallow-water
model. Compare the shallow-water and deep-water models by plotting the displacements
for high and low frequencies. How does the behavior of the long-wave model change as l is
decreased?



Appendix: Units and Physical
Constants

Quantity Name Symbol Units
Amount mole mol
Electric charge coulomb C
Mass kilogram kg
Temperature kelvin K
Time second s
Length meter m
Force newton N kg ·m · s−2
Energy joule J N ·m
Pressure pascal Pa N ·m−2

Capacitance farad F A · s · V−1

Resistance ohm 6 V · A−1

Electric current ampere A C · s−1
Conductance siemen S A · V−1 � 6−1

Potential difference volt V N ·m · C−1

Concentration Molar M mol · L−1
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Physical Constant Symbol Value
Boltzmann’s constant k 1.381× 10−23 J ·K−1

Planck’s constant h 6.626× 10−34J · s
Avogadro’s number NA 6.02257× 1023 mol−1
unit charge q 1.6× 10−19 C
gravitational constant g 9.78049 m/s2

Faraday’s constant F 9.649× 104C ·mol−1
permittivity of free space ε0 8.854× 10−12 F/m
universal gas constant R 8.315 J mol−1 ·K−1

atmosphere atm 1.01325× 105 N ·m−2

Lumen: 1 lm � quantity of light emitted by 1
60 cm

2 surface area of pure platinum at
its melting temperature (1770◦ C), within a solid angle of 1 steradian.

Angstrom: 1 Å � 10−10 m.
Liter: 1 L � 10−3 m3.

Other Identities
1 atm � 760mmHg
R � kNA

F � qNA

pH � − log10[H+] with [H+] in moles per liter
273.15 K � 0◦C (ice point)
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patches, Pflügers Arch. 391: 85–100.

Hargrave, P. A., K. P. Hoffman, and U. B.
Kaupp, Eds. (1992) Signal Transduction in
Photoreceptor Cells. Springer-Verlag, Berlin.

Hastings, S. P. (1975) The existence of progressive
wave solutions to the Hodgkin-Huxley
equations, Arch. Rat. Mech. Anal. 60: 229–257.

Heineken, F. G., H. M. Tsuchiya, and R. Aris
(1967) On the mathematical status of the
pseudo-steady state hypothesis of biochemical
kinetics, Mathematical Biosciences. 1: 95–113.



738 References

Henriquez, C. S. (1993) Simulating the electrical
behavior of cardiac tissue using the bidomain
model, CRC Crit. Revs. Biomed. Eng. 21: 1–77.

Hess, B. and A. Boiteux (1973) Substrate control
of glycolytic oscillations. In: B. Chance, E. K.
Pye, A. K. Ghosh, and B. Hess, Academic Press,
New York.

Hill, A. V. (1938) The heat of shortening and the
dynamic constants of muscle, Proc. Roy. Soc.
Lond. B126: 136–195.

Hill, T. L. (1974) Theoretical formalism for the
sliding filament model of contraction of
striated muscle. Part I, Progress in Biophysics
and Molecular Biology. 28: 267–340.

Hill, T. L. (1975) Theoretical formalism for the
sliding filament model of contraction of
striated muscle. Part II, Progress in Biophysics
and Molecular Biology. 29: 105–159.

Hille, B. (1975) Ionic selectivity, saturation, and
block in sodium channels, Journal of General
Physiology. 66: 535–560.

Hille, B. and W. Schwartz (1978) Potassium
channels as multi-ion single-file pores, Journal
of General Physiology. 72: 409–442.

Hille, B. (1992) Ionic Channels of Excitable
Membranes: Sinauer, Sunderland, MA.

Himmel, D. M. and T. R. Chay (1987) Theoretical
studies on the electrical activity of pancreatic
β-cells as a function of glucose, Biophysical
Journal. 51: 89–107.

Hindmarsh, J. L. and R. M. Rose (1982) A model
of the nerve impulse using two first order
differential equations, Nature. 296: 162–164.

Hindmarsh, J. L. and R. M. Rose (1984) A model
of neuronal bursting using three coupled first
order differential equations, Proc. R. Soc. Lond.
B.. 221: 87–102.

Hirsch, M. W. and S. Smale (1974), Differential
Equations, Dynamical Systems and Linear
Algebra: Academic Press, New York.

Hirsch, M. W., C. C. Pugh, and M. Shub (1977)
Invariant Manifolds: Springer-Verlag, New
York.

Hodgkin, A. L. and W. A. H. Rushton (1946) The
electrical constants of a crustacean nerve fibre,
Proc. Roy. Soc. London B. 133: 444–479.

Hodgkin, A. L. and B. Katz (1949) The effect of
sodium ions on the electrical activity of the
giant axon of the squid, Journal of Physiology.
108: 37–77.

Hodgkin, A. L., A. F. Huxley, and B. Katz (1952)
Measurement of current–voltage relations in
the membrane of the giant axon of Loligo,
Journal of Physiology. 116: 424–448.

Hodgkin, A. L. and A. F. Huxley (1952a) Currents
carried by sodium and potassium ions through
the membrane of the giant axon of Loligo,
Journal of Physiology. 116: 449–472.

Hodgkin, A. L. and A. F. Huxley (1952b) The
components of membrane conductance in the
giant axon of Loligo, Journal of Physiology. 116:
473–496.

Hodgkin, A. L. and A. F. Huxley (1952c) The
dual effect of membrane potential on sodium
conductance in the giant axon of Loligo,
Journal of Physiology. 116: 497–506.

Hodgkin, A. L. and A. F. Huxley (1952d) A
quantitative description of membrane
current and its application to conduction and
excitation in nerve, Journal of Physiology,
London. 117: 500–544.

Hodgkin, A. L. and R. D. Keynes (1955) The
potassium permeability of a giant nerve fibre,
Journal of Physiology. 128: 61–88.

Hodgkin, A. L. (1976) Chance and design in
electrophysiology: an informal account of
certain experiments on nerve carried out
between 1934 and 1952, Journal of Physiology.
263: 1–21.

Hodgkin, A. L. and B. J. Nunn (1988) Control of
light-sensitive current in salamander rods,
Journal of Physiology. 403: 439–471.

Holmes, M. H. (1980a) An analysis of a
low-frequency model of the cochlea, J. Acoust.
Soc. Am. 68: 482–488.

Holmes, M. H. (1980b) Low frequency asymptotics
for a hydroelastic model of the cochlea, SIAM
Journal on Applied Mathematics. 38: 445–456.

Holmes, M. H. (1982) A mathematical model of
the dynamics of the inner ear, J. Fluid Mech.
116: 59–75.

Holmes, M. H. (1995) Introduction to Perturbation
Methods: Springer-Verlag, New York.

Hoppensteadt, F. C. and J. P. Keener (1982)
Phase locking of biological clocks, Journal of
Mathematical Biology. 15: 339–349.

Hoppensteadt, F. C. and C. S. Peskin (1992)
Mathematics in Medicine and the Life Sciences:
Springer-Verlag, New York.

Hudspeth, A. J. (1985) The cellular basis of
hearing: the biophysics of hair cells, Science.
230: 745–752.

Hudspeth, A. J. and R. S. Lewis (1988a) Kinetic
analysis of voltage- and ion-dependent
conductances in saccular hair cells of the
bull-frog, Rana Catesbeiana, Journal of
Physiology. 400: 237–274.

Hudspeth, A. J. and R. S. Lewis (1988b) A
model for electrical resonance and frequency



References 739

tuning in saccular hair cells of the bull-frog,
Rana Catesbeiana, Journal of Physiology. 400:
275–297.

Hudspeth, A. J. (1989) How the ear’s works work,
Nature. 341: 397–404.

Hudspeth, A. J. and P. G. Gillespie (1994) Pulling
springs to tune transduction: adaptation by
hair cells, Neuron. 12: 1–9.

Huntsman, L. L., E. O. Attinger, and A.
Noordergraaf (1978), Metabolic autoregulation
of blood flow in skeletal muscle. In:
Cardiovascular System Dynamics, Ed: J. Baan,
A. Noordergraaf, and J. Raines, MIT Press,
Cambridge, MA.

Huxley, A. F. (1957) Muscle structure and theories
of contraction, Progress in Biophysics. 7:
255–318.

Huxley, A. F. and R. M. Simmons (1971) Proposed
mechanism of force generation in striated
muscle, Nature. 233: 533–538.

Huxley, A. F. (1980) Reflections on muscle:
Princeton University Press, Princeton, NJ.

Inselberg, A. and R. S. Chadwick (1976)
Mathematical model of the cochlea. I:
formulation and solution, SIAM Journal on
Applied Mathematics. 30: 149–163.

Irving, M., J. Maylie, N. L. Sizto, and W. K.
Chandler (1990) Intracellular diffusion in
the presence of mobile buffers: application
to proton movement in muscle, Biophysical
Journal. 57: 717–721.

Jack, J. J. B., D. Noble, and R. W. Tsien (1975)
Electric Current Flow in Excitable Cells: Oxford
University Press, Oxford.

