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CHAPTER 1

Introduction

When I first read a biology textbook, it was like reading a thriller. Every page brought a
new shock. As a physicist, 1 was used to studying matter that obeys precise mathematical
laws. But cells are matter that dances. Structures spontancously assemble, perform elabo-
rate biochemical functions, and vanish effortlessly when their work is done. Molecules
encode and process information virtually without errors, despite the fact that they are
under strong thermal noise and embedded in a dense molecular soup. How could this be?
Are there special laws of nature that apply to biological systems that can help us to under-
stand why they are so different from nonliving matter?

We yearn for laws of nature and simplifying principles, but biology is astoundingly
complex. Every biochemical interaction is exquisitely crafted, and cells contain networks
of thousands of such interactions. These networks are the result of evolution, which works
by making random changes and selecting the organisms that survive. Thercfore, the
structures found by evolution are, to some degree, dependent on historical chance and are
laden with biochemical detail that requires special description in every case.

Despite this complexity, scientists have attempted to discern generalizable principles
throughout the history of biology. The search for these principles is ongoing and far
from complete. It is made possible by advances in experimental technology that provide
detailed and comprehensive information about networks of bialogical interactions.

Such studies led to the discovery that one can, in fact, formulate general laws that apply
10 biological networks. Because it has evolved to perform functions, biological circuitry is
far from random or haphazard. It has a defined style, the style of systems that must func-
tion. Although evolution works by random tinkering, it converges again and again onto a
defined set of circuit elements that obey general design principles.

The goal of this book is to highlight some of the design principles of biological sys-
tems, and to provide a mathematical framework in which these principles can be used to
understand biological networks. The main message is that biological systems contain an
inherent simplicity. Although cells evolved to function and did not evolve to be compre-
hensible, simplifying principles make biological design understandable to us.
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This book is written for students who have had a basic course in mathematics. Specialist
terms and gene names are avoided, although detailed descriptions of several well-studied
biological systems are presented in order to demonstrate key principles. This book pres-
ents one path into systems biology based on mathematical principles, with less emphasis
on experimental technology. The examples are those most familiar to the author. Other
directions can be found in the sources listed at the end of this chapter, and in the extended
bibliography at the-end of this book.

'The aim of the mathematical modecls in the book is not to precisely reproduce experi-
mental data, but rather to allow intuitive understanding of general principles. This is the
art of “toy models™ in physics: the belief that a few simple equations can capture some
essence of a natural phenomenon. The mathematical descriptions in the book are there-
fore simplified, so that each can be solved on the blackboard or on a small piece of paper.
We will sce that it can be very useful to ask, “Why is the system designed in such a way?”
and to try to answer with simplified models.

We conclude this introduction with an overview of the chapters. The first part of
the book deals with transcription regulation networks. Elements of networks and their
dynamics are described. We will see that these networks are made of repeating occur-
rences of simple patterns called network motifs. Each network motif performs a defined
information processing function within the network. These building block circuits were
rediscovered by evolution again and again in different systems. Network motifs in other
biological networks, including signal transduction and neuronal networks, are also dis-
cussed. The main point is that biological systems show an inherent simplicity, by employ-
ing and combining a rather small set of basic building-bleck circuits, each for specific
computational tasks.

The second part of the book focuses on the principle of robustness: biological circuits
are designed so that their essential function is insensitive to the naturally accurring fluc-
tuations in the components of the circuit. Whereas many circuit designs can perform a
given function on paper, we will see that very few can work robustly in the cell. These few
robust circuit designs are nongeneric and particular, and are often aesthetically pleasing.
We will use the robustness principle to understand the detailed design of well-studicd
systems, including bacterfal chemotaxis and patterning in fruit fly development.

The final chapters describe how constrained evelutionary optimization can be used to
understand optimal circuit design, and how kinetic proofreading can minimize errors
made in biological information processing.

These features of biological systems, reuse of a small set of network motifs, robustness
to component tolerances, and constrained optimal design, are also found in a completely
different context: systems designed by human engineers. Biological systems have addi-
tional features in common with engincered systems, such as modularity and hicrarchical
design. These similaritics hint at a deeper theory that can unify our understanding of
evolved and designed systems.

This is it for the introduction. A glossary of terms is provided at the end of the book,
and some of the solved exercises after cach chapter provide miore detail on topics not dis-
cussed in the main text. I wish you enjuyable reading.

INTRODUCTION w3
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CHAPTER 2

Transcription Networks:
Basic Concepts

21 INTRODUCTION

The cell is an integrated device made of several thousand types of interacting proteins.
Each protein is a nanometer-size molecular machine that carries out a specific task with
exquisite precision. For example, the micron-long bacterium Escherichia coli is a cell that
contains a few million proteins, of about 4000 different types (typical numbers, lengths,
and timescales can be found in Table 2.1).

Cells encounter different situations that require different proteins. For example, when
sugar is sensed, the cell begins to produce proteins that can transport the sugar into the
cell and utilize it. When damaged, the cell produces repair proteins. The cell therefore
continuously monitors its environment and calculates the amount at which each type of
protein is needed. This information-processing function, which determines the rate of
production of each protein, is largely carried out by transcription networks.

The first few chapters in this book will discuss transcription networks. The present
chapter defines the elements of transcription networks and examines their dynamics.

2.2 THECOGNITIVE PROBLEM OF THE CELL

Cells live in a complex environment and can sense many different signals, including
physical parameters such as temperature and osmotic pressure, bialogical signaling mol-
ecules from other cells, beneficial nutrients, and harmful chemicals. Information about
the internal state of the cell, such as the level of key metabolites and internal damage (e.g.,
damage to DNA, membrane, or proteins), is also important. Cells respond to these signals
by producing appropriate proteins that act upon the internal or external environment.
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IABIE 2.1 Typical Parameter Values for the Bacterial £, coli Cell, the Single-Celled Enkaryate
Saccharomyces cerevisae (Yeast), and a Mammalian Cell {Human Fibroblast)

Property E. coli Yeast (S, cerevisae) Mammalian (Human
Fibroblast)
Cell volume ~1 pm* ~1000 pa? ~10,000 py?
Proteins/cell ~4 10¢ ~410° ~4 10"
Mean size of protein - 5 nm
Size of genome 4.6 10° bp 1.3 10 bp 3P hp
4500 genes 6600 genes ~30,000 genes
Size of: Regulator binding site ~10 bp ~10 bp ~10 bp
Promoter ~100 bp ~1000 bp ~10* to 10* bp
Gene ~1000 bp ~1000 bp ~10% to 10* bp (with
introns)
Concentration ~1 nM ~1pM ~0.1 pM
of ane protein/cell
Diffusion time of protein ~0.1 sec ~10 sec ~100 sec
across cell D = 10 pm?/sec
Diffusion time of small ~1 msec, ~10 msec ~0.1 sec
molecule across cell D = 1000 pm¥sec
Time to transcribe a gene ~1 min ~1 min ~30 min {including
80 bp/sec mRNA processing)
‘Time to translate a protein ~2 min ~2 min ~30 min (including
40 aa/sec mRNA nuclear export)
Typical mRNA lifetime 2-5min ~l0mintoover 1h ~10mintoover[0h

Ceil generation time
Ribosomes/cell

Transitions between
protein states
(active/inactive)

‘Timescale for
equilibrium binding of
small molecule to
protein (diffusion
limited)

~30 min {rich medium)
to several hours

~101

1-100 psec

~1 msec

{1 pM affinity)

~2 h {rich medium)
to several hours

~1¢7

1-100 psec

~1 sec
(1 nM affinity)

20 h — nondividing
~10*

1-100 psec

~1 sec
(I nM affinity)

Timescale of ~1 sec
transcription factor
binding 1o DNA site
Mutation rate ~10°% ~10-10 ~10 */bplyear
{bp/generation {bp/gencration

bp: base-pair (DNA letter).
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To represent these environmental states, the cell uses special proteins called transcription
factors as symbols. Transcription factors are usually designed to transit rapidly between
active and inactive molecuiar states, at a rate that is modulated by a specific environ-
mental signal {input). Each active transcription factor can bind the DNA to regulate the
rate at which specific target genes are read (Figure 2.1). The genes are read (transcribed)
into mRNA, which is then translated into protein, which can act on the environment.
"The activitics of the transcription factors in a cell therefore can be considered an internal
representation of the environment. For example, the bacterium E. coli has an internal rep-
resentation with about 300 degrees of freedom (transcription factors). These regulate the
rates of production of £, coli’s 4000 proteins.

The internal representation by a set of transcription factors is a very compact descrip-
tion of the myriad factors in the environment. It scems that evolution selected internal
representations that symbolize states that are most important for cell survival and growth,
Many different situations are summarized by a particular transcription factor activity
that signifies “I am starving.” Many other situations are summarized by a different tran-
scription factor activity that signifies "My DNA is damaged.” These transcription factors
regulate their target gencs to mobilize the appropriate protein responses in cach case.

2.3 [LEMENTS OF TRANSCRIPTION NETWORKS

The interaction between transcription factors and genes is dcscubcd by tramcrlptlon net-
warks, Let us begin by bricfly describing the elements of the netwark: genes and tran-
scription factors. Each gene is a stretch of DNA whose sequence encodes the information

Signal N

Signal I

Environment

+

1

|

)

: {
| Transeription
. + factors
1 1
.
i
1
I
,

Genes

Gene 1 Gene? Gene3d  Gene4  Gene5 Gene6 .. Genek

FIGURE 2.1 The mapping between environmental signals, transcription factors inside the cell, and the
genes that they regulate. The environmental signals activate specific transcription factor proteins. The tran-
scription factors, when active, bind DNA to change the transcription rate of specific target genes, the rate at
which mRNA is produced. The mRNA is then translated into protein. Hence, transcription factors regulate
the rate at which the proteins encoded by the genes are produced. These proteins affect the environment
(internal and external). Some proteins are themselves transcription factors that can activate or repress other
genes.
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needed for production of a protein. Transcription of a gene is the process by which RNA
polymerase (RNAp) produces mRNA that corresponds to that gene's coding sequence.
The mRNA is then translated into a protein, also called the gene product (Figure 2.2a).

‘Ihe rate at which the gene is transcribed, the number of mRNA produced per unit
time, is controlled by the promoter, a regulatory region of DNA (hat precedes the gene
{ligure 2.2a). RNAp binds a defined site (a specific DNA sequence) at the promoter (Fig-
ure 2.2a). The quality of this site specifies the transcription rate of the gene.!

Whereas RNAp acts on virtually all of the genes, changes in the expression of spe-
cific genes are due 1o transcription factors. Each transcription factor modulates the tran-
scription rate of a set of target genes. Transcription factors affect the transcription rate by
binding specific sites in the promoters of the regulated gencs (Figure 2.2b and ¢). When
bound, they change the probability per unit time that RNAp binds the promoter and pro-
duces an mRNA molecule.? ‘Lhe transcription factors thus affect the rate at which RNAp
initiates transeription of the gene. Transcription factors can act as activators that increase
the transcription rate of a gene, or as repressors that reduce the transcription rate (Figure
2.2band ¢).

Transcription factor proteins are themselves encoded by genes, which are regulated by
other transcription factors, which in turn may be regulated by yet other transcription fac-
tors, and so on, This set of interactions forms a transcription network (Figure 2.3). The
transcription network describes all of the regulatory transcription interactions in a cell
{or at lcast those that are known). In the network, the nodes are genes and edges represent
transcriptional regulation of one gene by the protein product of another gene. A directed
edge X -» ¥ means that the product of gene X is a transcription factor protein that binds
the promoter of gene Y to control the rate at which gene Y is transeribed.

The inputs to the nctwork are signals that carry information from the environment.
Each signal is a small molecule, protein modification, or molecular partner that directly
affects the activity of one of the transcription factors. Often, external stimuli activate bio-
chemical signal-transduction pathways that culminate in a chemical modification of spe-
cific transeription factors. In other systems, the signal can be as simiple as a sugar malecule
that enters the cells and directly binds the transcription factor. The signals usually cause
a physical change in the shape of the transcription factor protein, causing it to assume an
active molecular state. Thus, signal S, can cause X to rapidly shift to its active state X*,
bind the prometer of gene Y, and increase the rate of transcription, leading to increased
production of protein Y (Figure 2.2b).

The network thus represents a dynamical systern: after an input signal arrives, tran-
seription factor activities change, leading to changes in the production rate of proteins.
Some of the proleins are transcription factors that activate additional genes, and so on,

"“Ihe sequence of the site determines the chemical affnity of RNApD ta the site.

*When RNAp binds the promoter, it can transit into an open conformation. Once RNAp is in an open conforma-
tion, itinitiates transcription; RNAp races down the INA and transcribes one mRNA at a rate of tens of DNA let-
ters (base-pairs) per secand (Table 2.1). Transcription factors affect the probability per unit time of transeription
initiation from the promaoter.
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FIGURE 2.2 Gene transcription regulation, the basic picture. (a) Each gene is usually preceded by a regula-
tory DNA region called the promoter. The promoter contains a specific site (DNA sequence) that can bind
RNA polymerase (RNAp), a complex of several proteins that forms an enzyme that can synthesize mRNA
that corresponds te the gene coding sequence. The process of forming the mRNA is called transcription. The
mRNA is then translated into protein. (b) An activator, X, is a transcription factor protein that increases
the rate of mRNA transcription when it binds the promoter. The activator typically transits rapidly between
active and inactive forms. In its active form, it has a high affinity 10 a specific site (or sites) on the promoter,
‘The signal, S,, increases the probability that X is in its active form, X*. X* binds a specific site in the promoter
of gene Y to increase transcription and production of protein Y. (¢) A repressor, X, is a transcription factor
protein that decreases the rate of mRNA transcription when it binds the promoter. The signal, S,, increases
the probability that X is in its active form, X*. X* binds a specific site in the promoter of gene Y to decrease
transcription and production of protein Y.

The rest of the proteins are not transcription factors, but rather carry out the diverse func-
tions of the living cells, such as building structures and catalyzing reactions.
230 Separation of Timescales

Transcription networks are designed with a strong separation of timescales: the input
signals usually change transcription factor activities on a sub-second timescale. Binding
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FIGURE 2.3 A transcription netwark that represents about 20% of the transcription interactions in the
bacterium E. eoli. Nodes are genes (or groups of genes coded on the same mRNA called operons). An edge
directed from node X to node Y indicates that the transcription factor encoded in X regulates operon Y. This
network describes direct transcriptional interactions based on experiments in many labs, compiled in data-
bases such as regulon DB and Ecocyc. (From Shen-Orr et al,, 2002)
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of the active transcription factor to its DNA sites often reaches equilibrium in seconds,
Transcription and translation of the target gene takes minutes, and the accumulation of
the protein product can take many minutes to hours (Table 2.1). Thus, the different steps
between the signal and the accumulation of the protein products have very different time-
scales. Table 2.2 gives typical approximate timescales for E. coli.

Thus, the transcription factor activity levels can be considered to be at steady state
within the equations that describe network dynamics on the slow timescale of changes in
protein levels.

In addition to transcription networks, the cell conlains several other networks of inter-
actions, such as signal-transduction networks made of interacting proteins, which will be
discussed in later chapters. These networks typically operate much faster than transerip-
tion networks, and thus they can be considered to be approximately at steady state on the
slow timescales of transcription networks.

There is a rich variety of mechanisms by which transcription factors regulate genes.
Here, biclogy shows its full complexity. Transcription factors display ingenious ways to
bind DNA at strategically placed sites. When bound, they block or recruit each other and
RNAp (and, in higher organisms, many other accessory proteins) to contrel the rate at
which mRNA is produced. However, on the level of transcription network dynamics, and
on the slow timescales in which they operate, we will see that one can usually treat all of
these mechanisms within a unifying and rather simple mathematical description.

One additional remarkable property of transcription networks is the modularity of
their components. One can take the DNA of a gene from one organism and express it in
a different organism. For example, one can take the DNA coding region for green fluores-
cent protein (GFP) from the geneme of a jellyfish and introduce this gene into bacteria.
As a result, the bacteria produce GFP, causing the bacteria to turn green. Regulalion can
also be added by adding a promoter region. For example, control of the GFP gene in the
bacterium can be achieved by pasting in {ront of the gene a DNA fragment from the pro-
moter of a different bacterial gene, say, one that is controlled by a sugar-inducible tran-
scription factor. This causes E. coli to express GFP and turn green only in the presence of
the sugar, Promoters and genes are generally interchangeable. This fact underlies the use
of GFP as an experimental tool, employed in the coming chapter to illustrate the dynam-
ics of gene expression.

Modular compenents make transcription networks very plastic during evolution and
able to readily incorporate new genes and new regulation. In fact, transcription networks
can evolve rapidly: the edges in transcription networks appear to evolve on a faster

TABLE 2.2 Timescales for the Reactions in the Transcription Network of the Bacterium E. coli (Order of
Magnitude)

Binding of a small molecule {a signal) to a transcription factor, ~1 msec
causing 4 change in transeription factor activity

Binding of active transcription factor 10 its DNA site ~1 sec
Transcription + translation of the pene ~5 min
Timescale for 50% change in concentration of the translated protein ~1 h (one cell peneration)

(stable proteins)
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timescale than the coding regions of the genes. For example, related animals, such as mice
and humans, have very similar genes, but the transcription regulation of these genes,
which governs when and how much of each protein is made, is evidently quite different,
In other words, many of the differences between animal species appear to lie in the dif-
terences in the edges of the transcription networks, rather than in the differences in their

genes.

2320 The Signs on the Edges: Activators and Repressors

As we just saw, cach edge in a transcription network corresponds 10 an interaction in
which a transcription factor directly controls the transcription rate of a gene. These inter-
actions can be of two types. Activation, or positive control, occurs when the transcrip-
tion factor increases the rate of transcription when it binds the promoter (Figure 2.2b).
Repression, or negative control, occurs when the transcription factor reduces the rate of
transcription when it binds the promoter {Figure 2.2c). Thus, each edge in the netwaork
has a sign: + for activation, - for repression.! Transcription networks often show compa-
rable numbers of plus and minus edges, with more positive (activation) interactions than
negative interactions {e.g., 60 to 80% activation interactions in organisms such as E, coli
and yeast). In Chapter 11, we will discuss principles that can explain the choice of mode
of control for each gene.

Can a transcription factor be an activator for some genes and a repressor for others?
Typically, transcription factors act primarily as either activatars or repressors. In other
words, the signs on the interaction edges that go out from a given node, and thus rep-
resent genes regulated by that node, are highly correlated. Some nodes send out edges
with mostly minus signs. These nodes represent repressors. Other nodes, that represent
activators, send out mostly plus-signed edges. However, most activators that regulate
many genes act as repressors for some of their target genes. The same idea applies to many
repressors, which can positively regulate a fraction of their target genes.?

Thus, transcription factors tend to employ one mode of regulation for most of their tar-
get genes. In contrast, the signs on the edges that go into a node, which represent the tran-
scription interactions that regulate the gene, are less correlated. Many gencs controlled by
multiple transcription factors show activation inputs from some transcription factors and
repression inputs from other transcription factors. In short, the signs on outgoing edges
(edges that point out from a given node) are rather correlated, but the signs on incoming
edges (edges that point into a given node} are not.?

' Some wranscription factors, called dual transeription factors, ean act on a given gene as activators under some
conditions and repressors under other conditions,

*Vor example, a bacterial activator can readily be changed to a repressor by shifting its binding site so that it over-
laps with the RNAp binding site. Tn this position, the binding of the activator protein physically blocks RNAp, and
1t therefore acts as a repressor.

T A similar feature is found in neuronal networks, where X <3 Y describes synaplic connections between neuron
X and neuron Y (Chapter 6). In many cases, the signs {activation or inhibitien) are more highly correluted on the
outgoing synapses than the sigas of incoming synapses. This feature, known as Dale's rule, stems from the fuct
that many neurons primarily use ane type of neurotransmitter, which can be cither cxcititory or inhibitory fer most
oulguing synaptic connections,
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2.3.3 The Numbers on the Edges: The Input Funclion

The edges not only have signs, but also can be thought to carry numbers that correspond
to the strength of the interaction. The strength of the effect of a transcription factor on
the transcription rate of its target gene is described by an input function. Let us consider
first the production rate of protein Y controlled by a single transcription factor X. When
X regulates Y, represented in the network by X - Y, the number of molecules of protein Y
produced per unit time is a function of the concentration of ¥ in its active form, X*:

rate of production of Y = (X"} (2.3.1)

Typically, the input function {X*) is a monotonic, S-shaped function. It is an increas-
ing function when X is an activator and a decrcasing function when X is a repressor {Fig-
ure 2.4). A useful function that describes many real gene input functions is called the Hill
function. The Hill function can be derived from considering the equilibrium binding of
the transcription factor to its site on the promoter (sce Appendix A for further details),

‘The Hill input function for an activator is a curve that rises from zero and approaches a
maximal saturated level (Figure 2.4a):

Hill function for activator ~ (2.3.2)

The Hill function has three parameters, K, 3, and n. The first parameter, K, is termed
the activation coefficient, and has units of concentration. It defines the concentration of
active X needed to significantly activate expression. From the cquation it is easy to see that
half-maximal expression is reached when X* = K (Figure 2.4a). The valuc of K is related to
the chemical affinity between X and its site on the promoter, as well as additional factors.

The sccond parameter in the input function is the maximal expression level of the
promoter, 8. Maximal expression is reached at high activator concentrations, X* >» K,
because at high concentrations, X* binds the promoter with high probability and stimu-
lates RNAp to produce many mRNAs per unit time. Finally, the Hill cocfficient n governs
the stcepness of the input function. The larger is n, the more step-like the input function
(Figure 2.4a). Typically, input functions are moderately steep, withn =1 - 4,

As do many functions in biology, the Hill function approaches a limiting value at high
levels of X rather than increasing indefinitely. This saturation of the Hill function at high
X* concentration is fundamentally due to the fact that the probability that the activator
binds the promoter cannot exceed 1, no matter how high the concentration of X*. The Hill
equation often describes empirical data with good precision.

For a repressor, the Hill input function is a decreasing $-shaped curve, whose shape
depends on three similar parameters:

B

fiX*)y=-——3 Hill input function for repressor ~ (2.3.3)
1+ X
K

sk

R e
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HGURE 2.4 (a) Input functions for activator X described by Hill functions with Hill coefficientn = 1, 2, and
4. Promoter activity is plotted as a function of the concentration of X in its active form (X*}. Also shown isa
step function, alse called a logic input function. The maximal promater activity is 3, and K is the thresheld
for activation of a target gene {the concentration of X* needed for 50% maximal activation). (b} Input func-
tions for repressor X described by Hill functions with Hill coefficient n = 1, 2, and 4. Also shown is the cor-
responding logic input function (step function). The maximal unrepressed promoter activity is B, and K is
the threshold for repression of a target gene (the concentration of X* needed for 50% maximal repression),
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Since a repressor allows strong transcription of a genc only when it is not bound to the
promoter, this function can be derived by considering the probability that the promoter
is unbound by X* (see Appendix A). The maximal production rate [} is obtained when the
repressor does not bind the promoter at all (Figure 2.2¢), that is, when X* = 0. Hall-maxi-
mal repression is reached when the repressor activity is equal to K, the gene’s repression
coefficient. 'The Hill coefficient n determines the steepness of the input function (Figure
2.4b).

Hence, each edge in the network can be thought to carry at least three numbers, f3,
K, and n. These numbers can readily be tuned during evolution. For example, K can be
changed by mutations that alter the DNA sequence of the binding site of X in the pro-
moter of gene Y. Even a change of a single DNA letter in the binding site can strengthen
or weaken the chemical bonds between X and the DNA and change K. The parameter K
can also be varicd if the position of the binding site is changed, as well as by changes in
sequence outside of the binding site {the latter effects are currently not fully understood),
Similarly, the maximal activity P can be tuned by mutations in the RNAp binding site or
many other factors. Laboratory evolution experiments show that when placed in a new
environment, bacteria can accurately tune these numbers within several hundred genera-
tions to reach optimal expression levels (Chapter 10). In other words, these numbers are
under sclection pressure and can heritably change over many gencrations if environments
change.

The input functions we have described range from a transcription rate of zero to a
maximal transcription rate §, Many genes have a nonzero minimal expression level. This
is called the genes’ basal expression level. A basal level can be described by adding to the
input function a term B,

2.3.4  iopic Input Functions: A Simple Framewaork for Understanding
Netwaork Jynamics '

Hill input functions are useful for detailed models. For mathematical clarity, however, it
is often useful to use even simpler functions that capture the essential behavior of these
input functions. The essence of input functions is transition between low and high values,
with a characteristic threshold K. In the coming chapters, we will often approximate input
functions in transcription networks using the logic approximation (Figure 2.4) (Glass
and Kauffman, 1973; Thieffry and Thomas, 1998). In this approximation, the gene is cither
OFF, f(X*) = 0, or maximally ON, f(X*) = B. The threshold for activation is K. Hence, logic
input functions are step-like approximations for the smoother Hill functions. For activa-
tors, the logic input function can be described using a step-function 8 that makes a step
when X* exceeds the threshold K:

f(X*) = B&(X* > K} logic approximation for activator  (2.3.4)
where 8 is equal to © or 1 according to the logic statcment in the parentheses. The logic

approximation is equivalent to a very steep Hill function with Hill coefficient n— o
(Figure 2.4a).
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Similarly, for repressors, a decreasing step function is appropriate:

(X)) =pBX*<K) lagic approximation for repressor ~ (2.3.5)
We will see in the next chapters that by using a logic input function, dynamic equa-
tions become easy to solve graphically.

235 Mulli-Dimensional Input Functions Govern Genes with Several Inputs

We just saw how Hill functions and logic functions can describe input from a single tran-
scription factor. Many genes, however, are regulated by multiple transcription factors. In
ather words, many nodes in the network have two or more incoming edges. Their pro-
moter activity is thus a multi-dimensional input function of the different input transcrip-
tion factors (Yuh et al,, 1998; Pilpel et al., 2001; Buchler et al., 2003; Setty et al., 2003),
Appendix B describes how input functions can be modeled by equilibrium binding of
multiple transcription factors to the promoter.

Often, multi-dimensional input functions can be usefully approximated by logic func-
tions, just as in the case of single-input functions. For example, consider genes regulated
by two activators. Many genes require binding of both activator proteins to the promoter
in order to show significant expression. This is similar 10 an AND gate:

XL Y)=PB0(X*>K)0(Y" > K)~X* AND Y* (2.3.6)
For other genes, binding of either activator is sufficient. This resembles an OR gate:
(X5 Y)=BOX*">K ORY*> KJ)~X*ORY* (2.3.7)

Not all genes have Boolean-like input functions. For example, some genes display a
SUM input function, in which the inputs are additive (Kalir and Alon, 2004):

X, Y4 = B, X" + B, v (2.3.8)

Other functions are also possible. For example, a function with scveral plateans and
thresholds was found in the lac system of E. coli (Figure 2.5) (See color insert following
page 112). Genes in multi-cellular organisms often display input functions that can calcu-
late elaborate funciions of a dozen or more inputs (Yuh et al., 1998; Davidson et al., 2002:
Beer and Tavazoie, 2004).

The functional form of input functions can be readily changed by means of mutations
in the promoter of the regulated gene. For example, the lac input function of Figure 2.5
can be changed to resemble pure AND or OR gates with a few mutations in the fac pro-
moter (Mayo et al., 2006). It appears that the precise form of the input function of each
genc is under selection pressure during evolution,
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2.5.6 Intenim Summary

Transcription networks describe the transcription regulation of genes. Each node repre-
sents a gene.! Edges denoted X — Y mean that gene X encodes for a transcription factor
protein that binds the premoter of gene Y and modulates its rate of transcription, Thus,
the protein encoded by gene X changes the rate of production of the protein encoded by
gene Y. Protein Y, in turn, might be a transcription factor that changes the rate of produc-
tion of Z, and so o1, forming an interaction network. Most nodes in the network stand for
genes that encode proteins that are not transcription factors. These proteins carry out the
various functions of the cell.

The inputs to the network are signals that carry information from the environment
and change the activity of specific transcription factors.

The active transcription factors bind specific DNA sites in the promoters of their tar-
get genes to control the rate of transcription. This is quantitatively described by input
functions: the rate of production of gene product Y is a function of the concentration
of active transcription factor X* Genes regulated by multiple transcription factors have
multi-dimensjonal input functions. The input functions are often rather sharp and can be
approximated by Hill functions or logic gates.

Every edge and input [unction is under selection pressure. A nonuseful edge would
rapidly be lost by mutations. It only takes a change of one or a few DNA letters in the
binding site of X in the promoter of Y to abolish the edge X — V.

Now, we turn to the dynamics of the network.

2.4 DYNAMICS AND RESPONSE TIME OF SIMPLE GENE REGULATION

Let us focus on the dynamics of a single edge in the network. Consider a gene that is
regulated by a single regulator, with no additional inputs (or with all other inputs and
post-transceriptional modes of regulation held constant over time?). This transcription
interaction is described in the network by

X =Y

which reads “transcription factor X regulates gene Y.” Once X becomes activated by a sig-
nal, Y concentration begins to change. Let us calculate the dynamics of the concentration
of the gene product, the protein Y, and its response time.

In the absence of its input signal, X is inactive and Y is not produced (Figure 2.2b).
When the signal S, appears, X rapidly transits to its active form X* and binds the pro-
moter of gene Y. Gene Y begins to be transcribed, and the mRNA is translated, resulting

"In bactleria, each node represents an operon: a set of one or more genes that are transcribed on the same mRNA.
Anedpe X Y means that one of the genes in operen X encodes a transcription facter that regulates operon Y.

* Proteins are potentially regulated in every step af their synthesis process, including the following post-transcrip-
tional regulation interactions: (1) rate of degradation of the mRNA, (2) rate of translation, controlled primarily by
sequences in the mRNA that bind the ribosemes and by mRNA-binding regulatory proteins and regulatory RNA
molecules and {(3) rate of active and specific protein degradation. In cukaryotes, regulation also vccurs on the level
of mRNA splicing and transport in the cel, Many other modes ol regulation are possible.
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in accumulation of protein Y. The cell produces protein Y at a constant rale, which we will
denate § (units of concentration per unit time).

The production of Y is balanced by two processes, protein degradation (its specific
destruction by specialized proteins in the cell) and dilutien (the reduction in concentra-
tion due to the increase of cell volume during growth). The degradation rate is a,,, and
the dilution rate is a,, giving a total degradation/dilution rate (in units of 1/time) of

O = Qg+ Ageg (2.4.1}

The change in the concentration of Y is due to the difference between its production
and degradation/dilution, as described by a dynamic cquation®:

dy/dt=B-a¥ (2.4.2)

At steady state, Y reaches a constant concentration Y,,. The steady-state concentration
can be found by solving for dY/dt = 0. This shows that the steady-state concentration is
the ratio of the production and degradation/dilution rates:

Y, = Pla (2.4.3)

This makes sense: the higher the production rate B, the higher the protein concentration
reached, Y,,. The higher the degradation/dilution rate a, the lower is Y.

What happens if we now take away the input signal, so that production of Y stops PB=
03 The solution of Equation 2.4.2 with B = 0 is an exponential decay of Y concentration
(Figure 2.6a):

Yit) = Y, e (2.4.4)

How fast does Y decay? An important measure for the speed at which Y levels change
is the response time. The response time, T, is generally defined as the time 1o reach
halfway between the initial and final levels in a dynamic process. For the decay process
of Equation 2.4.4, the response time is the time to reach halfway down from the initial
level Y,, to the final level, Y = 0. The response time, therefore, is given by solving for the
time when Y(t) = Y,/2, which, using Equation 2.4.4, shows an inverse dependence on the
degradation/dilution rate:

T, = log(2)a (2.4.5)

' This dynamic equation has been used since the cazly days of molecular biology (for example, Monod et al , 1952).
It gives cxcellent agreement with high-resolution dynamics experiments done under conditions of protein activa-
tion during exponential growth of bacteria {Rosenfeld et al., 2002; Rosenfeld and Alon, 2003). Note that in the
present treatment we assume that the concentration of the regulator, active X, is constant throughout, so that B=
{X*) is constant, Furthermore, the time for transcription and translation of the protein is neglected because it is
small compared o the response time of the protein-level dynamics (Table 2.2).
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IGURE 2.6 (2) Decay of protein concentration following a sudden drop in production rate. The response
time, the time it takes the concentration to reach half of its variation, is T, = log(2)fa. The respanse time can
he found graphically by the time when the curve crosses the horizantal dashed line placed halfway between
the initial point and the steady-state point of the dynamics, (b) Rise in protein concentration following a
sudden increase in prodiction rate. The response time, the time it takes the dynamics to reach half of its
variation, is T, = log(2)/a. At early times, the protein accumulation is approximately linear with time, Y =
it (dotted ling).

Note that the degradation/dilution rate a directly determines the response time: fast
degradation/dilution allows rapid changes in concentration. The production rate [§ affects
the steady-state level but not the response time.

Some proteins show rapid degradation rates (large a). At steady-state, this leads to a
scemingly futile cycle of production and destruction. To maintain a given steady-state, Y,,
= Pfa, requires high production B to balance the high degradation rate a. ‘The benefit of
such futile cycles is fast response times once a change is needed.

We have scen that loss of input signal leads to an exponential decay of Y, Let us
now consider the opposite case, in which an unstimulated cell with ¥ = 0 is provided
with a signal, so that protein Y begins to accumulate. If an unstimulated gene becomes
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suddenly stimulated by a strong signal S,, the dynamic equation, Equation 2.4.2, results in
an approach to steady state (Figure 2.6b):

YO =Y, (1-ean (2.4.6)

The concentration of Y rises from zero and gradually converges on the steady-state Y,,
= Pla. Note that at early times, when a t << 1, we can use a Taylor expansion’ to find a
lincar accumulation of ¥:

Y~ Bt carly iimes, at << | (2.4.7)

This makes sense: the concentration of protein Y accumulates at early times with a
slope equal to its production rate. Later, as Y levels increase, the degradation term -aY
begins to be important and Y converges to its steady-state level,

The response time, the time to reach Y, /2, can be found by solving for the time when
Y(1) = Y,/2. Using Equation 2.4.6, we find the same response time as in the case of decay:

T, = log(2)/a (2.4.8)

The response time for both increase and decrease in protein levels is the same and is
governed anly by the degradation/dilution rate. The larger the degradation/dilution rate
a, the more rapid the changes in concentration.