Jaffe, L. F. (1991) The path of calcium in cytosolic
calcium oscillations: a unifying hypothesis,
Proc. Natl. Acad. Sci. USA. 88: 9883–9887.

Jafri, M. S. and J. Keizer (1995) On the roles
of Ca2+ diffusion, Ca2+ buffers and the
endoplasmic reticulum in IP3-induced Ca2+
waves, Biophysical Journal. 69: 2139–2153.

Jafri, M. S. (1995) A theoretical study of cytosolic
calcium waves in Xenopus oocytes, Journal of
Theoretical Biology. 172: 209–216.

Jafri, M. S. and J. Keizer (1997) Agonist-induced
calcium waves in oscillatory cells: a biological
example of Burger’s equation, Bulletin of
Mathematical Biology. 59: 1125–1144.

Jahnke, W., C. Henze, and A. T. Winfree
(1988) Chemical vortex dynamics in three-
dimensional excitable media, Nature. 336:
662–665.

Jahnke, W. and A. T. Winfree (1991) A survey
of spiral-wave behaviors in the Oregonator
model, Int. J. Bif. Chaos. 1: 445–466.

Jakobsson, E. (1980) Interactions of cell volume,
membrane potential, and membrane transport
parameters, American Journal of Physiology
(Cell Physiology). 238: C196–C206.

Jesty, J., E. Beltrami, and G. Willems (1993)
Mathematical analysis of a proteolytic
positive-feedback loop: dependence of lag time
and enzyme yields on the initial conditions
and kinetic parameters, Biochemistry. 32:
6266–6274.

Jewell, B. R. and D. R. Wilkie (1958) An analysis of
the mechanical components in frog’s striated
muscle, Journal of Physiology. 143: 515–540.

Johnston, D. and S. M.-S. Wu (1995) Foundations
of Cellular Neurophysiology: The MIT Press,
Cambridge, MA.

Jones, C. K. R. T. (1984) Stability of the traveling
wave solutions of the FitzHugh–Nagumo
system, Trans. Amer. Math. Soc. 286: 431–469.

Jones, K. C. and K. G. Mann (1994) A model for
the tissue factor pathway to thrombin. II. A
mathematical simulation, Journal of Biological
Chemistry. 269: 23367–23373.

Julian, F. J. (1969) Activation in a skeletal muscle
contraction model with a modification for
insect fibrillar muscle, Biophysical Journal. 9:
547–570.

Kaplan, W. (1981) Advanced Engineering
Mathematics: Addison-Wesley, Reading, MA.

Kargacin, G. J. (1994) Calcium signaling in
restricted diffusion spaces, Biophysical Journal.
67: 262–272.

Karma, A. (1993) Spiral breakup in model
equations of action potential propagation in
cardiac tissue, Phys. Rev. Lett. 71: 1103–1106.

Karma, A. (1994) Electrical alternans and spiral
wave breakup in cardiac tissue, Chaos. 4:
461–472.

Katz, B. and R. Miledi (1968) The role of calcium
in neuromuscular facilitation, Journal of
Physiology. 195: 481–492.

Keener, J. P. (1980a) Waves in excitable media,
SIAM Journal on Applied Mathematics. 39:
528–548.

Keener, J. P. (1980b) Chaotic behavior in piecewise
continuous difference equations, Trans. AMS.
261: 589–604.

Keener, J. P., F. C. Hoppensteadt, and J. Rinzel
(1981) Integrate and fire models of nerve
membrane response to oscillatory input, SIAM
Journal on Applied Mathematics. 41: 503–517.

Keener, J. P. (1981) On cardiac arrhythmias: AV
conduction block, Journal of Mathematical
Biology. 12: 215–225.



740 References

Keener, J. P. (1983) Analog circuitry for the van
der Pol and FitzHugh–Nagumo equation,
IEEE Trans. Sys. Man. Cybernetics. SMC-13:
1010–1014.

Keener, J. P. and L. Glass (1984) Global
bifurcations of a periodically forced oscillator,
Journal of Mathematical Biology. 21: 175–190.

Keener, J. P. (1986) A geometrical theory for spiral
waves in excitable media, SIAM Journal on
Applied Mathematics. 46: 1039–1056.

Keener, J. P. and J. J. Tyson (1986) Spiral waves in
the Belousov–Zhabotinsky reaction, Physica D.
21: 307–324.

Keener, J. P. (1987) Propagation and its failure
in coupled systems of discrete excitable cells,
SIAM Journal on Applied Mathematics. 47:
556–572.

Keener, J. P. (1988) Principles of Applied
Mathematics: Addison-Wesley, Reading,
Massachusetts.

Keener, J. P. (1988b) The dynamics of three
dimensional scroll waves in excitable media,
Physica D. 31: 269–276.

Keener, J. P. (1991a) An eikonal-curvature
equation for action potential propagation in
myocardium, Journal of Mathematical Biology.
29: 629–651.

Keener, J. P. (1991b) The effects of discrete
gap junctional coupling on propagation in
myocardium, Journal of Theoretical Biology.
148: 49–82.

Keener, J. P. (1992) The core of the spiral,
SIAM Journal on Applied Mathematics. 52:
1372–1390.

Keener, J. P. and J. J. Tyson (1992) The dynamics
of scroll waves in excitable media, SIAM
Review. 34: 1–39.

Keener, J. P. (1994) Symmetric spirals in media
with relaxation kinetics and two diffusing
species, Physica D. 70: 61–73.

Keener, J. P. and A. V. Panfilov (1995) Three-
dimensional propagation in the heart: the effects
of geometry and fiber orientation on propagation
in myocardium. In: Cardiac Electrophysiology.
From Cell to Bedside, Ed: D. P. Zipes and J.
Jalife, Saunders, Philadelphia, PA.

Keener, J. P. and A. V. Panfilov (1996) A biophysical
model for defibrillation of cardiac tissue,
Biophysical Journal. 71: 1335–1345.

Keener, J. P. and A. V. Panfilov (1997) The effects of
geometry and fibre orientation on propagation
and extracellular potentials in myocardium. In:
Computational Biology of the Heart, Ed: A.
V. Panfilov and A. V. Holden, John Wiley and
Sons, New York.

Keizer, J. and G. Magnus (1989) ATP-sensitive
potassium channel and bursting in the
pancreatic beta cell, Biophysical Journal. 56:
229–242.

Keizer, J. and P. Smolen (1991) Bursting electrical
activity in pancreatic β-cells caused by Ca2+
and voltage-inactivated Ca2+ channels, Proc.
Natl. Acad. Sci. USA. 88: 3897–3901.

Keizer, J. and G. DeYoung (1994) Simplification
of a realistic model of IP3-induced Ca2+
oscillations, Journal of Theoretical Biology. 166:
431–442.

Keizer, J., G. D. Smith, S. Ponce-Dawson and J. E.
Pearson (1998) Saltatory propagation of Ca2+
waves by Ca2+ sparks, Biophysical Journal. : in
press.

Keizer, J. and L. Levine (1996) Ryanodine
receptor adaptation and Ca2+-induced
Ca2+ release-dependent Ca2+ oscillations,
Biophysical Journal. 71: 3477–3487.

Keller, E. F. and L. A. Segel (1971) Models for
chemotaxis, Journal of Theoretical Biology. 30:
225–234.

Kessler, D. A. and R. Kupferman (1996) Spirals in
excitable media: the free-boundary limit with
diffusion, Physica D. 97: 509–516.

Kevorkian, J. and J. D. Cole (1996) Multiple
Scale and Singular Perturbation Methods:
Springer-Verlag, New York, Berlin, Heidelberg.

Knepper, M. A. and F. C. Rector, Jr. (1991), Urinary
concentration and dilution. In: The Kidney
(fourth edition) Volume 1, Ed: B. M. Brenner
and F. C. Rector, Jr., Saunders, Philadelphia,
PA.

Knight, B. W. (1972) Dynamics of encoding a
population of neurons, Journal of General
Physiology. 59: 734–766.

Knobil, E. (1981) Patterns of hormonal signals
and hormone action, New England Journal of
Medicine. 305: 1582–1583.

Knorre, W. A. (1968) Oscillations of the rate of
synthesis of β-galactosidase in Escherichia
coliML30 and ML308, Biochem. Biophys. Res.
Com. 31: 812–817.

Knox, B. E., P. N. Devreotes, A. Goldbeter, and L.
A. Segel (1986) A molecular mechanism for
sensory adaptation based on ligand-induced
receptor modification, Proc. Natl. Acad. Sci.
USA. 83: 2345–2349.

Koch, K.-W. and L. Stryer (1988) Highly
cooperative feedback control of retinal rod
guanylate cyclase by calcium ions, Nature. 334:
64–66.



References 741

Koch, C. and I. Segev, Eds. (1989) Methods in
Neuronal Modeling. MIT Press, Cambridge,
MA.

Koefoed-Johnsen, V. and H. H. Ussing (1958)
The nature of the frog skin potential, Acta
Physiologica Scandinavica. 42: 298–308.

Kohler, H.-H. and K. Heckman (1979)
Unidirectional fluxes in saturated single-file
pores of biological and artificial membranes I:
pores containing no more than one vacancy,
Journal of Theoretical Biology. 79: 381–401.

Kopell, N. and L. N. Howard (1973) Plane wave
solutions to reaction-diffusion equations,
Studies in Applied Mathematics. 52: 291–328.

Kopell, N. and G. B. Ermentrout (1986)
Subcellular oscillations and bursting,
Mathematical Biosciences. 78: 265–291.

Kramers, H. A. (1940) Brownian motion in a field
of force and the diffusion model of chemical
reactions, Physica. 7: 284–304.

Krausz, H. I. and K.-I. Naka (1980) Spatiotemporal
testing and modeling of catfish retinal neurons,
Biophysical Journal. 29: 13–36.

Kreyszig, E. (1994) Advanced Engineering
Mathematics. (Seventh edition): John Wiley and
Sons, New York.

Kuba, K. and S. Takeshita (1981) Simulation of
intracellular Ca2+ oscillation in a sympathetic
neurone, Journal of Theoretical Biology. 93:
1009–1031.

Kuffler, S. W. (1953) Discharge patterns and
functional organization of the mammalian
retina, J. Neurophysiol. 16: 37–68.

Kuffler, S. W. (1973) The single-cell approach in
the visual system and the study of receptive
fields, Invest. Ophthalmol. 12: 794–813.

Kuffler, S. W., J. G. Nicholls, and R. Martin (1984)
From Neuron to Brain: Sinaeur Associates,
Sunderland, MA.

Kuramoto, Y. and T. Tsuzuki (1976) Persistent
propagation of concentration waves
in dissipative media far from thermal
equilibrium, Prog. Theor. Phys.. 55: 356.

Kuramoto, Y. and T. Yamada (1976) Pattern
formation in oscillatory chemical reactions,
Prog. Theor. Phys. 56: 724.

Lacker, H. M. (1981) Regulation of ovulation
number in mammals: a follicle interaction law
that controls maturation, Biophysical Journal.
35: 433–454.

Lacker, H. M. and C. S. Peskin (1981), Control
of ovulation number in a model of ovarian
follicular maturation. In: Lectures on
Mathematics in the Life Sciences, Ed: S.

Childress, American Mathematical Society,
Providence.

Lacker, H. M. and C. S. Peskin (1986)
A mathematical method for unique
determination of cross-bridge properties
from steady-state mechanical and energetic
experiments on macroscopic muscle, Lectures
on Mathematics in the Life Sciences. 16:
121–153.

Lacy, A. H. (1967) The unit of insulin, Diabetes. 16:
198–200.

Laidler, K. J. (1969) Theories of Chemical Reaction
Rates: McGraw-Hill, New York.

Lamb, T. D. and E. J. Simon (1977) Analysis of
electrical noise in turtle cones, Journal of
Physiology. 272: 435–468.

Lamb, T. D. and E. N. Pugh (1992) A quantitative
account of the activation steps involved
in phototransduction in amphibian
photoreceptors, Journal of Physiology. 449:
719–758.

Landy, M. S. and J. A. Movshon, Eds. (1991)
Computational Models of Visual Processing. The
MIT Press, Cambridge, MA.

Lane, D. C., J. D. Murray and V. S. Manoranjan
(1987) Analysis of wave phenomena in a
morphogenetic mechanochemical model and
an application to post-fertilisation waves on
eggs, IMA J. Math. Applied in Medic. and Biol..
4: 309–331.

Langer, G. A. and A. Peskoff (1996) Calcium
concentration and movement in the diadic
left space of the cardiac ventricular cell,
Biophysical Journal. 70: 1169–1182.

Layton, H. E., E. B. Pitman, and L. C. Moore
(1991) Bifurcation analysis of TGF-mediated
oscillations in SNGFR, American Journal of
Physiology. 261: F904-F919.

Layton, H. E., E. B. Pitman, and M. A. Knepper
(1995) A dynamic numerical method for
models of the urine concentrating mechanism,
SIAM Journal on Applied Mathematics. 55:
1390–1418.

Lechleiter, J., S. Girard, D. Clapham, and E.
Peralta (1991a) Subcellular patterns of calcium
release determined by G protein-specific
residues of muscarinic receptors, Nature. 350:
505–508.

Lechleiter, J., S. Girard, E. Peralta, and D. Clapham
(1991b) Spiral calcium wave propagation and
annihilation in Xenopus laevis oocytes, Science.
252: 123–126.

Lechleiter, J. and D. Clapham (1992) Molecular
mechanisms of intracellular calcium



742 References

excitability in X. laevis oocytes, Cell. 69:
283–294.

Lesser, M. B. and D. A. Berkley (1972) Fluid
mechanics of the cochlea. Part I., J. Fluid Mech.
51: 497–512.

Levine, I. N. (1978) Physical Chemistry:
McGraw-Hill Kogokusha Ltd., Tokyo.

Lew, V. L., H. G. Ferreira, and T. Moura (1979)
The behaviour of transporting epithelial cells.
I. Computer analysis of a basic model, Proc.
Roy. Soc.Lond. B. 206: 53–83.

Li, Y.-X. and A. Goldbeter (1989) Frequency
specificity in intercellular communication:
influence of patterns of periodic signaling on
target cell responsiveness, Biophysical Journal.
55: 125–145.

Li, Y.-X. and J. Rinzel (1994) Equations for
InsP3 receptor-mediated [Ca2+] oscillations
derived from a detailed kinetic model: a
Hodgkin-Huxley-like formalism, Journal of
Theoretical Biology. 166: 461–473.

Lighthill, J. (1975)Mathematical Biofluiddynamics:
SIAM, Philadelphia, PA.

Lin, C. C. and L. A. Segel (1988) Mathematics
Applied to Deterministic Problems in the Natural
Sciences: SIAM, Philadelphia, PA.

Liu, B.-Z. and G.-M. Deng (1991) An improved
mathematical model of hormone secretion
in the hypothalamo-pituitary-gonadal axis in
man, Journal of Theoretical Biology. 150: 51–58.

Llinás, R., I. Z. Steinberg, and K. Walton (1976)
Presynaptic calcium currents and their relation
to synaptic transmission: voltage clamp study
in squid giant synapse and theoretical model
for the calcium gate, Proc. Natl. Acad. Sci. USA.
73: 2918–2922.

Loeb, J. N. and S. Strickland (1987) Hormone
binding and coupled response relationships
in systems dependent on the generation of
secondary mediators,Molecular Endocrinology.
1: 75–82.

Longtin, A. and J. G. Milton (1989) Modelling
autonomous oscillations in the human pupil
light reflex using non-linear delay-differential
equations, Bulletin of Mathematical Biology. 51:
605–624.

Lugosi, E. and A. T. Winfree (1988) Simulation of
wave propagation in three dimensions using
Fortran on the Cyber 205, J. Comput. Chem. 9:
689–701.

Luo, C. H. and Y. Rudy (1991) A model of
the ventricular cardiac action potential;
depolarization, repolarization and their
interaction, Circ. Res. 68: 1501–1526.

Luo, C. H. and Y. Rudy (1994a) A dynamic
model of the cardiac ventricular action
potential; I: Simulations of ionic currents
and concentration changes, Circ. Res. 74:
1071–1096.

Luo, C. H. and Y. Rudy (1994b) A dynamic model
of the cardiac ventricular action potential; II:
Afterdepolarizations, triggered activity and
potentiation, Circ. Res. 74: 1097–1113.

Lytton, J., M. Westlin, S. E. Burk, G. E. Shull,
and D. H. MacLennan (1992) Functional
comparisons between isoforms of the
sarcoplasmic or endoplasmic reticulum
family of calcium pumps, Journal of Biological
Chemistry. 267: 14483–14489.
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Absorption
in the gastrointestinal tract, 637–642
in the proximal tubules, 614, 615, 619,

621, 635
of bicarbonate, 649
of light by photoreceptors, 666, 678
of nutrients from the gut, 596
of oxygen by hemoglobin, 523, 524
of sodium, 641
of sodium in the loop of Henle, 617, 622
of water, 36, 622, 638–640

acetylcholine, 218, 220, 580, 696
and end-plate conductance, 230
binding, 217, 230, 235
concentration in synaptic cleft, 232
degradation, 231, 236, 247
effect on postsynaptic membrane, 233
quantal release, 218–220
receptors, 217, 231, 235, 236
release kinetics, 233

ACh, see acetylcholine
actin, 544–547, 554–556, 561–564, 566, 569,

571
action potential, 116, 188, 250, 260
and bursting oscillations, 596
and calcium influx in muscle cells, 346,

347
and synaptic facilitation, 227
at the presynaptic cell, 217, 218, 220, 224

Hodgkin–Huxley model, 117–136
in a myelinated fiber, 276
in cardiac cells, 312–332
in defibrillation, 423
in ganglion cells, 668, 692
in muscle, 542, 543, 696
in the optic nerve, 696
in the respiratory center, 535
in the squid axon, 117–136
integrate-and-fire model, 432
irregular wave trains, 295
one-way block, 411
periodic, 291
propagation in one dimension, 268–296
release of neurotransmitter, 219, 235
repetitive, 188
speed in cardiac tissue, 411
synaptic response, 226

adaptation
exact, 607, 609, 671
in photoreceptors, 675–684
in the retina, 665–671, 700
in turtle horizontal cells, 671–675
of IP3 receptors, 607
of hormone receptors, 607–609