241 The Response Time of Stable Proteins Is One Cell Generation

Many proteins are not actively degraded in growing cells (@40 = 0). These are termed stable
proteins. The production of stable proteins is balanced by dilution due to the increasing
valume of the growing cell, a = a,. For such stable proteins, the response time is equal to
one cell generation time. To see this, imagine that a cell produces a protein, and then sud-
denly production stops ( = 0). The cell grows and, when it doubles its volume, splits into
two cells, Thus, after one cell generation time 7, the protein concentration has decreased
by 50%, and therefore:
Ty, = log{2ay, =1 response time is one cell generation  (2.4.9)
‘This is an interesting result. Bacterial cell generation times are on the order of 30 min
to a few hours, and eukaryotic generation times are even longer. One would expect that
transcription networks that are made to react to signals such as nutrients and stresses
should respond at least as rapidly as the cell generation time. But for stable proteins, the
response time, as we saw, is onc ccll generation time, Thus, response time can be a limiting

Jactor that poses a constraint for designing efficient gene circuits.

—_—
'Usinge *'~ 1 - a1, and Yy = Ba.
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In summary, we have seen that the response time of simple gene regulation is deter-
mined by the degradation and dilution rates of the protein product. In the next chapter,
we will discuss simple transcriptional circuits that can help speed the response time.
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FXERCISES
2.1. A change in production rate. A gene Y with simple regulation is produced at a con-
stant rate 3,. The production rate suddenly shifts to a different rate j,.

a. Calculate and plot the gene product concentration Y(t).

b. What is the response time (time to reach halfway between the steady statesy?
Solution (for part a):

a. Let us mark the time when the shift occurs as t = 0, Before the shift, Y reaches

steady state at a level Y{t = 0) = Y, = B,/a. After the shift,

dy/dt=P,-aY (P2.1)

The solution of such an equation is generally Y = C, + C, e**, where the constants
C, and C, need to be determined so that Y(t = 0} = B,/a, and Y at long times
reaches its new steady state, Py/a. This yields the following sum of an exponential
and a constant:
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Y(t) = Byfa + (Byla - Bla) et (P2.2)

Take the derivative with respect to time, dY/dt, and verify that Equation P2.1 is
fulfilled.

2.2. mRNA dynamics. In the main text, we considered the activation of transcription
of a gene (MRNA production) and used a dynamical equation to describe the
changes in the concentration of the gene product, the protein Y. In this equation,
dY/dt = P - a Y, the parameter [} describes the rate of protein production. In reality,
mRNA needs to be transtated to form the protein, and mRNA itself is also degraded
by specific enzymes.

a. Derive dynamical equations for the rate of change of mRNA and the rate of
change of the protein product, assuming that mRNA is produced at rate B,, and
degraded at rate a,,, and that each mRNA produces on average p protein mol-
ecules over its lifetime. The protein is degraded/diluted at rate a.

b. Note that mRNA is often degraded at a much faster rate than the protein product
a,, >> . Can this be used to form a quasi-steady-state assumption that mRNA
levels are at steady state with respect to slower processes? What is the effective
protein production rate (} in terms of B, a,,, and p? What would be the response
time if the mRNA lifetime were much longer than the protein lifetime?

Solution:

a. ‘The dynamic equation for the concentration of mRNA of gene Y, ¥, is:

deIdt = B:n -y Yln (1,23)
The dynamical equation for the protein product is due to production of p copies
per mRNA and degradation/dilution at rate a:

dY/idt=pY, ~a¥ (P2.4)

b. In the typical case that mRNA degradation is faster than the degradation/dilu-
tion of the protein product, we can assume that ¥, reaches steady state quickly
in comparison to the protein levels. The reason is that the typical time for the
mRNA to reach steady state is the response time log(2)/a,,, which is much shorter
than the protein response time log{2)/a because a,, >> a. The steady-state mRNA
level is found by setting d¥,,/dt = 0 in Equation P2.3, yielding

Ym,\l = Bm/um (PZS)

Using this for Y,, in Equation P2.4 yiclds the following equation for the protein
production rate:

dy/dt = p Bja, -a¥ (P2.6)
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In other words, the effective protein production rate, which is the first term on
the right-hand side of the equation, is equal to the steady-state mRNA level times
the number of proteins translated from cach mRNA:

B=pB.ja, (P2.7)

Time-dependent production and decay. A gene Y with simple regulation has a time-
dependent production rate (1) and a time-dependent degradation rate aft). Solve
for its concentration as a function of time.

Solution:

2.4,

2.6.

Verify by taking the time derivative that the following is correct:

Yt} = exp(-falt') dt) [Y(0) + [B(t') exp(Ja(t”y dt”) dt'] (P2.8)

Cascades. Consider a cascade of three activators, X > Y - Z. Protein X is initially
present in the cell in its inactive from. The input signal of X, S, appears at time
t = 0. As a result, X rapidly becomes active and binds the promoter of gene Y, so
that protein Y starts to be produced at rate B. When Y levels exceed a threshold K,
gene 7 begins to be transcribed. All proteins have the same degradation/dilution
rate a. What is the concentration of protein Z as a function of time? What is its
response time with respect to the time of addition of §,2 What about a cascade of
three repressors? Compare your solution to the experiments shown in Ligure 2.7.

Fan-out. Transcription factor X regulates two genes, Y, and Y,. Draw the resulting
network, termed a fan-out with two target gencs. The activation thresholds for these
genes are K, and K,. The activator X begins to be produced at time t = 0 at rate B. Its
signal is degraded/diluted at rate a, and its signal §, is present throughout. What are
the times at which the gene products, the stable proteins Y, and Y,, reach halfway to
their maximal expression?

Pulse of activation: Consider the cascade of exercise 2.4, The input signal $_ appears at
time (=0 for a pulse of duration D, and then vanishes.

(a) What is the concentration Y(t)?

{b) What is the minimal pulse duration needed for the activation of gene 27

(c) Plot the mnaximal level reached by the protein Z as a function of pulse duration D.
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FIGURE 2.7 (a) A transcriptional cascade made of repressors in £, coli. The transcription cascade (X 4 Y 4
Z) is wade of two well-studied repressors, Lacl and TetR, both of which have nepligible degradation rates in
E. coli. The cascade was built using genetic engincering, by combining the appropriste promoter DNA frag-
ments to the appropriate genes. TetR was made to also repress the green fluorescent protein gene, acting as
areporter for the sccond cascade step. The bacteria thus turn green in propottion to the promoter activity
regulated by TetR, In a separate E. cofi strain prepared for this experiment, Lacl represses a green fluores-
cent protein gene, acting as a reporter for the first cascade step, (b) Response time is about one cell genera-
tion per cascade step. The first step in the cascade rises in response to the inducer IPTG that inactivates the
repressor Lacl. This inactivation leads to the production of the repressor Tet[ that, when present at sufficient
amounts, causes a decrease in the activity of the second-step promoter. The experiment was carried out at
two temperatures, which show different cell generation times (the generation time is about two-fold longer
at 27°C compared to 36°C). The x-axis shows time in units of the cell generation time in each condition,
(From Rosenfcld and Alon, 2003.)



CHAPTER 3

Autoregulation: A Network Motif

31 INTRODUCTION

In the previous chapter we learned the basic dynamics of a single interaction in a tran-
scription network. Now, let us take a look at a real, live transcription network made of
many interaction edges (Figure 3.1). As an example, we will usc a network of transcription
interactions of Escherichia coli that includes about 20% of the organism’s genes (Shen-Orr
et al., 2002).

This network looks very complex. Our goal will be to define understandable patterns of
connections that serve as building blocks of the network. Ideally, we would like to under-
stand the dynamics of the entire network based on the dynamics of the individual build-
ing blocks. In this chapter, we will:

1. Define a way to detect building-block patterns in complex networks, called net-
work motifs,

2. Examine the simplest network motif in transcription networks, negative
autorcgulation.

3. Show that this matif has useful functions: speeding up the response time of tran-
scription interactions and stabilizing them.

3.2 PATTERNS, RANDOMIZED NETWORKS, AND NETWORK MOTIFS

The transcription network of E. coli contains numerous patterns of nodes and edges. Our
approach will be to lock for meaningful patterns on the basis of statistical significance.
To define statistical significance, we compare the netwark to an ensemble of randomized
networks. The randomized networks are networks with the same characteristics as the
real network, (e.g., the same number of nodes and edges as the real network), but where
the connections between nodes and edges are made at random. Patterns that occur in the
real nctwork significantly more often than in randomized networks are called network
motifs (Milo et al., 2002; Shen-Orr et al,, 2002).
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FIGURE 31 Self-regulating genes in a network of transcription interactions in £ coli. Nodes that corre-
spond Lo genes that encode transcription factor proteins that regulate their own promoters (self-regulating
genes, represented by self-edges) are shown in black. This network, which we will use as an example in the
coming chapters, has about N = 420 nodes, E = 520 edges, and N, ;= 40 sel f-edges. (b) Example of a small
network and its randomized Erdos-Renyi version, with the same number of nodes and cdges.

‘The basic idea is that patterns that occur in the real network much more often than
in randomized networks must have been preserved over evolutionary timescales against
mutations that randomly change cdges. To appreciate this, note that edges are easily lost
in a transcription network. As previously mentioned, a mutation that changes a single
DNA letter in a promoter can abolish binding of a transcription factor and cause the loss
of an edge in the network.
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Such mutations can occur at a comparatively high rate, as can be appreciated by the fol-
lowing example. A single bacterium placed in 10 ml of liquid nutrient, grows and divides
to reach a saturating population of about 10" cells within less than a day. This population
therefore underwent 10" DNA replications. Since the mutation rate is about 10 ° per let-
ter per replication, the population will include, for each letter in the genome, 10 different
bacteria with a mutation in that letter. Thus, a change of any DNA letter can be reached
many times over very rapidly in bacterial populations. A similar rate of mutations per
generation per genome occurs in multi-ccllular organisms (for genome sizes and muta-
tion rates, see Table 2.1).

Similarly, new edges can be added to the network by mutations that generate a bind-
ing site for transcription factor X in the promoter region of gene Y. Such sites can be
generated, for example, by mutations or by events that duplicate or reposition pieces of
a genome, or that insert into the genome pieces of DNA from other cells (Shapiro, 1999).
Hence, edges in network motifs must be constantly selected in order to survive randomiza-
tion forces.

This suggests that if a network motif appears in a network much more often than in
randomized nctworks, it must have been selected buased on some advantage it gives to
the organism. If the motif did not offer a selective advantage, it would be washed out and
occur about as often as in randamized networks.

321 Detecting Network Motifs by Camparison to Randomized Networks

To detect network motifs, we need to compare the real network to an ensemble of ran-
domized netwarks. We will first consider the simplest ensemble of randomized networks,
introduced by Erdos and Renyi (Erdos and Renyi, 1959; Bollobas, 1985). This makes cal-
culations easy and gives the same qualitative answers as more claborate random network
models (this will be discussed in Chapter 4),

For a meaningful comparisen, the randomized networks should share the basic fea-
tures of the real network. The real transcription network has N nedes and E edges. To
compare it to the Erdos-Renyi (ER) model, one builds a random network with the same
number of nodes and edges. In the random network, defined by the ER modcl, directed
edges are assigned at random between pairs of nodes.

Since there are N nodes, there are N(N ~ 1)/2 possible pairs of nodes that can be con-
nected by an edge. Each edge can point in one of two directions, for a total of N(N - 1)
Possible places to put a directed edge between two nodes. In addition, an edge can begin
and ¢nd at the same node, forming a self-edge (total of N possible self-edges). The total
number of possible edges is therefore:

N(N-1)+N=N? (3.2.1)

[n the ER model, the E edges are placed at random in the N? possible positions, and
therefore each possible edge position is occupicd with probability p = E/N2. Figure 3.1b
compares a small network to a corresponding random ER network with the same number
of nodes and edges.

e e amad
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HIGURE 3.2 Simple regulation and negative autoregulation. (a) Gene X is simply regulated by A. (b) A gene
X that is negatively autpregulated; that is, it is repressed by its own gene product, the repressor X, The gene
is also simply regulated by A. Repressor X binds a site in its own promoter and thus acts to repress its own
transcription. The symbol -+ stands for repression. The repression threshold is K, defined as the concentra-
tion of X needed 1o repress the promaoter activity by 50%.

33 AUTOREGULATION: A NETWORK MOTIF

Now we can begin to compare features of the real E. coli transcription network with the
randomized networks. Let us start with self-cdges, edges that originate and end at the
samc node. The E. coli network that we use as an example has 40 self-edges (Figure 3.1a).
These self-edges correspond to transcription factors that regulate the transcription of
their own gencs.

Regulation of a gene by its own gene product is kriown as autogenous control, or auto-
regulation. Thirty-four of the autoregulatory proteins in the network are repressors that
repress their own transcription: negative autoregulation {Figure 3.2).

Is autoregulation significantly more frequent in the real network than at random? To
decide, we need to calculate the probability of having & self-edges in an ER random net-
wark, To form a self-cdge, an edge needs to choose its node of origin as its destination,
out of the N possible target nodes. This probability is thus:

Pue= I/N (3.3.1)

Since E edges are placed at random to form the random network, the probability of having
k self-edges is approximately binomial {throwing a coin E times and getting k heads):

p(k):(s)l)w\fk(]_ p-.ur)E»k (3.3.2}

‘The average number of seif-edges is equal to the number of edges E times the probabil-
ity that an edge is a self-edge (just as the expected number of heads is the namber of times
the coin is thrown multiplied by the probability of heads):

<Nt ~ E Par ~ E/N (3.3.3)

with a standard deviation that is approximately the square root of the mean (again, simi-
lar to a coin-tossing experiment with a small probability p_ for heads, which approxi-
mates a Poisson process):

Trand =~ V E/N. (334)

In the £, coli transcription network of Figure 3.1, the numbers of nodes and edges are
N =424 and E = 519. Thus, according to Equations 3.3.3 and 3.3.4, a corresponding ER
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network with the same N and E would be expected to have only about one self-edge, plus
ninus one:

o~ BN~ 1.2, g ~ V1.2~ LI (3.3.5)

In contrast, the real network has 40 self-edges, which exceeds the random networks by
many standard deviations. This significant difference in the number of self-edges can be
described by the number of standard deviations by which the real network exceeds the
random ensemble:

<N:c|f>

7== Nor 2 =< N >

[

(3.3.6)

rand

Self-edges show 7 ~ 32, which means they occur far more often than at random. Note
that 32 standard deviations mark a very high statistical significance.

Thus, self-edges, and in particular ncpatively autoregulated genes, are a network motif,
A network motif is a recurring pattern in the network that occurs far more often than at
random.

The next question is: Why is negative autoregulation a network motif? Doces it have a
useful function?

To answer this, we will compare a negatively autoregulated gene to a simply {non-auto)
regulated gene (Figure 3.2). Qur criterion for comparison will be the response time of the
system.

As we saw in the previous chapter, the response time of a simply regulated gene is gov-
erned by its degradation/dilution rate a:

Ty = log{2)a (3.3.7)

For stable proteins that are not appreciably degraded in the cell, the response time is
equal to the cell generation time. We will now see how the negative autoregulation net-
work motif can help speed up transcription responses,

3.4 NEGATIVE AUTOREGULATION SPEEDS THE
RESPONSE TIME OF GENE CIRCUITS!

Negative autoregulation occurs when a transcription factor X represses its own transcrip-
tion (Figure 3.2b). This self-repression occurs when X binds its own promoter to inhibit
production of mRNA. As a result, the higher the concentration of X, the jower its produc-
tion rate.

As we saw in the previous chapter, the dynamics of X are described by its production rate
f(X} and degradation/dilution rate:?

' See Savageau, 1974a; Rosenfeld ct al., 2002.

* To understand the dynamics of 2 negatively sutoregulated system, recall the separation of timescales in tran-
scription networks. The production rate of X is governed by the probability that X binds the promoter of its own
gene. ‘The binding and unbinding of X to the promoter rapidly reaches equilibrium (usually on the order of sec-
onds or less). The concentration of protein X, on the other hand, changes much more slowly, on the timescale of
tens of minutes, Therefore, it makes sense to describe the production rate by an input function, f{X), equal o the
mean promoter activity at a given level of X, averaged over many repressor binding-unbinding events (in other
words, this is a quasi-steady-state description of promoter activity).



dX/dt = f(X) ~a X (3.4.1)

where {{X} is a decreasing function of X. As mentioned in Chapter 2, a good approxima-
tion for many promoters is a decreasing Hill function {Figure 2.43:
fX) = B (3.4.2)
1+(X/K)
In this input function, when X is much smaller than the repression cocfficient K, the pro-
moter is free and the production rate reaches its maximal value, f. On the other hand,
when repressor X is at high concentration, no transcription occurs, f(X) ~ 0. Recall that
the repression coeflicient K has units of concentration and defines the concentration at
which X represses the promoter activity by 50%.

To solve the dynamics in the most intuitive way, let us use the logic approximation,
where production is zero if X > K, and production is maximal, namely, {(X) = B, when X is
smaller than K. This was described in Chapter 2.3.4 using the step function 0:

f(X) =P 0O (X <K) (3.4.3)

In exercise 3.1 we will also solve the dynaniics with a Hill function, to find that the
logic approximation is reasonable.

To study the response time, consider the case where X is initially absent, and its produc-
tion starts at t = 0. At carly limes, while X concentration is low, the promoter is unrepressed
and production is full steam at rate [3, as described by the production-degradation equalion:

dX/dt=f-aX while X < K (3.4.4)

‘This results in an approach to a high steady-state value, as described in Section 2.4 of
the previous chapter. At carly times, in fact, we can neglect degradation (a X << ) to find
linear accumulation of X with time (Equation 2.4.7);

X ~pt while X < Kand X << la (3.4.5)

[owever, production steps when X levels reach the self-repression threshold, X == K
(recall that production is zero when X exceeds K) (Figure 3.3). Small oscillations will
occur around X = K il there are any delays in the system. Delays may cause X to overshoot
beyond K slightly, but then production stops and X levels decline until they decrease below
K, upon which production starts again, etc. These oscillations are gencrally damped if
f(X) is not strictly a logic function, but rather a smoother function like a Hil! function.
Thus, X effectively locks into a steady-state level equal to the repression coefficient of its
OWH promoter:

X, =K (3.4.6)

'The resulting dynamics shows a rapid rise and a sudden saturation, as shown in Figure 3.3.
The response time, Ty, can be found by asking when X reaches half steady state
so that X(T,,,) = X,/2. For simplicily, let us calculate the response time using linear

SR

of - - T O T P T S
0 0l 02 03 04 05 006 07 08 09 1

Time ()

IMGURE 3.3 Dynamics of a negatively auloregulated gene product. Production starts at t - 0. Full line: nega-
tively autoregulated gene with maximal production rate [§ = 5, autorepression threshokl K = 1, and degrada-
tion/dilution rate o = 1. Dashed line: Dynamics of the same gene if autoregulation is removed, resulting in
simple regulation that approeaches a higher, unrepressed steady state, X = Bloc= 5.

accumulation' of X (Equation 3.4.5), in which X = 3 t. The response time T, where
n.a.r stands for negative autoregulation, is given by finding the time when X reaches half
of the steady-state level, T, = X /2 = K/2, 50 that:

K . N .
T, e = = response lime for negative autoregulation  (3.4.7)

'The stronger the maximal unrepressed promoter activity 3, the shorter the response
time. Negative autoregulation can therefore use a strong promoter to give an initial fast
production, and then use autorepression to stop production at the desired steady state.

Note that evolutionary selection can easily tunc the parameters B and K independently.
The repression thresheld K can be modified, for example, by mutations in the binding site
of X in the promoter, whercas [} can be tuncd by mutations in the binding site of RNAp
in the promoter. Thus, the steady state {X,, = K) and the response time can in principle be
separately determined.

Let us compare this design with a simply regulated gene (a gene without negative auto-
regulation, as described in Section 2.4), which is produced at rate f,,,. and degraded at
rate a,, ... To make a meaningful comparison, we must compare the two designs with
the same steady-state levels. This is because the steady-state level of the protein is usually
important for its optimal function. In addition, the designs should have as many of the
same biochemical parameters as possible. In the present case, the two designs will have
the same protein degradation/dilution rate a = Ayl SUCh a comparison that is carried
out with equivalence of as many internal and external parameters as possible between the
alternative designs is termed a mathematically controlled comparison (Savageau, 1976).

HThis is a goed approximation for strong autorepression, in which X, is much smaller than what it wouid be with-
Qutautorepression, X, - K << ifa.
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In simple gene regulation, the steady state is a balance of production and degradation,
X, = [’)‘,,,‘I‘,‘.Ia“mp,c (Lquation 2.4.3). In contrast, as we saw above, in the negative autoregu-
lation case, the steady state is equal to the repression threshold, X, = K (Equation 3.4.6).
We can tune K so that both designs reach the same steady-state expression level:

K = Bt/ @ ginpte mathematically controlled comparison  (3.4.8)

What is the response time of the two designs? 'Lhe response time of simple regulation
is governed by the degradation/dilution rate as described in Chapter 2, so that T,
= log{2¥a, 1. A much faster response can be achieved by the corresponding negative
autoregulated circuit by making f3 large, because the response time, T, = K/2[, is
inversely proportional to B. Using Equation 3.4.8, we find that the ratio of the response
times in the two designs can be made very small by making [3 large:

.l~”2(n..\.r‘)/’l‘lfzhimplc) - (Bm“phjﬁ)lz l()g(z) (349)

An example is shown in Figure 3.4, in which the response time of the negative autaregula-
tion design is about sevenfold faster than simple regulation.!

Qualitatively, the same type of speed-up is found when using the Hill input function
(solved exercise 3.1, Tigure 3.5). The accelerated response of a negative autoregulatory cir-
cuil compared to simple regulation was experimentally demonstrated using high-resolu-
tion dynamic gene expression measurements (Figure 3.6),

In summary, negative autorcgulation gets the best of both worlds: a strong promoter
can give rapid production, and a suitable repression coeflicient provides the desired steady
state. The same strong promoter on a simple-regulation circuit would reach a much higher
steady state, leading to undesirable overexpression of the gene product (Figure 3.3).

3.5 NEGATIVE AUTOREGULATION PROMOTES ROBUSTNESS
TO TLUCTUATIONS IN PRODUCTION RATE

In addition to speeding the response time, negative autoregulation confers a second
important berefit, ‘This benefit is increased robustness of the steady-state expression level
with respect to fluctuations in the production rate f. This property was experimentally
demonstrated using measurements of protein levels in individual cells (Becskei and Ser-
rano, 2000).

'The production rate of a given gene, B3, fluctuates over time due to overall fluctuations
in the metabolic capacity of the cell and its regulatory systems, and to stochastic effects in

the production of the protein (sce Appendix 1). Hence, twin cells usually show differences
in the production rates [§ of most proteins. These cell-cell differences are typically on the
order of a few percent to tens of percents. The differences can last over the entire genera-
tion time of the cells. Thus, a snapshot of several genetically identical cells grown under
identical conditions will generally show cell-cell differences in the expression of every

' There are timits (o the smallest response 1ime achievable, For example, response time eannet be sherter than
the time for transeription and translation of the gene preduct, delays that are not taken into account in the present
cyuations. Also. § cannot be arbitrasily laege — it is limites], for example, by the maxima! ribosomal eapacity to produce
proteins fsee Chapter 10),
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FIGURE 3.4 Dynamics of negatively autoregulated gene product (full line) and simply regulated gene prad-
uct {dashed line), which reach the same steady-state level and have equal degradation/dilution rates, a. The
response time is the time that the protein level reaches 50% of the steady state, denoted T, @*? and T,

Wmrle) for the negatively autoregulated (n.a.r) and simply regulated gene products, respectively. The param-
eters B =5 =1, and f,;,,;, = 1 were used.

simpie
protein. On the other hand, parameters such as the repression threshold K vary much less
from ceil to cell, because they are specified by the strength of the chemical bonds between
X and its DNA binding site and the position and number of the X binding sites in the
promoter.

Simple gene regulation is affected quite strongly by fluctuations in production rate f3.
The steady-state level is linearly dependent on the production rate:

X, = Bfa (3.5.1)

and therefore a change in B lcads to a proportional change in X,

In contrast, negative autoregulation can buffer fluctuations in the production rate, In
the case of sharp autorepression that we have just discussed, the steady-state level depends
only on the repression threshold of X for its own promoter:

X, =K (3.5.2)

As mentioned above, the repression threshold K is determined by hardwired factors
such as the chemical bonds between X and its DNA site. Such parameters vary much
less from cell to cell than production rates. Therefore, negative autoregulation increases
the robustness of steady-state protein levels with respect to the most likely fluctuations,
hamely, fluctuations in production rate (see exercise 3.2 for more details).

Robustness of key properties of a biological system is a general design principle. Much
more will be said about robustness in Chapters 7 and 8.
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FIGUIRE 3% Dynamics of a negatively autoregulated gene, a simply regulated gene and a positively auto-
regulated gene. ‘The negatively and positively autoregulated genes have a Hill input function with Hill coeffi-
cient it = 1. Shown is protein concentration normalized by its steady-state value, X/X,,, following an increase
in production rate, Time is in cell generations, or for actively degraded proteins, log{2)/e, where o is the
protein degradation/dilution rate. ‘lhe response time is found by the intersect of the dynamics with a hori-
zontal line at X/X,=0.5.
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FIGURT 3.6 Experiment on negatively autoregulated and simply regulated genes. ‘The experiment used
green fluorescent protein fused to the TetR repressor as a reporter and automated fluorescence measure-
ments en growing E. coli cells, Protein concentration was normalized 1o its steady-state level. Shown also are
the analytical solutions for a simply autoregulated gene and for a negatively autoregulated gene with a Hill
input function with n = 1 in the limit of strong autorepression (thin lines). (From Rosenfeld et al., 2002.)
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350 Positive Autoregulation Slows Responses and Can Tead 1o Bi-Stabilily

Some transcription factors show positive autoregulation, in which they activate their own
transcription. This occurs, for example, in about 10% of the known transcription factors
in £. coli, Exercise 3.4 shows that positive autoregulation slows the response time relative
to simple regulation (Figure 3.5). The dynamics are initially slow, but as the levels of X
build up, its production rate increases due to the positive autoregulstion loop. This resuits
in a concave curve that reaches 50% of its steady-state value at a delay relative to simple
regulation.

‘Thus, positive autorcgulation has an effect that is epposite 10 that of negative autoregu-
lation, The fermer slows response times, whereas the latter speeds response times. The
slow dynamics provided by positive autoregulation can be useful in processes that take a
relatively long time, such as developmental processes (see Chapter 6). Such slow processes
can benefit from prolonged delays between the production of proteins responsible for dif-
ferent stages of the process.

In addition, when the rate of positive autoregulation is strong compared to the deg-
radation/dilution rate, the system can become bi-stable {exercise 3.4). Once the gene is
aclivated, it is locked into a state of high expression and keeps itself ON, even after the
original activation input has vanished (Carrier and Keasling, 1999; Demongeot ct al.,
2000; Becskei et al., 2001; Ferrell, 2002; and Isaacs et al., 2003). This type of memory cir-
cuit is used in developmental transcription networks to make irreversible decisions that
lock a cell into a particular fate (c.g., to determine the type of tissue the cell will become
in a multi-celiular organism; see Chapter 6).

36 SUMMARY ST

Negative autoregulation is a network motif, a pattern that recurs throughout the network
at numbers much higher than expected in random networks.

To understand why negative autoregulation is a network aotif, we analyzed its dynamic
behavior. The dynamic analysis can be phrased as an engineering story, Think of evolution
as an engineer working to design a gene circuit thal would reach a desired steady-state
concentration X,. One possible design, design A, is simple regulation with a production
rate sct to reach X, Design B is negative autoregulation, with a stronger initial produc-
tion rate, which, as X builds up, is suppressed to result in the desired steady-state,

The second design has the advantage that the goal, X, is reached faster. Furthermore, the
fluctuations around X, due 1o variations in production rate are reduced in the second, auto-
regulated design. In an imaginary competition between two specics, identical except that
one uses circuit A and the second uses circuit B, the latter would have a sclective advantage.

Over evolutionary limes, struclures that have cngineering advantages would tend to be
selected and appear as network miotifs.
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IXERCISES

3.1 Autorepression with Hill input function. What is the response time for a repressor

that cooperatively represses its own promoter {described by a Hill function with
Hill coefficient n)?

dXsdt = B/ + (XIK)) -a X (P3.1)

How much faster is the response than in non-autoregulated circuits? Use the
approximation of strong autorepression, that is, (X/K)* >> 1.

Solution:

In the limit of strong autorepression, we can neglect the 1 in the denominator of the
input function as soon as (X/K)" >> 1, and we have':

dX/dt =B K /X" -aX (P3.2)

To sulve this equation, multiply both sides by X" and switch 1o the new variable, u =
X' Note that du/dt = (n + 1) X*dX/dt. The equation now reads:

dufdt={n+ 1)PK'-(n+Dau (P3.3)

The solution of this linear equation is simple exponential convergence to steady
state, the same as in Chapter 2:

=, (1—e e Ner) (P3.4)

Switching back o the original variable X, we have:

X = X?‘T (] —p-n+ 1) nt)ll(ml) (p3_5)

The response time is found by X(T,,,) = X, /2. This yields:

' When is this approximation valid? Note thal the steady state is, according to Equation P32, X, = K (Bl Kymen
‘Thus, when the unrepressed steady state is nruch larger than the repression coefficient, that is, v:hcn Bra>> X, wc.
have X, >> K. ‘This means that ta deseribe the dynamics that occur when X exceeds K and begins to approach its
steady stale, we can neglect the 1 in the denominator of the input function,

AT UURECUIOU LA TINAIN,G A INL L ¥V v v - >
Tuz: [(n + 1) Cl] 1 log(zmll[zml - 1]) (p3_6)

The response time decreases with n. For n = 1, 2, 3, the ratio of T, to the response
time of simply regulated genes (T, ,#""P'9 = log(2)/a) is about T\, -0 T b = 0,2,
0.06, and 0.02, respectively. See Figure 3.5 for the dynamics of a strongly autoregu-
lated gene with n = 1. The sharper the negative autoregulation (higher n}, the more
the system approaches the sharp logic function limit discussed in this chapter, and
the faster it responds.

3.2, Parameter sensitivity. Analyze the robustness of the steady-state level of X with
. respect to cell-cell variations in the production rate 3 for the system of problem
3.1. Calculate the parameter sensitivity coefficient {Savageau, 1976; Goldbeter and
Koshland, 1981; Heinrich and Schuster, 1996) of the steadly-state concentration with
respect to 1. The parameter sensitivity coefficient of property A with respect to
parameter B, denoted S(A, B), is defined as the relative change in A for a given small
rclative change in B, that is, S:

S(A, B) = (AA/AY(AB/B) = (B/A) dA/dD (P3.7)

Solution:

The steady-state level is found from Equation P3.2 using dX/dt = 0, yielding:

X, =K (Bl K)nen (P3.8}

The parameter sensitivity, which describes relative changes in steady state due to
changes in production rate, is:

S(X, BY = (B/X,) dX,/dB = 1(n + 1) (P3.9)

Thus, sensitivity decreases with Hill coefficient n. The higher n is, the weaker the
dependence of the steady state on f3. In other words, robustness to variations in pro-
duction rates increases with the Hill coefhcient.

For Hilt coefficient n = 4, for example, S(X,, ) = 1/5, which means that a 10%
change in B yields only a 2% change in X,,. In the limit of very high n, the steady-
state does not depend at all on production or degradation rates, X,,= K. This is the
steady-state solution found in the main text for the logic input function. Simple reg-
ulation is equivalent to n = 0, so that S(X*, ) = 1. This means that a small change of
x% in production leads to the same change of x% in steady-state.

3.3, Autoregulated cascade. Gene X encodes a repressor that represses gene Y, which also
encodes a repressor. Both X and Y negatively regulate their own promoters.

4. Attime t = 0, X begins to be produced at rate 3, starting from an initial con-
centration of X = 0. What are the dynamics of X and ¥? What are the response
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times of X and ¥? Assume logic input functions, with repression thresholds 1,
K,, for the action of X on its own promoter and on the Y promoter, and K, for
the action of Y on its own promoter.

b. At timet = 0, production of X stops after a long period of production, and X con-
centration decays (rom its initial steady-state level. What are the dynamics of X
and Y? What arc the response limes of X and Y?

Positive feedback. What is the effect of positive autorcgulation on the response time?
Use as a model the following lincar equation:

dX/de =B+ B, X - a X

with 3, < . Explain each term and solve for the responsc time. When might such a
design be biologically useful? What happens when §, > o?

Turning off aute-regulation. What is the dynamics of a negatively auto-regulation
gene once its maximal promoter activity is suddenly reduced from B, to B, = 0?
What is the response time, and how does it compare to simple regulation?

Two-node positive feedback for decision making During development from an egg to
an embryo, cells need to make irreversible decisions to express the gencs appropri-
ate to their designated tissuc types and repress other genes, Qne common mecha-
nism is positive transcriptional feedback between two genes. There are two types of
positive feedback made of two transcription factors. The first type is of two positive
interactions X - Y and Y — X. The second type has two negative interactions X
= Yand Y -+ X. What are the stable steady statcs in cach type of feedback? Which
type of feedback would be useful in situations where genes regulated by both X and
Y belong te the same tissue? Which would be useful when genes regulated by X
beleng to different tissues than the genes regulated by Y?

CHAPTER 4

The Feed-Forward Loop
Network Motif

41 INTRODUCTION
In this chapter, we will continue to discover network motifs in transcription networks
and discuss their function. The main point is that out of the many possible patterns that
could appear in the network, only a few are found significantly and are network motifs.

The network motifs have defined information processing functions. The benefit of these
functions may explain why the same network motifs are rediscovered by evolution again
and again in diverse systems,

To find significant patterns, we will first calculate the number of appearances of dif-
ferent patterns in real and random networks. We will focus in this chapter on patterns
with three nodes (such as triangles). There are 13 possible three-node patterns (Figure
4.1). Patterns with two nodes and palterns with more than three nodes will be discussed
in the next chapters. We will see that of the 13 possible three-node patterns, only one, the
feed-forward loop (EFL), is a network motif.

To understand the possible functions of the feed-forward loop, we need to understand
the regulation deseribed by cach of its three edges. Each of these edges can be an activa-
tion or 4 repression interaction. There are therefore eight possible IFL types, We will see
that of the eight possible types of FFLs, only two appear in large numbers in transcription
networks. We will analyze the dynamical functions of these circuits. We will see that the
common types of FFLs can carry out interesting functions such as the filtering of noisy
input signals, pulse generation, and response acceleration.