Addison’s disease, 629
adenine, 355
adenosine, 458
adenylate cyclase, 580
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adenylate kinase, 17
ADH. See antidiuretic hormone
adipose tissue, 190, 595, 598
ADP, 16, 512, 545
action on PFK1, 18
conversion to ATP, 16
secretion by platelets, 510

adrenal gland, 579, 640
adrenaline, 218, 462
alcohol, 316, 629, 636
aldosterone, 66, 579, 581, 622, 627, 629, 640,

641
alveoli, 516–529, 531, 540
amacrine cells, 668
AMP, 16–18
ATP/AMP ratio, 17

anemia, 458, 479, 493
angiotensin, 617
anode break excitation, 154, 155, 159, 415,

421
antidiuretic hormone, 622, 627, 631–634,

636
aorta, 434, 436, 439, 464, 468, 473, 474
asymptotic methods. See perturbation

methods
arterial pulse, 435, 470
arterioles, 434, 438, 439, 458, 461, 612,

614–617, 622, 634
atherosclerosis, 456, 470
ATP, 16, 18, 24, 32, 42, 50, 51, 65, 72, 458
and the calcium ATPase, 73, 161
and the sodium–potassium pump, 34, 49,

66
ATP/AMP ratio, 17
conversion of ADP, 16
dephosphorylation, 31, 49, 73, 544, 556
in muscle, 544, 545, 556, 577
inhibition of PFK1, 16
oscillations in production of, 32
substrate of PFK1, 16

atrial fibrillation, 380, 382, 413
atrial septal defect, 469
atrial tachycardia, 413
atrioventricular node, 142, 143, 312, 317,

380, 389, 401, 409
Avogadro’s number, 52, 481
axon
action potentials, 268, 290, 291
as a cable, 251
crab, 254

divergence, 249
earthworm, 254
lobster, 254
of a motorneuron, 217
squid, see squid axon
synaptic transmission, 218
vertebrate, 75

Barbiturates, 111
barnacle muscle fiber, 154, 297
baroreceptor reflex, 461
basilar membrane, 704, 706, 707, 711
as a harmonic oscillator, 708–719
frequency analyzer, 704
frequency response, 705, 706
mechanical tuning, 704, 705
wave, 704, 705, 707, 712, 728

basophils, 495
Beeler–Reuter equations, 149–151, 153, 159,

296, 433
Belousov–Zhabotinsky reaction, 156, 301,

304, 305
Bessel equation, 700, 727
Bessel functions, 688, 700, 727
β-cell
bursting oscillations, 188
coupled by gap junctions, 188
insulin secretion, 190, 595
islets, 202

bicarbonate, 72, 480, 514, 642
and carbon dioxide regulation, 488, 489,

522, 528, 643
concentration in blood, 514
exchange for chloride in red blood cells,

488
secretion in the stomach, 643, 649, 650

bicuculline, 236
bidomain model, 320–326, 332, 415, 418,

423
bifurcation diagrams
of bursting oscillations, 194–202
of calcium oscillations, 168, 172, 177,

185–187
bifurcation surface, 196, 198
bifurcation theory
applied to
bursting oscillations, 191–202, 214, 215
calcium oscillations, 166, 167, 171, 177,
185, 186

calcium waves, 336
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glycolysis, 20, 21, 24
insulin oscillations, 606
red blood cell production, 494
respiratory control, 534
the cell cycle, 365
the pupil light reflex, 697
the sinoatrial node, 395

in the FitzHugh–Nagumo equations, 139,
154

in the Hodgkin–Huxley model, 133, 154
references, 26

bifurcations
homoclinic, 27, 187, 193–198, 200–202,

352
Hopf, 20, 21, 24, 27, 139, 154, 166, 167,

171, 177, 185, 187, 194, 195, 197–200,
202, 214, 336, 352, 395, 397, 398, 432,
494, 514, 515, 534, 606, 697

saddle-node, 27, 133, 154, 187, 194, 195,
197, 200, 202, 365

saddle-node of periodics, 199
steady-state, 26
tangent, 353

bipolar cells, 668, 676
bistability
and bursting oscillations, 195, 196, 199,

200, 202, 210, 212
and traveling waves, 269, 300, 344
in the Hodgkin–Huxley model, 270

bistable equation, 270, 287, 296
and defibrillation, 421
and the eikonal-curvature equation, 301,

303
buffered, 344, 345, 347, 354
comparison property, 275
discrete, 277–281
piecewise linear, 297
threshold phenomena, 275
traveling waves, 270–275

black widow spider, 235
blastula, 362
blood clotting, 508–512
extrinsic pathway, 508
intrinsic pathway, 508

blood loss, 455
blood pH, 488, 489, 514
blood plasma, 480–481, 612
blood pressure, 435
arterial, 439, 444, 445, 449, 450, 455–463,

468, 615, 616, 618

diastolic, 436, 455, 478
systemic, 455
systolic, 435, 436, 445, 478
venous, 439, 445–447, 450, 455, 461, 467

blood volume, 434, 435, 450, 452, 455, 457,
480

body surface potential, 381, 383, 384
Bohr effect, 488, 489, 514
bone
calcium storage in, 160
conductivity tensor, 381

bone marrow
production of erythrocytes, 514
production of platelets, 510
production of red blood cells, 490

botulinus, 235
Bowman’s capsule, 612, 614, 619
bundle branch block, 317, 383, 401
bundle of HIS, 312, 317
Burger triangle, 385

Cable equation
and gap junctions, 316, 318
and spread of current in photoreceptor

layers, 687
derivation, 251–254
discrete, 277
in higher dimensions, 299
linear, 255
fundamental solution, 265
Green’s function, 266
input resistance, 256
on a branching structure, 256, 260, 264,
266

nondimensionalized, 254
nonlinear
and wave propagation, 268
comparison property, 317

space constant, 253
time constant, 253

caffeine, 178–180, 186
calcium ATPase, 51, 73, 161, 170, 177, 183,

347, 351, 577
calcium buffering, 191, 341–346, 353, 681
calcium channels
and bursting oscillations, 206
and calcium influx, 160, 161
and insulin secretion, 596
and muscle contraction, 543
and synaptic facilitation, 227
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calcium (continued)
blockers, 111
in hair cells, 721, 725, 726
in presynaptic cell, 217, 220, 221
proximity to ryanodine receptors, 184,

185
subunits, 223
that are also receptors, 161
voltage-gated, 161, 163, 183, 191

calcium current
and bursting oscillations, 191, 196
and volume regulation, 114
in hair cells, 724, 725
in photoreceptors, 676
in the Beeler–Reuter equations, 153
presynaptic, 221, 222, 224, 225
synaptic supression, 224, 225
through IP3 receptors, 170, 175, 177

calcium-induced calcium release, 165,
178–181, 184, 185, 333

calcium pump. See calcium ATPase
cancer, 361
capillaries, 434, 439, 442
and filtration, 441
blood velocity, 438, 439
in the gastrointestinal tract, 637, 638, 649
in the glomerulus, 612, 614
in the kidney, 612, 619, 620, 625, 634, 636
in the lungs, 516–527
pressure, 438
resistance, 443, 448, 450

carbon dioxide
and blood pH, 488
and oxygen transport, 488, 489
arterial pressure, 514
binding to hemoglobin, 488
causes vasoconstriction, 462
diffusion, 34, 488, 521
effect on ventilation rate, 531
facilitated diffusion, 72, 524
in venous blood, 488
partial pressure, 528–531, 539
production, 530
removal, 522–523
removal from blood, 488
solubility, 481, 521
storage in blood, 488
venous pressure, 514

carbon dioxide transport, 72, 434, 485, 488,
489, 514, 521–523, 531, 539

carbon monoxide
amount in blood, 539
and oxygen starvation, 486
binding to hemoglobin, 486, 514
elimination rate, 540
poisoning, 458, 524–527
saturation curve, 486

carbonic acid, 488, 489, 529
carbonic anhydrase, 488, 489, 522, 649
cardiac cells
calcium oscillations, 184
calcium wave, 334
calcium-induced calcium release, 161,

180–182, 184, 187
coupling by gap junctions, 216, 236
coupling resistance, 332
discrete calcium release, 346
electrical bursting, 203
excitation–contraction coupling, 180
hypertrophy, 347
parameters, 254
ryanodine receptors, 178, 180, 184
skinned, 184

cardiac conduction system, 312, 313
cardiac fiber
model, 313
orientation, 324
propagation failure, 317
space constant, 314, 332

cardiac muscle, 542
excitation–contraction coupling, 161
length-tension curve, 547
resting potential, 65

cardiac output, 434, 445–447, 449, 450, 455,
457

regulation, 461, 463
cardiac tissue
anisotropic, 325
eikonal-curvature equation, 325
electrical coupling, 320, 321
electrical wave propagation, 299, 312–332
electrocardiograms, 379–388
homogenization, 327
reentrant arrhythmias, 401
speed of action potential, 411
spiral waves, 310

carotid artery, 473
carotid sinus, 461
Cdc2, 368–373, 375, 376
Cdc25, 369–371, 375, 376
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Cdc28, 363, 364
and formation of MPF, 366

cell division, 361–375
cell membrane, 33–35, 37, 44, 59, 60
as a capacitor, 56, 117
capacitance, 56, 61
concentration differences across, 34, 59
dielectric constant, 56
electrical circuit model, 56, 57, 136
gap junctions, 216
glucose transport, 34, 604
hormone diffusion, 579
intercalated disks, 313
ion channels, 74, 704
membrane potential, 34, 88, 116, 163
T-tubules, 543
vesicle fusion, 218
water transport, 621

cell volume
and anoxia, 73
and ionic transport, 60, 67
and membrane potential, 51, 62, 63, 70, 73
and pump rate, 63, 64
and the cell cycle, 359
regulation, 36, 59–67, 70

cellular automata. See finite state automata
central terminal of Wilson, 387
characteristics, method of, 474
chemokinesis, 497
chemotaxis, 496–498, 507
Cheyne–Stokes breathing, 534
chloride-bicarbonate exchanger, 72
cholera, 642
cholesterol, 456, 579
choline, 73, 121, 154
chyme, 641, 663
cilia, 349, 720
circle maps, 404–409
cochlea, 28, 701–719
codons, 355, 356
collecting duct, 619, 622, 625–627, 629, 631,

633
colorblindness, 678
compartmental models, 264, 592
compliance, 439–441
arterial, 439, 448–450, 455, 456
as a function of time, 445
diastolic, 445, 451, 457
end-systolic, 445
of left heart, 455, 468, 469

of right heart, 455, 468, 469
systemic, 456
systolic, 445, 449, 453, 466
venous, 439, 456, 462, 463
ventricular, 448

conductivity tensor, 321, 323, 324, 326, 332,
381

Conn’s syndrome, 629
connective tissue, 509, 637
constant field approximation, 54, 85, 89
constipation, 642
contour integration, 264, 265, 297, 568, 719
contrast detection, 668–669
cooperativity, 12
and IP3 receptors, 177, 186
hemoglobin, 483, 485, 514
negative cooperativity, 13
positive cooperativity, 13

core conductor assumption, 251
corticosterones, 66
countercurrent mechanism, 622–624
in the loop of Henle, 624–629, 631

coupled oscillators
frequency plateaus, 658–663
in the FitzHugh–Nagumo equations, 433,

664
in the sinoatrial node, 390–401
in the small intestine, 650–663
invariant torus, 426
phase equations, 424–429, 654–658
phase waves, 289, 295, 298, 391, 393, 652,

657
rhythm splitting, 664

curare, 235
current–voltage curve, 74–78
comparison of linear and GHK

expressions, 75, 77
Goldman–Hodgkin–Katz, 68, 85, 89
instantaneous, 76
linear, 57, 87, 118, 123
of calcium channel, 206
of endplates, 230
of light-sensitive channels in

photoreceptors, 680
of potassium channels, 75
of sodium channels, 75
of the Hille sodium channel model, 99, 100
steady-state, 76

cyanide, 9
cyclin-dependent protein kinases, 363–374
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cyclins, 363–374
cytochrome system, 16
cytokinesis, 361
cytosine, 355

Dendrites, 249
dendritic network, 249, 250, 254, 255, 258,

260
passive flow of electricity, 254

deoxyribose, 355
deoxyribonucleic acid. See DNA
dephosphorylation
of ATP, 31, 49, 73, 556
of ATP in muscle, 544
of GTP in photoreceptors, 678
of MPF, 369
of the sodium–potassium pump, 49

detailed balance, 30, 189, 488, 489
Devil’s staircase, 405
diabetes, 190, 470, 629
diarrhea, 642
diastole, 402, 436, 445
DiFrancesco and Noble model, 152
digitalis, 66
dinosaurs, 461
Dirac delta function, 247, 261, 265, 419, 500,

554, 714
dispersion, 291, 292
and coupled oscillators, 399
and spiral waves, 305, 306, 308, 309
for excitable systems, 292
in the FitzHugh–Nagumo equations,

292–294
in the Hodgkin–Huxley model, 291, 292
kinematic analysis, 295, 298

dispersion surface, 336, 352
distal tubule, 617, 619, 622
divergence theorem, 36, 331, 707
DNA, 51, 355, 356, 361–363, 368, 375, 579
dopamine, 189, 218, 236, 629
drugs and toxins
barbiturates, 111
bicuculline, 236
black widow spider venom 235
botulinus, 235
caffeine, 178, 186
cholera, 642
cocaine, 236
curare, 235
digitalis, 66, 67

encainide, 111, 112
flecainide, 111
lidocaine, 111
morphine, 629
nerve gas, 9, 236
nicotine, 111, 236, 629
ouabain, 73
puffer fish toxin, 111
quinidine, 111
sotolol, 111
strychnine, 236
tetanus toxin, 235
tetrodotoxin, 111, 122
tetraethylammonium, 122
verapamil, 111

ductus arteriosus, 464–469
patent ductus arteriosus, 468

duodenum, 650

Ear canal, 701
ectopic focus, 394, 395, 401, 432
Edinger–Westphal nucleus, 695
effective diffusion coefficients, 236–248, 300,

342, 345
eikonal equation, 304, 306, 325
eikonal-curvature equation, 301–306, 309,

310, 324–326, 337–338
Einthoven triangle, 384–387
electrodiffusion, 53, 54, 77, 82–87
elementary reactions, 4
encainide, 111, 112
end-plate potential, 218
endolymph, 704, 725
endoplasmic reticulum, 34, 160, 178, 350,

351
endothelial cells, 350, 352
enzyme kinetics, 5
allosteric activator, 17
allosteric binding sites, 9
allosteric inhibitor, 9, 11, 16, 30
and singular perturbation theory, 28, 32
catalytic power, 5, 7
competitive inhibitor, 9
conformational states, 14
cooperativity, 12
determination of Vmax and Km, 8
enzyme inhibition, 9
equilibrium approximation, 6
Hill equation, 13
in a spherical geometry, 72
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lock-and-key mechanism, 9
maximum reaction velocity, 5, 6, 10, 11, 13
Michaelis–Menten equation, 5, 8, 16, 30
Monod–Wyman–Changeux models, 14, 30
negative cooperativity, 13
positive cooperativity, 13
quasi-steady-state approximation, 7
reaction velocity, 6
regulation, 5
specificity, 5

eosinophils, 495
epinephrine, 218, 444, 462, 579
epithelial cells
bicarbonate secretion, 649, 650
calcium oscillations, 349, 664
calcium waves, 333, 348
ciliated, 349
effect of aldosterone, 579, 629, 640
gastric protection, 643
gastrointestinal tract, 116, 638
glucose transport, 46, 621
glucose–sodium symport, 114
in nephrons, 70
in the glomerulus, 612
in the loop of Henle, 621
in the proximal tubules, 46
mucus secretion, 642
nutrient absorption, 638
secretion of erythropoietin, 490
sodium transport, 60, 67, 71, 621, 638,

640, 641
transport in the proximal tubule, 620
volume regulation, 67, 70, 71
water transport, 639

equilibrium constant, 4
equivalent cylinder theory, 258
error function, 266, 694
erythrocytes, 72, 434, 437, 439, 479, 480,

482–495, 514, 540
and carbon dioxide transport, 488
and carbonic anhydrase, 488

erythropoiesis, periodic, 491
erythropoietin, 490, 491, 514
Escherichia coli, 357, 360, 361, 375
estradiol, 581–584, 594
excitation–contraction coupling, 161, 180
extrasystole, 380, 429, 430
Eyring rate theory, 88, 562

Feces, 642

facilitated diffusion, 39, 40, 72
in muscle, 42–44

fetus, 464, 466, 486, 622
Fick’s law, 36, 236, 239, 645
filtration
autoregulation, 615
in the glomerulus, 613–618
in the loop of Henle, 626
in the microcirculation, 441–443, 479

finite state automata, 309, 310
Fisher’s equation, 269, 289, 297
FitzHugh–Nagumo equations, 136–141
applied to
barnacle muscle fibers, 155
calcium oscillations, 166, 177
coupled oscillators, 664
defibrillation, 422
neural oscillators, 541
the sinoatrial node, 149, 390
ventricular action potential, 155

buffered, 345
dispersion curve, 292–294
electrical analog, 156
kinematic analysis, 295
modified for bursting oscillations, 210
perturbation methods, 139, 285, 293
piecewise linear, 282, 292
spiral waves, 305, 309
wave propagation, 281–289

flecainide, 111
Floquet theory, 428, 433
flux coupling, 99
folic acid, 514
follicle-stimulating hormone, 581, 582, 593,

594, 595
follicles, 581–586, 588, 590–593
foramen ovale, 464–467
closed in utero, 469

Fourier series, 262, 266, 710, 713, 717
Fourier transform, 265, 688, 689, 691, 698,

712, 727
frequency response
of a damped harmonic oscillator, 710
of hair cells, 704, 726
of the basilar membrane, 705, 706
of turtle horizontal cells, 672

FSH. See follicle stimulating hormone.