After discussing the common FFL types, we will ask why the other six types of IFLs
occur much more rarely. Asking why will lead us to consider functional differences in the
“ommon and rare FEL types. Finally, we will discuss the evolution of the FFLs.

D s T ppu—
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Leed-forward loop 3-node feedback [oop (cycle}

(a}

(b}
FIGURT 4.1 (2) The feed-forward loop and the feedback loop, two examples of subgraphs with three nodes.

(b) The 13 connected three-node dirccted subgraphs. The feed-forward loop is subgraph 5, and the feedback
loop is subgraph 9.

4.2 THLE NUMBER OF APPFARANCES OF A SUBGRAIPH
IN RANDOM NETWORKS

In the previous chapter we discussed the simplest network motif, self-regulation, a pat-
tern that had one node. Let us now consider larger patterns of nodes and edges. Such
patterns are also called subgraphs. Two examples of three-node subgraphs are shown in
lligure 4.1a: the three-node feedback loop and the three-node feed-forward loop. In total
there are 13 possible ways lo connect three nodes with directed edges, shown in Figure
4.1b, ‘There are 199 possible directed four-node subgraphs (Figure 5.5), 9364 five-node
subgraphs, etc,

To {ind which of these subgraphs are significant, we need to compare the subgraphs in
the real network to those in randomized networks. The rest of this section is for readers
interested in mathematical analysis of random networks. Other readers can safely skip to
Section 4.3.

We begin by calculating the number of times that a given subgraph G appears in a ran-
dom Erdos-Renyi (ER) network (ER networks were defined in Section 3.2). The subgraph
G that we are interested in has n nodes and g edges. The feed-forward loop, for example,
has n = 3 nodes and g = 3 edges (Figure 4.1a). Other three-node ratterns have between
two and six edges (Figure 4.1b). Recail that in the ER random network model, E edges are
placed randomly between N nodes (Section 3.2). Since there are N? possible places to put
a directed edge (Equation 3.2.1), the probability of an edge in a given direction between a
given pair of nodes is:

THE FLED-FORWARD LOOP NETWORK MOTIF o 43

p = E/N? (4.2,1)

It is important to note that most biclogical networks are sparse, which is to say that
only a tiny fraction of the possible edges actually occur. Sparse networks are defined
by p << 1. For example, in the Escherichia coli network we use as an example, there are
about 400 nodes and 500 edges, so that p ~ 0.002. One reason that biological networks are
sparse is that each interaction in the network is selected by evolution against mutations
that would rapidly abolish the interaction. Thus, only useful interactions are maintained.

We want to calculate the mean number of times that subgraph G occurs in the ran-
dom network. To generate an instance of subgraph G in the random network, we need to
choose n nodes and place g edges in the proper places. ‘Thus, the average number of occur-
rences of subgraph G in the network, denoted <N>, is approximately equal to the num-
ber of ways of choosing a set of n nodes out of N: about N for large networks (because
there are N ways of choosing the first node, times N - 1 = N ways of choosing the sccond
node, ctc.), multiplied by the probability to get the g edges in the appropriate places {each
with probability p):

(N“> =~ q! N“plﬂ 4.2.2)

where a is a number that includes combinatorial factors related to the structure and sym-
metry of each subgraph,' equal, for example, to a = 1 for the [FL and a = 3 for the three-
node feedback loop.

Let us now recast this equation in terms of the mean connectivity of the network,
defined as the average number of edges per node:

A =E/N mean connectivity  {4.2.3)

In terms of the mean connectivity, we find, using p = A/N {from Equation 4.2.1}, a simple
equation in which the higher the mean connectivity of the network A, the higher the mean
number of appearances of subgraph G:

<NG> R Y NIEY {(1.2.4)

Hence, densely connected networks with high A have, in general, more subgraphs than
Sparse ones.

We will now see that many patterns G are very rare in random networks, in the sense
that they occur in vanishingly small numbers in large random networks. If any of these
Patterns occur in the real biological network, they are likely to be network motifs. To see
this, let us ask how <Ng>, the number of times that subgraph G appears in Lhe network,

\__—_——%

! The factor a is the number of permutations of the n nodes in the subgraph G that gives an isomorphic subgraph.
s, dividing by a aveids overcounting of subgraphs. For example, in the three-node feedback loop, any of the

thre, Ppossible cyclic permutations of the nodes Jeaves the subgraph intact, and thus a = 3, [n the feed-forward

10(‘[’- A= 1, since there are no permutations of the nodes that make an isomorphic pattern. For more details, see

Uzkovitz ¢f al., 2003,

-

PP



44 m (CHAPTER 4

scales with the network size, N. Imagine a series of larger and larger random ER networks,
all with the same mean connectivity A, The dependence of <N > on network size N is
described by a scaling relation. This scaling relation describes the way that the number of
subgraphs in Equation 4.2.4 depends on the size of the network (ignoring prefactors):

<N~ N e (4.2.5)

‘The scaling relation tells us that the scaling of subgraph numbers in ER networks depends
only on the difference between the number of nodes and edges in the subgraph, n - g,

For example, V-shaped patterns, such as patlerns 1 and 2 in Figure 4.1b, have n = 3
nodes and g = 2 edges. Their number, therefore, grows lincarly with network size:

Ny gupea ~ NV E=N (4.2.6)

If we double the number of nodes and edges in the random netwaork, the number of V-
shaped subgraphs will also double, ‘These patterns are very common in random networks.
In contrast, the fully connected clique (the last pattern in Figure 4.1b) has six edges, g = 6,
but only three nodes, n = 3. This subgraph scales as N*#= N-, and therefore occurs very
rarely in large random networks.

Let us now consider the case of our two triangie-shaped patterns, the three-node feed-
back loop and feed-forward loop (Figure 4.1a). Both have three nodes, n = 3, and three
edges, g = 3, and so, using Equation 4.2,4 and the appropriate symmetry factors (a = 1 for
feed-forward and a = 3 for feedback loops), we find

<Npp > ~ AT N® (4.2.7)

<I\IJ]0-:)|'»> ~ 13 RJ NO (428)

This result is remarkable. 'The scaling of the number of these triangles with the network
size goes as N"8 = N° {n other words, the numbers of these triangle pailerns are constunt
in ER networks and do not increase with mefwork size.

The reason for the fact that triangle numbers do not depend on the size of the random
network is that the number of V-shaped pairs of edges in the network scales linearly with
network size N (Equation 4.2.6), but the probability that a V-shaped pattern will close te
form a triangle scales as 1/N (because an edge that emerges from a node at one arm of the
V and closes it into a triangle by pointing to the node at the other arm needs to choose the
one target node out of N possibilities). This yields a tatal of N-I/N = N? triangles. This

IABLE -1 1 Number of Feed-Forward Loops and Feedback Loaps with Three Nodes in the Iranscription
Network of £ coli Used as an Example in this Book, and in Randomized Networks

Feed-Forward Loop (FFL) Feedback Loop with 3 Nodes

I S R B R T N L R R PR I L T IIr -

Focoli 472 3]
ER rindom nets 1.7+ 1.3 (Z.=31) 0,608
Degree-preserving random nets Tx5 7.=1 0.2+0.06

The parameter 7, is the aumber of standard deviations that the real network excecds the sandomized networks, An
algorithm calied Mlinder, which generates randomized networks, counts subgraphs, and deteets netwark motils, can be
found at wwwv weizmann.ac iWMCB/UriAlon,

nieans that triangles and more complex patterns occur rarely in random networks. We
now turn back to the real transcription networks.

4.3 THE FEED-FORWARD [OOP 1S A NFTWORK MOTIP ‘
How do the numbers of patterns in transcription oetworks compare to the numbers
expected in random networks?

[n the £. colf transcription network that we use as an example in this book, there are
42 feed-forward loops and no feedback loops made of a cycle of three nodes (Table 4.1). In
contrast, in the corresponding randomized ER networks with the same mean connectiv-
ity A = 500/400 ~ 1.2, the mean number of feed-forward loops is only about 2 (Equation
4.2.7),

<Ny P = 1.22~ 1.7

rand

and the mean number of feedback loops is less than 1 (Equation 4.2.8),

<NieewvackZrand = 1.23/3 ~ 0.6

rand

‘lhe standard deviations of these numbers are generally the square roots of the means,

N, because in many cases the number of subgraphs follows a Poisson distribution in
ER random networks. The comparison between real and random networks is shown in
Table 4.1.

We see that the feed-forward loop (FFL) is a strong network motif. It occurs much
more often than at random. ls frequency is greater than its frequency in the ensemble
of randomized networks by more than 30 standard deviations. In contrast, the three-
node feedback loop is not a network motif (it is actually an anti-motif in many biological
networks).

In fact, in sensory transcription networks such as those of E. coli and yeast (Lee et al.,
2002; Milo et al., 2002), as well as higher organisms, fhe feed-forward loop is the only sig-
nificant network motif of the 13 possible three~node patterns. In this sense, these networks
are much simpler than they could have been. The same conclusions apply also when com-
paring transcription networks to more stringent ensembles of randomized networks that
more closely preserve the properties of the real network !

—_——
' One important property is the degree sequence of the network: the sumber of incoming and outgoing cdges
for cach node in the network (sce Appendix C). Real trauseriplion networks have several nades with many more
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HGURE L2 Feed-forward loops in the . coli transeription network. Black nades participate in FFLs.

‘the massive overabundance of feed-forward loops raises the question: Why are they
selected against randomizing forces? Do they perform a function that confers an advan-
tage to the organism?

To address this question, let us now analyze the structure and function of the feed-for-
ward loop network motif.

A4 THE STRUCTURE OF THE FEED-FORWARD
___LOOP GENL CIRCUIT

‘The feed-forward loop is composed of transcription factor X that regulates a second tran-
scription factor, Y, and both X and Y regulate gene Z (Figure 4.1a). Thus, the feed-forward
loop has two parallel regulation paths, a direct path from X to Z and an indirect path that
goes through Y. 'The direct path consists of a single edge, and the indirect path is a cas-
cade of two edges.

outgoing edges than the average node: these are global regulators that regulatc many genes in response to key
environmental stimuli. To inctude this property in the random network madel, one can compare the real network to
rundom networks that not onby preserve the total number of nodes N and edges E, but also preserve the number of
incoming and outgoing cdges for cach node in the network. Despite the fact that the degree sequence is the same,
the idemity of which transcription factor regulates which gene is randomized. These degree-preserving random
actworks can be generated on the computer by randemly switching pairs of edge, repeating the switching opera-
tion many times until the network is randomized, For a given real network, many thousands of different random-
ized degree-preserving networks can be readily generated. These randomized networks serve as a more s%ringﬁnt
random madel for compurison to the real networks. Degree-preserving random networks have more FFLs than ER
random networks (lzkovitz el al,, 2003), but vastly fewer FFLs than the real networks (Table 4.1, ‘The FEL is the
only significant three-node prtlern,

FIIE FREL-FURYWARLY LWL NETWIJKK MU DE L] 4/

Coherent FEL

Coherent type 1 Coherenttype2  Coherenttype 3 Coherent type 4

X X X X
¥ 1 f L
Y Y Y Y
{ { 1 1
- 7 7 A Z

Incaherent FFL

tncoherenttype | Incoherent type 2 Inceherent type 3 Incoherent type 4
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X X
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z z

BN -

1
Y
L
Z i -

FIGURF 4.3 The cight sign combinations (types) of feed-forward loops. Arrows denote activation and —
symbols denote repression.

Each of the threc edges in the FFL can correspond to activation {plus sign) or repres-
sion (minus sign). There are therefore 22 = 8 possible types of FFLs (Figure 4.3).

The eight FFL types can be classified into two groups: coherent and incoherent. This
grouping is based on comparing the sign of the direct path from X to Z to the sign of
the indirect path that goes through Y. In coherent FFLs, the indirect path has the same
overall sign as the direct path. The overall sign of a path is given by the multiplication of
the sign of each arrow on the path (so that two minus signs give an overall plus sign). For

example, in type-1 coherent FFLs, X activates Z, and also activates an activator of Z, so
that both paths arc positive.

In incoherent FFLs, the sign of the indirect path is oppaosite to that of the direct path.
For example, in the type-1 incoherent FFL, the direct path is positive and the indirect
path is negative. The two paths have antagonistic effects. Note that incoherent FFLs have
an odd number of minus edges (one or threc).

Not all the FFL types appear with equal frequency in transcription networks (Figure
4.4). The most abundant I'FL is the type-1 coherent FEL (C1-FFL), in which all three regu-
lations are positive (Mangan and Alon, 2003), The CI-FI'l, will be studied in detail in this
chapter. The second most abundant type of FFL across biological networks is the incoher-
ent type-1 FFL {I1-FFL) (Ma et al,, 2004; Mangan et al,, 2006), which we will also study in
detail. The six other FFL types seem to appear much less frequently than the C1-FFL and
the I1-FFL. Toward the end of the chapter, we will try to understand why the frequencies
of the FFL types are so different.

In addition to the signs on the edges, to understand the dynamics of the FFL we must
also know how the inputs from the two regulators X and Y are integrated at the promoter
of gene Z. That is, we need to know the input function of gene Z. We will consider two
biGIOgicalIy reasonable logic functions: ANT logic, in which both X and Y activities need
to be high in order to turn on Z expression, and OR logic, in which either X or Y is suffi-
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FIGURE 1.4 Relati ROV )
e \,m ~RLlau'\rc al?undanc.c of the eight FEL types in the transeription networks of yeast and 1. coll,
R . ]Yl [\)]:r? m?rkul Cand [ for coherent and incoherent. The E. colf network is based on the Ecocye and
egulonDB databases and has about twice as ma 505 S . :
al, 2006) many edges as in the network of Figure 2.3, (From Mangan et

cient. Thus, there are eight types of FFL sign combinations, each of which can appear with
at least two types of input functions (AND, OR). e

. Afltcr noting the signs and input functions, we need to consider the input signals to this
c1rcult: The transcription factors X and Y in the FFL usually respond to cxternal stimuli.
These inpul stimuli are represented by the input signals S, and §_ (Figure 4.5). In some
systems the signals are molecules that directly bind the transcripti()m factors ;nd in ;Rhcr
systems the signals are modifications of the transcription factor caused by.s‘igna[ trans-
T.lu.ction pathways activated by the external stimuli. 'The effect of the signals, which carry
information from the external world, usually operates on a much faster ti;neqculc 1113;1
the transeriptional interactions in the FFL. When S, appears, lranscription facltor X rap-
idly becomes active, X, binds to specific DNA sites in the promoters of genes Y and Z in
a manner of seconds, and changes the transcription rate so that the concentration ofrthc
protein Z changes on the timescale of minutes to hours.

o ¢ will nex’t discuss the dynamics of the proteins that make up the FFL as a function
0 time following a change in an external signal. We will begin with the most common
l'.FL type in whick all three interactions are positive (Figure 4.5). As for the input func-
tion of the / promaoter, we will first consider ANI logic. "This is the case in which both
activators X and Y need to bind the rof 7. i

promoter of Z in order to initiate t i
i he production of

@”
Qif)
,\NDJ

®)
an AND input function: transeription factor X activiles the gone

and Y jointly activate gene 7. The two input signals are 5, and
£ X and Y at the 7 promoter (an AND gate in this fgure)

FIGURT 4.5 The coherent type-1 FEL with
encoding transeription factor Y, and boeth X
§,. Aninput function integrates the effects o
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FIGURL 4.0 The molecular interactions in the coherent FFL of Figure 4.5, The tr:

X isactivated by signal 8§, which causes it to assumc the active conformation X*. Tt then binds its site

promoters of genes Y and 7. Asa resull, protein ¥ accumulates and, in the presence of its signal S, is active,

¥¥ When Y* concentration crosses the activation threshold, K., Y* binds the promater of gene Z. Protein Z

is produced when both X* and Y* bind the promater of gene Z {in the case of an AND input function).

anscription factor protcin
sinthe

c

45 DYNAMICS OF THE COPERENT TYPE) FFLWITH AND 10G

Suppose that the cell expresses NUMErOUs Copics of protein X, the lop transcription factor

it the FFL. The input 1o X is the signal §, (Figure 4.6). Without the signal, X is in its inac-
tive form. Now, at time t = 0, a strong signal S, triggers the activation of X. This is known
as a step-like stimulation of X. As a result, the transcription factor X rapidly transits to
its active form X*. The active protein X* binds the promoter of gene Y, initiating produc-
tion of protein Y, the second transcription factor in the FFL. In parallel, X* also binds the
promoter of gene Z. However, since the input function at the Z promoter is AND logic, X*

alone cannot activate Z production.

Production of Z requires binding of both X* and Y*. ‘lhis means that the concentra-
tion of Y must build up to sufficient levels to cross the activation threshold for gene 7.
This activation threshold is denoted K. In addition, Z activation requires that the second
input signal, $,» is present, so that Y is in its active form, Y* (Figure 4.6). Thus, once the



signal S, appears, Y needs accumulate in order to activate Z. This results in a delay in 7
production,

We will now mathematically describe the FFL dynamics, in order to see how a simple
mathematical model can be used to gain an intuitive understanding of the function of g
gene circuit. To describe the FFL, let us use logic input functions. Production of Y occurs at

rate i, when X* exceeds the activation threshold K, as described by the step function 6.
production rate of Y = BY 0(X* > K, (4.5.1)

When the signal S, appears, X rapidly shifts to its active conformation X*. If the signal
is strong enough, X* exceeds the activation threshold K,y and rapidly binds the Y pro.
moter to activate transcription. Thus, Y production begins shortly after S,. The accumula-
tion of Y is described by our now familiar dynamic equation with a term for production
and another term for degradation/dilution:

dY/de= [ 0 (X* > Kyl - qY (4.5.2)

The promoter of Z in our example is governed by an AND gate input function, Thus,
the production of Z can be described by a product of two step functions, each indicating
whether the appropriate regulator crossed the activation threshold:

production of Z=f,0 (X* > K_) 0 (Y* > K,.) (4.5.3}

Thus, the C1-FFL gene circuit has three activation thresholds {numbers on the arrows
in Figure 4.6). In the case of strong step-like stimulation, X* rapidly crosses the two
thresholds' K,y and K,,. The delay in the production of Z is due to the time it takes Y* to
accumulate and cross its threshold K,.. Only after Y* crosses the threshold can 7, produc-
tion proceed at rate f3,. The dynamics of Z are governed by a degradation/dilution term
and a production term with an AND input function:

7= B0 (X >K )0 (Y*>K ) -a,z (4.5.4)

We now have the equations needed to analyze the dynamics of the CI-FFL. We next
analyze its dynamics as a sign-sensitive delay element.

4.6 THE CI-FFLIS A SIGN-SENSITIVE DELAY ELEMENT -
To describe the dynamics of the CI-FFL, we will consider the response to steps of S, in
which the signal S, is first absent and then saturating 8, suddenly appears (ON steps). We
will also consider OFF steps, in which S, is at first present and is then suddenly removed,

For simplicity, we will assume throughout that the signal 5, is present, so that the tran-
scription {actor Y is in its aclive form:

"'The values of the thresholds K,, and K,

L can alivat the function of the FFL. for subsaturating S, signals {exercise
4.7).
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FIGURE .7 Diynamics of the coherent type-1 FFL with AND logic following an QN step of §, at 1.1'1?10 L= g
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46,1 Delay Following an ON Step of §
Following an ON step of §,, Y* begins to be praduced at rate B, Hence, as we saw 1r;
Chapter 2, the concentration of Y begins to exponentially converge to its steady-state leve

{Figure 4.7):
YY) =Y, (1 -co) (4.6.2)

Recall that the steady-state concentration of Y is equal to the ratio of its production

and degradation/dilution rates:

6.3
Ysl = BY"C[Y (4 )

What abeut Z? Production of Z is governed by an AND input .functilon. in wh:chy:r:z
input, X*, crosses its threshold as soon as S, is added. B‘ut one input 1'15 not e?(:::imss
activate an AND gate. The second input, Y*, takes some time to accumurate ar:.i( o
the activation threshold, K,,. Therefore, Z begins to be expr-essed only a terda e e:)); Secgn
ure 4.7). The delay, Toy, is the time needed for Y* to reach its th'rcsholld[.an f:lalx::i e
graphically as the time when the Y concentration crosses the horizontal line at heig »

The detay, Ty, can be found using Equation 4.6.2:

Y*(Top) = Y, (1 - e o lov) = K, (1.6.4)
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‘This equation can be solved for T, yielding:

Ton = Ma,log (111 - K,/Y,)] {(1.6.5)

This equation describes how the duration of the delay depends on the biochemical param-
eters of the protein Y (Figure 4.8a). These parameters are the lifetime of the protein, a,
and the ratio between Y, and the activation threshold K. ‘The delay can therefore be tuned
over evolutionary timescales by mutations that change these biochemical parameters.

Note that the defay Ty diverges when the activation threshold K., exceeds the steady-
state level of Y, because protein Y can never reach its threshold to activale Z. Recall that
Y, is prone to cell-cell fluctuations due to variations in protein production rates. Hence,
a robust design will have a threshold K, that is significantly lower than Y, to avoid these
fluctuations. In bacteria, K, is typically at least 3 to 10 times lower than Y, and typical
parameters give delays T,y that range {rom a few minutes to a few hours.

4.6.2 No Delay Folfowing an OFF Slep of 5,

We just saw that Z shows a delay lollowing ON steps of 5,. We now counsider OFF steps
of 8, in which §, is suddenly removed (Figure 4.81). Following an QFF step, X rapidly
becomes inactive and unbinds from the promoters of genes Y and Z. Recall that Z is gov-
erned by an AND gate that requires binding of both X* and Y*. It therefore only takes one
input to go off for the AN gate to stop 7 expression. Therefore, after an OFF step of §,, Z
praduction stops at once. There is no delay in Z dynamics aficr an OFF step.

4.0.3  The CI-FFL 1s a Sign-Sensitive Delay Flement

We saw that the C1-FFL with AND logic shows a delay following ON steps of 8. It does
not show a delay following OFF steps. This type of behavior is called sign-sensitive delay,
where sign-sensitive means that the delay depends on the sign of the step, ON or QFE

A sign-sensitive delay element can also be considered as a kind of asymmetric filter.
- For example, consider a pulse of §, that appears only bricfly (an ON pulse) (Figure 4.8¢).
An ON pulse that is shorter than the delay time, Ty, does not lead to any 7 expression in
the CL-FFL. ‘That is because Y docs not have time to accumulate and cross its activation
threshold during the pulse. Only persistent pulses (longer than Ty} result in 7 expres-
sion. Thus, this type of FFL is a persistence detector for ON pulses. On the other hand, it
responds immediately to OFF pulses. In contrast to the FEL, simple regulation (with no
FEL) does not filler out short input pulses, but rather shows production of Z that lasts as
long as the input pulse is present.

4.6.4  Sign-Sensitive Delay Can Protect against Briel Input Fluctuations
Why might sign-sensitive delay be useful?

For clues, we can turn to the uses of sign-sensitive defays in engineering. In engineer-
ing, sign-sensitive delay is commonly used in situations where the cost of an error is not
symmetric. A familiar example occurs in elevators: consider the beam of light used to
sense obstructions in the elevator door. If you obstruct the light with your hand, the
door apens. If you remove your hand for only a short pulse, nothing happens (that is, a
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FIGURE 4.8 () Delay in Z production in the CI-FEL as a Tunction of the biochemical paramelers of the
transeription factor Y. The delay Tgy. made dimensionicss by multiplying with the degradationfdilution rite
of Y, @, is shown as a functien of the ratio of the activatien threshold K, and 1he maximal (steady-stalc)
level of Y, denoted Y. (b) Dynamics of the C1-FFL following an OFF step of S at time t = 0. All produc-
tion and degradation rates are equal ta I, (¢) The coherent type-1 FFL with AND logic as a persistence
detector. A brief pulse of signal §, does not give Y cnough time to accumulate and cross its activation
threshald for 2. Hence, 7 is not expressed. A persistent pulse yields 7 production at a delay. 7 production
stops with no delay when S, is removed. (From Shen-Orr et al., 2002))

short pulse of light is filtered out). Only if you remove your hand for a persistent length
of time do the doors close (a persistent pulse of light leads 1o a responsc). Put your hand
back in and the doors open immediately, Again, the cost of an crror (doors closing or

Opening at the wrong time) is asymmetric: the design aims to respond quickly to a persen
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FIGURE 4.8 (continued)

in the beam and make sure that the person has moved away for a persistent period of time
before closing the doors. ‘The sign-sensitive delay serves a protective function.

In transcription netwarks, evolutionary selection may have placed the C1-FFL in diverse
systems in the cell that require such a protection function. Indeed, the environment of
cells is often highly fluctuating, and sometimes stimuli can be present for brief pulses that
should not elicit a response. The C1-FFL can ofter a filtering function that i advantageous
in these types of fluctuating environments. The conditions for the natural selection of the
FFL based on its filtering function are discussed in more detail in Chapter 10,

.05 Sign Sensitive Delay in the Arabinose System of F. colf

Our discussion of the function of the FFL has dealt with this gene circuit in isolation. In
reality, this network motif is always embedded within a network of additional interac-
tions. It is therefore crucial to perform experiments on the FFL within living cells, to see
whether it actually performs the expected dynamical functions.

Experiments have demonstrated that sign-sensitive delays are earried out by the CI1-
FI'Lin living cells. For example, dynamic behavior of an FFL was experimentally studied
in a well-characterized gene system in I coli, the system that allows the cells to grow on
the sugar arabinose. The arabinose system consists of proteins that transport the sugar
arabinose into the cell and break it down for use as an energy and carbon source. Arabi-
nose is only used by the cells when the sugar glucose is not present, because glucose is a
superior energy source and is used in preference to most other sugars. ‘Thus, the arabinose
system needs to make a decision based on two inputs: the sugars arabinose and glucose.
The proteins in this system are only made when the following condition is met by the sug-
ars in the environment of the cell: arabinose AND NOT glucose.

The absence of glucose is symbolized within the cell by the production of a small mol-
ecule called cAMP. To make its decision, the arabinose system has two transcription
aclivators, one called CRI” that senses cAMP, and the other called araC that senses arabi-
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FIGURT: 4.9 Experimental dynamics of the CI-TEL in the arabinose system of E. coli. 'the arabinose (ara)
system cencodes enzymes that utilize the sugar arabinose (graBAD) and transport it into the cell {aralFGH,
araE). The system is activated by the activator X = CRP (signal S, = cAMP, a malecule produced within the
cell upon glucose starvation) and in the presence of §, = arab:ncse by the activator Y = AraC, The input
function is an AND gate. As a contro] system with no H-l (simple regulation), the experiment used the lac
operan, in which same activator X = CRP regulates the lactose aperon, but X does not repulate ¥, = Lacl.
Dashed arrows: Rapid, non-transcriptional feedback loops in which the output gene products 1(&-Ll the sig-
nal {e.g., by transporting the sugar 8, into the cell and degrading it). (b) Dynamics of the promoter activity
of the ara and lae operons were momtorEd at high temporal resolution in growing cells by means of green
flourescent protein (GIP) expressed from the relevant promoter, in the presence of $,. The experiments fol-
lowed the dynamics after ON and OFT steps of 8,. Shown is GFP per cell normalized lu its maximal level. A
dflﬂy eccurs in the FFL after ON steps, but not after OFF steps. {Based oo Mangan ct al,, 2003.)

nose. These regulators are connected in a C1-FFL with an AND input function (Figure
4.%a). The input signals in this system are §, = cAMP and 5, = arabinose.

Experiments on this system used steps of S, and monitored the dynamics of the pro-
moter of the arabinose degradation genes that act as node Z in the FTL. A delay was found
after ON steps of 5, but not after OFF steps (Figure 4.9b). The delay in this FFL following
ON steps of §, is Ty ~ 20 min under the conditions of the experiment.

The observed delay in the arabinose FFL is on the same order of magnitude as the
duration of spurious pulses of the input signal §, in the environment of E. coli. "these
SPuricus pulses of S, occur when E. coli transits between different growth conditions.
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‘Ihus, the FFL in this system may have ‘learned’ the typical timescale of short fluctuations
in the input signal, and can filter them oul. 11 responds only to persistent stimuli, stich as
persistent periods of glucose starvation that require utilization of the sugar arabinose.

Note that the FFL in the arabinose system shows sign-sensitive delay despite the fact
that it is embedded in additional interactions, such as protein-level feedback loops' (Fig-
ure 4.9a). Thus, although the theory we have discussed concerns a three-gene FFL circuit
in isolation, the arsbinose FFL shows the expected dynamics alse when embedded within
the interaction networks of the eell.

A.0.6 0 The OR Gate CITEL Is a Sign=Sensitive Delay Tor OFF Steps of S,

What happens if the C1-I'FL has an OR gate at the Z promoter instead of an AND gate?
With an OR gate, Z is activated immediately upon an ON step of §,, because it only takes
one input to activate an OR gate. 'Thus, there is no delay following an ON step of §,. In
contrast, 7 is deactivated at a delay following an OFF step, because both inputs need to go
oft for the OR gate to be inactivated: Y* can activate Z even without X* and it takes time
for Y* to decay away after an OFF step of 8. 'Thus, the CL1-FFL with an OR gate is also a
sign-sensitive delay clement, but with signs epposite to those of the AND version (exercise
4.2). It shows a delay after OFF steps, whereas the AND version shows a delay after ON
steps. Hencee, the OR gate C1-FFL can maintain expression of 7 even if the input signal is
momentarily lost.

Such dynamics were demonstrated experimentally in the flagella system of I coli using
high-resolution expression measurements (Figure 4.10). This FFL controls the production
of proteins that self-assemble into a motor that rotates the flagella that allow E. coli to
swim. We will discuss this system in more detail in Chapter 5. The delay observed in this
FEL after removal of 8, is aboul one cell generation time — about 1 h under the condi-
tions of the experiment. This delay is on the same order of magnitude as the time it takes
to assembile a flagella motor. The OR gate FIL provides continued expression for about an
hour after the input signal goes off, and can thus protect this gene system against tran-
sient loss of inpul signal.

4.0.7  Interiny Summary

We have seen that of the 13 possible three-node patterns, only one is a significant net-
work motif in sensory transcription networks that need to respond to external stimuli.
This network motif is the feed-forward loop. The FEL has eight possible types, cach cor-
responding to a specific combination of positive and negative regulations. Two of the FFL
types are far more common than others in transcription networks. The most common
form, called coherent type-1 FFL, is a sign-sensitive delay clement that can pratect against
unwanted responses to fluctuating inputs. The magnitude of the delay in the FFL can be

' For examyple. some of the genes in Lthe arabinose system encode for protein transporters (aral! and araPGH) that
pump the sugar arabinose into the cell. Thus, once arabinese is present, these proleins are expressed and mere
arabinose is pumped into the cell. Other proleins (araBAD) degrade arabinose and lower intracellular arabinose
levels, "These types of rapid interactions generally altect the input signals (in this case, $, ~ intracellular a rabinose)
ol the system on a limescale of seconds, .
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FIGURE 410 {a) the CL-FFL with OR logic in the flagella system of E.coli. The output genes, such as fliL M-
NOPQR, make up the tlagella motor, The input signals S, are environmental facters such as glucose limita-
tion, osmotic pressure, and temperature that atfect the promoter of the activater FIhDC. ‘The input signal $,
to the sccond activator, FliA., is a check point that is triggered when the first motors are completed (a protein
inhibitor of FliA called F!gM is exported through the motors out of the cells). {b) Experiments on the pro-
moter activity of the cutput genes, measured by means of a green-fluorescent protein expressed as a reporter
from the Dit, premoter, after an ON step of .. (¢) Promoter dynamics after an QFI step of &, in the presence
of $. The results are shown for the wild-type bacterium, and for a bacterium in which the gene for FliA was
deleted from the genome. The FEL generates a delay after an OFF step of S (From Kalir et al., 2005.)

tuned over evolutionary timescales by varying the biochemical parameters of regulator
pretein Y, such as its lifetime, maximal level, and activation threshold.

ii__ THE INCOI ERENT TYPE-1 1L - o

We will now turn from the coherent FEL Lo study the function of the incoherent fecd-for-
ward loop network motif, We will see that it can function as a pulse generator and sign-
sensitive accelerator.

471 The Structure of the Incoherent FL

'Let us analyze the second most common FEL type, the incoherent type-1 FEL (11-FFL).
The 11-FFL, motif nuakes up about a third of the FFLs in the transcription networks of £
coli and yeast (Figurc 4.4).

The [1-FFL is made of two parallel but antagonistic regulation paths. In the H-FFL,
livator X activates 7., but it also activates Y -— a repressor of Z (Figure 4.11a). Thus, the
WO arms of the 11-FFL act in oppesition: the direct arm activales Z, and the indirect arm
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FIGLUIRE 4,11 (a) The incoherent type-1 FFL with an AN gate at the Z promoter, The inpuls are signals §,
and 8, The repression threshold of gene Z by repressor ¥ is K,,. (b) The four binding states of a simple model
for the promoter region of Z, regulated by activator X and repressor Y. Transcription accurs when the acti-
vator X* is bound. and to a much lesser extent when both activator and repressor Y* are bound. The AND
input function thus corresponds to X* AND NOT Y*.

Weak {basal) transcription
also termed leakiness

represses Z. The gene Z shows high expression when the activator X* is bound, and much
weaker expression when the repressor Y* binds (Figure 4.11b),

‘To analyze the dynamics of this motif, we will continue to use logic input functions.
Hence, the dynamics will be composed of transitions between exponential approaches
to steady states and exponential decays. As we saw above, these piecewise exponential
dynamics make graphical analysis and analytical solutions rather casy.