G-protein, 161, 580, 676, 678
GABA. See gamma-aminobutyric acid.
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galactose, 34, 357, 358
gamma-aminobutyric acid, 218, 236
ganglion cells, 203, 222, 668, 692–694
receptive field, 692–695

gap junctions, 216, 236–247
and intercellular calcium waves, 348
coupling of myocardial cells, 313
coupling oscillators, 390, 391, 664
coupling pancreatic β-cells, 188, 202
coupling photoreceptors, 691
effects on electrical space constant, 314,

316
effects on wave propagation, 316,

318–320
importance for defibrillation, 418
permeability to IP3, 350, 352

gastric mucosa, 643
gastric pits, 638, 642, 643, 649
genes, 356, 357, 362, 363, 375
genetic code, 355
glial cells, 333, 350, 352, 664
glomerulus, 612–619, 622, 635
glucagon, 581, 595–598
glucose, 58, 357, 358
and bursting oscillations, 195
and insulin oscillations, 596, 601, 603
and insulin secretion, 190, 191, 595, 598,

603
formation, 596
in blood plasma, 480
oscillations, 360, 596–598, 601
oxidation, 16
phosphorylation, 16, 72, 595
transport, 34, 44–46, 72, 93, 114, 603, 604,

621, 638
glycine, 218, 235, 236
glycolysis, 16, 72
Goldbeter–Lefever model for oscillations,

21
Sel’kov model for oscillations, 18

Goldman–Hodgkin–Katz current equation,
55, 57, 60, 68, 75, 77, 82, 85, 87, 89,
93, 99, 112, 119, 223

Goldman–Hodgkin–Katz potential, 55, 56,
76, 77, 82, 112

gonadotropin, 189, 582, 593, 594
granulocytes, 490, 492, 495
granulosa cells, 581
guanine, 355
guanylate cyclase, 676, 678, 683, 684

Hair bundle, 704, 720, 721, 725
hair cells, 703, 704, 719
electrical resonance, 704, 720–727
electrical tuning, 704
mechanical tuning, 704

Haldane effect, 489, 514
Hankel functions, 727
harmonic oscillator, 707–710, 719
heart attack, 112, 394, 410, 412–414, 432,

457
heart dipole vector, 383, 386, 387
helicotrema, 704, 705
hemoglobin, 12, 482–485, 512–514, 524, 540
allosteric effect of hydrogen ions, 485–487,

488
and carbon monoxide, 514, 524
and oxygen absorption, 523, 524
and oxygen binding, 485, 486, 488
fetal, 486
hydrogen buffering, 489, 514
saturation curve, 487
saturation shifts, 485

hemophilia, 508
heparin, 509
hepatocytes, 334
Hering–Breuer inflation reflex, 536
heteroclinic trajectory, 194, 271–273, 281,

287, 289, 298, 338, 345
Hill equation, 13, 177, 484, 485, 524, 532,

680, 683, 697
Hindmarsh-Rose model, 210–213
homoclinic trajectory, 194, 195, 281, 290,

352
homogenization, 238, 248, 418, 433
bidomain model, 322
effective diffusion coefficients, 238, 300
gap junctions, 238
periodic conductive domain, 327

Hooke’s constant, 709
Hooke’s law, 575
horizontal cells, 668, 672, 691
adaptation, 671–675
coupling, 668, 685, 687
coupling to photoreceptors, 668, 685,

687–689
hormones
acetylcholine, 217, 218, 220
adrenaline, 218, 462
aldosterone, 66, 577, 579, 581, 622, 627,

629, 640, 641
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antidiuretic hormone, 622, 627, 631–634,
636

corticosterones, 66
dopamine, 189, 218, 236, 629
epinephrine, 218, 444, 462, 579
erythropoietin, 490–491, 514
estradiol, 581–584, 594
follicle-stimulating hormone, 581, 582,

593–595
gamma-aminobutyric acid, 218, 236
glycine, 218, 235, 236
gonadotropin, 189, 582, 593, 594
heparin, 509
insulin, 46, 66, 202, 581
luteinizing hormone, 580–582, 593–595
norepinephrine, 218, 462, 579
progesterone, 581
renin, 581, 617
testosterone, 581, 594, 595

horseshoe crab eye, 685
Huntington’s disease, 218
hydrochloric acid
secretion in the stomach, 638, 642, 649

hydrogen ion buffering, 489, 514
hydrogen–potassium pump, 649
hypertension, 347, 456
hypothalamus, 579, 593, 594
hysteresis
and a biological switch, 185
in bursting oscillations, 195, 196, 199, 200
in cardiac arrhythmia, 411
in the control of breathing, 537, 538, 540

I-V curves. See current-voltage curves.
ideal gas law, 58, 480
ileum, 650
impedance, 701, 710, 719
impulse response, 698
incompressible fluid, equations of motion,

707–708
independence principle, 78–81, 87, 92, 93,

95, 97–99, 153
extended, 112

infection, 500, 642
inositol (1,4,5)-trisphosphate. See IP3.
input resistance
of linear cable equation, 256, 265
of Rall lumped-soma model, 261

insulin, 66, 202, 581
and bursting oscillations, 190, 191

and glucose oscillations, 596, 601
and glucose storage, 595
and glucose transport, 46, 595, 604
pulsatile secretion, 580, 594–607
receptors, 580, 595
units, 596

integrate-and-fire model, 432
intercalated disk, 313
IP3, 161–163, 167, 241, 580, 664
and calcium waves, 339
and intercellular calcium waves, 350
diffusion of, 341
intercellular permeability, 352

IP3 receptor, 161
and adaptation, 607
and calcium oscillations, 163–178
and calcium waves, 340
and intercellular calcium waves, 351
in the two-pool model, 163
modulation by calcium, 168, 177
open probability, 170, 171, 176
similarity to ryanodine receptor,

184
subunits, 169

irrotational flow, 708
ischemia, 316

Jejunum, 650, 655
juxtaglomerular apparatus, 612, 615–619,

622

Kidney failure, 190, 457
Kramers’ rate theory, 88
Krebs cycle, 16

Lactose, 357–360, 375
lambda–omega systems, 426
Laplace transform, 262–266, 567, 578
Laplace’s equation, 242, 244, 713
larynx, 516
lateral geniculate nucleus, 692, 695
lateral inhibition, 665, 666, 685–692
law of mass action, 3–6, 8
leukemia, 491
leukocytes, 480, 495–507
level set method, 304
LH. See luteinizing hormone.
lidocaine, 111
Liénard equation, 213
ligament of Treitz, 655
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linear filter
and frequency tuning, 722
in model of insulin oscillations, 597, 598,

600, 603
in model of light adaptation, 672
in model of the photoreceptor light

response, 679
Lineweaver-Burk plots, 8
lithium, 629
litter size, 581
loop of Henle, 70, 617–634
ascending limb, 619, 621, 622, 631
countercurrent mechanism, 622–629
descending limb, 619, 621, 622, 631
formation of dilute urine, 622
formation of sodium concentration

gradient, 622
sodium absorption, 622

luteinizing hormone, 580–582, 593–595
Lyapunov function, 609
lymphocytes, 495

M-phase promoting factor, 363, 366, 368,
369

autocatalysis, 370
dephosphorylation, 369
formation, 370
inactive, 369
initiation of mitosis, 369
phosphorylation, 369, 370
of Cdc25 and Wee1, 369

regulatory pathway, 369
Mach bands, 665, 687, 693, 700
macula densa cells, 616
mast cells, 509
McAllister, Noble and Tsien model, 146
megakaryocytes, 490, 510
membrane potential, 51–57
and calcium entry, 163
and defibrillation, 423
and electrocardiograms, 381
and excitability, 116
and gating currents, 223
and glucose transport, 114
and ionic current, 74–102
and smooth muscle contraction, 650
and sodium transport, 663
and the sodium–potassium pump, 63–65,

114

and voltage-sensitive channels, 76, 78,
103–111

and volume regulation, 62, 63, 70, 71, 73
bidomain model, 320, 322
created by ionic concentration gradients,

34
early theories, 120
effect of the sodium–potassium pump, 66,

114
effect on ion exchangers, 102
effect on ionic flux, 48
effect on rate constants, 92, 94
Hodgkin–Huxley model, 117–136
integrate-and-fire model, 432
maintained by membrane pumps, 49
of coupled bursters, 206
of coupled cells, 391
of hair cells, 704, 705, 721, 726
of horizontal cells, 671
of photoreceptors, 667, 668, 676, 681
of postsynaptic cells, 217, 225, 233
of presynaptic cells, 226
of smooth muscle, 650
of sodium-transporting epithelial cells, 68
of the soma, 260
resting potentials in excitable cells, 65
spatial gradients, 251
stochastic variations, 202, 206

membrane transport
active, 33, 48, 51, 60, 621
and volume regulation, 51, 60, 67
antiports, 45, 46, 48, 49
carrier-mediated, 34, 44
in the proximal tubule, 620, 621
of amino acids, 46, 621, 635
of glucose, 34, 44–46, 72, 93, 114, 603, 604,