A4.7.2 Dynamics of the 11-FFL: A Pulse Generator

The I1-FFL responds to the input signals S, and S, (Figure 4.11a). Upon a step of S,,, protein
X becomes activated, binds the promoter of gene Z, initiating transcription and causing
protein Z 1o begin to be produced (Figure 4.12a), In parallel, X activates the production of
Y. Therefore, after a delay, enough protein Y accumulates to repress Z production and 7
levels decrease. Thus, the I1-FFL can generate a pulse of 7 production,

Let us analyze this in more detail. Consider the response to a step addition of the signal
S,, in the presence of the second signal §,. When the signal S, appears, protein X rapidly
transits to its active conformation, X* ‘lhe active transcription factor X* binds its DNA
site in the Y promoter within scconds, and Y begins to be produced. Since §, is present,
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FIGURE 4.12 (a) Pulse-like dynamics of the 11-FFL following an ON step of S in thc.presence of S, The
input step occurs at t = 0, and X rapidly transits to its active form, X*. Asa result, Z b'vegms o tfc expressed.
In addition, the repressor protein Y is produced, and eventually represses /. production when it crosses -the
Tepression threshold K,,. In this figure, all production and decay rates are cqual to 1. (.b) Effect of rcpressnztﬁ
strength on the pulse-like dynamics of the 11-FFL. Shown are the dynamics of Z in an inccherent type-1 F
with repression coefficients F = 2, 5, and 20. The repression coefficient is the ratio of the siefldyvsta}e expres-
sion in the absence of repressor to the steady-state expression with active repressor. T,ep is the time when
repression begins.

the protein Y is in its active form Y* and accumulates over time according to the produc-

tien and degradation equation:
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dY/dt = B, - o, Y* @.7.0)

Henee, Y shows the familiar exponential convergence (o its steady-state Y, = ffa,, Figure
4.12a

YA =Y, (- e oY (@.7.2)

1n addition to activating Y, molecules of X* also bind the Z promoter. As a result, pro-
tein Z* begins to be produced al a rapid rate B, since its promoter is occupied by the acli-
vator X* but there is not yet enough repressor Y* in the cell to inhibit production (Figure
4.12a). In this phase,

d7/dt =B, - a, Z 4.7.3)
and Z accumulates, beginning an exponential convergence to a high level Z, = B,/a,:

=7, (1 -e) while Y¥< K, (4.74)

This fast production of Z lasts until the repressor Y* crosscs its repression threshold
for Z, K,. At this time, the production rate of Z (in our logic approximation) suddenly
drops to a low value ;. In the extreme case of no leakiness, it drops to 87, = 0. The onset
of repression accurs at the moment that Y* reaches K. This repression time, T, can be
found from Equation 4.7.2 by finding the time when Y*(t} = K, showing that T, depends
on the biochemical parameters of protein Y:

Tyep = Lty log (1/(1 = K,,/Y,)] (4.7.5)

At times after T, the Z promoter is bound by the repressor Y* and the production rale
of 7. is reduced. Figure 4.12a shows how Z concentration decays exponentially to a new
lower steady-state Z, = B'/a, (sce solved exercise 2.1):

) = 7oy v (2= Z,) €m0 =T (1.7.6)
where Z, is the Jevel reached at time T,,,, given by Equation 4.7.4 at t = 1,

Zy =2y (1 - et o) (4.7.7)

and Z,, is the final steady-state Z level, due the low expression level when both X* and Y*
bind the Z promoter:

Zyo= P, (4.7.8)

‘The shape of the dynamics generated by the 11-FFL depends on 37, the basal production
rate of Z. This basal rate corresponds to the low rale of transcription from the repressed
pramoter. The effect of different basal levels on the dynamics is shown in Figure 4.12b for
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FIGURE 4.13 {a) Response time of the 11-FFL is shorter than simple regulation that reaches same the steady-
state level. Simple regulation, dashed ling; T1-EFL, full line. (b) Responsc time of the [1-FFL as a function of
the repression coefficient T. T is the ratio of unrepressed 1o repressed 7 expression. Also shown is the nor-
malized response time of simple regulation, a, T, ,, = log(2).

several values of the repression factor F, defined as the ratio of the maximal and basal
activity of the Z promoter, also equal to the ratio of the unrepressed and repressed steady-
state levels of Z:

F= RN, =207, (4.7.9)
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When the repressor has a strong inhibitory effect on 7 production, that is, when F »>> 1,
Z dynamics show a pulse-like shape. In the pulse, Z levels first increase and then decline
to a low level. The [L-1FL can therefore act as a pulse generator (Mangan and Alon, 2003;
Basu et al., 2004).

470 The H-ITE Speeds the Response Time

In addition to p.ulse generatien, the I1-FFL has another property: it can accelerate the
response time of the system. You can see in Figure 4.13a that the response time of the 11-
FFL is shorter than that of a simple-regulation circuit that reaches the same steady-state
level of Z. The response time can be found graphically by the time at which the dynam-
ics cross a horizontal line halfway to the steady-state level (dashed lines in Figure 4.13a).
Note that one cannot speed the response time of the simple-regulation circuit by increas-
ing its production rate, because such an increase would lead to an unwanted increase of
the steady state level. The 11-FFL achieves its fast response time by initially using a high
production rate, and then using the repressor Y to lower the production rate at a delay, to
reach the desired steady-state level.

To analyze this speed-up quantitatively, let us calculate the response time T,,,, the time
to reach half of the steady-state level, In the I1-FFL, half steady state is reached during
the initial fast stage of Z production, before Y crosses its repression threshold. Thus, the

response time, T, is found by using Equation 4.7.4 by asking when the concentration of
Z levels reaches halfway to Z,;:

L= ZJ2 =7, (1 - e ) (4.7.10)

which can be solved to give an expression that depends on the repression coeficient F
= 7‘"\17‘5‘:

T, = la, log (2F/Q2F - 1)] (.7.11)

Note that, as shown in Figure 4.13h, the larger the repression coeflicient F, the faster the
response time becomes {T ), ~ (2a, F)' at large F). In other words, the stronger the effect
of Y in repressing production of Z, the faster the performance of the 11-FFL compared to
an equivalent simple-regulation circuit X = Z made to reach the same steady-state level of
Z.. The response time becomes very small' when F >> 1, approaching Ty, = 0. At the oppo-
site extreme, the limit of no repression, F = 1, we find:

T\, = log(2)/a,

! As mentioned previously, the response time cannot be smaller than the minimal time it takes proteins to be tran-
seribed and translated, which is a few minutes in E. coli and often longer in human cells (see Table 2.1). Further-
muore, the production rates 3, cannot be infinitely large — itis, for example, limited by the production capacity of
the ribosomes, which is on the order of 10¢ proteins/cell generation in £ coli
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which is the same as the response time for simple regulation that we derived in Chapter
2. Indeed, when F = 1, the I1-FI'L degenerates into a simple-regulation circuit because the
repressor Y has no effect on Z, and the edge between Y and Z is nonfunctional.

474 Response Acceleration 15 Sign Sensitive

In contrast to the accelerated response seen alter ON steps, Lhe response after the signal §,
is remaved occurs with the same dynamics as for a simply regulated gene (no acceleration
or delay). In both simple and 11-FFL circuits, OI'F steps of S, lead to an immediate shut-
down in Z production. This immediate response to OFF steps in the II-FFL is due to the
AND logic of the Z promoter, in which unbinding of X* is sufficient to stop production
(Figure 4.11b). Afier production stops, the concentration of protein 7 decays exponen-
tially according to its degradation/dilution rate. Hence, no speed-up is found in the OFF
direction relative to simple regulation.

‘Thus, the I1-FIL is a sign-sensitive response accelerator. Sign-sensitive means that
response acceleration occurs only for steps of S, in one direction (ON) and rot the other
(OFF). 11-FFLs with OR gates have generally the same function as those with AND-gates,
but accclerate OFF and not ON responses.

4.7.5 Experimental Study of the Dynamics of an [1-FFL

An experimental study of respense dynamics of an 11-FFL is shown in Figure 4.14. This
experinient employed a well-characterized system, which allows E. coli to grow on the
sugar galactose as a carbon and energy source. As in other sugar systems, the genes in the
galactose system are not highly expressed in the presence of glucose, a superior energy
source. The galactose utilization genes are expressed at a low but significant level when
both glucose is absent and galactose is absent, to allow the cell to grow rapidly on galac-
tose should it appear in the environment. When galactose appears, the genes are fully
expressed. The galactose genes are regulated by an 11-FF], with the activator CRP and
the repressor GalS. High resolution measurements show that the response of the output
genes is accelerated upon glucose starvation (an ON step of §,) compared to simply regu-
lated genes (Figure 4.14). Removal of the repressor interaction in the I1-FFL abolishes this
acceleration.

In addition to studying this network motif within a natural context, one can study it by
making a synthetic 11-FFL made of well-characterized regulators. Weiss and colleagues
constructed an [1-FFL using the activator LuxR as X, the repressor CI of phage lambda as
Y, and green fluorescent protein as the output gene Z (Basu et al., 2004). This “synthelic
circuit” in E. coli showed pulse-like responses to steps of the input signal S, (the inducer
of LuxR). The synthetic construction of gene circuits is a promising approach for isolating
and studying their properties.!

' Synthetic gene circuits are reviewed in (Hasty et al, 2002; Sprinzak and Elowitz, 200%). Examples include
switches (Gardner et al., 2000; Becsked, 2001; Kramer et al., 2004; You et al,, 2004), oscillators such as the repre-
ssilator {Elowitz and Leibler, 2000, Atkinson et al, 2003) and cascades {Rosenfeld and Alon, 2002; Yokobayashi et
al,, 2002 Hooshangi et al.,, 2005; Pedraza et al, 2005.)
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ystems, despile the costs of increased production, due to the benefit of

speeding the response lime. The increased speed applies beth Lo turn ON and turn-
OFF of gene expression.

2. Negalive autoregulation: As we saw in Chapter 3, negative autoregulation can speed
responscs by a large factor. ‘This speed-up is due to the ability Lo use a strong pro-
moter (large production rate B) to give rapid initial praduction, and then to turn
production off by self-repression when the desired steady state is reached. Note that
only turn-ON is speeded; turn-OFF is not, but rather has the same OFJ responsc
time as simple regulation. 'The negative autoregulation strategy works only for pro-
teins that can repress themselves, namely, only for transcription factor proteins.

3. Incoherent FEL: The incoherent FEL can significanily speed up ON responses, as
we saw in the previous section. This is due to initially rapid production that is later
turned off by a delayed repressor, o achieve a desired steady state. This speed-up
applies to the low-induction statc in the presence of S It can be used to speed the
response time of any target protein, not only transcription factors.

Designs 2 and 3 can work together with Lt a large degradation rate can further speed
the response of negalive autoregulation and incoherent FFLs.
48  WHY ARL SOME FFL TYPES RARE?
We have so far examined the structure and function of the two most conunon FFL types.
We will now ask why the other six FFL types are rare in transcription netwarks (Figure
4.4). To address this, we need to consider the steady-state computations performed by
the FELs. We will see that some of the rare forms have a functional disadvantage in these
computations; they lack responsiveness to one of their two inputs.

481 Steady-State Logic of the H-FTi s, Can Turn on | ligh Fxpression
The EF1, has two input signals, S, and 5. Up to now, we have considered changes only in
one of the two inputs of the FFL, pamely, S, and studied the dynamics in the presence
of the second input signal, 8, What happens in the [1-FFL if we remove $,2 The signal §,
causes the repressor Y 1o assume its active form, Y*, and bind the promoter of gene Z to
inhibit its expression. When 8, is removed, Y becomes inactive and unbinds from the pro-
moter of genc 7. As a resull, Z is not repressed and is expressed strongly {Figure 4.15).
The resulting steady-state logic of the 11-FFL with an AND gate is shown in Table 4.2.
The second input S, has a strong effect on the steady-state level of Z, modulating it by a
factor F = B /B’

482 14-FFL, a Rarely Selected Circuil, 1as Reduced Functionality
As mentioned above, not all FFL types are found in equal amounts in transcription net-
works, Among the incoherent FFLs, for example, the most common form is 11-FFL{about
30-40% of known FFLs), whercas the other forms arc rare (13-EFLs and [4-FELs are in
total less than 5% of known FFLs). Why?

To address this question, we will focus on two very similar structures, [1-FEL and 14-
FEL. Both circuits have two activation arrows and one repression arrow (Figure 4.16). The
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only difference is that in the 11-FFL, X activates Y, which represses Z, whereas in the 14-
FFL, X represses Y, which activates Z. The minus and plus edges in the indirect regulation
path have simply changed position. How can this subtle change result in such a large dif-
ference in Lhe appearance of the two circuits in transcription networks?

"The structural difference between these two circuits means that in the II-FFL, X activates
both of its target genes, whereas in [4-FFL, X aclivales one target, Z, and represses the other,
Y. Can a transcription factor be both an activator and a repressor? As mentioned in Section
2.3.1, the answer is yes: transcription factors such as the bacterial glucose slarvation sensor
CRP activate many target genes, but act as repressors for other genes. The molecular mech-
anism is often simple to understand (Collado-Vides et al, 1991; Ptashne and Gann, 2002).
In bacteria, for example, an activator often binds a site that is close to the binding site of
RNA polymerase (RNAp), helping RNAp to bind or to start transcription once it binds. If
the activator binding site is moved so that it overlaps the space occupied by RNAp, binding
of the activator protein interferes with binding of RNAp, and the activator acts as a repres-
sor. Similar features, where a transcription factor can activate some targets and repress
others, are commonly found in eukaryotic regulators, though the detailed mechanisms
can vary. ‘Thus, 14-T'FL is a biologically feasible pattern.

What about dynamic behavior? Is 14-FFL a sign-sensitive accelerator and pulse genera-
tor as well? The answer, again, is yes. It is easy to see that upon an ON step of §,, Z begins
to be produced vigorously, activated by both Y and X. At the same time, since X represses

TABLL 4.2 Steady-State Response of the 11-FFL 1o Various Combinations of Input Sigoals

s, S, 7,

0 0 0

0 I 0

1 0 1 MHigh, Bfo,

1 ! 0 Low, Be,

Note: S, = 0 means thal §_ is below the activation threshold of transcription factor X, and §, - 1 means saturating sipnal.
Sinilar defivitions apply e S,

L1-FFL 14-FFL
X X
Y Y
1 v
AND @
Z 7

INGURL 4.10 The incoherent type-1 FIFL and type-4 FFL.

Y, the levels of Y begin to drop. When Y goes below its activation threshold for Z, the
production rate of 7 decreases and Z levels decline. ‘This yields a pulse-like shape of the
dynamics {Figure 4.17), just as in the 11-FFL, with a speed-up of the response time. The-
magnitude of the speed-up relative to simple regulation is the same as in 11-FFL. When
8, goes OFF, Z production stops at once (due to the AND gate), just as in the case of 11-
FFL. Thus, 14-FFL is a sign-sensitive accelerator. it has all of the dynamical capabilitics of
T1-FFL in response to S, signals, The same applies to 12-FFL and 13-FFL {except that they
accelerate responses to OFF steps). What, then, might explain the difference in the occur-
rence of 11-FFLs and 14-FFLs in transcription networks?

The main difference between the two FFL forms is in their steady-state logic. We saw
above that 11-FFL responds to both S, and S,. In contrast, the steady-state output of 14-FI'L
does not depend on S, To see this, note that when S, is present, production of Y is repressed
and its concentration declines. At steady-state, protein Y is not present at functional levels.
Therefore, when S, is present, S, cannot affect Z production, because Y — the detector pro-
tein for §, — is not present. When 5, is absent, on the other hand, Z is OFF regardless of 5,
due to the AND logic. Thus, S, does not affect the steady-state level of Z in 14-FFL. The 14-
FFL is not responsive to one of its two inputs (Table 4.3).

The lack of responsiveness to one of the two inputs may be one of the reasons why [4-
FFL is selected less often than 11-FFL. The same reasoning applies also to 13-FFL.

Similar conclusions apply to the rare and common forms of coherent FFLs. Coherent
type 3 and 4 FFLs have the samie sign-sensitive delay properties as the much more common

TABIE 4.3 Steady-State Output in the 11-FFL and 14-FFL as a Function of the Input Signals §, and S,

8, §, Z, n Ii-FFL 7, in 14-FFL
0 0 0 0
0 1 0 0
1 0 1 High, Bo, 0 Low, B'/e,
1 1 0 Low, Bl 0 Low, BJo,

Ole that the logic function of the entire [4-FIL circuit, g(8,, 5,). is differens from the input function of the Z promuter,
X ¥y = x* AND Y*.
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type-1 coherent FEL. However, these types with AND logic cannot respond (o the input
signat 8, for the same reasons discussed above.

Note that we have analyzed here only AND pate input functions, and not OR gates.
The discussion for OR gates is more complicated because they can have multiple inter-
mediate states of Z. FEL types I3 and 14 with OR gates can in principle be responsive to
both inputs. Similarly, the 12-FFL with AND logic is just as responsive as the [1-FFL. It

is an interesting question why these circuits are not commonly found in transcription
networks,

49 CONVIRGENT EVOLUTION OF [Hls

How does evolutionary selection act en the three regulalion edges in the FFL? It is rea-
sonable that the most important function of the regulators X and Y is to respond to
the signals §, and $, and accordingly regulate 7, "Thus, the first-order selection is for
the simple V-shaped structure where X and Y regulate Z {Figure 4.18a). It is the third
edge, the edge from X to Y, that needs special explanation. Recall that it only takes onc
or a few mutations in the binding site of X in the Y promoter to abolish the edge X - Y.
If'it does not add a uscful function (or if it actually destroys a function), this edge will
rapidly be lost in evolution.

In the common FEL types, CL-FEL and [1-FFL, we have scen that the edge between X
and Y can add a function, such as persistence detection or pulse generation and response
acceleration. Presumably, such functions are useful enough in some systems to sclect
this edge: Mutant organisms without the edge are lost from the population due to their
decreased fitness. On the other hand, in 14-FFL, adding the edge between X and Y can

ire circul e s to 8, This might
cause a loss of functionality — the entire circuit no longer responds to S, “This mig

J > to be lost during evolution. '
ause such an edge . . 3
‘ How did FFLs evolve? The most common form ol evolution for gencs is conservative

H y - e R
olution, where two gencs with similar function stem from a common ancestor genc.
(24 s

This is reflected in a significant degree of sequence similarity between the genes. Such
s arc sai = homologous. '
gef;‘:(;“rcll‘:dcizliz l1111 a sim&;]ar way, where an ancestor I'FL duplicated and i;av; rlscllu
the present FI'Ls? It appears that the answer is no in most ¢ascs. For Lixamp c, mtnotl(l)-‘
gous genes Z and 7 in two organisms are often both regulated by 1'FLs 1{1 rc:ponsc iolor:
same environmental stimuli. {{ the two FFLs had a common ancestor FFL,t 1‘c' rcgu.a, .
X and Y in the two FFLs would also be humulogm'Js. Howevert, the rcgu‘lalolr-s are ‘u‘.su;-\tcz
not homologous in such FFL pairs {Figure 4.18b). Ih.c sequence o.f t.hc.lcg; ‘\lorsf‘u. (;HC‘;
50 dissimilar that they clearly belong to completely different trans.crlptloni ac.tur .‘\m . m
That is, evolution seems to have converged independently on the same regu :dt;oAn‘ ci rlc.m §
many cases (Conant and Wagner, 2003; Babu et al,, 2004). }’re:?ul11al)lx,ftrl?? FFL 15: r:\:sl:;c:w
ered by evolution because it performs an important Fu‘ncnonl in th{:.dl Lv:cgt. oréz;- m: .10
More about gene circuit evolution and selection of FFLs will be discussed in Chap .

410 SUMMARY

We have seen that sensory transcription networks have a measure of Simplicit)'/. O‘f the 13
only one, the FFL, is a network motif. Further-

possible threc-gene regulation patterns,
more, of eight possible FFL types, only twe are comimonly found.

¢
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: ' i hite arrow) can be selecte
e i i twao inputs. The edge from X to Y (w
selected because it allows regulation based on , he Xto¥t an be seected
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; 4 an
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‘The two common FEL types can carry out specific dynamical functions. ‘The coler-
ent type-1 FFL (CI-FFL) can act as a sign-sensitive delay element. Thus, it ¢an function
as a persistence detector, filtering away brief fluctuations in the input signal. With AND
logic, brief ON pulses of the input signal are filtered out, whereas with OR logic, brief OFF
pulses are filtered out. This function can help protect gene expression in environments
with fluctuating stimuli.

The second common FI'L type, the incoherent type-1 FEL {[1-FFL), can act as a pulse gen-
eralor and a response acceleralor. This acceleration car be used in: conjunction with the other
mechanisms of acceleration, such as increased degradation and negative autoregulation,

Some types of FFI, have reduced funclionality relative to other types. In particular, some
of the I'FL types cannot respond to one of their two inputs. This reduced functionality may
explain, at least partly, why these FFL types are relatively rare in transcription networks,

This chapter did not exhaust all of the possible dynamical functions of the FFLs. These
circuits may carry out additional functions (Wang and Purisima, 2005; Ghosh et al., 2005;
Iayot and Jayaprakash, 2005; and Ishihara et al.,, 2005), some of which are discussed in
the exercises.

Evolution seems to have converged again and again on the FELs in different gene sys-
tems and in different organisms. Thus, this recurring network motif is an example of a
pattern that may have been selected for its specific dynamical funetions, As we will sce in
Chapter 6, the FI'L is also a network motif in several other types of biological networks.
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EXERCISES

;T’Ihe second input. What is the eflect of steps of S, on the expression dynamics of Zin th;
C1-FEL with AND logic? Are there delays in Z expression for ON or OFF steps of 8,2
What is the response time of 7 for such steps? Assume that 5, is present throughout.

42, OR gate logic. Analyze the C1-FFL with OR logic at the Z promoter. Are there delays
following ON or OFF steps of $,7 What could be the biologicat use of such a design?

Solution: o ]
After an ON step of 5, X becomes active X* Ona rapid timescale it binds the 7.
promoter. Since Z is regulated by OR logic, X* alone can activate transcription
without need of Y, Thercfore, there are ne delays following an ON step of ..

After an OTF step of §,, X* rapidly becomes inactive, X. However, protein Y is
still present in the cell, and if S, is present, Y is active. Since the Z input function
is an OR gate, Y* can continue to activate transcription of Z even in the absclncc
of X*. Therefore, Z production persists until ¥ degrades/dilutes below its activa-
tion threshold for Z. The dynamics of Y are given by dY/dt = -aY, (there is no
production term because X is inactive following the removal of §,), so that Y
=Y, e, where Y, is the level of Y at time t = 0. The OFF delay is given by the

time it takes Y to reach its activation threshold for Z, K;: solving for this time,
Y(Topp) = Y, et = Ig, yiclds

o= 1a log (Y,/K)

Tn summary, the OR gate C1-FFL shows sign-sensitive delays. It hasa delay' foy
lowing OFF but not ON steps of $,. The delay depends on the presence of 5,. This
behavior is opposite that of the CI-FFL with an AND gate, which shows delay
upon ON but not OFF steps.

The OR gate C1-FFL could be useful in systems that need to be protected fr(.)m
sudden loss of activity of their master regulator X. The OR gate FI'L can prowdF
continued production during brief ffuctuations in which X activity is fost. This
protection works for OFF pulses shorter than To. Note that Ty can be lgned
by evolutionary selection by adjusting the biochemical parameters of protein Y,
such as its expression level, Y, and its activation threshold, K.

43, A decoration on the FFL. The regulator Y in C1-FF'Ls in transcription networks is
often negatively autoregulated. How does this affect the dynamics of t.he circuit,
assuming that it has an AND input function at the Z promoler? How does it affect the
delay times? ‘The Y regulator in an OR gate CI-FFL is often positively aulorcg.ulatcd.
How does this affect the dynamics of the circuit? How does it affect the delay times?

44, The diamond. The four-node diamond pattern occurs when X regulates Y and Z,
and both Y and 7. regulate gene W.
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CHIATTLK 4

a. How does the mean number of diamoads scale with network size in random ER
networks?

b, What are the distinet types of sign combinations of the diamond (where eacly

edge is cither activation + or repression -)? How many of these are cohcrent?
(Answer: 10 types, of whicl 6 are coherent).

¢. Consider a diamond with four activation edges. Assign activation thresholds to
all edges. Analyze the dynamics of W following a step of §, for both AND and
OR logic at the W promoter. Are there sign-sensitive delays?

Solution {partial):

4.5.

1.0.

a. The diamond has n = 4 nodes and g = 4 edges. The number of diamonds there-
fore scales in ER networks as N*#= N° [lence, the number of diamonds does
not depend on the ER network size.

A diamond gencrally has uncqual response times for the arm through Y and
the arm through Z. For example, suppose that Y and Z have the same produc-
tion and degradation rates, but that their thresholds to activate W are different.
Without loss of generality, suppose that 7 has a lewer threshold, K< K\ We
will solve for an AND gate at the W promoter. Foliowing an ON step of S, both
Y and Z must accumulate and cross their thresholds to activale W. The response

is therefore governed by the higher of the two thresholds, since both Y and Z
must cross their thresholds. Hence:

Ton = Valog [Y (Y, - Kyw)]

In contrast, after an OFF step, only one of the two regulators must go below its
threshold to deactivale the AND gate at the W promoter. Again, the OFF time
corresponds o the higher of the two thresholds because it is crossed first:

Tow = Lt log (Y,/K,)

The delay is asymmetric (T, # Tope) unless K, isequal to Y,/2, Note that Z does
not aflect the dynamics at all in this circuit fassuming logic input functions),

Type three. Solve the dypamics of the type-3 coherent FEL (Figure 4.3) with AND logic
al the Z promoter in response 1o steps of S, Here, AND logic means that Z is produced
if both X* and Y* do not bind the promoter. Are there delays? What is the steady-state
logic carried out by this circuit? Compare to the other coherent FFL types.

Shaping the pulse. Consider a situation where X in an [1-FFI. begins to be produced
at time t = 0, 5o that the level of protein X gradually increascs. The input signals §,

and §, are present throughout. How does the pulse shape generated by the 11-FF1,

depend on the thresholds K,,, K,,, and K, and on B, the production rate of pro-

tein X? Analyze a set of genes 7, 2,, ..., 7, all regulated by the same X and Y in

e

4.7.

4.8.

4.9,

4.10.

11-FFLs. Design thresholds such that the genes are tL}m.cd ON in l.ht.\ rising ?fm.;cloi
the pulse in a certain temporal order and turncd OFF in the dec!mn{ug phkﬁt‘ of the
pulse with the same order, Design thresholds such that the turn-QFF order is oppo-
site to the turn-ON order. Plot the resulting dynamics.

Amplifying intermediate stimudi. This problem hi{;hlighlls an acldi(ion..:\\ ;?(?ssil[wic
function of incoherent type-1 FFLs for subsaturating stimuli S,. Consider an Q-
EFL, such that the activation threshold of Z by X, K,,, is smaller th'.-mv the a?t{\‘rntlolx
threshold of Y by X, K. That is, Z is activated when X* > K, b'l.}t it IS‘I:L‘}?I‘C!;.b;d by
Y when X* > K, Schematically plot the steady-state concc.ntratlczn of 7. as a func-
tion of X*. Note that intermediate values of X* lead 1o the highest Z expression.

The diamond again. The diamond pattern occurs when X regulates Y nnd\ Z,}aud
both Y and Z regulate gene W. Analyze the 10 typc's of diamond stru.cturehd(w‘mrc
each edge is cither activation + or repression -) Wl[l.l respect tol their si}:lea v{f—.stnte_
responses to the inputs S, S, and §,. Use an AND lnpl..lt l’un?cimn at the . prto?
moter. Do any diamond types lack responsiveness (o any input? To all three inputs?

Repressilator. Three repressors are hooked up ina cyflc X : Y / an('l Z- ); Y\.N_haztl
are the resulting dynamics? Use initial conditions m.wh.nch X is high ;vm ;

= 0, Sotve graphically using logic input functions. Thl.s circuit was constructed in
Dacteria using three well-studied repressors, one of Wh.lCh was also made to rizrtekss
the gene for green fluorescent protein {Elowitz and Leibler, ZOQO). What WC(l)Tl ‘ "I.E
resulting bacteria look like under a microscope (hat dynamically records green

fluorescence?

Interconnected FELs. Consider a coherent type-l FFL with nodes X, Y and Z xv11iFh
is linked to another coherent type-1 FI'L in which Y activates Y, which activates Z.

a. Sketch the dynamics of Z expression in response (0 steps of.the signals §,, Sy,r
and 8, (Steps in which one of the signals goes ON or OFl.? mllhe pre;encle o‘j
the other signals). Can the dynamics of the interc‘onne.cted circuit be understoo
based on the qualitative behavior of each FFL. in isolation?

b. Repeal [or the case where Y represses 7, sa that the X, Y, Z FFL is an incoherent
' type-1 FFL. Assume that Y, binding to the 7 promoter can alleviate the repress-
ing effect of Y.



CHAPTER 5

Temporal Programs and
the Global Structure of
Transcription Networks

5.1 INTRODUCTION

We have seen that transcription networks contain recurring network motifs that can

perform specific dynamical functions. We examined two of these molifs in defail, auto-
regulation and the feed-forward loop. In this chapter we will complete our survey of
motifs in sensory transcriptional networks. We will sce that sensory transcription net-
works are largely made of just four families of network motifs: the two we have studied,
including feed-forward loops with multiple outputs, and two families of larger motifs,
The larger motif families are called single-input module (SIM) and dense overlapping
regulons (DORs).

The SIM network motif is a simple pattern in which one regulator controls a group
of gencs. Despite its simple structure, the SIM has an interesting dynamical function: it
can generate temporal programs of expression, in which genes are turned on one by one
in a defined order. In Escherichia coli, these temporal programs are found to match the
functional order of the gene products. This is a “jusi-when-needed” production strategy,
not making a protein before it is necded. Such a strategy is optimal for rapid production
of a system made of different types of proteins, under constraints of limited resources for
producing thesc proteins.

More detailed temporal programs can be generated by a gencralized network motif
related to the feed-forward loops (FFLs) we have examined in the previous chapter. This
generalized motif is an FFL with multiple output genes. We will see that the multi-output
FEL can generate temporal programs with different orders of activation and inactivation of
the genes.
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VIGURE 5.1 The single-input module (SIM) network motill, Transeription factor X repulates a group of genes
that have no wdditional transeription lactor inputs, X vsually also regulates itsell. Aa cxample of & SIM, the
arginine biosynthesis pathway (in the arginine system, all regulations are repression.)

‘The last motit family, called DORs (for densely overlapping regulons), is a dense array
of regulators that combinatorially control output genes. The DORs can carry out deci-
sion-making calculations, based on the input functions of cach gene,

Finally, we will discuss how the network motifs fit together to build the global struc-
ture of the transcription network. These four motif families appear Lo account for virtu-
ally all of the interactions in sensory transcription networks.

-

5.2 THESINGLE-INPUT MODULE (SIM) NLTWORK MOTIF

The network motifs we have studied so far all had a defined number of nodes (one node in
the autoregulation motif, three nodes in FFLs). We will now fook for larger motifs. Iach
of these larger molifs corresponds to a family of patterns that share a common architec-
tural theme.! The first such motif family found in transcription networks is called the
single-input module (Figure 5.1), or SIM for short (Shen-Orr et al., 2002).

In the SIM network motif, a master (ranscription factor X controls a group of target
genes, 7, Zy, ..., Z, (Figure 5.1). Fach of the target genes in the SIM has only one input:
no other transcription factor regulates any of the genes. In addition, the regulation signs
{uctivation/repression) are the same for all genes in the SIM. 'The last feature of the SIM is
that the master transcription factor X is usually autoregulatory.

! Detection of large network motifs, and more generaily, counting of large subgraplis, poses interesting computa-
tonal problems duc to the huge number of possible subgraphs. An efficient algorithm for counting subgraphs and
detecting motifs aveids part of the problem by random sampling of subgraphs from the network. (From Kashtan
ctal., 2004a; Wernicke and Rasche, 2000; Berg and Lassig, 20006.)

[ W L A T L T L R L R R

The SIMs are a family of structures with a free parameter, the number '()l“mll'gc‘t genes
1. They are a strong network motil when compared to randem networks,! Th 1.5 is bcuumi
it is rare (o find in random networks a node regulating, say, 14 other nod.cs with ne O.lhm.
edge going into any of these nodes. Despile their simple structure, we will see that SIMs
turn out to have interesting dynamics.

What is the function of SIMs? The most important task of a SIM is to control a group
of gencs according to the signal sensed by the master regulator. ‘The genes ina SIM i\]\.fvuys
have a common hiological function. For example, SIMs often regulate genes Lthat participate
in u specitic metabolic pathway (Figure 5.2). These genes work sequentially to assemble a
desired molecule atom by atom, in a kind of molecular assembly line.?

Other $1Ms control groups of genes that respond 1o a specific stress (DNA damage,
heat shock, etc.). These genes praduce proteins that repair the different forms of damage
caused by the stress. Such stress response systems usuatly have subgroups of genes lh;l.l.
specialize in certain agpects of the response. Finally, SIMs cm’] control groups of g.enes
that together make up a protein machine (such as a ribosome). The gene products assent-
ble into a functional complex made of many subunits.

5.3 SIMS CAN GENERATE TEMPORAL EXPRESSION PROGRAMS

In addition to controlling a gene module in a coordinated fashion, the SIM has a mo're
subtle dynamical function. The SIM can gencrate temporal programs of expression, in
which pgencs are activated one by one in a defined order. _
A simple mechanism for this temporal order is based on different thresholds of X for
each of the target genes Z; (Figure 5.3). The threshold of each promoter dcpc.:nds on the
specific binding sites of X in the pramoter. These siles can be slightly ditferent in scqu‘cn.cc
and position, resulting in different activation thresholds for each gene. When X activity

UEven simall SIM3 are signilicant when compared to ER random nc‘lworks (ER networks \'vcr)c .discusscd ]m (,'llm-[:-.
ters 3 and 4). ER networks have a degree sequence (distribution of cdges per nud‘c? that ’|s i o|se‘;nn. :;n 1 \:;(l‘t‘:'l. E
are exponcntially few nodes that have many more edges than the mean connectivity l.. lhus, lzli.lfn.‘lvivor :\h(,:,v\
very few large SIMs. [n contrast, real transcription nelworks have dcgr:'.c Ellhl[’lbll[l()nﬁ with long tails: l hey bi mm.]
few nodes with many mare outgoing edges than the mean (A])pcm]ix G Il\gsc nodes correspond o tr:llusc.: | fon
factors with many target gencs, known as global regulators. Te contral for |h‘|s. Qe DLy use |';|[\Fl(f|1|lj)fl.v:lc{ I::) \:‘ l:n‘-
that preserve the degree sequence of the real network, C'd”l."il degree-preserving rnnv.lmn‘m:lwmk’sl (N . l,‘ l :]m
tioned in Chapter 4. In E. coli, SIMS with n > 12 are signihcur!llypvcrrcprcxcntml rcll;xlwc to l)éI (‘ 3 ‘1:1 l‘;:(.“_
small $1Ms that appear about as often as in DPRN? Statistical significanceisa pn\lvcr.hl,ll Inu! for ctc‘cllnfq, l:] lr.ic[
ing structures, but it is important to remeruber that even structures that ate not significant in comparison Lo s
random ensembles can turn out to be biologically interesting, "

* Note thal often the final product of the pathway in a SIM is the signal sensed by the master rc.g\{laI(*Jlr ‘X.( |[g\11]:f
5.2). For example, the repressor ArgR regalates several penes that make up“lhc pathway fur lm:'yl:lt 1lr.ls:srt"-)ms-
amino acid arginine, one of the 20 amino acids of which proteins are made (Figure 5.1). Argmmc' i sl 1(' L}lncs
sor ArgR and causes it ta become active, and hence to bind and Tepress lbgpromnm:s aof the hx(:(sg;m us(l):. g.L .
Thus, the more arginine is present, the more the genes are repressed. Ihlf is a negative fefdbac nh(?p‘ ]n.L :.lrm
of this fecdback (diffusion and binding of arginine to ArgRon a 1(}-_mscc tn'nusca.lc) is m.m.h faslcrll(ldn L ‘3L.Ol u:;
arm (transcription regulation of arg genes ona timescale of many 1111}1\}lcs).. This mmpoml‘c fv:cd?)ac“ -oup [T::( c o
Iwo interactions with different timescales is a common network motif in biclogy, as mentioned in Chapter 6.
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FIGUIRE 5.2 A single-input module (SIM) regulating a three-step metabolic pathway, The master repres-
sor X represses i group of genes tat encode for enzymes E, By, und B, (each on o different operon). These
cizymes catalyze the conversion of substrate S, 10 8, 10 8, culminating in the produet S;. The product §, is
the input signal of X: It binds to X and increases the probability that X is in its active state, X*, in which it
binds the promoters (o repress the production of enzymes. This closes a negative feedback loop, where high
levels of 8, lead to o reduction in its rate of production.

changes gradually in time, it crosses these thresholds, K., at different times, and the genes
are turned ON or OF¥ in a specified order (Figure 5.3).!

When the activity of X increases gradually, it first activates the gene with the lowest
threshold. Then it activates the gene with the next lowest thresheld, etc. (Figure 5.3). Flow-
ever, when X activily goes down, the genes are affected in reverse order. Hence, the first
gene activated is the last one to be deactivated (Figure 5.3). This type of program is called
a last-in-first-out (LIFO) order.

The faster the changes in the activity of X, the more rapidly it crosses the different
thresholds, and the smaller the delay between the genes. In many systems, there is an
asymmetry in the naturally occurring dynamics of the regulator activity. For example,
sometimes turn-ON is fast, but turn-OFF is gradual. In such cases, temporal order will be
more proncunced in the slow phase of the transcription factor activity profile.?

Experimentally, temporal order is found in a wide variety of systems in E. coli with
SIM architecture. This includes metabolic pathways (Zaslaver et al., 2004) such as the
arginine system {Figure 5.4) (Sce color insert fullowing page 112) and damage repair sys-
tems such as the SO5 DNA repair system (Ronen ct al., 2002). The genes in these systems
are expressed in a defined order, with delays on the order of 0.1 generation between genes
(about 5 to 10 min).

' In the previous chapter, we considered changes in activity X* that are much faster than the response time of the
network. Here we consider cases where X¢ changes gradually. For example. transcription of gene X may be itself
controlled by another transcription factar. ‘This transeription factor can activate transcription of X at time t = 0,
resulting in a gradual increase in the concentration of protein X with time. A second commen example accurs if
X* is governed by a feedback as a result of the action of the downstream genes, as in Figure 5.2. For example, the
signal that activates X can be the metabolic product of a metabolic pathway regulated by X. In this case, the level
of Lhe metabotic product can change slowly as enzymes in the pathway are made, and the corresponding changes
i X activity will occur on a relatively slow timescale.

? For example in the case of metabolites there is often an asymmetry in the timescales of regulation, Intracellular
Jevels of externally supplicd metabolites such as amino acids drop within a minute or less ance the amino acid
stops being externally supplied. It then takes many minutes until the biosynthetic enzymes are produced and
endogenous production of the amine acid can commence,

PEMPLUKAL PRUGLKAMS ANL 1HE GLUBAL SIRULCTUKLE = /Y
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MGURE 5.3 The SIM can generate tempaoral programs of expression. As the activity of X gradually rises, it
crosses the different thresholds for each target promoter in a defined order. The gene with the lowest thresh-
old, Z,, is turned ON first, whereas the gene with the highest threshold, 7y is turned ON tast. When X activ-
ity declines, it crosses the thresholds in reverse order (last-in-tirst-out, or LIFO orden),

Is there any meaning to the temporal order found in the SIMs? [n E. coli metabolic
pathways, such as arginine biosynthesis, the following principle unifies the experimental
findings: the earlicr the protein functions in the pathway, the earlier its gene is activated.

Thus, the temporal order of the genes matches their functional order. This is an eco-
nomical design, becavse proteins are not produced before they are needed. Such a just-
when-needed production strategy can be shown, using simplified mathematical models,
to be optimal for rapidly reaching a desired flux of a metabolic product under constraints
of producing a minimal total number of protein enzymes {(Klipp et al,, 2002; Zaslaver et
al,, 2004).!

The precise temporal order generated by a SIM can be varied by mutations that change
the relative order of the thresholds of the genes. For example, mutations in the binding
site of X in the promoter of a gene can change the affinity of X to the site, changing the
threshold (Kalir and Alon, 2004). This suggests that the observed temporal order is main-
tained against mutations due to the selective advantage afforded by just-when-needed
production strategtes.

Temporal order is found also in damage repair systems controlled by SIMs. In damage
Tepair systems, turn-ON is usually fast, because the regulator needs to be activated rap-
idly in order to rapidly mobilize all repair processes. As damage is repaired, the input sig-
nal of the regulator declines and the genes get turned off gradually, reaching 50% of their
Mmaximal promoter activity at different times. In the systems that have been studied, the
genes responsible for the mildest form of repair are turned off first, and those responsible
for more severe damage repair are turned off later (Ronen et al., 2002).

_
_lt'l addition, in many systems, a second principle is found: the earlier the protein functions in the pathway, the
higher its maximal promaoter activity (Heinrich and Klipp, 1996; ZasTaver et al., 2004),
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FIGUHRE 5.1 (See color fusert fullowing page 112) Temporal order in the arginine biasynthesis system. The
promaoters are activated in a defined order with delays of minntes between promaters. Color bars show
expression from the promoters of the dilferent operans in the system, measured by means of a luminescent
reporier gene. The position of each gene product in the pathwaiys that produce arginine is shown. Metaholires
are in reclangles and enzymes in ellipses. (From Zaslaver et al., 2004.)

Temporal order also characterizes a large number of other giobal cellular responses.
Examples include genes timed throughout the cell cycle in bacteria (Laub ct al., 2000,
McAdams and Shapiro, 2003) and yeast (Spellman et al,, 1998), genes regulated by dif
ferent phases of the circadian clock that keeps track of the time of day (Young, 2000,
Duffield et al,, 2002), as well as genes in developmental processes (Dubrulle and Pourquie,
2002; Kmita and Doboule, 2003).

In these global well-timed responses, genes are often regulated by a master regulator
and also corcgulated by additional regulators responsible for smaller subsystems. Tem-
poral order may be generated by the action of a master coordinating regulator even if the
network pattern is not strictly a SIM, in the sense that it has more than one regulator. The
present analysis of temporal order applies also to circuits with multiple regulators, as long
as all regulators except one have a constant activity during the interval of interest.

How did SIMs evolve? There are many examples of SIMs that regulate the same gene
systems in different organisms. However, the master regulator in the SIM is often differ-
entin each organism, despite the fact that the target genes are highly homalogous (Thmels
ctal, 2005; Tanay et al., 2005). 'This means that rather than duplication of an ancestral

TEMPORAL PROGRAMS AND THE GLOBAL STRUCTURE m 81

SIM tagether with the regulater to create the madern SIMs, evolution has converged on
the same regulation pattern in the different organisims, just as we saw that evolution can
converge on the FFL network motif (see Section 4.9). Presumably, the $1M regulatory pat-
tern is rediscovered and preserved against mulations because it is useful enough ta be
selected,

In short, the SIM can geoerate just-when-needed temporal programs. As was men-
tioned above, the SIM circuit generates LIFO order: the activation order of the genes is
reversed with respect to the deactivation order (Figure 5.3} However, in many cases, it
seems more desirable to have an activation order that is the same as the deactivation order:
the first promoter turned on is also the tirst turned off (first-in-fiest-out (FIFO) order),
FIFO order is desirable for assembly processes that require parts in a defined order, some
early and some late. In this case, when the process is de-activated, it is better for the early
genes Lo be turned OFF before the late genes. This FIFO order prevents waste from need-
lessly producing carly genes proteins afier late ones are OFF. We next describe circuitry
that can achicve FIFQ order. To describe this circuit, we first discuss generalizations of
network motifs and an additional important motif family in sensory transcription net-
works, the multi-output feedforward loop.

S TOPOLOGICAL GENL RALIZATIONS OF NE TWORK MOTIFS

We have so far discussed relatively simple network motifs. When considering larger and
morc complex subgraphs, one is faced with a Jarge number of possible patterns. For exam-
ple, there are 199 possible four-node directed patterns (Figure 5.5) and over 9000 five-
node patterns. ‘There are millions of distinet seven-nede patterns. In order to try to group
these patterns into families that share a functional theme, one can define topelogical
generalizations of motifs (Kashtan ct al,, 2004b).

To describe topological motif gencralizations, consider the familiar feed-forward loop
(FFL). The FFL is a three-node pattern with nodes X, Y, and Z (Figure 5.Ga). The simplest
form of topolegical generalization is obtained by chaosing a node, say X, and duplicating
it along with all of its edges (Figure 5.6b). The resulting pattern is a double-input FFIL.
‘This can be repeated to obtain multi-input FFL. generalizations. There are two other sim-
Ple topological generalizations of the FFI. obtained by replicating the appropriate nodes,
calied multi-Y and multi-output FFLs (Figure 5.6b and ¢).

In principle, since the FFL is a nctwork motif, any of these three patterns could also be
network motifs; that is, any of them could oceur significantly more often than in random-
ized networks. However, only one of these generalizations is actually a motif in transerip-
tion networks. The chosen generalization is the multi-output FFL.

We can now ask why. What might be the function of the multi-output FEL? To address
this question, we will consider a well-characterized case of the multi-output FFL and sce
that it can generate a FIFO temporal program, in contrast to the LIFO order gencrated by
SIMs,
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HGURE 5.0 Simple topelogical generalizations of the FFL., Each topological generalization corresponds to
n duplication of on¢ of the nodes of the FIL and all of its edges. (a) The FFL. (b} Generalizations based on
duplicating one node. (¢) Multi-node generalizations. (From Kashtan et al., 2004.)

5.5 THE MULTI-OUTPUT FFL CAN GENERATE FIFO TEMPORAL ORDER

To study the multi-output FFL, we shall examine this network motif in the gene system
that controls the production of flagella, E. coli’s outboard motors. When E. coli is in a
comfortable environment with abundant nutrients, it divides happily and does not try
to move. When conditions become worse, £. coli makes a decision to grow several nano-
meter-size motors attached to helical flagella (propellers), which allow it to swim. Its also
generates a navigation system that tells it where to go in search of a better life. Chapter
7 will tell in detail about this navigation (chemotaxis) system. We will now consider the
genes that make the parts of the flagella maotor.
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FIGURE 5.7 The ilagellar motor of . coff and its asserubly steps. {From Macnab, 2003

The flagella motor is a 50-nm device built of about 30 types of protein (Figure 5.7;
sce also Figure 7.3). The motor is electrical, converting the energy of protons moving in
through the motor to drive rolation’ at about 100 Hz. The motor rotates the flagellum,
which is a long helical filament, about 10 times longer than the cell it is attached to (E. coli

is about I micron long). Flagella rotation pushes the cell forward at speeds that can exceed
30 microns/sec.

‘The motor is put together in stages (Figure 5.7). 'Lhis is an amazing example of biologi-
cal self-assembly, like throwing Lego blocks in the air and having them assemble into a
house. The motor and flagellum have a hollow central wube through which the proteins
move to assemble cach stage. Thus, cach stage of the motor acts as a transport device for
the proteins in the next stage.

We will focus on the transcription network that controls the production of the motor
proteins. The proteins that build up the flagella motor arc encoded by genes arranged in
six operons (an operon is a group of genes transcribed on the same piece of mRNA). The
flagella motor operons are regulated by two transcriplion factors, both activators, X and
Y. 'The master regulator X activates Y, and both jointly activate each of the six operons, Z,,
7y« Zg This regulatory pattern is a multi-output FEL (Figure 5.8).

Cells maintain a proton gradient across their membrane by continually pumping out protons at the expenditure
OFATE “Thus, the motors arc effectively powered by this “proton-motive foree”
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HIGURE 5.8 Schematic plan of the multi-output FFLL that regulates the flagella motor genes. Shown are the
logic input functions at cach promoter and the aciivation thresholds. X = fIhDC, Y = MiA, 7, = i, Z,= K.
ele.

In this multi-output FFL, cach operon can be activated by X in the absence of ¥, and by
Y in the absence of X. Thus, the input functions are similar to OR gates.!

Experiments using high-resolution gene expression measurements found that the six
flagella operons show a defined temporal order of expression (Kalir et al., 2001; Kalir and
Alon, 2004) (Figure 5.9) (See color insert following page 112). When the bacteria sense the
proper conditions, they activate production of protein X.? The concentration of X gradu*
ally increases, and as a result, the Z genes get turned ON one by one, with about 0.1 cell
generations between them. The order in which the operons are turned on is about the
same as the order in which the proteins they encode participate in the assembly of the
motor: first a ring in the inner membrane, then a rod, a second ring, etc. This is the prin-
ciple of just-when-needed production that we discussed in the single-input module (S{M)
network motif: the temporal order matches the functional order of the gene products.

The SIM architecture, however, has a limitation, as mentioned before: (he turn-QFF
order is reversed with respect to the turn-OF order (last-in-first-out, or LTFO order) (Fig-
ure 5.3). In contrast 1o the SIM, the flagclla turn-OFF order is the same as the turn-ON
order: the first promoter turned on is also the first turned off when flagella are no longer
needed. In other words, the genes show a first-in-first-out {FIFQ) order.

How can FIFQ order be generated by the multi-output FFL? The mechanism is
easy to understand (Figure 5.10}. Recall that in the flagella system, X and Y effectively
function in OR gate logic at the Z promoters. Thus, X alone is sufficient to turn the genes

' While we use a logical OR gate for clarity, the input functions in this system are actwally additive (SUM input
functions) (Kalir and Alon, 2004), This does not change the conclusions of the present discussion.

! The promoter of the gene that encodes X is controtled by multiple transcription factors that respond (0 signals
such as glicose starvalion, osmotic pressure, temperature, and cell dvnsi_ly‘ Cell density is sensed via a quoruim-
sensing signaling pathway. In quorum-sensing, a small signal molecule is secreted and also sensed by the cells.
When the culture is dense enough. the signal molccule exeeeds a threshold concentration and activates the quorum-
sensing signal transduction pathway in the cells.




Master

ahD L fhDC e —
regulator
ihil.
e flil, ——g
fli¥ fliE ] ’
flga hF
flga -
flgB
igh
f:B ’ g
fIh
fliA
X Activation
fin flia of class 3

flpK
fliC

i } -
flek g
¢ ————— #
ineche ] ; —
mocha ﬁomis
el
oy

flgM system

meche
maocha

flgM

Time {min)

PIGURL 3¢ i i
Rl 5.9 (See color insert following page 112) Temporal order in the flagella system of E. coli, Colored

bars 4 r ali s i

’ T;f';:C":“- normalized expression of each pramoter, where blus is tow and red is high expression. Activ-
qiemu‘[ic-.ﬁm:n:rr “_fd-‘;l meill-‘iurﬁdlh_y means of a green Muorescent (GFI% reporter. The flageilum is shown
5 ally oo the right. The position of the gene products within the flagella are shown in shaded tones.

‘l hc‘ tlemporal order matches the assembly order of the flagella, in which proteins are added going from the
intracelbular to the extracellular sides, (From Kalir et al., 2001 )

on. 'Therefore, the turn-ON order is determine

] d by the times when X crosses the activa-
tion thresholds for the promoters of

k 2 Zy, etc. These thresholds are K,, K,, ..., K. The
lpromo.tcr with the lowest K is turned on first, and the one with the highest K is turned on
ast (Figure 5.10). If this were all, genes would be turned off in the reverse order once X

levels decline, resulting in LIFQ order, just like in the SIM. But here Y comes to the res-
cue. When production of X stops so that protein X

duction only stops when X decays below the thres
K,y Thereafter, the levels of protein Y graduall

:s-ti!l present after X levels have decayed, the turn-OFF order (in a properly designed FFL}
15 governed by Y, which has its own thresholds for each of the genes, K, K,, ... K, A
FIFO order is achieved if the order of the thresholds of Y is reversed co :
X. That is, if the X thresholds are such that K
2, the Y thresholds are arranged so that K’

2 (Figure 5,10). This is the design th
and Alon, 2004).

decays away, Y is still around. Its pro-
hold for activation of the Y promoter,
y decay by degradation/dilution. Since Y is

mpared to that of
1 < Ky, so that promoter 1 is turned on before
> K;', so that promoter 1 is turned off before
atis experimentally found in the flagella system (Kalir

Lhe temporal order in this system was shown to change by mutations
that affected these activation thresholds,

FIGURE 5.10 First-in-first-out (FIFQ) order in a multi-Z FFL with OR logic input functions. The output
genes Z, and Z, are trned on when X crosses activation thresholds K, and K, (dashed lines). The genes are
turned off when Y decays below activation thresholds K,' and K" When the order of K, and X; is opposite
of that of K," and K, FIFO order is obtained.

5.5.1  The Muli-Output FFL Can Also Act as a
Persistence Detector for Tach Qutput

In addition to generating a FIFO temporal order, the multi-output FFL also conveys all of
the functions of the feed-forward loop that we discussed in Chapter 4. In particular, each
of the output nodes benefits from the sign-sensitive filter property of the FFL. For exam-
ple, in the flagella system, the FFL functions as a device that delays the deactivation of the
Z genes following the loss of X activity (as described in Section 4.6.6). In other words, thjs
FFL filters away brief OFJF pulses of X, allowing deactivation only when X activity is gone
for a persistent length of time.

The OR gate FFL can therefore provide an uninterrupted input source. It allows expres-
sion even if the activity of X is briefly lost. As mentioned in Chapter 4, the delay afforded
by Y in the flagella system was found to be on the order of a cell generation, which is simj.
lar to the time needed lo complete the assembly of a flagellar motor (Kalir et al,, 2005),
Telologically speaking, such a protection function could be useful for flagella produc-
tion, because the swimming cell is likely to encounter fluctuating environments. This can
cause the production of X to fluctuate over time, because multiple environmental factors
regulate the promoter of the gene that encodes X. The OR FFL can ensure that flagella
production stops only when the appropriate conditions have been sensed for a persistent
length of time. A transient deactivation of the X promoter would not be sufficient to turn
off flagella production.

To summarize, the multi-output FEL is the generalization of the FFL that occurs most
frequently in sensory transcription networks. We will see in t’hc next (?hapter that other
biological networks can display different FFL generalizations, The an:ltl-()lltput FFL con-
fers to each of the output genes all of the dynamic functions of the FFL that we discussed
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FIGURE 5.1 The four-node network maetifs in sensory transeription networks.

in Chapler 4. In addition, it can generate a FIFO temporal order of expression, by means
of opposing hicrarchies of activation coellicients for the two regulators X and Y.

5.6

SIGNAL INTEGRATION AND COMBINATORIAL CONTROL:
BI-FANS AND DENSE OVERLAPPING REGULONS

We now complete our survey of network motifs in sensory transcription networks. We
have so far considered three network motif families: autoregulation, FFLs (with single or

multiple outputs}, and $IMs. Our fourth and final network motif family stems from the
analysis of four-node patterns.

We have mentioned that there are 199 possible four-node patterns with directed edges
(Figure 5.5). Of these, only two are significant motifs in the known sensory transcription
networks. Again, the networks appear to show a striking simplicity because they contain
only a tiny fraction of the possible types of subgraphs. ‘The significant pair of network
motifs is the two-output FFL, which belongs to the family of multi-output FFLs we have
just examined, and an overlapping regulation pattern termed the bi-fan {(Figure 5.11)". In
the bi-fun, two input transcription factors, X; and X, jointly regulate two output genes,
Z,and Z,.

The bi-fan gives rise to a family of motif generalizations, shaped as a layer of inputs
with multiple overlapping connections to a layer of outputs (Figure 5.12). This family of
patterns is out last network motif, called dense overlapping regulons (a regulon is the set
of genes regulated by a given transeription factor), or DORs for short? (Figure 5.13) (Shen-
Qrr et al, 2002).

‘The DOR is a row of input transcription factors that regulate a sct of output genes in
a densely averlupping way, The DORs are usually not fully wired; that is, not every input
regulates every ouiput, However, the wiring is much denser than in the patterns found
in randomized networks. To understand the function of the DOR requires knowledge of
the multi-dimensional input function that integrates the inputs at the promoter of cach
gene, described in Section 2.3.5. The DOR can be thought of as a combinatorial decision-

! Several four-node patterns are also found that correspond 1o FELs with a single dangling edge going into or out
of one of the FFL nades. These patterns are also network motifs in the sense that they occur more often than in
randomized nelworks. However. they do not appear to have additional special functicnality beyond what we have
already deseribed.

#The DOR can be detected by algorithins that scarch for dense layers of connected nodes (Shen-Qrr et al., 200%;
Sprin and Mirny, 2003).
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HGURE G018 “Lhe dense overlapping regulons (1DORs) network motif and an example in the E. coli stress
response and stationary phase system (Baumberyg, 1998). {From Shen-Crr, 2002.)

there is no DOR at the output of another DOR. Thus, most of the computation done by
the network is done at a cortex of premoters within the DORs.

The layer of DORs also contains most of the other motifs, The FIiLs and SIMs are inte-
grated within the DORs. Many of the FELs are muldti-output, with the same X and Y reg-
ulating several output genes, Negative autoregulation is often integrated within FFLs and
also decorates the master regulators of SIMs. Overall, the rather simple way in which the
network motifs are integrated makes it possible to understand the dynamics of each motif
separately, even when it is embedded within larger patterns,

Virtually all of the genes are covered by these four network motifs in the organisms
studied so far, including the known part of the sensory networks of bacteria, yeast, worms,
fruit flies, and humans (Harbison ct al., 2004; Odom et al., 2004; Penn et al,, 2004; Bover
et al, 2005). Thus, these network motifs represent the major type

s of patterns that occur
in sensory transcription networks.

A striking feature of the global organization of sensory transcription networks is the
relative absence of long cascades of transcription interactions, X -+ Y - Z —», etc. Most
genes are regulated just one step away from their Lranscription factor inputs,

Why are long cascades relatively rare? One possible reason is response time constraints.
We have seen in Chapter 2 that information transmission down transcription cascades is
slow: protein Y needs to accumulate to cross the threshold for regulation of gene Z. This
accumulation time is on the order of the lifetime of protein Y, usually on the order of
many minutes to hours. Thus, long cascades would typically be far too slow for sensory
transcription networks that need to respond quickly to environmental stresses and nutri-

ents. Sensory transcription networks are “rate limited,” with components that are often
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limited networks
slower than the timescales on which the network needs to respond. Rate lim

tend not to employ long cascades (Rosenfeld and Alon, 2003).
Cascades are relatively rare in sensory transcription networks, bu
works do have long cascades, as we will see in the next chapter. Cascade
networks whose interactions are rapid with respect to the timescale on whic
needs to function. This includes developmental transcription networks tha
developmental processes and signal transduction networks whose comP‘f"’"cI"fs
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expression, whereas IFFLs occur in systems that guide progressioq m'smtio
cell eycle (Yu et al., 2003; Luscombe et al,, 2004). Future work in lhls.dlfffC on
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In summary, sensory transcription networks across organisms apped
four motif families: autoregulation, FFLs, SIMs, and DORs. These netw
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cascades are far more comumon than long cascades. Most other patterns, such as three-
node feedback loaps, are conspicuously absent.! Hence, the subgraph content of these net-
works is much simpler than it could have been. They seem to be built of a small set of
clementary circuit patterns, the network motifs,
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EXCRCISES

51

Equal timing. Consider a SIM coutrolled by regulator X that activates downstream
genes Z,, i = 1, ..., n, with thresholds K;. Attime t =0, X begins to be produced ala:
constant rate . Design thresholds such that the genes are turned on one after the
other at equal intervals {use logic input functions).
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3.2, Robust timing.

a. For the system of exercise 5.1, are there biological reasons that favor placing the
thresholds K; much smaller than the maximal level of X? Consider the case in
which X is an activator that begins to be produced at time t = 0, and consider the
effects of cell-cell variations in the production rate of X,

b, Would a design in which X is a repressor whose production stops at time t = {
provide more robust temporal programs? Explain.

Solution:

a. Imagine that X; is close Lo the maximal Jevel of X, X, = B/a. Since the production
rate of X, f§, varies from cell to cell, some cells have higher B than others over
their entire generation time (sce Appendix D). Tence, there are cetl—cell varia-
tions in X, In cells in which production is low, we might have X,, < K: in these
cells X* does not cross K. Therefore, the downstream gene Z, is not expressed,
and the cell is at 2 disadvantage. Thus, designs that provide the required tim-
ing and in which K; is much smaller than the mean X, (smaller than the lowest
expected X, given the variability in ) have an advantage.

Let us consider the case in which K; arec much lower than X,. In this case, X
crosses these threshoids at early times and we can use the approximation of lin-
ear production X(t} ~ B t (Equation 2.4.7). Thus, the activation times of the genes,
found by asking when X(1) = K, are t, = K /P.

Low thresholds thus ensure that all genes can be activated despite the noise in
production rate. One can tune K; and P to achieve the required timing. Note that
the activation times can vary from celi to cell if B varies. A factor 2 change in f§
would lead to a factor 2 change in t;. The relative arder of the turn-ON events of
different genes in a SIM in the same cell would, however, not change.

b, When X production stops, it decays X(t) = (Bia) ¢2¢. The turn-ON time of gene
Lis the time when the level of repressor X goes below its threshold: X(1) = K, so
that:

B

ak

L= 'log

Note that 3 appears only in the logarithm in this expression, so that the activa-
tion time t,is quite robust with respect to fluctuations in production rate, more
$0 than for an activator whose concentration increases with time (where, as we
saw above, {; ~ K,/B).

Thig increased robustness might be one reason that repressor cascades are often
used in developmental transcription networks (Chapter 6) (Rappaport et al.,
2005).

5.3.

54,

5.5,

5.6.

TEMPORAL PROGRAMS AND THE GlLOoBAL STRUCTURE = 93
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CHAPTER 6

Network Motifs in
Developmental, Signal
Transduction, and
Neuronal Networks

6.1 INTRODUCTION

In the previous chapters we considered network matifs in sensory transcription networks.

We saw that these networks are made of a small set of network motifs, each with a defined
function. We will now ask whether network motifs appear also in other kinds of biologi-
cal networks.

The sensory transcription networks we have studied are designed to rapidly respond to
changes in the environment. In this chapter, we will firsl examine a diffcrent type of tran-
scription network, one that governs the fates of cells as an egg develops into a multi-cel-
lutar organism, or more generally as a cell differentiates into a different type of cell. This
type of network is called a developmental transcription network.

The main difference between sensory and developmental transcription networks is
the timescale on which they need to operate and the reversibility of their action, Sensory
transcription networks need to make rapid and reversible decisions on timescales that ase
usually shorter than a cell generation time. In contrast, developmental networks olten
need to make irreversible decisions on the slow timescale of one or more cell generations.
We will sec that these differences lead to new network motifs that appear in developmen-
tal, but not in sensory, networks.

In addition to transcriplion networks, the cell uses several other networks of interac-
tions, such as protein-protein interaction networks, signal transduction networks, and
metabolic networks. Each network corresponds to a different mode of interaction between
biomolecules, Thus, one can think of the cell as made of several superimposed networks,
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with different colors ol edges. Transcription networks correspond to one color of edges,
protein-protein interactions to a different color, ete.

There is a separation of timescales between these different network layers. Transcription
networks are among the slowest of these networks. As we have discussed, they often show
dynamics on the scale of hours. Other networks in the cell function on much faster time-
scales. For example, signal transduction networks, which process information using inter-
actions between signaling proteins, can function on the timescale of seconds to minutes.

We will describe some of the network motifs that appear in signal transduction net-
works, such as structures called multi-layer perceptrons. Since we currently lack many
of the precise biochemical details, we will use toy models to understand the broad types
of computations nrade possible by these motifs. We will also examine composite motifs
made of two kinds of interactions (two different colors of edges).

Tn addition to these molecular networks, biological networks can also be defined on
larger scales. For example, one may consider networks of interactions between cells. One
important cellular network is the network of synaptic connections between neurons. We
will examiine the best-characterized neuronal network, [rom the worm Caenorhabditis
elegans. '[his network contains several strong network motifs. Notably, neuronal wiring
shares some of the same network motifs that are found in molecular interaction networks.
We shall discuss the possibility that these motifs perform the same basic information pro-
cessing functions in both types of networks.

6.2 NFTWORK MOTIFS IN DEVELOPMENTAL
TRANSCRIPTION N [WORKS

The transcription networks we have studied so far are built to sense and respond to exter-
nal changes. This type of network is termed a sensory transcription network. Sensory
transcription networks are found in almost all cells.

However, organisms also have another type of transcription network. In all multi-cel-
lular organisms and in many microorganisms, cells undergo differentiation processes:
they can change into other cell types. An important example is the development of a mul-
ticelled organism. Multicelled organisms begin life as a single celled cgg, which divides to
(orm the diverse cell types of the body. As the cells divide, they differentiate into different
tissues. To become part of a new tissue, the cell needs 1o express a specific set of proteins.
The specific set of proteins expressed by the cell determines whether it will become, say,
nerve or muscle. These differentiation processes are governed by transcription networks,
known as developmental transcription networks (Davidson, 2001; Davidson et al., 2002;
Albert and Othmer, 2003: Sanchez and Thieffry, 2003; Gunsalus ¢t al, 2005; Levine and
Davidson, 2005; Stathopoulos and Levine, 2005).

Developmental transcription networks of well-studied organisms such as fruit flies,
worms, sea urchins, and humans show several strong network motifs. They display most
of the network motifs that we have described in sensory networks. For example, as in sen-
sory networks, the feed-forward toop (FFL) is a strong network motif (Milo et al., 2004:
Odom, 2004; Penn ct al, 2004; Boyer et al., 2005). ‘The most common FEL, types in devel-
opmental networks appear to be the type-1 coherent and type-1 incoherent I'T'Ls, just as
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FIGURT 6.7 Positive transeriptional feedback loops with two nodes. The double-positive loop has two acti-
vation interactions, and the double-negative loop is made of two repression interactions, An output gene £ is
regulated as shown, Each of the feedback loops has two steady states: both X and ¥ genes ON or hoth OFF in
the double-positive loop, and one ON and the other OFF in the double-negative loop.

in sensory networks {Chapter 4, Figure 4.4). Developmental networks also display promi-
nent autoregulation motifs and SIMs.

In addition to these motifs, developmental networks display a few additional network
motifs that are not commonly found in sensory transcription netwarks. We will now
describe these network motifs and their functicns.

6.2.1  Two-Node Pasitive Feedback Loops for Decision Making

Developmental networks display a network motif in which two transcription factors regulate
each other. This mutual regulation forms a feedback luop. In developmental networks, the
regulation signs of the two interactions usually Jead to positive feedback loops (Figure 6,1).

There are two types of pasitive feedback loops made of two transcription factors. Both
types commonly appear in developmental networks. The first type of positive feedback
loop is made of two positive interactions, so that the two transcription-factors activate
cach other. The second type has two negative interactions, where the two transeription
factors repress each other.

The double-positive feedback loop has two stable steady states (Thomas and D’Ari,
1990): Tn one stable state, genes X and Y are both ON. The two transcription factors
enhance each others’ production. In the other stable state, X and Y are both OFF. A sig-
nal that causes protein X or Y to be produced can irreversibly lock the system into a state
where both X and Y are ON and activate each other, This type of bi-stable switch is called
a lock-on mechanism (Davidson et al, 2002).' Since X and Y are both ON or both OFF,

' Recal! that positive autoregulation can also lock into a s}ale of high expl"essinn {Section 3.5.1). Why, :hcn‘, fin
two-nade feedback loops appear if one-node loops are sufiicient? One possible reason is that t.he dou-h]e-—p.nsllwe
feedback loop enly locks vn after an appreciable delay, and hence can filter out transient input signals. This is con-
ceptually similar to the filtering function of the coherent FFL (Chapter 4).
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FLGURE 6.3 The rcgulntcd—(ccdh;mk network motif in developmental transcription networks. (1) Double-
positive feedback loop. When 7 is activated, X and Y begin to be produced. They can remain locked ON
even when 7 is deactivated (at times after the vertical dashed line). (b) Double-negative feedback loop. Here
7, acts Lo switch the steady states. Tnitially ¥ is high and represses K. Alter 7 is activated, X is produced and
Y is repressed. This state can persist even afier 7 is deactivated. ‘Ths, in both () and (b}, the feedback loop

effectively stores a memory.

6,22 Regulating Feedback and Regulated Feedback

Two-node feedback loops can appear within larger motifs in developmental networks.
There are two main three-node motifs that contain feedback loops {(Milo ¢t al., 2004). The
first is a triangle pattern in which the mutually regulating nodes X and Y both regulate
gene Z (Figure 6.2b), called regulating feedback.

The regulating-feedback network motif has 10 possible sign combinations (combina-
tions of positive and negative interactions on its four edges; Figure 6.2b). 1n the simplest
case, X and Y, which activate each other in a double-positive loop, have the same regu-
lation sign on the target gene Z (both positive or both negative). In contrast, a double-
1 have opposing regulation signs for Z (Figure 6.1). ‘The

negative feedback loop will oftes
nt, in the sensc that any two paths

two sign combinations shown in Figure 6.1 are cohere
between two nades have the same overall sign.

In addition to the regulating-fecdback motif, developmental networks show a network
motif in which a two-node feedback loop is regulated by an upstream transcription factor
(Figure 6.3). This motif is called regulated feedback. Again, several coherent sign corubi-
nations are commonly found. For example, the input transcription factor can be an acti-
vating regulator that locks the system ON in the case of a double-positive loop (Davidson
et al,, 2002). In the case of a double-negative loop, the regulator can have different signs
for the two feedback nodes and act to switch the system from one steady state to the other
(Gardner et al., 2000).