621, 638
of lactose, 357
of sodium, 46, 60, 67, 621, 627, 638, 641
of water, 60, 621, 638, 639
passive, 33, 60, 638
symports, 45, 46, 48, 114
uniports, 44, 48

menopause, 592
microvilli, 637
mitochondria, 160, 249, 362, 620, 621
mitosis, 299, 361–363, 368–370, 376
monocytes, 490, 495
Monod–Wyman–Changeux models, 14, 15,

21, 30, 485, 514



Index 761

Morris–Lecar equations, 154–155
morphine, 629
motorneuron, 218
MPF. SeeM-phase promoting factor.
multiple sclerosis, 277
myelin, 276, 277
myelination, 276
myocardial infarction, 388, 410
myofibrils, 542
myoglobin, 39–44, 72, 482–485
myosin, 543–547, 556, 561, 562

Naka–Rushton equation, 669–671, 675, 684
Navier–Stokes equations, 437
nephron, 60, 70, 612, 613, 622, 625, 627, 629,

631, 635
formation of concentrated urine, 631
formation of dilute urine, 631

Nernst potential, 51–56, 63, 73–76, 78, 99,
120

of chloride, 53
of ions in cardiac cells, 143
of potassium, 53, 76, 125, 128, 130, 193
of sodium, 53, 75
temperature effects, 154

Nernst–Planck equation, 54, 55, 75, 77, 82,
83

nerve gas, 9, 236
neural network
of the respiratory center, 535

neuromuscular junction, 218, 219, 225, 230,
235, 236, 696

neurotransmitter, 218, 696
and calcium release, 161, 163
and synaptic facilitation, 227
and synaptic transmission, 217, 221, 250
effect of calcium on release, 226
effect of voltage on release, 226
kinetics, 229–233
similarity to hormones, 579

neutrophils, 495
Newton’s law of cooling, 4
nicotine, 111, 236, 248, 629, 636
night blindness, 678
Noble model, 143
node of Ranvier, 276, 277
nondimensionalization, 7, 26
norepinephrine, 218, 462, 579
nucleic acids, 355
nucleotides, 355, 356

Oculomotor complex, 695
Ohm’s law, 4, 38, 58, 237, 327
oocyte, 368, 369, 372, 581, 592
oogenesis, 362
optic nerve, 665, 668, 692, 696
organ of Corti, 703, 704, 719
oscillations
and waves on the basilar membrane, 705
bursting oscillations, 188–213
in cardiac cells, 379–414
in glycolysis, 17
in hormone secretion, 581
in production of ATP, 32
in respiratory control, 534, 535
in secretion of gonadotropin, 593, 595
in secretion of insulin, 594–607
in the cell cycle, 363, 373
in the FitzHugh–Nagumo equations, 138,

139, 158
in the Hodgkin–Huxley model, 129, 292
in the respiratory center, 535
in the sinoatrial node, 390
in the uptake of lactose, 375
muscular tremors, 218
of β-galactosidase activity, 360
of calcium, 163–172, 177–179, 184, 333,

349
of glucose, 360
of membrane potential in axons, 130
of pupil size, 696

osmosis, 33, 58, 72, 625, 638, 641
wrong way water flow, 72

osmotic pressure, 34, 58, 59, 61, 62, 70, 410,
442, 479, 614, 621, 625, 626, 631

ossicles, 701
otolith organs, 701
ouabain, 73
oval window, 701, 704, 706, 709
ovaries, 579, 594
ovulation, 581–593
oxygen
and autoregulation, 457–460
and carbon dioxide transport, 489
arterial pressure, 514
binding to hemoglobin, 482–524
binding to myoglobin, 42–44, 482
consumption, 42, 459, 530
depletion, 42, 43, 73, 526
diffusion, 34
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oxygen (continued)
exchange by countercurrent mechanism,

623
facilitated diffusion, 39–42
in the fetus, 464, 468, 486
partial pressure, 528–530, 539, 540
saturation, 39, 458, 540
solubility, 481, 521
uptake, 521, 523–524
venous pressure, 514

oxygen transport, 39, 41, 434, 482, 485, 488,
489, 514, 521, 526, 539

oxymyoglobin, 39–42, 483
oxyntic cells, 649, 650

Pancreas, 579, 594, 598, 603
parietal cells, 642, 643, 649
Parkinson’s disease, 218
partial pressure, 481
perilymph, 704, 707, 712
periodic hematopoiesis, 491
peritubular capillaries, 619, 620, 625, 634,

636
perturbation methods, 27
applied to
bursting oscillators, 215
carbon dioxide removal, 522
coupled oscillators, 425
defibrillation, 422
enyzme kinetics, 28, 31, 32
gastric protection, 646
ion channel flow, 86
the kidney, 630
waves in myelinated fibers, 278

boundary layers, 28, 246, 631
corner layers, 28, 246, 647–649
effective diffusion coefficients, 238
for the bistable equation, 298
for the FitzHugh–Nagumo equations, 139,

158, 285, 288, 289, 293, 294
interior layers, 28
multiscale methods, 28, 391, 419, 425,

427, 715
references, 28
regular perturbation problems, 27
scroll waves, 310
singular perturbation problems, 27
spiral waves, 305, 309
the eikonal-curvature equation, 301

phagocytosis, 495

phase equations, 391, 424, 654
phase locking, 389, 391, 404, 405, 409, 429,

431, 651, 652, 656–658, 662, 664
phase resetting function, 428, 430, 431
phase singularity, 431
phase trapping, 658
phase waves, 289, 295, 298, 391, 393, 652,

657
phase-plane analysis
of bursting oscillations, 191–202, 211
of capillary filtration, 479
of cell-cycle models, 365–374
of coupled oscillators, 660
of defibrillation, 422
of glycolytic oscillations, 20, 25
of leukocyte chemotaxis, 501–507, 515
of ovulation, 586–589
of pulsatile insulin secretion, 610
of the bistable equation, 296
of the buffered bistable equation, 354
of the FitzHugh–Nagumo equations,

139–141
of the Hodgkin–Huxley model, 130–136,

154
of the Morris-Lecar equations, 155
of the respiratory center, 537
of the sinoatrial node, 395
of water and sodium absorption in the gut,

663
of waves in the bistable equation, 271–273
of waves in the FitzHugh–Nagumo

equations, 288, 293
of waves in the Hodgkin–Huxley model,

269
references, 26

phosphorylation, 16, 580
by Cdk, 363
by MPF, 369
of Cdc2, 372
of fructose, 16, 18, 21
of glucose, 16, 72, 595
of MPF, 369, 370
of the sodium–potassium pump, 49

photoreceptors, 116, 665, 677
absorption of light, 666
adaptation, 669, 680–684
coupling to horizontal cells, 685
coupling to other retinal cells, 668
electrical coupling, 691
light response, 667, 668, 676
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physiology, 675–680
sensitivity, 669, 672

picrotoxin, 236
pistol-shot phenomenon, 474, 478
pituitary, 111, 161, 178, 189, 579, 582, 593,

594, 629
Planck’s equation, 53
platelets, 480, 509–512
plug flow, 470, 625, 641
Poincaré oscillator, 430, 431
Poiseuille flow, 437, 470
Poisson equation, 77, 248, 332, 381
Poisson–Nernst–Planck equations, 83, 84,

85, 87, 89
potassium channels
activation, 104, 131
blockers, 111
calcium-sensitive, 190, 193, 196, 721, 725,

727
current–voltage curve, 75, 118, 123
flux ratio, 81
gating, 104–106, 127, 128
in barnacle muscle fibers, 154
in bursting oscillations, 190
in hair cells, 721
in photoreceptors, 676, 682
in Purkinje fibers, 144
in the Hodgkin–Huxley model, 122
postsynaptic, 217
stretch-activated, 71, 410

potassium conductance, 104, 119, 123–125
activation, 133
and volume regulation, 71
of hair cells, 721, 723, 724
of photoreceptors, 676

potassium current
in Purkinje fibers, 143, 145, 146
in the Hodgkin–Huxley model, 117, 125,

128, 129
in the sinoatrial node, 148
in ventricular cells, 150, 151

potato chips, 73, 635, 636
potential energy
in the Schrödinger equation, 397
of an ion passing through a channel,

87–90, 98
of crossbridges in skeletal muscle, 574,

575
proerythroblasts, 491
progesterone, 581

proximal tubules, 46, 619, 621
reabsorption, 619, 621

puffer fish toxin, 111
pulmonary
arteries, 434, 452, 464, 468, 469, 478
blood volume, 457
capillaries, 434, 520, 521
resistance, 455, 467–469
veins, 434, 452
venous pH, 539
venous pressure, 467

pulmonary edema, 457
pupil light reflex, 695–698
pupillary sphincter, 696
Purkinje fibers, 142–148, 150, 152, 312, 326,

380, 391, 401
DiFrancesco and Noble model, 152
McAllister, Noble and Tsien model, 146
Noble model, 143