The regulated feedback motif can be considered as a memaory elem
se feedback loop from one state to another, such that the state persists even
Hence, the circuit can remember whether 7 was active

ent: the regulator 2

can switch t!
after 7 is deactivated (Figure 6.3).
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in the past. This memory is a well-known feature of positive feedback loops (Demongeot
?t al, 2000; Smolen et al., 2000; Xiongand Ferrell, 2003). It can help cells to maintain their
ate even after the original developmental signals that determined the fate have vanished.

623 Long Transcription Cascades and Developmental Timing

f\n additional important family of network motifs in developmental networks that is rare
in :sensory networks is long transcriptional cascades, Transcriptional cascades are chains
of interactions in which transcription factor X regulates Y, which in turn regulates Z, and
so on (Figure 6.4). ,

As we have seen in Chapter 2, the response time of each stage in the cascade is gov-
erned by the degradation/dilution rate of the protein at that stage of the cascade: T,,, =
log(2)/a. Recall that for stable proteins, this response time is on the order of a cc_:Il ;;Zn
c.ration time (Section 2.4,1), Interestingly, developmental networks work on precisely this
timescale, the scale of one or a few cell generations. ‘This is because cell fates are assigned
with each cell division (or several divisions} as the cells divide to form the tissue.;; of the
embryo. Hence, the timescale of transcription cascades is well snited to guide develop-
li.lctiltal processes. Development often employs cascades of repressors (Figure 6.4b), whose
uming properties may be more robust with respect to fluctuations in protein production
rates than cascades of activators (Rappaport et al., 2005} (see Exercises 5.2 and 8.4).

(.24 Interlocked Feeed-Forward Loops in the B. subtilis Sporulation Network

The feed-forward loop (FFL) is another strong network motif in developmental networks.
In developmental networks, the FELs often form parts of larger and more complex cir-

cuits than in s anscripti X i
its than l.n sensory transcription networks. Can we still understand the dynamics of
such large circwits based on the belvavior of the individual FE1s?

IMGUREF 6.5 The transcription network guiding development of the B. subtilis spore. 7,. Z,, and Z, represent
groups of tens to hundreds of genes. This network is made of two type-1 incoherent FFLs, which generate
pulses of Z, and Z,, and two type-1 coherent FRLs, one of which gencrates a delayed step of 7. (Based on
Eichenberger et al., 2004.)

To address this question, we will discuss a well-mapped developmental network made
of interlocking FFLs that governs differentiation in a single-celled organism, the bacte-
rium Bacillus subtilis.

When starved, B. subtilis cells stop dividing and differentiate into durable spares. The
spore contains many proteins that are not found in the growing bacterium. It is a resting
cell, almost completely dehydrated. It can survive for a long time in a dormant state. When
placed in the right conditions, the spore converts itself again into a normal bacterium.

When B. subtilis makes a spore, it must switch from making one subset of proteins
to making another subset. This pracess, termed sporulation, involves hundreds of genes.
These genes arc turned ON and OTF in a series of temporal waves, each carrying out spe-
cific stages in the formation of the spore. The network that regulates sporulation (Bichen-
berger et al., 2004) is made of several transcription factors arranged in linked coherent
and incoherent type-1 FFLs (Figure 6.5).

To initiate the sporulation process, a starvation signal 8, activates X,. This transcrip-
tion factor acts in an incoherent type-1 FFL (I1-FFL) to control a set of genes Z,. In this
11-FF1., X, directly activates Z, and also activates Y,, which represses Z,. ‘The 11-FFL gen-
erates a pulse of Z, cxpression {as described in Section 4.7). A second FFL is formed by Y,
and X,, which are both needed to activate X,, resulting in a coherent type-1 FFL {C1-FFL}
with AND logic. The C1-FFL ensures that X, is not activated unless the 5, signal is persis-
tent (as was discussed in Section 4.6). Next, X, acts in an 11-FFL, where it aclivates genes
7, as well as their repressor Y. This results in a pulse of Z, genes, timed at a delay relative
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to the first pulse. Finally, ¥, and X, logether join inan AND gate CI-FEL to activate genes
7y, which are turned on last. The result is a three-wave lemporal pattern: first a pulse of Z,
expression, followed by a pulse of 7, expression, followed by expression of the late genes Z,.

Henee, the FELs in this network are combined in a way that utilizes their delay and
pulse-generating features (o generale a temporal program of gene expression. The cas-
caded FFLs generate two pulses of genes followed by a third wave of late genes (Tigure
6.5). 'The FELs controlling Z,, Z,, and Z, arc actually multi-output FILs because 7, Z,,
and 7, cach represent large groups of genes. 'This design can generate finer temporal pro-
grams within cach group of genes, as described in Section 5.5,

We see that the FULs in this network are finked such that the dynamics of the network
can be casily understoed based on the dynamics of each FIEL. A similar situation was
found in sensory transcription networks, in which FFLs are combined in particular fash-
ions, to form multi-output FPLs. “The dynamics of multi-output FFLs can also be under-
stood based on the dynamics of each of the constituent three-node FILs. 1t is important
to note that there are, in principle, many other ways of linking FI'Ls. Most combinations
of linked FFl.s do not lend themsclves to casy interpretation (Can you draw a lew of these
pussible conligurations?). In short, the FFLs in the B, subtilis sporulation network and in
sensory networks seem to be linked in ways that allow casy interpretation based on the
dynamics ol cach FFL in isolation. ‘This appears to be the case also for network motifs in
many other developmental networks.

Such understandability of circuit patterns in terms of simpler subcircuits could not
have evolved to make life casier for biologists. Understandability is a central feature of
engineering, because engineers build complex systems out of simpler subsystems that
are weli understood. These subsystems are connected so that each subsystem retains its
behavior and works reliably. It is an interesting question whether understandability might
be u comimon feature of networks that evolve to function.

6.3 NETWORK MOTIFS IN SIGNAL TRANSDUC HON NETWORKS

We have discussed transcriplion networks that operate slowly, on a timescale that can be
as slow as the cell's generation time. To elicit rapid responses, the cell alse contains much
faster informalion processing networks, called signal transduction networks.

Signal transduction networks are composed of interactions between signaling proteins.
Their function is to sense information from the environment, process this information,
and accordingly regulate the activity of transcription factors or other effector proteins.
For example, <clls in animals usually do not divide unless they are stimulated by hor-
mone proteins culled growth factors. Specific growth factors can be sensed by cells, trig-
gering a signal transduction pathway that culminates in the activation of gencs that lead
ta cell division.

The inputs to signal transduction networks are typically detected by receptor proteins
(Figure 6.6). Receptors usually have one end outside of the cell’s membrane and the other
end within the cell’s cytoplasm. Their extracellular side can detect specific molecules
called ligands. Binding of the ligand molccules causes a conformational change in the
receptor, causing its intraceflular side to become active and catalyze a specific chemical
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FIGURE 6.6 Protein kinase cascade: ligand binds the receptor, which leads, usually through adaptor pro-
teins, to phosphorylation of kinase X. Kinase X is active when phosphorylated, X-p. The active kinase X-p
phosphorylates its target kinase, Y. The active kinase, Y-p, in turn, phospherylates Z. The last kinase in the
cascade, Z-p, phosphorylates transcription factor ‘I, making it active, T* Finally, T* enters the nucleus and
activates {or represses) transcription of genes. Phosphatases remeve the phosphoryl groups (light arrows).

madification to a diffusible messenger protein within the cell, This maodification can be
thought of as passing onc bit of information {rom the receptor to the messenger.

Once modified, the messenger protein can itself modify a second type of messenger
protein, and so on. This network of modification interactions often functions on the tim-
escale of seconds to minutes. It often culminates in modification of specific transcription
factors, causing them to become active and control the expression of target genes.

The structure of signaling networks is a subject of current research, and many interac-
tions arc as yet unknown. Furthermore, as we will see in Chapters 7 to 9, the precise func-
tion of these networks can depend on subtle biochemical details. As a result, we can at
present only draw tentative conclusions about the structure and function of signaling net-
works. However, the available data already show several intriguing network motifs. Here
we will focus on a motif made of interacting signaling pathways that appears throughout
diverse signal transduction networks, but does not appear in transcription networks.
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HGURE 6.7 Network motifs in signal transduction netwarks. The main four-node matifs are the diamond
and the bi-fan. Generalizations of the diamond are obtained by duplicating one of the four nodes and all of
its edges. These generalizations are all also network motifs in signal transduction networks.

04 INFORMATION PROCESSING USING MULTILAYER PERCEPTRONS

In signal transduction netwerks, the nodes represent signaling proteins and the edges are
dirccted interactions, such as covalent modification of one protein by another. Signal-
ing networks show two strong four-node motifs, the bi-fan and the diamond (Figure 6.7)
(Itzkovitz et al,, 2005; Ma‘ayan et al., 2005b), The bi-fan is also found in transcription
networks. We saw that the bi-fan in transcription networks generalized to single-layer
patterns called dense overlapping regulons, or DORs (Chapter 5, Figure 5.12 and Figure
5.13). 'The diamond, however, is a new network motif that is not commonly found in tran-
scription networks.

The diamond network motif in signaling networks generalizes to form multi-layer pat-
terns (Figure 6.7). These patterns resemble DOR-like structures arranged in cascades,
with each DOR receiving inputs from an upstream DOR. In contrasi, in transcription
networks, as described in Chapter 5, DOR patterns do nol occur in cascades; that is, a
DOR is not normally found at the output of another DOR.

The multi-layer patterns in signaling networks usually show connections mainly from
one layer to the next, and not, say, connections to nodes that are two layers down. Such
structures are similar to patterns studied in the fields of artificial intelligence and artifi-
cial neural networks, called multi-layer perceptrons (Hertz et al., 1991; Bray, 1995).

G Toy Madel for Protein Kinase Perceptrons

Let us analyze the information processing capabilities of these multi-layer perceptrons.
We will use 2 toy model of a common signal transduction module, protein kinase cas-
cades (Figure 6.6) (Wiley et al., 2003; Hornberg et al., 2005; Ma’ayan et al,, 2005b; Kolch
el al, 2005). Protein kinase cascades are information processing pathways found in most
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HGURE 6.8 Double phosphorylation in pratein kinase cascades: prolein kinases X, Y, and 7 are usually
phosphorylated on twa sites and often require both phosphorylations for full activity.

cukaryotic organisms.' These cascades are made of kinases, proteins that catalyze the
phospharylation of specific target proteins {phosphorylation is the addition of a charged
PG, group to a specific site on the target protein). The cascade is activated when a recep-
tor binds a ligand and activates the first kinase in the cascade, X. Kinase X, when acti-
vated by the receptor, phosphorylates kinase Y on two specific sites (Figure 6.8). Kinase Y,
when doubly phosphorylated, goes on to phosphorylate kinase Z. When kinase Z is dou-
bly phosphorylated, it phosphorylates a transcription factor, leading to gene expression.
Specific protein enzymes called phosphatases continually dephosphorylate the kinases (by
removing the phosphoryl groups). Therefore, active protein kinase cascades display a cycle
of phosphorylation and dephosphorylation.

Protein kinase cascades often use scatfold proteins to hold kinases in close proximity,
(Levchenko et al, 2000; Park et al., 2003). Adaptor proteins can connect a given cascade
to different input receptors in different cell types (Pawson and Scott, 1997). ‘Thus, these
cascades act as reusable modules {Schaeffer and Weber, 1999; Wilkins, 2001); the same
cascade transduces a different signal in different tissues in an organism.

Protein kinase cascades are usually made of layers (Figure 6.9), often three layers. In
the first layer, several related kinases X, X,, ..., can activate the next layer of kinases Y,,
Y,. These, in turn, can activate the third layer of kinases Z,, Z,, .... This forms a multi-
layer perceptron that can integrate inputs from several receplors (Figure 6.9).

! Bacteria also use protein phosphorylation for signal transduction. However, the signal transduction networks
in bacteria are usually much simpler than the protein kinase cascades of eukaryotes. Bacteria use two-compa-
et systems, with a receptor that transfers a phosphoryl group onta a diffusible response regulator protein (for
example, CheA and CheY in the chemotaxis system described in Chapter 7). Sometimes several signaling proteins
are linked in a phospho-relay architecture, It is interesting 10 ask why bacterial signaling is so much simpler than
eukaryotic signaling networks.
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FIGURI 6.9 Multi-layer perceptrons in protein kinase cascades. Several different receptors in the same cell
can activate specific lop-layer Kinases in response Lo their ligands. Fach layer in the cascade often has multiple
kinases, each of which can phosphorylate many of the kinases in the next layer.

To study such multi-layer perceptrons, we will write down a toy model for the dynam-
ics of protcin kinase networks. The goal is to understand the essential principles, not to
develop a detailed model of the system. Hence, we will use the simplest kinetics for the
kinases, first-order kinctics (see Appendix A.7). First-order kinetics means that the rate
of phosphorylation of Y by X is proportional to the concentration of active X times the
concentration of its substrate, unphosphorylated Y, denoted Y,

rate of phosphorylation =v X Y,

The rate of phosphorylation is governed by the rate v of kinase X, equal te the number of
phosphorylations per unit time per unit of kinase.

To begin, imagine a kinase Y that is phosphorylated by two different input kinases,
X, and X, (Figure 6.10). The phosphorylated form of Y is denoted Y, and the unphos-
phorylated form is denoted Y,. The total number of unphosphorylated and phosphory-
lated forms of Y is conserved:

Y,+Y,=Y (6.4.1)

The rate of change of ¥, concentration is given by the difference between its phosphoryla-
tion rate by the two input kinases and the dephosphorylation of Y, by phosphatase at rate a:

! The total concentration of ¥ can change due to transcription of the ¥ gene. These changes are usually much
slower than the timescale of the phosphorylation-dephosphorylation interactions. Hence, the total Y concentra-
tion can be cansidered constant over the timescale of changes in signaling protein activity. Note that often the
proteinsina Signnling cascade are Lranscriptionally regulated by signals coming through the same cascade.
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dY fdt=v X, Y, +v, X, Y, -« Y, (6.4.2)

We will study the steady-state behavior of these cascades (though dynamical functions of
kinase cascades are very important; see solved exercises 6.4 and 6.5). At steady state {dy,/dt
= 0), thesc equations lead 1o a simple solution. The fraction of phosphorylated Y is a func-
tion of the weighted sum of the concentration of active X, and X, with weights w, and w,;

YJY = E(w X+ w, Xy {6.4.3)

where the function f in Equation 6.4,3 is an increasing, saturating function (Figure 6.10}:

f(u)=f'l'1

Liu (6.4.4)

The weight of each input corresponds to the rate of the kinase divided by the rate of
the phosphatase:

w, = v/fa and w,=v,/a (6.4.5)
in other words, the concentration of phosphorylated Y is an increasing function of the
weighted sum of the two input kinase activities.'

When Y is a kinase that needs to be phosphorylated on two siles to be active, the input

function f is even steeper (Figure 6.10; solved exercise 6.2):

(6.4.6)

These S-shaped input functions lead to significant activation of Y only when the weighted
sum of the two inputs is greater than a threshold value, which is approximately 1:

——
1 . . n - e .

Nﬁlc that real signaling proteins can display mare sophisticated input functions by virtue of interactions between
their various protein domaing (Prehoda and Lim, 2002; Ptashie and Gann, 2002; Ducber et al., 2004).
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VIGURE 6,11 Single-layer perceptrons and their input functions. Node Y sums the two mpt:l‘s‘)\, :(l)l!(: w,
according 10 the weights w, and w,. Y is activated in the shaded region of the X-X, pla.nc. Int s r;},l ' ;
X 4w, X,> 1. Protein kinase Y is phosphorylated and hence active in the shaded region. In this lgut.':.‘, Z(
. 1 . ivity i o y
wlull 'wzin Figure 6.12 and Figure 6,13, the range of activities of X, and X, is between O and L Al;ac;‘wl l):m
a A ‘Thi 1 + ion i » XX, plane
1 means that all of the input kinase molecules are active. This defines the square region in the X,-X, ¢

portrayed in the figures.
w X, +w, X;> 1 6.4.7)

Hence, one can define a threshold of activation, w, X, + w, X, = 1. "!hi.s thrcshnl‘d cm}
be represented graphically by a straight line that divides the X=X, plane into a region o
low Y, and a region of high ¥, (Figure 6.11). S

The slope and pasition of the threshold line that llli.ll"kS the l)oun-dary (.)f U])IL a}ct.w;j :On
region depend on the weights w, and w,. When the mtenghts an rclzftwcly sma l ;(\L(;Lig‘uw
of high Y, occupies a corner of the plane requiring‘hxgh activity of l}m.!h X, anlc : Eihc,
6.11a). This is akin 1o an ANID gate over the two mput.s. If th‘e .welghtﬁ are argegR -
X, or X, can activate Y, resulting in a larger region of high activity, similar toan OR g

Figure 6.11b). _
( ihe precisi: position of the activation threshold can be tuned by changing 1h<.a‘we1;tgll:;5t
w, and w,. Such changes can be made in the living cell by regulatory mechanlsm§ o
affect the rates of the input kinases X, and X, or the phosphatase rates. C.hanges tn —
weights can also be made on an evolutionary timescale by mulations that ai? ect, .fnr exa:;lc
ple, the chemical affinity of each of the input kinases to the phosphorylation site o9
surface of protein Y. 4

[ short, kinase Y is regulated by a threshold-like function of the weighted sum .of t|‘1f3
inputs. ‘This generates an activation threshold that can be represented as a straight line bt
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the plane of the two input activities. More generally, similar functions describe a layer of
input kinases X, X, ..., X,,, which regulates a layer of outputs Y,, Y,, .., Y,. The activity of
¥, is a threshold-like function of a weighted sum of inputs fw, Xi v wip Xor ot w, X))
Note that cach Y, has its own set of weights corresponding to its affinities to the input kinases.
These single-Tayer perceptrons can compute a relatively simple function: they produce output
if the summed weight of the inputs exceeds the threshold, This threshold of activity can be
represented as a hyperplane in the m-dimensional space of input activities X, X,, ..., X,,. We
will continue to use just two inputs for clarity, though the conclusions are valid for percep-
trons of any size.

6.4.2 Multi-layer Perceptrons Can Perform Detaile Computations

In our toy model, a single-layered perceptron divides the X=X, plane into two regions,
separated by a straight line. This allows computations of functions similar to AND pates
and OR gates. We will now see that adding additional perceptron layers can allow more
intricate computations.

Consider the two-layered perceptrons in Figure 6.12. Each of the kinases in the middle
layer, Y, and Y, has its own set of weights for the two inputs, X, and X,. Therefore, each
has its own input function in which a straight line bisects the plane into a region of low
activity and a region of high activity.

The two kinases Y, and Y, can phosphorylate the output kinase Z. These kinases only
phosphorylate Z when they themselves are phosphorylated (recali that protein kinases arc
only active when they themselves are phosphorylated). Thus, the phosphorylation of Z is
a weighted sum of its two inputs, with the same function f as before (Equation 6.4.4 or
6.4.6) and with weights w,, and w,,:

ZJZ = {(w,, Y, +w, Y,) {6.4.8)

If both weights w,, and w,, are small, both Y, and Y, have to be phosphorylated to cross
the activation threshold. This means that Z is phosphorylated only in the region of the
X,-X; plane, where both Y, and Y, are active. This region is defined by the intersection
of the two activity regions of Y, and Y,. This intersection results in activation of 7 in a
region of input space whose boundary is defined by two lines (Figure 6.12b). In contrast,
Wwe saw above that single-layer perceptrons allowed output regions defined more coarsely
by a single straight line. Hence, the additional perceptron layer affords a somewhat more
refined activation function.

Additional activation functions are shown in Figure 6.12a. Here, the activation region
of Zis a union of the two activation regions of Y, and Y, (because the weights w,; and w,,
are large enough so that cither input kinase is sufficient to activate 7). Again, the activa-
tion region is bounded by two linear segments.

An additional level of detail can be gained when the middle layer contains a specific
Phosphatase instead of a kinase. In this case, the phosphatase removes the phosphoryl
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FIGURE 5.4 Temporal order in the arginine biosynthesis system. The promoters are activated in a defined
order with delays of minutes between promoters, Color bars show expression from the promoters of the dif-
ferent operons in the system, measured by means of 2 luminescent reporter gene. The position of cach gene
produet in the pathways that produce arginine is shown. (From Zaslaver et al., 2004.)
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FIGURE 5.9 Temperal order in the flagella system of E. coli. Cofored bars are the normalized expression
of each promoter, where blue is low and red is high expression. Activity of each promoter was measured by
means of a green fluorescent (GFP) reporter. The (emporal order matches the assembly arder of the flagella,
in which proteins arc added going from the intracellular to the extracellular sides. {TFrom Kalir et al., 2001))



L

¢rug and
supermade DOR

statonary phase CNA metabolism DOR
DOR

osmotc siress
DOR

carbon wtilization
DOR

positive regulation

nagative regulation

i—T—-‘F’ danza overlapping regulans (DOR)

[ single inpt module (SIM)

dual regulation

A ooherent feedforwand loop

a

Miti-nput modu’e

<

incoherert feedforward loop

o single operon

ot transcription factors that read the signals from the environment.

FIC:URE 5.14 The global structure of part of the E. coli transcription network. Ellipses represe

or multi-output FFLs. Squares are outputs of SIMs. Blue and red

Circles are output genes and operors. Rectangles are DORs. Triangles are outputs of single-

.. . i 5
lines correspond 1o activation and repression interactions. (From Shen-Orr et al,, 2002}

NETWORK MOTHS 7 113

modification and eflectively has « negative weight.! A negative weight can lead to more
intricately shaped activation regions for Z. An example is shown in Figure 6.13q, in which
Z is activated when the inputs X, and Xy are such that node Y, is activated
not. This design leads 1o a wedge-like region of Z activation. Othe
activation of 2 when cither X

-

but node 3
rweights can lead o an
cand X, are active, it ot both (similar to an exclusive-or or
XOR gate; Figure 6.13b). These types of computations are not possible
perceptron (Hertz et al,, 1991),

, 08

with a single-layer

Adding additional layers can produce even more detailed functions, in which the oul-
pul activation region is formed by the intersections of many dille

rent regions defined by
the different weights of the perceplron,

[n summary, multi-layer perceptrons can perform more detailed computations than
single-layer perceptrons, Qur toy model considered cach Kkinase as a very simple unit that
sums inputs and activates downstream targets when the sum exceeds a threshold. Multi-
layer perceptrons allow even such simple units 0 perform arbir

arily complex computa-
tions, based on the power of combinatorial layered information

processing (Bray, 1995).

Multi-layer perceptrons similar to the ones we have discussed have been studied in the
context of artificial intelligence. They were found to display several properties that may
be useful for signal transduction in cells (Bray, 1995). 1 will now describe three of these
propertics very briefly; more details can he found in texts such as Hertz et al., (1991).
Multi-layer perceptrons can show discrimination, generalization

» and graceful degrada-
tion. Discrimination is the ability to accuratel

y recognize certain stimuli patierns. A
multi-layer perceptron can be designed with welghts and counections so t
the difference between a set of very similar stimuli patterns. G
to “fill in the gaps” in partial stinli patterns. A multi-layer
with weights and connections so that it can respond d

wl it can tell
eneralization is the ability
perceptron can be designed

Hlerently to a set of different stimuli
patterns. If presented with a stimulus that only partially resemble

stimuli, the circuit will act as if it saw the entire inpul p
tion refers to the fact that d

s one of Lhe original
altern. Finally, graceful degrada-
amage to clements ol the perceptron or its connections docs
not bring the network to a crashing halt. Instead, the performance of the
Forates, at a level proportional to the amount of damage. Indeed, mut
transduction com

l

network dete-
ations in a signal
ponent sometimes have only small effects on cell responses, particu-
arly in complex organisms.? 'These (hree phenomena, generalization, diserimination, and
-
"Inthe toy model, a phosphatase X, and a kinase X, lead to the following equation: dY = v X (Y - ¥) - v, X,
» = WY The solution is an input function; YIY = v X/ X, 4 v, X, 4 0) we K X w0
W the smaller Y, A negative weight is merely used as an approximalion to caplure the esseatials of the slightly
more complicated input function fur phosphatases. An analogous situation occurs if a kinase phosphorylates a
:argﬂ kinase on a site that reduces the activity of the target kinase, instead ol increasing the activity,
Complex organisms encounter mutations within their lifetimes. Il seems
Somatic celly tey function despile mutations {or at le

). "thus, the higher

that mechanising have evolved to allow

0 a8t Lo commit programmed cell death i€ they malfunction, and
WS protect the uvrganism). One such mechanisn may be distributed computation by multi-layer perceptrons,

which allows far graceful degradation of performance upon loss of cemponents, Anothe
0metimes called “redundancy,” is based on feedback loaps, which sense the |
a difr}'rcnl component that can partiably complement the function of 11
; L0 contrast to multicelled organisms, bacteria have ne somatic ce
S;gf:;d:flna\crcri;l are 1'r;1gi|v'lln nutations, in the sense that most mut
o avlf UI-‘LL'HUI\ {e.g. inability to Brow an lactose upon mut
Cvery few backup systems or redundant pathways,

rcommaon mechanisin,
oss ol a companent and upregulate
e lost companent (Kafri et al,, 2005). Note
ls that need o survive despile mutations,
ations that inaclivate a gene lead 1o a Joss of a
ation of the facs gene) or o cell death, Bacteria appear
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and Y, are active in the shaded

their input functions. Y,

FIGURE 6.13 Two-layer perceptrons with a negative weight and

inhibits it. Thus, Z is activated in a wedge-like region in

, activates Z, whereas Y,

regions, bounded by straight lines. (a) ¥

or X. is

rields an output Z that is activated when either X,

which Y, is active but Y, is not. (b) An additional example that y

highly active, but not both (similar to 2n exclusive-OR gate).
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graceful degradation, might characlerize the functioning of signal transduction networks
in cells.

In summary, multi-layer perceptrons allow even relatively simple units to perform
detailed computations in respense to multiple inputs. The deeper ane goes into the layers
of the perceptron, the more intricate the computalion can become,

6.5 COMPOSITE NETWORK MOTIFS: NEGATIVE
- TFEDBACK AND OSCILLATOR MOTIES

We have so far discussed protein signaling networks and transcription networks sepa-
rately. In the cell, both networks operate in an integrated fashion. For example, the output
of signal transduction pathways is often a transcription factor.

Because transcription and protein interaction networks function together, they can be
described as a joint network with two colors of edpes: ene color represents transcription
interactions, and a second color represents pmlein—pmlein interactions (Yeger-Lotem et
al., 2004). In this scction, we will briefly mention some of the network motifs that occur
in such two-color networks. Network motifs can also be found in networks that integrate
more than two levels of interactions (Zhang et al., 2005; Pracek et al., 2005)

An example of a two-color motif is the following three-node pattern: a transcription
factor X transcriptionally regulates two genes Y and Z whose protein products directly
interact, for example Y phosphorylating Z. (Figure 6.14a). This reflects the fact that tran-
scription factars often coregulate proteins that function together.

A very common composite motif is a feedback loop made of two proteins that interact
with each other using two colors of edges (Figure 6.14b).! In this motif, protein X isa tran-
scription factor that activates the transcription of gene Y. The protein preduct Y interacts
with X on the protein level (not transcriptionally), often in a negative fashion. This nega-
tive regulation can take several forms. In some cases, Y enhances the rate of degradation
of protein X. In other cases, Y binds X and inhibits its activity as a transcription factor by

preventing its access to the DNA. This type of feedback occurs in most known gene sys-
tem from bacteria to humans (Lahav et al., 2004)

This two-protein negative feedback motif is a hybrid of two types of interactions. One
interaction is transcriptional, in which X activates Y on a slow timescale. ‘The other inter-
action occurs on the protein level, in which Y inhibits X on a rapid timescale. It should
be noted that purely transcriptional negative feedback loops are relatively rare (develop-
mental transcription networks usually display positive transcriptional feedback loops, as
discussed above). In other words, it is rare for Y to repress X on the transcription level.
What could be the reason that composite negative feedbacks are much more common
than purely transeriptional ones?

e

'A compasite feedback loop, called feedback inhibition, has long been known in metabolic networks {Fell, 2003).
Here, the product P of a metabolic patlway inhibits the first enzyme in the pathway E

and jts binding to E,, on a subsecond timescale. The slow
needed for an enzyme to produce its prodect ata level equ
cally on 1he timescale of minutes (Zaslaver ¢t al.,, 2004)
the stability of metabolic pathways (Savageau, 1976}

1~ The fast arm is difusion of
arm is the flux changes in the pathway, such as the time
al to the K, of the next enzyme. These changes are typi-
- Feedhack inhibition has been demonstrated to enhance
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mon network motif across organisms.

To understand composite feedback, we can turn to engineering control t]_lcory. iu.d
back in which a slow component is regulated by a fast one is commonly used m[ cng;m:l‘l-
ing. A principal use of this type of feedback is to Stablll.ZC a system. For example, a} f‘eét;
that takes 15 min o heat a room is controlled in a negative feedback loop by a mL;: 1( at.s ]
thermostat (Figure 6.15). The thermostat compares the desired 1cn1Pcrat11r.L' tho thc ac ‘::r
temperature and adjusts the power accordingly: if the temperature is too high, f:'p'omrC
of the heater is reduced so that the room cools down, After some time, the tempera
stabilizes around the desired temperature (Figure 6.16). A———

One reason for using two timescales (fast thermostat on a slow heater) in Thl‘S lclu )‘;;_
loop is enhanced stability. The rapid response time of the thermostat ensures that the T( "
trol of the heater is based on the current temperature. Had the thermostat been made "
a vat of mercury that takes 15 min to respond to temperature changes, the hcaté;'[wouln
receive feedback based on the relatively distant past, and tem;.)cr.ntur.c wouldl oscnh ‘atnc{m'e
analogy, a negative feedback loop made of two slow.transcr.lptlon mtcir‘actalous :;L o
prone to instability than a feedback loop where a fast mteractm_n.comm:s as o»'v czoo.lb)
an excellent introduction 1o the mathemalical treatment ofstal)l]l?y, s‘ce bu:ogatz,l( ' n-’

Whereas stability around a fixed state {also called ltno.mcosm.&fs) is desuab.lc in J:;Il)
biological systems, other biological systems display a strikingly dlf’r'crcnt ‘tilel?avllorm ot
latory dynamics (Winfree, 2001; Goldbeter, 2002; Mllrl'.?ly‘, 2().()4). the ce cylcl L;, oo
cells periodically duplicate their genomes and divide, is an important oscillator (Ty
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{M‘l]}‘]:l‘\']’i' "(—>* Heatwn f" *ﬁ'"] --brl eniperatige
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L Thermestat A{.‘.._.;

Fast

HIGLIRT 615 Negative feedhack in engineering uses fast control on slow devices, A healer iz controlled by a
thermostat that compares the desired temperature to the actual lemperature, I7 the temperature is too high,
the power 1o the heater is reduced, and power s increased if lemperature is (oo low. ‘The thermostal works
on a much faster timescale than the heater., Engincers usually tune the feedback parameters to oblain rapid
and stable temperature control (and avoid prolonged oscillations in room lemperalure),

et al, 2002). Another well-known example is the circadian clock, a remarkably accurate
biochemmical circuit that produces oscillations on the scale of one day, and which can be
entrained to follow daily variations in signals such as temperature and light. Other oscil-
lators oceur in regulatory systems, such as transcription factors whose cancentration or
activity oscillates in response to specific signals (Hoffman et al., 2002; Monk, 2003; Lahav
etal, 2004; Nelson et al., 2004), Oscillators are also found in beating heart cells, spiking
neurons, and developmental processes that generdle repeating modular tissues (Pourquie
and Goldbeter, 2003).

Biclogical oscillations have a typical character: their liming is usually significantly
more precise than their amplitude (Lahav ct al., 2004; Mihalcescu et al,, 2004). Different
pulses in the oscillation occur at rather accurate time intervals, but with varying ampli-
tudes. The source of the variation in the amplitude appears to be slowly varying internal
Noise in protein production rates that is inherent in biochemical circuitry (Appendix 1)),

Many biological oscillators appear to be implemented by a two-color network motil
(usually embedded in numerous other interactions). This motif iy a composite negalive
feedback loop, in which the transcription factor X also displays positive autoregulation
{(Figure 6.17a) {(Pomerening ct al,, 2003; Tyson et al,, 2003). ‘This circuit can produce oscilla-
tions with robust timing despite luctuations in the biochemical parameters of the compo-
nents (Barkai and Leibler, 2000 Vilar et al., 2002; Atkinson et al,, 2003). The mechanism of
robust oscillations is based on a hysteresis in the dynamics of X caused by the autoregula-
tory loop. This oscillator belongs to a family of models known as relaxation oscillators.

Another possible design for escillatory circuits is a feedback loop made of multiple regu-
lators hooked up ina cycle to form a negative feedback loop. For example, three repressors
hooked up in a cycle are called a repressilator (Elowitz and Leibler, 2000) (Figure 6.17b,
eXxercise 4.9). This circuit belongs to the family of delay oscillators, a family that often tends
19 show noisicr oscillations with less precise timing, Extensive theoretical work on biologi-
%l oscillators can be found in the further reading section at the end of the chapter.
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FIGURE 6.16 Negative feedback can show overdamped monotlenic dynamics, dam[.md osn.]lalmlns with
peaks of decreasing aiplitude, ar undamped oscillations. Generally, the stronger the mtemmmns. )]elwe;'n
the two nodes in relation to the damping forces on each node (such as degradation rates), the higher the
tendency for oscillations,

0.6 NETWORK MOTIFS IN THE NFURC_)_Y_\J/\Il_\l_['TVV_(ZRliOF‘{__H_fﬁﬁNS
}\/luny ﬁeldsﬁ;;)f s_ci—e_!-l-c-c_(iea-l _v::riil]rnet;t;;i(rs:)f interactions, including %uciol.ogy (Holland
and Leinhardt, 1975; Wasserman and Faust, 1994}, neurobiology, engmeermg, and ecol-
ogy. Network motifs can be sought in networks from these fields by comparing them to
randemized networks. One finds that:

1. Most real-world networks contain a small set of network motifs.

2. 'The motifs in different types of network are generally different.

Examples can be seen in Figure 6.18. To compare the motifs in nclwork§ u_l' diff.crel-mt sm\
one can define subgraph profiles. These profiles display the relative statistical significance
of cach type of subgraph relative to randomized networks (Figure 6.19). . .

Thus, networks from different ficlds usually have different network motifs. This scems‘
reasonable because each type of network performs different functions. However, tl.xcre :lrtl
a few intriguing cases in which unrelated networks share simila.r network motifs (allK
similar anti-motifs, patterns that are rarer than at random). This occurs, for exam}? 6{
when studying the neuronal network of the nematode C. elegans, a tiny worm composed
ol about 1000 cells (Figure 6.20). . d

The synaptic connections between all of the 300 neurons in this organism were mnm’n_
by White, Brenner, and colleagues (White et al,, 1986). The wiring does not seem to v.u)-’
significantly frony individual to individual. In this directed network the nodes are ng:
rons, and a directed edge X — Y means that neuron X has a synaptic connection with
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HIGURE 617 (2) A netwark motif found in many biological oscillatory systems, composed of a compasite
negative feedback loop and a positive awteactivation loop. In this motif, X activates Y on a slow timescale,
and also activates itself, Y inhibits X on a rupid timescale. (b) A repressilator made of three cyclically linked

inhibitors. The repressilator usually shows noisy oscillations in the presence of fluctuations in the produc-
tion rates of the proteins.

neuron Y. Thus, this network can be searched for network motifs made of neurons. Strik-
ingly, the neuronal network of C. elegans was found to share many of the motifs found in
transcription and signal transduction networks,

The network motifs in the C. elegans neuronal netwark are similar to those found in
biochemical interaction networks, despite the fact that these networks operate on very
different spatial and temporal scales. The scale of the neuronal network is that of cells,
and the response times are milliseconds. The scale of transcription networks is that of
nanometer-size biomolecules within a cell, and the timescale is minutes to hours. Yet
many of the matifs in these netwarks are similar. For example, the most significant three-
node motif in the neuronal network is the feed-forward loap. An example of neuronal
feed-forward loops is shown in Figare 6.21.

Why is the FFL a metif in both this neuronal network and transcription networks?
One point of view is that this is a coincidence, and different histories gave rise to simi-
lar motifs." We favor a different view, that the similarity in network motifs reflects the
fact that both networks evolved toward a similar goal: they perform information process-
ing on noisy signals using noisy components. Both networks need to convey information
between sensory components that receive the signals and motor componcnts that gen-
erate the responses. Neurons process information between sensory neurons and mator
nearons. Transcription networks process information between transcription factors that
receive signals from the external world and structural genes thal act on the inner or outer
environment of the cell. This similarity in the function of the two types of networks raises
the possibility that evolution may have converged on similar circuits in both networks
to perform important signal processing functions, such as sign-sensitive filtering. This

——

T White et al,, {1986) raised the posibility that trianguiar patierns such as the FFL m ight arise due 10 the spatial
artangement of the neurcns. Neurons that are neighbors tend to connect more often than distant neurons. Such
Neighborhood effects can produce triangle-shaped patterns, because if X is close to Y and Y is close to 7, X also
tends 1o be close 1o Z. However, while this effect would produce feed-forward loops, it also would produce three-
node feedback loops, in which X, Y, and 7 are connected in a cycle (Figure 4.1), and many other patterns (llzkovitz
f’”d Alon, 2005). Such feedback loaps, however, are not found very commaonly in this neuronal network: they are

I fact anti-motifs. Thus, the origin of FFLs and other motifs in the neuronal network is not solely due to neigh-
borhaod etfects,



R

[T

Lovou

SI Zoscore

Network N(-);hm Ldpes | N Nooa = Nl Npag 58D #-score Nyt N g 250D 7 seare
Transeription X Feed- X Y Bi-fan
{ Torward
¥ loop
‘ Z W
-7
E.ovali 44 519 40 T3 10 200 47212 13
S cerevisiae O8> LISZ | 70 x4 14 1812 300 =40 1l
Newrons X Feed- X ¥ Bi-fan X Piamond
* ltorware / \
Yy Toop Y ‘
} LW N
v
e/
C.elegans 252 504 125 i = 10 37 127 55+ 13 5.3 227 3510 20
Food webs X Cascade X Diumond
} AR
Y Y Z
fittle rock 92 984 + N rs
Z w
Ythan 83 391 :
3219 3120250 21 75 22202210 25
SLMartin 42205 ey e 72 | 1357 20:50 23
Chesapeake 31 67 469 450+ 20 NS 382 130+ 20 12
Coachella 20 243 | RO 824 NS 26 512 8
27 b 3. 3
Skipwitls 95 189 2352 12 36 181 B+ 20 5
18 1507 55 347 8+ 25 13
B. Brook 25 i04
e ? 81 0.7 74 | 267 a7 3
Electranic ?Hmfm X Feed- X Y Bi-fan rs x \ Diamond
(forward logic chips) '
forward v 7
Y loop :
1 Z 0w A4
, ‘ W
7
515850 10,383 14,240
20 2 85 : . 335
S386R4 20717 34204 W24 22 285 1040 L=1 1200 480 21 335
18017 - oy 413 10=3 120 1739 6x2 300 711 =2 Rt
“1 2“’ IR SREOL  see ano 204 lel 2550 531 223 340
23+ 5,81 [5¥
:".} " » B 8,197 201 21 140 754 1zl 1050 09 1x1 200
SHRDT AL ML oy gut w5 | ams 1ed 4950 | 264 221 200
Electronic cireuils X Three- X Y Hi-fan X=oowm Y Four-
{digital fractional nodle node
multiplicrs) / \ feedback l j feedback
¥ " loop \v " w loop
5208 122 18% Lo 1+1 9 [ 1x1 38 5 1x1 5
5420 252 399 W =) 18 10 1=1 10 11 11 11
sR38 512 819 40 1+1 38 22 1x1 20 23 121 25
World wide web -X Fecdback X Clique X Regulating
I with two / \ {feedback
Y mutual
I dyals Y a—w= 7 ) e ——
7
B Vnrl-t‘(hl A25,729  1A4AGee | Lleh  2eF=1e2  BOO | 6.8¢6 Hed 2 402 15,000

L2e6  led « 202 5000

FIGURE .08 Network motils found in biological and technological networks, The numbers of aodes and
cdges for cach network are shown, For cach metif, the numbers of appearances in the real network (N
and in the randomized networks (N £ 0, all vaiues rounded) are shown. As qualitative measure of statis-
tical significance. the Z-score = (N - N, )0 is shown, NS, notsignificant. Shown are matifs that occur at
least U = 4 times with completely ditferent sets of nodes. The networks include synaptic interactions between
neurons in C. elegans, inchuding neurons connected by at least five synapses; trophicinteractions in ceologi
cal foad webs, representing pelagic and benthic species (Little Rack Lake), birds, fishes, invertebrates {(Ythan
Estuary), primarily larger fishes (Chesapeake Bay), lizards (5t. Martin Island}, primarily invertebrates (Skip-
with Pond), pelagic lake species {Bridge Brook Lake), and diverse desert taxa (Coachelia Valley); electronic
sequential logic circuits parsed from the ISCAS89 benchmurk set, where nodes represent logic gates and
fip-flops: and World Wide Web hyperlinks belween Web pages in a single domain (enly three-nede motéfs
are shown). (From Milo et al., 2002.)

= Transc-B. subtilis

o

e

]

S

0

5 0.5 e Transe. I

2 2 ~» Transe-F, coli

& g A & 8 & m -6~ Transc-Yeast

BT £ ~*- Transc-Yeast-2

z

]

Z

e ———
0.5 |-= Signal-Transduction

—* Transe-Drasophila
== Transc-Sea-Urchin
- Neurons

72
W2 N = 277,11

4
= WWW-3 N - 47,870
== Sacial-1 N = 67
~o-Social-2 N = 28
-=-Social-3N = 32

[-o- {...lngu.agcs: Coglish

= 0 -0 French
% w. —o%3 ~+- Spanis

(.5 |- Japanese

12 3 4 5 6 7 B 9 011 12 13 200 t—F— ...
I — A
MNIVIABGBGBGE
Subgraphs

FIGURF 6.149 Significance profiles of three-node subgraphs found in different networks. The profiles display
the relative statistical significance of each subgraph. The significance profile allows comparison of networks
of very different sizes ranging from tens of nodes (e.g., social networks where children in a school class sclect
friends) to millions of nodes (World Wide Web networks). The y-axis is the normalized Z-score = (Npear
N,,. /o for each of the 13 three-nede subgraphs, where & is the standard deviation in the random networks.
Language networks have words as nodes and edges between wards that tend to follow each ather in texts.
The neural network is from C. elegans, counting synaptic connections with more than five synapses. For
more details, see Milo etal, 2004.
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FIGURE 620 Map of synaptic connections between ¢ elegans neurons. Shown are connections between
neurons in the worm head. (From Durbin, R, PLLD. thesis, www.wormbase.org,)

hypothesis can in principle be tested by cxperiments on the dynamical functions of neural
circuits, analogous to the experiments described in previous chapters on network motifs
in transcription networks.

0.6.1 The Multi-lnput 1L in Nearonal Networks

Having stressed the similaritics, we note that the set of network motifs found in neuronal
networks is not identical to those found in transeription networks. For example, although
the FTL is a molif in both of these networks, the FILs are joined together in neuronal net-
works in different ways than in transcription networks. This can be seen by considering
the topological generalizations of the FFL pattern (Section 5.4, Figure 5.6).

The most common FFL generalization in transcription networks is the multi-output
FFL, as we saw in Chapler 5. In contrast, a distinct generalization, the multi-input FFL,
is the most common generalization in the C. elegans neuronal network. An example with
two inputs is shown in Figure 6.21. 'Thus, while the FFL is a motif in both transcription
networks and the neuronal network of C. elegans, it generalizes to larger patterns in dif-
ferent ways in the two networks.

Can we analyze the function of neuron motifs such as the multi-input FFL? To do this,
we need to discuss the equations that govern neuron dynamics in C. efegans. It turns out
that the canonical, simplificd model for the activity of such neurons has equations that

FNL LYY AIINIY dvans o - R

Nose touch  Noxivus chemicals, nose touch
+ +

/N

Backward movement

FIGURE .71 Feed-forward leops in (. efegans avoidance reflex circuit. When sensory neurons in the head
of the worm sense a touch or a noxious edor, the circuit stimulates motor neurens that elicit backward
motion Triangles represent sensory neurons and hexagons represent interneurons, Lines with triangles rep-
resent synapitic connections between neurons. (From liope, 1999.)

are almost identical to those we have used to model transcription networks and signal
transduction network dynamics, although the molecular mechanisms are very different.

Neurons act primarily by transmitting electrical signals to other neurons via synaptic
connections. Fach neuron has a time-dependent Lransmembrane voltage difference that
we will consider as the neurons’ activity. C. efegans neurons do not appear to have sharp
voltage spikes as vertebratc neurons do. Instead, they appear to have graded voltages, X(t),
Y(®), and Z(t). The classic model for the dynamics of a neuron is based on summation
of synaptic inputs from its input neurons {this model is called integrate-and-fire in the
context of spiking neurons). Consider neuron Y in a two-input FFL that receives synap-
tic inputs from two neurons X, and X, (Figure 6.22a). In the simplest integrate-and-fire
model, the change in voltage of Y is activated by a step function over the weighted sum of
the voltages of the two input neurons:

dY/dt =B 00w, X, + w, X, > K) - a ¥ (6.6.1)

where a is the relaxation rate related to the leakage of current through the neuron cell
membrane,' and the weights w, and w, correspond to the strengths of the synaptic con-
nections from input neurens X, and X, to Y,

As we have seen for signaling cascades, these weighted sums can generate either AND
or OR gates (see Figure 6.11). For example, if both weights are large, so that each weight
limes the maximal input activity exceeds the activation threshold (w, X, ., > K, and w,
X, max >K,), the result is an OR gate because either input can cause Y to be activated. An

———— e

' Asin clectrical capacitor-resistor systems, with resistance R and capacitance C, @ ~1/RC.
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HOURE 6,22 Dynamics in a model of a C. elegans neuronal multi-input FFL following pulscs'of inplﬂ'
stimuli. (a) A two-input FEL. ‘The input functions and activation thresholds are shown. (b} Dynamics .‘-Jﬁ‘h‘.
two-input FFL in response to well-separated input pulses that stimulate X and X,, lv'ullnwcd by a pcrf;slull'
X, stimulus. The separated pulses do nat activate Z. (¢) Dynamics with a brief X, stimulus followcd] [ (:(]‘e)r
by a short X, stimulus, The dashed horizontal line corresponds to the activation lhrfshold fn}- Y. The h‘lm
pulscs are able to activate Z. Relaxation rateis @ = 1, and w, = w, = wy' = w,’ = 0.5, wy’ = 0.4, (From Kasht
ctal., 2004.)
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AND gate occurs if neither weight is large enough o activate the neuron with only one
input, so that both inputs are needed for aclivation.

With these equations, we can consider the two-input FFL network molif (Figure 6.22a).
In this circuit, neuron Y compares the weighted sum of the inputs from X, and X, 1o a

threshold. The seuron 7 s alse controlled by X, and X,, and in addition receives inputs
from neuron Y

dzfdt =" 0w X, +w, X, +w,Y>K)-a 7

2

(6.6.2)

Experiments on the nosc-touch system of Figure 6.21 suggest that 7, can be activated
by the following logic input function: (X, OR X,) AND Y (Chalfic et al,, 1985). tn other
words, cither of the two inputs X, or X, can activate Z, provided that Y is also active (Fig-
ure 6.22a). In this case, the response to a pulse of input signal (rom cither input can be
casily understood based on the function of the simple, three-node colierent FFLL. Each of
the two FFLs acts as a persistence detector with respect to its stimulus. Hencee, the out-
put neuron Z can be activated by cither input, but only if the input is persistent enough.
This persistence detection occurs because the voltage of Y must accumulate and cross its
activation threshold to activate Z. A transient activation does not give Y sufficient time to
accumulate, Therefore, transient inputs do not cause aclivalion (Figure 6.22h),

I addition to its function as a persistence detector, the multi-input FFL. can perform
coincidence detection of brief input signals: a short pulse of X, activation, which by itsctf
is not sufficient to activate 7, can still do so if there is a short input of X, in close proxim-
ily, as demonstrated in Figure 6.22¢. Thus, a transient input can cause aclivation if it is
followed closely enough by a second transient input from the other input neuron. This
coincidence detection function can ensure that a short pulse can activate the system pro-
vided that it has support from an additional inpat at about the same time. This feature is
made possible because Y acts as a transient memory, storing information for a timescale
of 1/a {on the order of 10 msec).

The timescales of the dynamics are determined by the response times of the neuron
voltages, T, = log(2)fa. Whereas in transcription circuits T, often has timescales of
hours, in Lhe neuronal circuits of C. elegans, T, has timescales of tens of milliseconds.
Despite the vast difference in temporal and spatial scales, the same simplified mathemati-
<al reasoning can be applied to understand, at least approximately, the dynamics of net-
work motifs in both networks.

6.6.2 Muiti-Layer Perceptrons in the €. elegans Nearonal Network

When examining patterns with four or more nodes, one finds that the most abundant
fetwork motifs in the synaptic wicing of C. elegans are multi-layer perceptrons (Figure
6.23). These motifs are similar o those we have seen in signal transduction networks (Sec-
tion 6.4). ‘The main structural difference is that C. elegans multi-layer perceptrons have a

higher abundance of mutual connections {feedback loops) between pairs of nodes in the
Same layer,
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HGURE 6,23 Five- and six-nade network motifs in the neuronal network of €. elegans. Note the mulri-
luyer perceptron patterns d-h and k-m, many of which have nwtual connections within the same layer, The
parameter C is the concentration of the subgraph multiplied by 10%, where concentration is defined as the
number of appearances of the subgraph divided by the total pumber of appearances of all subgraphs of the
same size in the network. Z is the number of standard deviaticns that the concentration exceeds random-
ized netwarks with the same degree sequence (Z-score). these motifs were detected by an eflicient sampling
algorithm suitable for large subgraphs and large networks. (From Kashtan et al., 2004.)

It scems plausible that the function of these multi-layer structures is information pro-
cessing of the type that we described in Section 6.4. Analysis of the precise computations
performed by neuronal perceptron circuits will depend on accurate measurements of the
weights on the edges (synaptic strengths). These weights could be modulated on several
different timescales by cellular processes within the neuron, and by signaling molecules
transiitted between neurons. Whether signal transduction networks and neuronal net-
works use similar principles in their computations is an interesting question.

The motifs in neuronal networks can, of course, perform many additional functions,
depending on the input functions, thresholds, and relaxation timescales. After all, each
neuron is a sophisticated cefl able to perform computations and to adapt over time. The
present discussion considered only the simplest scenario for these network motifs,

Finally, analysis of the structure of neuronal networks of higher organisms is still a
task for the future. It is becoming apparent that these networks have a modular organi-
zation. Preliminary studies indicate the existence of network motifs both on the level of
individual neurons (Song et al., 2005) and on the level of connections between modules or
brain functional arcas (Sporns and Kotter, 2004; Sakata et al., 2005).

6.7 SUMMARY B
;N'e_hwasc;1 in this chapter that each type :
set of network motifs. Each of the rretwork motifs can carry out deﬁned.dynamnca‘l func-
tions. Developmental transcription networks display many of the -monfs fmmcl. in sicn-
sory transcription networks. They also have additional network motifs that correspon to
the irreversible decisions and slower dynamics of devclopmenla‘l p.roccsscs. In pﬁ[’thul‘i\r,
two-node positive feedback loops, regulated by a third tral]S(_:r}ptlon factor, can pr‘ov;dc
lock-on 1o a cell fate or provide toggle switches between two different fates. Long cascades

of biological network is buiit of a distinctive

can orchestrate developmental programs that take place over multipl'c.ccll gcm.-rations,

Signal transduction networks show faster dynamics agd may Lmh'ze multi-layer per-
ceptrons to perform computations on numerous input sl_]muh. Mulh-l.aycr percle}?tlr(:nus
can allow even relatively simple units to perform detailed co_mpu!atnons. Multi-layer
perceptrons can perform more intricate computations than smg]c-lay‘er pierilc::?t.ron'si
The dynamical features of these networks are affected by fcedbn.ck loops and a (fltj()n(l
interactions. We are only beginning to understand the computational functions of signal
tmlnnst(ll;(;:t(:(; izt:grﬁ made of different types of interactions can show compo‘sjlrz rTct.
work motifs. A common motif is a negative feedback loop made of a slow transcription
interaction and a faster protein-level interaction. This feedback loop can generate robust
oscillations when coupled to a second positive autoregulation loop. B

We have also examined the network of synaptic connections between ncurorlm in ic
wornt. Again, we saw that the patterns found in the neuronal nct\tvork are 01]1 yla tiny
fraction of all of the possible patterns of the same size. chc.c, this neuronal network
has a structural simplicity reminiscent of that found in the biomolecular nctworl;s we
have studied. Moreover, many of the neuron network motifs are the s?me as lljo_s)e ound
in transcription and signaling networks. This include.s FFLs and multi-layer }')LL;LLplT;)Ins.
This similarity raises the possibility that the]ie motifs perform analogous information

essi ions in these different networks.
Pr(:;ﬁ:i;zgr%:;‘f;:ﬁ; also has motifs not found in the other networ.ks‘.we hﬂviis,u}di-ed'
One example is the multi-input FFL structure, which can perform coincidence detection
iflerent i imult.

onlcii:f};ci]rt(;‘; :E:’it CS:]:)su networks are 1 convenient approximation to the c?nllp,le)l{ sc}l oj
biological interactions. The network representation m.usl(s.;} great dcafl: t‘l.L (.etmlc
mechanisms at each node and edge. Because of this s-nmphh({d le.vcl o cschptL;f);, the
network representation helps highlight the similarity in the cm:m't pat;cr}l1:§ mtw: rircn:
parts of the network and between different networks. The dynarTucs of t 1; 1;e V:') sa
this level of resolution lend themselves to analysis with rath'er simple rlnohe . ie;carle
only that X activates or inhibits Y, not precisely how it do'e.s it un.t.hc bllc:)c -TT!CQMCV;
This abstraction helps us to define network motifs as speciflic funf.t.lonz tut(hlcr:gin :c s
of each type of network. These building blocks oftc'n appear to be Jo;nle 1toge erin ayls
that allow understanding of the network dynamics in tet"n_'ls of T.IL- L.ynml‘mc.s l ‘;:am
individual motif. Hence, hoth on the leve! of local connectivity patterns and on the evel
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EXLRCISES

6.1, Memory in the regulated-feedback network arotif, Transcription factor X activales
transcription factors Y, and Y,. Y, and Y, mutually activate cach other. The input
function at the Y, and Y, promoters is an OR gate (Y, is activaled when cither X
or Y, bind the promoter). At time t = 0, X begins to be produced from an initial
concentration of X = 0. Initially, Y, = Y, ~ 0. All production rates are = 1 and deg-
radation rates are a = 1. All of the activation thresholds are K = 0.5, At time 1 = 3,
production of X stops.

a. Plot the dynamics of X, Y, and Y,. What happens to Y, and Y, after X decays
away?

b. Consider the same problem, but now Y, and Y, repress cach other and X acli-
vates Y, and represses Y,. At time t = 0, X begins 1o be produced, and the initial
levelsare X =0, Y,= 0, and Y,= 1. At time 1 = 3, X production stops. Plot the
dynamics of the system. What happens after X decays away?

6.2. Kinases with double phosphorylation, Kinase Y is phosphorylated by two input
kinases X, and X,, which work with first-order kinetics with rates vy and v,. Y needs
to be phosphorylated on two sites to be active. The rates of phospherylation and
dephosphorylation of the two phosphorylation sites on ¥ are the same. Find the
input function, the fraction of doubly phosphorylated Y, as a function of the activity
of X, and X,

Solution:

‘The kinase Y exists in three states, with zero, one, and two phosphorylations,
denoted ¥, Y,, and Y,. The total amount of Y is conserved:

Yot Y+ Y, =Y (P6.1)

The rate of change of Y, is given by an equation that balances the rate of the input
kinases and the action of the phosphatases, taking into account the flux from Y, to
Y, and from Y, to Y,, as well as dephosphorylation of Y,loY,

dY At v X, Y, + v X, Y, - v X, Y, - X0 Y, - a Y, da Y, (P6.2)
And the dynamic equation of Y, is
dY,/dt=v, X, Y, +v, X, Y, - a Y, (P6.3)
Al steady state, dY,/dt = 0 and Equation P6.3 yields
VX +vX,) Y, =aY, (P6.4)



FRNEY)

6.3.

64,

Ll S RS Y B ST}

using the weights w, = vi/a and w, — v,/a, we find:

Y= Yo fw, X+ w, X,) (P6.5)

Summing equations P6.3 and 6.2 yields d(Y, + YAt =Y, (v, X; + v, X;) ~a ¥, so
thal at steady state )

¥, = Yw, Xk wy X) = Yodw, X, + w, X, (P6.6)
Using cquation P6.1, we find
Y=Y, 4 Y, 4 Y= (L+ Yu L) Y, (P6.7)
where
u=wX +w,X, (P6.8)
‘Thus, the desired input function is:
Y/ Y = v+ u+ 1) (P6.9)

Note that for n phosphorylations, the inpul function is Y/ =uw/(l+u+...+u)

Design a multi-layer perceptron with two input nodes, one output node, and as
many intermediate nodes as needed, whose output has a region of activation in the
shape of a triangle in the middle of the X,-X, plane.

Dynamic in ki in ki i i
ynamics of a protein kinase cascade. Protein kinases X, X,, ..., X, act in a signal-

ing cascade, such that X, phosphorylates X,, which, when phosphorylated, acts to
phosphorylate X, etc.

. Assume sharp activation function. What is the response time of the cascade, the
time {rom activation of X, to a 50% rise in the activity of X, ?
n'

L. What is the effect of the kinase rates on the response time? Of the phosphatasc
rates? Which have a larger effect on the response time (Heinrich et al., 2002)?

Solution:

a.

‘The rate of change of active (phosphorylated) X, is given by the difference between
the sharp phosphorylation rate by kinase X,_,, with rate v, and the dephosphoryla-
tion process by the phosphatases that work on X, at rate ag:

dXdt=v, 00X, > K, ) - a, X, (P6.10)

6.5,

where 0 is the step function that equals one if the logic expression X, > K, , is true,
and zero otherwisc.

Thus, X; begins to increase at the time that X, crosses its threshold K ;. At this
point, X; begins to increase with the familiar exponential convergence to steady
state {e.g., Equation 2.4.6):

X,=(vfa) [1 - e (P6.1)

When the concentration of the kinase X; (in its phosphorylated form) crosses the
activation threshold, it begins to activate the next kinase in the cascade. Thus, the
onsget of phosphorylation of X;,,, denoted t;,,, can be found by solving

K= (via) [1 - et -1] (P6.12)
yielding
=t + o log[li(L - a K/vy)] {P6.13)
We thus find that
t, = 2 Va; log[1/l - o, Ki/v)] (P6.14)

b. According to equation P6.14, the phosphatase rates a, have a large effect on the
response times. If these rates are very different for each kinase in the cascade,
the response time is dominated by the slowest rate, because it has the largest 1/a;.
In contrast to the strong dependence of phosphatase rates, the response time is
only weakly affected by the kinase velocities v,, because they appear inside the
logarithm in equation P6.14.

Dynamics of a linear protein kinase cascade (Ieinrich et al., 2002). Tn the previ-
ous problem, we analyzed the dynamics of a cascade with sharp input functions.
Now we consider the case of zero-order kinetics. This applies when the activated
upstream kinase is found in much smaller concentrations than its unphosphory-
lated target. In zero-order kinetics, the rate of phosphorylation depends only on the
upstream kinase concentration and not on the concentration of its substrate. In this
case, we need to analyze a linear set of equations:

dXfdt=v_ X -4 X (16.15)

i

The signal amplitude is defined by

A= '[ijd[ (P6.16)
1]
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and the signal duration by

1= J tX(t)dt/ A,

]

(P6.17)

In many signaling systems the duration of the signaling process is important, in
the sense that brief signals can sometimes activate different responses than pro-
longed signals,

a. ‘The cascade is stimulated by a pulse of X, activily with amplitude A,, that is,
J.X,(l) dt=A,
i

What is the amplitude of the final stage in the cascade, A 2
Fabnt

b. What is the signal duration of X,?

c. H:)w.do the kinase and phosphatase rates affect the amplitude and duration of
the signal? Compare to exercise 6.4.

Solution:

a. To find the amplitude, let us take an integral over time of both sides of Equation
P6.15.

J-dt dX; rdt= J-VHXK, W= J.al)(ldt

0 1] 4

(P6.18)

Note that the integral on the lefi-hand side is equal to X, (e) - X (0). Now, because
the signal begins at t = 0 and decays at long times, we have X (0) = X.(o0) = 0. The

integrals on the right-hand side give rise to amplitudes as defined in Equation
P6.17; ‘

0=v A, -~ A (P6.19)
‘Thus,

Ai = (Va-l”ai) Al 1 ([)620)

Therefore, by induction, we find that the amplitude is the product of the kinase
rates divided by the product of the phosphatase rates:

Au = (V“_]/(I") An-l = (vn-l Vn-Z/uu o n-l) A

. (P6.21)
=V Vg e ¥y VIGO0 0 A

b. 1,0 find the signal duration, we take an integral over time of the dynamic equa-
tion (Equation £6.15) multiplied by t to find

6.6.

Jdt tdX, /di= _[dl Vo X '[ dt o (X,
u

[ o

(16.22)

Ihe left-hand-side integral can be solved using integration by parts to yicld

I dttdX/dt = -A, (P6.23)

{0

'Lhe right-hand side of P6.22 is proportional to the durations of X, and X,
{equation P6.17) so that we find

SAEV T A T A, (16.24)

Hence, we have, dividing both sides by A, and using equation P6.20 to eliminate
Ai-l’

l=q 1 -a,7, (P6.25)

which can be rearranged to yield

T-Ta™ ll/O;I

Hence, the signal duration of the final step in the cascade is just the sum over the
reciprocal phosphatase rates

c. We have just found that phosphatase rates a; affect both amplitude and duration

in zero-order kinetics cascades. The larger the phosphatase rates, the smaller
the amplitude and the sharter the duration. In contrast, the kinase rates do not
affect duration at all, and affect the signal amplitude proportionally. This is simi-
lar to problem 6.4, where we saw that phosphatase rates affect timing much more
strongly than kinase velocities. In both models, the sum over 1/a, determines
the timing, This principle is identical to that which we saw in transcription net-
works, whose response times are governed inversely by the degradation/dilution
rates: ‘These rates are the cigenvalues of the dynamic equations. "The strong cffect
of phosphatases on signal duration and the weak effect of kinases were demon-
strated experimentally (sec experiments cited in Hornberg et al., 2005).

Coincidence detection. Consider the two-input EFL motif of Figure 6.22. lhe two
inputs receive brief activation pulses at a slight dclay. The pulse of S, has duration d.
At time {, after the start of the pulse, a pulse of S,; begins and lasts for duration d.
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a. What is the minimal §,; input pulse duration d that can activate Z without need
for the sccond pulse of 5,,°

b. Plot the region in which Z shows a response on a plane whose axes are pulse
duration d and interpulse spacing t,,.

Consider the diamond generalization (Figure 6.7) that has two inputs X, and X, and
a single output Z. This two-layer perceptron pattern has 6 edges. Assume that all
neurons are ‘integrate-and-fire,’ and each has a threshold K = 1. Assume that neu-
rons have voltage 0, unless the weighted inputs exceed K, in which case they assume
voltage 1. Weights on the edges can be positive or negative real numbers.

a. Design weights such that this circuit computes the XOR (exclusive-or) function,
where Z = 1 if either X, = 1 or X,=1,but Z = 0 if both X, = 1 and X, = 1. 'This
function is denoted 7 = X, XOR X,.

b. Design weights such that this circuit computes the ‘equals’ function, in which Z

=1 only il X, and X, are the same (both 0 or both 1) and Z = ¢ otherwise (that is,
7 =X, EQX,).

CHAPTER 7

Robustness of Protein
Circuits: The Example of
Bacterial Chemotaxis

71 THE ROBUSTNESS PRINCIPLE B

The computations performed by a biological circuit depend on the biochemical param-
cters of its components, such as the concentration of the proteins that ma ke up the c1rcm_t.
In living cells, these parameters often vary significantly from cell to cell due to stochastic

effects, even if the cells are genetically identical. For example, the expression level of a
protein in genetically identical cells in identical environments can oflen vary b}r tens of
percents from cell to cell (see Appendix D). Although the genetic program specifics, say,
1000 copies of a given protein per cell in a given condition, one cell may have 800 and its
neighbor 1200, How can biological systems function despite these vanatmns.? o

tn this chapter, we will introduce an important design principle of biological c.1rcu1lry:
biological circuits have robust designs such that their essential function is nearly indepen-
dent of biochemical parameters that tend to vary from cell to cell.

We will call this principle robustness for short, though one must always state what prop-
erty is robust and with respect to which parameters, Properties that are not robust are c:}lled
fine-tuned: these propertics change significantly when biochemical parameters are var‘ledA

Robustness to parameter variations is never absolute: it is a relative measure. Some
mechanisms can, however, be much more robust than others. .

Robustness was suggested to be an important design principle by M. Savageau in theq~
retical analysis of gene circuits (Savageau, 1971, 1976). H. Kacser and col]eague?s :_?xpcn-
mentally demonstrated the robustness of metabolic fluxes with respect to \Ifarla.tlons .off
enzyme levels in yeast (Kacser and Burns, 1973). Robustness was also studied 1n.a dif-
ferent context: the patterning of tissues as an epg develops into an animal. Waddington
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Bacterial chemaotaxis
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5 @
Attractant Repellent

FIGURT T Bacterial chemotaxis. Bacteria swim toward a pipetle with attractants and swim away from
repellents.

studied the sensitivity of developmental patterning to various perturbations (Wadding-
ton, 19593 In these studies, robustness was called canalization and was considered at the
level of the phenotype (e.g., the shape of the organism) but not at the level of biochemical
mechanism (which was largely unknown at the time). Recent work has demonstrated how
properly designed biochemical cireuitry can give rise (o robust and precise patlerning.
This subject will be discussed in the next chapter,

Here we will demonstrate the design principle of robustness by using a well-character-
ized protein signaling network, the protein circuit that controls bacterial chemotaxis. We
will begin by describing the biology of bacterial chemotaxis. It is relatively simple pro-
totype for signal transduction circuitry in other ceil types. Then we will describe models
and experiments that demonstrate how the computation performed by this protein circuit
is made robust to changes in biochemical parameters, We will sce that the principle of
robustness can help us to rule out a large family of plausible mechanisms and to home in
on the correet design.

72 BACTERIAL CHEMOTAXIS, OR 1OW BACITRIA THINK

721 Chemotaxis Behavior
When a pipette containing nutrients is placed in a plate of swimming Escherichia coli bac-
teria, Lhe bacteria are attracted Lo the maouth of the pipette and form a cloud (Figure 7.1).
When a pipette with noxious chemicals is placed in the dish, the bacteria swim away from
the pipetic. ‘This process, in which bacteria sense and move along gradients of specific
chemicals, is called bacterial chemotaxis.

Chemicals that attract bacteria are called attractants. Chenticals that drive the bacteria
away are called repellents, I, colf can sense a variety of attractants, such as sugars and the
amine acids serine and aspartate, and repelients, such as metal jons and the amino acid
leucine. Most bacterial species show chemotaxis, and some can sensc and move toward
stimuli such as light (phototaxis) and even magnetic fields (magnetotaxis)

Bacterial chemotaxis achieves remarkable performance considering the physical limi-
tations faced by the bacteria. Bacteria can detect concentration gradients as small as a
change of one molecule per cell volume per micron and function in background con-
centrations spanning over five orders of magnitude. All this is done while being buffeted
by Brownian noise, such that if Lhe cell tries to swim straight for 10 sec, its orientation is
randomized by 90" on average.

How does E. coli manzge to mave up gradients of attractants despite these physical
challenges? 1 iy cvidently too small to scnse (he gradient along the length of its own
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£, coli runs and tumbles

: e
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\ 10 pan

FIGURE 7.2 Trail of a swimming bacteria that shows runs and tumbles during § sec of motion in ulmlunvn
fluid environment, Runs arc periods of roughly steaight motion, and tumbles are brief events in \tvhlch ovi-
entation is randomized. During chemotaxis, bacteria reduce the tumbling frequency when climbing gradi-
enls of attractants.

body.! The answer was discovered by Howard Berg in the carly 1970s: E. coli uscs tempo-
ral gradients to guide its motion. It uses a biased-random-walk strategy to sample spaavtc
and convert spatial gradients to temporal ones, In liquid environments, E. coli swims in
a pattern that resembles a random walk. The motion is composed of runs, in which the
cell keeps a rather constant direction, and tumbles, in which the bacterium stops and
randomly changes direction (Figure 7.2). The runs last about | sec on average and the
tumbles about 0.1 sec.