Pushchino model, 138, 155, 311
pylorus, 650–652, 654, 658

Quality factor, 722, 724, 726
quinidine, 111

Radial isochron clock. See Poincaré
oscillator

Rall model neuron, 259–264
receptive fields, 692–695
red blood cells. See erythrocytes.
reentrant arrhythmias, 401, 409–414,

422–424
Reissner’s membrane, 704
renal cortex, 612
renin, 581, 617
residue theorem, 264, 265, 568
resistivity
cytoplasmic, 252, 316
membrane, 253, 688

resonance
in hair cells, 704, 720–727

respiratory acidosis, 529
respiratory alkalosis, 529
respiratory exchange rate, 530, 539
reversal potential, 53, 56, 76, 99, 112, 119
comparison of GHK and linear models, 77
of ACh-sensitive channels in postsynaptic

membrane, 234
of calcium current in sinoatrial nodal

cells, 150
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reversal (continued)
of light-insensitive potassium

photoreceptor current, 682
rhodopsin, 676, 678, 679
ribonucleic acid. See RNA.
ribose, 355, 356
ribosome, 356
rigor mortis, 160, 577
RNA, 355, 356, 579
messenger RNA, mRNA, 356–360, 375,

629
ribosomal RNA, 356
transfer RNA, tRNA, 356

RNA polymerase, 356, 360
round window, 704, 706
ryanodine receptor, 161–163, 178–185, 347

Sarcolemma, 183, 184
sarcomere, 542, 544, 546–548, 554, 560
sarcoplasmic reticulum, 51, 73, 160, 161,

178, 180, 182, 184, 347, 362, 542, 543
scala media, 701, 704, 708, 725
scala tympani, 701, 702, 704, 708
scala vestibuli, 701, 702, 704, 708
Schrödinger equation, 397, 432
Schwann cell, 276
scorpion toxins, 111
semicircular canals, 701
sinoatrial node, 142, 148–149, 152, 326, 379
bulk frequency, 392
coupled oscillators, 390
critical size, 394
pacemaker activity, 142, 312, 389, 394
sinus node dysfunction, 389
wave speed, 391

skeletal muscle, 542
acetylcholine receptors, 217
and myoglobin, 482
and the cable equation, 249
calcium release, 346, 543
crossbridges, 543–547
electrical wave propagation, 299
excitability, 116
excitation–contraction coupling, 161
heat generation, 567
isometric force, 549, 556, 569, 573, 578
length-tension curve, 547
myofibrils, 542
neuromuscular junction, 218, 235
PFK1 kinetics, 21

power stroke, 545, 546, 577
resting potential, 65
ryanodine receptors, 178
sodium channel density, 275
sodium–potassium pump, 66
structure, 542, 543
T-tubules, 543
tetanus, 546, 549, 550, 566, 574
the Hill model, 547–554
the Huxley model, 554–562
thick filaments, 542, 546
thin filaments, 542, 543, 546
velocity of action potential, 291

smooth muscle, 542
and ryanodine receptors, 178
electrical control activity, 650
electrical response activity, 650
in arteries, 461
in arterioles, 458
in the gastrointestinal tract, 637, 638,

650–654
oscillatory electrical activity, 650–654
resting potential, 65

snap-back oscillator. See Poincaré oscillator
sodium channels
activation, 104, 110, 131
and volume regulation, 67
blockers, 111
current–voltage curve, 75, 123
density, 275, 401
gating, 106–111
Hille model, 97–99
in bursting oscillations, 196
in the Hodgkin–Huxley model, 127
inactivation, 104, 110
postsynaptic, 217
production of, 629
single-channel recording, 109

sodium conductance, 104, 125–126, 144
activation, 104, 134
and volume regulation, 71
inactivation, 104, 133
increased by aldosterone, 629

sodium current
activation, 150
in photoreceptors, 676
in Purkinje fibers, 143, 145–147
in the Hodgkin–Huxley model, 117, 125,

129
in the sinoatrial node, 148, 149
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in ventricular cells, 150, 153
sodium–calcium exchanger, 34, 46, 48, 51,

66, 103, 114, 161, 676, 681
sodium-hydrogen exchanger, 34, 621
sodium–potassium pump, 37, 49–51, 60, 63,

65, 66, 68, 72, 73, 114, 161, 621, 627,
629, 638, 639, 676

and ouabain, 73
solubility, 481
soma, 249, 259–261, 264, 267
sotolol, 111
space clamp, 120
space constant
and homogenization, 300
directionally dependent, 301, 324
effects of gap-junctional resistance, 314,

316
in the eikonal-curvature equation, 304
measurement, 315
of cable equation, 253
of calcium wave front, 353
of cardiac fiber, 314, 315, 332
of coupled cells, 399
of horizontal cell layer, 688
of myelinated fiber, 296
of photoreceptor cell layer, 691
of squid axon, 290

spiral lamina, 704
squid axon
action potential speed, 290
conductances, 63
current–voltage curves, 75
electrical space constant, 290
Hodgkin–Huxley model, 117–136
ionic concentrations, 53
synaptic transmission, 221

standing wave, 280, 281, 317, 319, 320, 347,
353

stapes, 701, 704–706, 709, 718
Starling’s law, 402, 446
stem cells, 490
stereocilia, 720
stiff equations, 307, 635
stochastic models, 108, 115, 202, 205,

206
Stokes equation, 437
stretch receptors, 461, 536, 538
stretch-activated channels, 71, 410
striated muscle, 542, 595
stroke, 457

strychnine, 236
synaptic cleft, 217, 218, 225, 230–233, 236,

247, 248, 696
synaptic facilitation, 226–229
synaptic suppression, 224
systemic
arterial compliance, 450, 456
arterial pressure, 450, 455, 456, 468
arteries, 434, 439, 449, 464, 467, 468
capillaries, 434, 448
resistance, 450, 455, 462, 463, 467, 469
veins, 434
venous pressure, 455, 467
volume, 457

systole, 402, 436, 445

T-tubules, 346, 347, 543
TEA. See tetraethylammonium.
tectorial membrane, 703, 704
terminal bronchioles, 516
testes, 579, 594
testosterone, 581, 594, 595
tetanus in muscle, 546, 549, 550, 552, 566,

574
tetanus toxin, 235
tetraethylammonium, 122
tetrodotoxin, 111, 122
equilibrium constant, 112

thrombin, 508
thrombocytes. See platelets.
thymine, 355
thyroid gland, 579
tight junctions, 313, 638–640
tip link, 720
torsades de pointes, 413, 414
toxins. See drugs and toxins.
trachea, 333, 349, 516
transcription, 356, 360, 363, 364, 366
transfer function, 671–673, 679, 682, 687,

688, 690, 698
triggered firing, 212
tropomyosin, 544, 545
troponin, 544, 545
TTX. See tetrodotoxin.
tympanic membrane, 701, 702

Umbilical cord, 464, 467
uracil, 355
urea, 34, 480, 621, 636
urine, 612, 615, 622, 629
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urine (continued)
and beer drinking, 636
concentrating mechanism, 619–634, 636
dilute, 622, 623, 629, 631, 633
maximal concentrating ability, 619
obligatory urine volume, 619
potassium excretion, 629
relative concentration, 631

Ussing flux ratio, 78–81, 87, 92, 95, 97, 99,
102

Van der Pol oscillator, 138, 652
vasoconstrictors, 438, 462, 617
vasodilators, 438, 458, 462, 617
vasopressin, 581
vena cavae, 312, 389, 413, 434, 438, 439
ventilation–perfusion ratio, 527–530, 540
ventricular fibrillation, 380, 382, 413
ventricular hypertrophy, 388–390
ventricular tachycardia, 380, 382, 413
venules, 434, 439, 625
verapamil, 111
villi, 637
voltage clamp, 97, 121, 122, 124, 146, 163,

221, 223, 224, 232, 255

Wave equation, 473, 474
waves
in the bistable equation, 270–275
in the discrete bistable equation, 277–281
in the FitzHugh–Nagumo equations,

281–289, 292–295

in the Hodgkin–Huxley model, 289–290
kinematic analysis, 295–296
on the basilar membrane, 705–719
periodic waves, 269, 291–296, 298, 341,

399, 422
phase waves, 289, 295, 298, 391, 393, 652,

657
propagation failure, 279–281, 317–320,

402
propagation in higher dimensions,

299–310
scroll waves, 310, 410, 413
solitary waves, 281, 286, 288, 293, 297
spiral waves, 304–311, 333, 334, 338–341,

410, 413, 422–424
stability, 275, 295, 298, 309, 413
standing, 280, 281, 317, 319, 320, 347, 353
target patterns, 305
with curvature, 301–305, 337–338

Weber’s law, 607, 668–669, 671–673, 675, 682
wee genes, 369–374
Wee1, 369–371, 375, 376
Wenckebach pattern, 403, 409
white blood cells. See leukocytes.
windkessel model, 471–473
Wolff–Parkinson–White syndrome, 401, 402

Xenopus oocytes, 175, 176, 178, 299, 301,
333, 334, 338–340, 343, 346, 368, 372

Yanagihara, Noma and Irisawa model, 148,
149

yeast, 17, 362, 363, 366, 368
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