To sense gradients, E. coli compares the current attractant concentration to the con-
centration in the past. When £ coli moves up a gradient of attractant, it detects a net
pasitive change in attractant concentration. As a resull, it reduces the probability .of a
tumble (it reduces its tumbling frequency) and tends Lo continue going up the gradient.
The reversc is true for repellents: if it detects that the concentration of repellent incrca:scs
with time, the cell increases its tumbling frequency, and thus tends to change direction
and avoid swimming toward repellents. Thus, chemotaxis senses the temporal derivative
of the concentration of attractants and repelients.

The runs and tumbles are generated by diflerent states of the motors that rotate the
bacterial flagella. Fach cell has several flagella motors (Figure 7.3; sce also Scction 5.5)
that can rotate either clockwise (CW) or counterclockwise (CCW). When the motors turn_
CCW, the flagella rotate together in a bundle and push the cell forward, When one o
the motors turns CW, its {lagellum breaks from the bundle and causes the cell to tumble
about and randomize its orientation. When the motor turns CCW, the bundle is reformed
and the cell swims in a new direction (Figure 7.4).

7.2.2 Response and Txact Adaptation

The basic features of the chemotaxis response can be described by a simple experlmc_nlt.
In this experiment, bacteria are observed under a microscope swimming in a liquid with

' Noise prohibits a detection system based on differences between two antennac at the two cell cr!ds. J"(.) Sccltlh_']:.s
note that E. coli, whase length is about 1 micron, can sense gradients as small as | mulcc‘ulc per migran ina m.tgk
ground of 1000 molecules per cell volume, The Poisson fuctuations of the hackgrmu?:l signal, l()()[_)- ~ 30, m:}ﬁ
this tiny gradient, unless integrated over prohibitively long times. Larger cuk:\ryotllc culls, W]msc s 1|s on
order of 10 i andd whose responses are on the order of minutes, appear to sense spatial gradients direetly.
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HGURIE 7.3 The bacteria Nagelta motor. Right panel: an electron microscope recentructed image of the fla-
gella motor, (From Berg, 2003.)

no pradients. The cells display runs and tumbles, with an average steady-state tumbling
frequency {, on the order of £ ~ 1 sec!.

We now add an attractant such as aspartale to the liquid, uniformly in space. The
attractant concentration thus increases at once from zero to |, but no spatial gradients are
formed. The cells sense an increase in attraclant levels, no matter which direction they are
swimming, They think that things are getting better and suppress tumbles: the tumbling
frequency of the cells plummets within about 0.1 sec (Figure 7.5).

After a while, however, the cells realize they have been fooled. The tumbling frequency
of the cells begins to increase, even though attractant is still present (Figure 7.5). ‘this
process, called adaptation, is common to many biological sensory systems. For example,
when we move from light to dark, our eyes at first cannot see well, but they soon adapt to
sense small changes in contrast. Adaptation in bacterial chemotaxis takes several seconds
to several minutes, depending on the size of the attractant step.!

Bacterial chemotaxis shows exact adaptation: the tumbling frequency in the presence
of attractant returns to the same level as before attractant was added. In other words, the
steady-state tumbling frequency is independent of atiractant levels.

_—

‘ach individual cell has a fluctuating tumbling frequency signal, so that the tumbling frequency varies Irom cell
to cell and also varies along time for any given cell (Ishihara et al., 1983; Korobkova of al., 2004). The behavior of
cuch cell shows the respeonse and adaptation charucteristics within this noise,

KUBUSTNEDY UF FRUITEIN LIKULUIIS 139

Run
flagella motor
turn CCOW

Tumble
flagella motor
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When tethered to a surface
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FIGURE 7.4 Bacterial runs and tumbles are related 10 the rotation direction of the flagella motors. When all
motors spin counterclockwise (CCW), the flagella turn in 2 bundle and the cell is propelied forward. When
one or more motars turn clickwise (CW), the cell tumbles and randamizes its orientation, The switching
dynamics of a single motor from CCW to CW and back can be seen by tethering a cell to a surface by one
flagellum hook, so that the motor spins the entire cell body (ai frequencies of only a few Hertz due to the
large viscous drag of the body).
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HGURE 7.5 Average tumbling frequency of a population of cells expased at time 1 = 5 to a step addition of
saturating atiractant (such as aspartate). After t - 5, attractant is uniformly present at constant concentra-
tion. Adaptation means that the ¢fect of the stimulus is gradually forgotten despite its continued presence.
Exact adaptation is a perfect return to prestimulus leve!ls, that is, a steady-state tumbling frequency that does
not depend on the level of attractant,

If more attractant is now added, the cells again show a decrease in tumbling fre-
quency, followed by exact adapration. Changes in attractant concentration can be sensed
as long as attractant levels do not saturate the receplors that detect the attractant.

Exact adaptation poises the sensory system at an activity level where it can respond
to multiple steps of the same attractant, as well as to changes in the concentration of
other attractants and repellents that can occur at the same time, It prevents the system
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FIGURE 7.6 "the chemotaxis signal transduction network. Information about the chemical environment is
transduced into the cells by receptors, such as the aspartate receptor ‘Tar, which span the membrane, The
chemoreceptors form complexes inside the cells with the kinases CheA (A) and the adapter protein CheW
(W). CheA phosphorylates itself and then transters phosphoryl (P) groups to CheY (Y), a diffusible mes-
senger protein. The phosphorylated form of CheY interacts with the flagellar motors to induce tumbles. The
rate of CheY dephosphorylation is greatly enhanced by CheZ {£). Binding of attractants 1o the receptors
decreases the rate of CheY phosphorylation and tumbling is reduced. Adaptation is provided by changes
in the level of methyiation of the chemoreceptors: methylation increases the rale of CheY phosphorylation.
A pair of enzyimes, CheR (R) and CheB (), add and remove methyl (m) groups. To adapt to an attractant,
methylation of the receptors must rise to overcome the suppression of receptor activity caused by the attrac-
tant binding. CheA enhances the demethylating activity of CheB by phosphorylating CheB. (From Alon ct
al., 1999)

from straying away {rom a favorable steady-state tumbling frequency that is required to
efliciently scan space by random walk.

73 THE CHEMOTAXIS PROTEIN CIRCUIT OF [ COLf

We now look inside the E. coli cell and describe the protein circuit that performs the
response and adaptation computations. The input to this circuit is the attractant concen-
tration, and its output is the probability that motors tuen CW, which determines the cells’
tumbling frequency (Figure 7.6). The chemotaxis circuit was worked out using genetics,
physiology, and biochemistry, starting with J. Adler in the late 19605, followed by several
labs, including those of D Koshland, $. Parkinson, M. Simon, ]. Stock, and others. The
broad biochemical mechanisms of this circuit are shared with signaling pathways in ail
types of cells.

Attractant and repellent maolecules are sensed by specialized detector proteins called
receptors. Fach receptor protein passes through the cell’s inner membrane, and has one
part outside of the cell membrane and one part inside the cell. It can thus pass infor-
mation {rom the outside to the inside of the cell. The attractant and repellent molecules
bound by a receptor are called its ligands.

E. coli has five types of receptors, cach of which can sense several ligands, There are a
total of several thousand receptor proteins in each cell. They are localized in a cluster on
the inner membrane, such that ligand binding to one receptor appears to somehow affect
the state of neighboring receptors. Thus, a single ligand binding event is amplified, because
it can affect more than one receptor (Bray, 2002), increasing the sensitivity of this molecy-
lar detection device (Segall et al,, 1986; Jasuja et al., 1999; Sourjik and Berg, 2004).

inside the cell, each receptor is bound Lo a protein kinase called CheA! We will con-
sider the receptor and the kinase as a single entity, called X. X transits rapidly between
two stales, active (denoted X*) and inactive, on a timescale of microseconds. When X is
active, X*, it causes a modification to a response regulator protein, CheY, which diffuses
in the cell. This modification is the addition of a phosphoryl group {PO,} to CheY to form
phospho-CheY (denoted CheY-P). This type of modification, called phosphorylation, is
used by most types of cells to pass bits of information among signaling proteins, as we
saw in Chapter 6. CheY-P can bind the flagella motor and increase the probability that it
switches from CCW to CW rotation. Thus, the higher the concentration of CheY-P, the
higher the tumbling frequency (Cluzel et al., 2000).

‘the phosphorylation of CheY-P is removed by a specialized enzyme called CheZ. At
steady-state, the opposing actions of X* and CheZ lead to a steady-state CheY-P level and a
steady-state tumbling frequency.

‘Thus, the main pathway in the circuit is phosphorylation of CheY by X*, leading to
tumbles. We now turn to the mechanism by which attractant and repellent ligands can
affect the tumbling frequency.

730 Attractants Lower the Activily of X

When a ligand binds receptor X, it changes the probability® that X will assume ils active
state X* The concentralion of X in its active state ts called the activity of X. Binding of
an attractant fowers the activity of X. Therefore, attractants reduce the rate at which X
phosphorylates CheY, and levels of CheY-P drop. As a result, the probability of CW motor
rotation drops. [n this way, the attractant stimulus results in reduced tumbling frequency,
so that the cells keep on swimming in the right direction.

Repellents have the reverse effect: they increase the activity of X, resulting in increased
tumbling frequency, so that the cell swims away from the repellent. ‘These responses occur

"The chemotaxis genes and proteing are named with the three-letter prefix che, signilying that mutants in these
genes are not able to pcr!'urm chemotaxis,

? Note the strong separation of timescales in this system. Ligands remain bound 1o the receptor fur about 1 msec.
The conformation transitions between X and X* are thought to be on a microsecond timescale. Therefore, many
such transitions occur within a single-ligand binding event. ‘The activity of X is obtained by averaging over many
ransitions {Asakura and Henda, 1984; Mclla ot al, 2004; Keymer et al, 2006). Phosphorylation-dephospharyla-
tion reactions equilibriate on the 0.1-sec timescale, and methylations occur on the many-minate timescale.
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within less than 0.1 sec. The response time is mainly limited by the time it takes CheY-P
to diffuse over the length of the cells, from the patch of receptors at the cell pole where
CheY is phosphorylared te the motors that are distributed all around the cell.

e pathway from X to CheY to the motor explains the initial response in Figure 7.5, in

which attractant leads to reduction in tumbling. What causes adaptation?

7.2 Adapiation 1s Due to Slow Maodlification of X That Increases 1ts Activity

'The chemotaxis circuit has a second pathway deveted to adaptation. As we saw, when
attractant ligand binds X, the activity of X is reduced. However, each receplor has several
biochemical “buttons” that can be pressed to increase its activity and compensate for the
cfiect of the attractant. These buttons are methylation modifications, in which a methyl
group (CH,) is added to four or five locations on the receptor, Each receptor can thus have
between zere and five methyl madifications. The more methyl groups that are added, the
higher the activity of the receptor.

Methylation of the receptors is catalyzed by an enzyme called CheR and is removed by
an enzyme called CheB. Methyl groups are continually added and removed by these two
antagonistic enzynes, regardless of whether the bacterinm senses any ligands, 'This seem-
ingly wasteful cycle has an important function: it allows cells to adapt.

Adaptation is carried oul by a negative feedback loop through CheB. Active X acts to
phesphorylate CheB, making it more active, Thus, reduced X activity means that CheB is
less active, causing a reduction in the rate at which methyl groups are removed by CheB.
Methyl groups are still added, though, by CheR at an unchanged rate. Therefore, the con-
centration of methylated receptor, X, increases. Since X is more active than X, the tum-
bling frequency increases. Thus, the receptors X first become less active due to attractant
binding, and then methylation level gradually increases, restoring X activity,

Methylation reactions are much slower than the reactions in the main pathway from
X 1o CheY to the motor (the former are on the timescale of seconds to minutes, and the
latter on a subsecond timescale). The protein CheR is present at low amounts in the cell,
about 100 copies, and appears to act at saturation (zero-order kinetics). The slow rate of
the methylation reactions explains why the recovery phase of the tumbling frequency
during adaptation is much slower than the initial response,

‘The feedback circuit is designed so that cxact adaptation is achieved. That is, the
increased methylation of X precisely balances the reduction in activity caused by she
attractant. How is this precise balance achieved? Understanding exact adaptation is the
goal of the models that we will next describe.

74 TWO MODELS CAN EXPLAIN EXACT
ADAPTATION: ROBUST AN FINE-TUNED

One can develop mathematical models to describe the known biochemical reactions in

the chemotaxis circuit. We will now describe two different models based on this bio-
chemistry. ‘These are toy models, which neglect many details, and whose goal is 1o
understand the essential features of the system. Roth models reproduce the basic response
of the chemotaxis system and display exact adaptation. In one model, exact adaptation is
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fine-tuned and depends on a precise balance of different biochemical parameters. In the
second model, exact adaptation is robust and occurs for a wide range of parameters,

741 Fine-Tuned Maodel

Our first model is the most direct description of the biochemical interactions described
above. In other words, it is a natural first medel. Indeed, this model is a simplified form
of a theoretical model of chemotaxis first proposed by Albert Goldbeter, Lee Segel, and
colleagues (Knox et al,, 1986). This study formed an important basis for later theoretical
work on the chemotaxis systeni.

In the model (Figure 7.7), the receptor complex X can: become methylated X, under the
action of CheR, and demethylated by CheB. For simplicity, we ignore the precise number
ol methyl groups per receptor and group together all methylated receptors into one vari-
able X,.. Only the methylated receptors are active, with activity a, per methylated recep-
tor, whereas the unmethylated receptors are inaclive,

To describe the dynamics of receptor methylation, one needs to model the actions of the
methylating enzyme CheR and the demethylating enzyme CheB. 'The enzyme CheR works
at saturation, {that is, at a rate that is independent of the concentration of its substrate),
with rate V. In contrast, CheB works with Michaelis-Menten kinetics (readers not famil-
far with Michaelis-Menten kinetics will find an explanation in Appendix A.7). Hence, the
rate of change of X, is the difference of the methylation and demecthylation rates:

dX fdt= YV, R-V, B X /K +X,) (7.4.1)

m m m

The parameters R and I3 denote the concentrations of CheR and CheB. At steady state,
dX,,/dt = 0, the dynamics reach a steady-state level of methylated receptor:

¢

—_—
¢ e CheY-P Tumblin
AT 4
,L CheB 1 o
[ ) @ Attactant
L e @ .
. ——= CheY-P [Less tumbling
CheD

FIGURE 7.7 Fine-tuned mechanism {or exact adaptation. Receptors are methylated by CheR and demethyl-
Ated by CheB. Methylated receptors (marked with an m) eatalyze the phosphorylation of CheY. leading to
tumbles, When attractant binds, the activity of each methylated receptor is reduced and tumbling is reduced.
In addition, the activity of Chel is reduced due 1o the negative feedback loop in the system. Thus, the con-
entration of methylated receptors gradually increases, unti! the tumbling frequency returas to the prestimu-
g state, Lxact adaptation depends on tuning between the reduction in Cheld activity and the reduction in
Activity per methylated receptor upon attrictant binding, so that the activity returns to the prestimulus Ievel,
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X = KV RAV, B-V, R (7.4.2)

Recall that the unmethylated receptor has zere activity, whereas X, has activity a, per
receptor, resulting in a total steady-state activity of

Ag=a, X, steady-state activity with no attractant  (7.4.3)

The activity of the receptors, Ay, describes the rate at which CheY is phosphorylated to
create CheY-P. 'The phosphorylated messenger CheY-P, in turn, binds the motor to gener-
ate twmnbles. The activity A, therefore determines the steady-state tumbling frequency, f =
f(A).

Now imagine that saturating attractant is added to the cells, so that all of the receptors
bind attractant ligand. The attractant causes receptors to assume their inactive conforma-
tion. As a resul, the activity per methylated receptor drops to a, << a,. Therefore, the total
activity at short times after attraclant is added drops to a low value:

A=a, X, (7.4.4)

Thus, the total activity is reduced afier addition of attraciant, Ay << A, (Figure 7.8). 'This
accounts for the sharp initial drop in tumbling frequency in Figure 7.5. Gradually, how-
ever, the methylation fecdback loop kicks in. In this loop, because the receptors arce less
active, the rate of CheB action is decreased, from Vy to V' that is, the demcthylation rate
is reduced. As a result, receptor methylation X, begins to increase due to continual meth-
ylation by CheR. Receptor methylation at steady state reaches a balance between methyla-
tion and demethylation, just as in Equation 7.4.2, but with the demethylation rate set to its
new value, V-

X = KV RAVY B- Vi R) (7.4.5)
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FIGURE 7.6 Activity dynamics in the ine-tuned model in response 10 a step addition of saturating attrac-
tant at time t = 2 {(limensionless units throughout). (1) Fine-tuned model shows cxact adaptation with
a tuned parameter set. {b} Dynamics when CheR level is lowered by 20% with respect o the fine-tuned
parameter set of (a),
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resulting in a new steady-stale activity:
Ay=a, X, steady-state activity with attractant  (7.4.6)

Lxact adaptation means that the steady-state activity before atiractant addition, A, is
equal to the sleady-state activity in the presence of ligand, A ,:

Ay= A, cxdact aduptation  (74.7)

To attain exact adaplation, the increase in receptor methylation must precisely balance
the decrease in receplor aclivity caused by the ligand. This results in a relation that must
be fulfilled by the parameters of the system', based on equating Equations 7.4.2 and 7.4.5:

ag K Vi RV, B -V R) =2, KV, RAV, B - V, R) (7.4.8)

Let us play with numbers to get a feel for how exact adaptation works in this model. Let
us use a 10-fold reduction in receplor activity due to ligand binding: activity per receptor
before ligand binding is a,= 10, and after ligand binding, u,= L. Let us use K = I, VeR=1,
and V; B = 2 (units are not important for the present discussion). These values lead to an
activity in the absence of attractant of

Ay=a, KV RAV,B- VR =101/2- 1) = 10 (7.4.9)

After attractant addition, activity per receptor drops 10-foldl to a, = L. In order to reach
exact adaptation, Equation 7.4.8 constrains V" B to a specific value, namely, V," B = 1.1,
so that the activity adapts to the prestimulus level:

Ay=a, KVRAV, B-VRy= L1L1 - 1) = 10 {7.4.10)

Fxact adaptation in this model depends on a strict refation between the biochemjcal
parameters. What happens if the parameters change? For example, suppose the concen-
tration of protein CheR is reduced by a factor of 20%, so that V,, R goes from 1 10 0.8. In
this case,

Ay = 10-0.8/(2 - 0.8) = 6.66 (7.4.11)
and

A, = 1-0.8/(1.1 -0.8) =2.33 (7.4.12)

! The reader might worry about increasing Cheli, so that the denominator in Equations 7.4.2 and 7.4.5 becomes
negative, leading to a negative activity, However, increasing CheR causes unimethylated X levels to drop to the
point where the approximation that CheR works at saturation is no longer valid. The action of CheR should then
be described by a Michaelis-Menten equation, V R XK, + X), instead of zero-order kinetics, gnst:ri|1g that actiy-
ity remains positive. Exact adaptation remains fine-tuned when using Michaelis-Menten activity for CheR in the
model.
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We sce that exact adaptation is lost, since A, is no longer equal to A, In this example,
a modest 20% change in the level of a protein (CheR) caused almost a threefold difference
in the steady-state activities with and without ligand (Fipure 7.8b). Exact adaptation is a
fine-tuned property in this model.

7.2 The Barkai-! eibler Robust Moechamism for Exact Adaptation

A mechanism that allows exact adaptation for a wide range of biochemical parameters was
suggested by Naama Barkai and Stanislas Leibler (1997). The full model includes several
methylation sites and other details, and reproduces many observations on the dynami-
cal behavior of the chemotaxis system (2 two-methylation-site version is solved in exer-
cise 7.1). Here we will analyze a simiplified version of the Barkai-Leibler model, aiming to
understand how a biocchemical circuit can robustly adapt,

Qur toy model {Figure 7.9) has a single methylation state, so that receptors can be cither
unmethylated, X, or methylated, X,,. The unmethylated receptor X is inactive, whereas X,
transits between an inactive state and an active state, X,* ‘The activity is proportional to
the number of receptors in the methylated, active state:

A=X" (7.4.13)

A
CheB —_— -'ia'nbles
//

Aclive state

Attractant

(i

[nactive state

HGURE 7.9 The Barkai- Leibler mechanism for exact adaptation. Unmethylated receptors are methylated by
CheR ata constant rate. Demethylation is due 1a CheB, which acts only on the active methylated receptors.
Methylated receptors (marked with m) transit rapidly between active and inactive states (the former marked
with a star). Altractant binding increases the prabability to become inactive, whereas repellents increase the
probability to become active. The active receptors catalyze the phosphorylation of CheY, leading to tumbles.
When attractant is added, many active receptors rapidly become inactive, and hence the tumbling frequency
decreases, The reduced number of active receptors means that Cheld has less substrate 1o work on, and thus
the demethykation rate drops. Since CheR continues ta work at a constant rate, the total number of methyl-
ated receptors increases. This increase only stops when demethylation rate exactly balances the methylation
rate, that is, when the number of active receptors returns to its prestimulus value. Thus, exact adaptation
occurs because the concentration af active receptors adjusts itself so that the demethylation rate is equal 10
the constant methylation rale.

The model is based on two key features. First, CheR must work at saturation. Second,
CheB can only demethylate the active receptors, X,,* (Figure 7.5). To repeat, CheB does
not work on the inactive methylated receptors. This Ieads to the following equation for the
total concentration of methylated receptors (both active and inactive):

(K X) | Ve,

dt K+X:“
where R and B denote the concentrations of CheR and CheB. Note that the Michaelis-
Menten term for CheB contains the concentration of its substrate, active receptors X"
The steady-state of this dynamic equation occurs when d(X, + X,,*)/dt = 0. At steady-
state, the value of X, * reaches a point where demethylation exactly balances the constant

(7.4.14)

flux of methylation:

ViR = Y-“ILX."‘ (7.4.15)
K+X,,
which can be solved for the steady-state activity A = X"
A=x = EVR_ (7.4.16)
2 n VHB— VRR

When attractant is added, it binds the receptors and decreases the probability of the
active state. Therefore, the number of active receptors A = X,,* rapidly decreases. This
causcs the abrupt initial drop in tumbling frequency that is observed in the experiments
(Figure 7.10),

Afier this sharp initial response, adaptation occurs due to the fact that CheB only
works on the active receptors. The rate of demethylation by CheB is reduced because of
the decrease in X_* caused by the attractant. CheR, on the other hand, continues to meth-
ylate receptors at a constant rate. Therefore, the total number of methylated receptors
gradually increases:

15 15 —_
Ao A2 10 exact
1 aclaptation
> +
5 5

[} -
0012345678‘)10 01 2 23 & 5 6 7 8 910
Time Time

{a) (b

FIGURFE 7.10° Activity dynamics of the robust model in response 1o addition of saturating attractant atrtlme
t =2 (2) Model parameters K= 10, V, R=Land V, B = 2. (b) Same parameters with R rcducc.d bya adm;
of 2. Exact adaptation is preserved. Note that the value of the steady-state tumbling frequency is fine-tuned
and depends on the model parameters.
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(l X m -’- X \.“ :
X)Ly v,
Jdi K+X,

As the total number of methylated receptors increases, so does the number of active
methylated receplors X% which are a [raction of the total methylated receptors. As
belore, steady-state is reached when X reaches a level that balances (he effects of CheR
and CheB, resulting in a steady-state activity level:

- KV,R
"OVB-VR

This activity is equal to the pre-attractant activity. Thus, the steady-stale activily does

not depend ou ligand levels:

(7.4.17)

Ay=X (7.4.18)

A=Ay (74.19)

How docs this mechanism work? ‘The crucial clements are a fixed flux of methylation
duc Lo CheR, set against a counterflux of demethylation by Chel that directly depends on
the activity A = X, * At steady state, the number of active receptors always adjusts itself so
that demethylation balances the reference flux of methylation. In other words, the active
receptors X,* return to the fixed point of Equation 7.4.17, no matter what the attractant
level. The activity A = X,,* reaches a steady-state value that does not depend on the ligand
stimulus. Exact adaptation is achieved. Figure 7.10 shows the dynamics of this model for
two sets of parameters, in which CheR levels are varied by a factor of 2. It is scen that the
steady-state activity changes, but adaptation remains exact.

Exact adaptation occurs for a wide range of variations in any of the parameters of the
model, namely, K, Vi, Vi, R, and B. [n contrast, the value of the sleady-state activily to
which the cells adapt depends on these parameters. In other words, steady-state activity is
a frite-tuned feature of this model (Figure 7.10). Exact adaptation, in which the stcady state
does not depend on ligand levels, is a robust feature of the model and does not depend on
the precise values of the biochemical parameters,

There are Limits to robustness: for example, when VR exceeds VB, the saturation
assumption for enzyme CheR is no longer valid, and robustness breaks down.

Robustness of exact adaplation in this model depends on the assumption that CheB
works only on aclive receptors, and does not demethylate receptors that are in their inac-
tive state, This is a specific biochemical detail that is essential for robust adaptation. The
assumption that CheB works only on active receptors is not unrealistic, because enzTyIes
can be exquisitely specific in discriminating between molecular states. Relaxing this
assumplion by allowing a small relative rate ¢ for CheB action on inaclive receptors entails
aloss of exact adaptation by a factor on the order of ¢,

743 Robust Adaptation and Integral Feedback

‘The feedback in the robust mechanism is special: the demethylation rate is refated directly
to the activity, rather than to some other entity, such as the level of CheB-P. The negative
feedback loap therefore acts directly on the vartable t be controlled.

The direct feedback in the robust mechanism of exact adaptation |\ rcl;u.cd ln ,”;lc_ c-l;’gij
‘ing control principle of integral feedback (Yi et al, 2000). In integral feedback, a
neel'm-&" controlled by a signal that integrates over time the error between the outpul
gi:llcl’imihd::;ircd output. 'This type of feedback is guaranteed Lo guide tk\]j: duvacG “.) FlliL
desired output level, regardless of variations in the syStcm. pnmmclf:.r‘?,' P,-.L;\U:iﬂ()(cfc;l\::;;
the integral of the crror grows withoul bound. i\/Ior.covcr, in m;?ny L,‘“’L‘b l.ltl C%lf‘ - ‘tc‘ri‘ll
can be shown to be the paly robust solution to lhl.S pmblem,. [.hc m_tqp‘allor 1‘1 | ;L Am; \
chemotaxis thal effectively sums the error in activlrly (the ;1cl1v.xly l'j‘ll.nll.t t1c] ?l‘t‘ultbif:-,k(i:
activity) is the methylation level of the receptors, The properties of integral feedbac

chemotaxis are examined in exercises 7.2 and 7.3.

744 Dxperiments Show That Bxact f\(l:}|)l=11‘!flﬂ I I\‘rr)1u‘|‘sl, Wh(‘i:(;‘“

Steady-State Activily and Adaptation Times Are Fine-Tune | |
An experimental test of robustness employed gcnc%icnlly c%lginccrcd L. C(j!f‘i st-nzl‘x.ls,.\(v:;cl:
allowed controlled changes in the concentration of cach of the chc_nmlnm.s pro u‘m. o1
et al, 1999). This control was achieved by first deleting th-e gene lo-r one chelnl‘otdl)l(ss p:‘:}y
tein {for example, CheR) from the chromosome, and then mtruduc:ﬂng -llfl“o.‘ he crecs;s:oyr
of the gene under control ofan inducible promoter (the fac promo‘t‘.rl).‘ dluh, c:(prP’l.G) ot
the protein was controlled by means of an externally added chfzmu.:u in uclTr . .
more inducer that was added, the higher the CheR concentration in the cer 5. In ni \«.ray,
CheR levels were varied from about 6.5 to 50 times their wild-t).rpe levclé. lhc-:dpopu‘at.m.n
response of these cells to a saturaling step ofattractiant was m‘omtorcd L\L,“-ngt\ln €0 n:;::::;]
copy on swimming cells. ‘The experiment was carried out with changes in the express

3 iffe emotaxis prateins. '

lev;tisv::sdll"g:;ec]intlcl:t the stcmli)y-statc tumbling frequency and tlhc adaplulion. lm-\‘c var-
ied with the levels of the proteins that make up the chumot‘uxx:f nctwc?rk (F-;gflul 7.1;).
For example, steady-state tumbling frequency incre;'asc.d with mcreasmg.(, heR C‘Vees(_i
whercas adaptation time decreased. Despite these variations, exact adaptatlznl r;mam t
robust to within experimental error. Thesc results support the robust model for exac

adaptation.

7.5 INDIVIDUALTTY AN R JHUSH}IIES IN BACTERIAL CHEMK NAXIS
gI;t;lich ana Kiosl{l;:ﬁl—(i-(.l‘ﬂ()) observed thal genetically identical t:flls appc]a}r lodhave ;;x
individua! character as they perform chemotaxis. Some cell:. are “nervous hafn tu:n e
more frequently than others, whercas other cells are “relaxed” and s‘w1m w1t‘ erweF u‘m-
bles than the narm. Thesc individual characteristics of cacb cell Jast for- tens o miny ’cls.
The adaptation time to an attractant stimulus also varies from cell to u.:ll. Int.cr‘cstmf; y
these two features are correlated: the steady-state tuml;linl‘o; {requency [in a given ceil is
i ; -elated with its adaptation lime, 7, that is, { ~ 1/1. .

lnv—;rlzc?otc)(l)ll;ltdm'l:)dcl for lmclerilai chemotaxis can supply an cxplanation. f(.)T lh.e vz;r‘ymg
chemotaxis personalitics of £ coli cells. This is based on the ccll—'ceu vn;:atlont 1‘1I1nc E«L}rlz;
taxis protein levels, and particularly in the least abundant pr()lcm_m l.c system, C .t(;
Variations in CheR aifect the tumbling frequency [and the adaptation time T in opposi
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I r(fl JRE 711 Experimental test of robustuess in bacterial chemotaxis. The protein CheR was expressed at
different levels by means of controlled expression with an inducible promoter, and the average tl:ﬁ]Blil;g
l‘requ.ency of a cell population was measured using video microscopy. Fold expressien is the ratio of Chell
protein level to that in the wild-type bacterium. Adaptation precision is the ratio of tumbling frequency
before and after saturating attractant (1 mM aspartate). Adaptation time is the time to return to 50% of the
steady-state tumbling frequency after saturating attractant addition. Adaptation time and steady-state tum-
bling frequency varied with CheR, whereas adaplation remained exact. Wild-type tumbling frequency in
this experiment is abeout 0.4/sec (black dot in b). (From Alon ctal,, 1999.) !

directions (Figure 7.11). 'The Barkai-Leibler mode! with multiple methylation sites sug-
gests that f ~ CheR and 1 ~ 1/CheR. ‘Thus, the model predicts that { ~ 1/7, explaining the
observed correlation in these two features (see solved exercise 7.1).!

Despite the cell-cell variability in tumbling frequency, the vast majority of the cells in
a population perform chemotaxis and climb gradients of attractants. On the other hand,
mutant cells that have wild-type tumbling frequency but cannot adapt precisely (such
as certain mutants in both CheR and Cheld) are severely defective in chemotaxis abil-

' Detailed stoclafio < i i i Cirens y
j(l?)t.:)‘lllul stuchastic simulations of this protein circuit were performed by 1, Bray and colleagues (Shimizu et al
2003). o ' o

[ B B N T T T S R [V

ity. Evidently, tumbling lrequency need not be preciscly tuned for successful chemotaxis,
whereas exact adaptation is important for most ligands.!

In summary, il appears that the bacterial chemotaxis circuit has a design such that a
key feature {exact adaptation) is robust with respect to variations in protein levels. Other
featurcs, such as steady-state activity and adaptation times, are fine-tuned. These latter
features show variations within a population due to intrinsic cell-cell variations in pro-
tein levels. Because of the robust design, the intrinsic variability in the cell’s protein levels
does not abolish exact adaptation.

As a theorist, one can usually write many different medels to describe a given biologi-
cal system, especially if some of the biochemical interactions are not fully characterized.
Of these models, only very few will typically be robust with respect to variations in the
components. Thus, the robustness principle can help narrow down the range of models
that work on paper to the few that can work in the cell. Robust design is an important fac-
tor in determining the specific types of circuits that appear in cells. In the next chapter,
we will study how robustness constraints can shape the circuits that guide pattern forma-

tion in embryonic development.
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XERCISES

D Y N N A

{
7.1 Robust model with two methylation sifes. ‘The receptor X can be methylated on two

o?

positions, and can thus have zero, one, or two methyl groups, denoted X, X, and

X,
X,.

‘The enzyme R works at saluration {zero-order kinetics) to methylate X and
The demethylating enzyme B works only on the active receptor conformation,

removing methyl groups with equal rate from X,* and X,;* For simplicity, assume
that B works with first-order kinetics. The reactions are:

methylation

K,= X, atrale RV X AX + X)),

the last factor occurs because R is distributed between its substrates X, and X,

methylation X=X, atrale RV, X /(X + X))
X #2X* rapid transitions at a rate that depends on the ligand level
X, = X, rapid transitions ai a rate that depends on the ligand level
de-methylation X=X, atrate BV X
de-methylation X=X, atrate BV, X
a. What is the steady-state activity A = X,* + X,*? Does it depend on the concentra-

b.

C.

Solution:

d.

tion of ligand I? Is there exact adaptation?

Estimate the adaptation time, the time needed for 50% adaptation after addition
of saturating attractant. Note that to adapt to satirating attractant, virlually all
of the receptors need to be doubly methylated.

Spudich and Koshland (1976) found that different cells in a population have dif.
ferent steady-state activities and different adaptation times. Moreover, these two
features were found 1o be correlated: the higher the activity A, the shorter the
adaptation time 7 in a given cell, with A ~ 1/1. Explain this finding using the
model, based on cell-cell variations in the concentration of R (Barkai and Leibler,
1997).

The rates of change of the doubly methylated receptor concentration and the
nonmethylated receptor concentration are:

A Xyt = RV XX, + X)) - BV, X, (P7.1)

INNFDII LN N2 DNV ETIN IR ey R/ (et}
dX fdt= RV X AX, + X))+ BV, X (07.2)

Subtracting these two equations yields

d(Xpt Xt ~dX/dt = RV, = BV, (X, ¢ X, )= RV, - BV, A (P7.3)

The activity A = X* + X,* is therefore (setting d/dt terms to zevo):

A= RV /BV, (P7.4)

‘This activity docs not depend on the ligand concentration. Therefore, this mech-
anism displays exact adaptation,

In the case of saturating ligand, ail receptors in all of their forms bind altractant
ligand. 'the attractant reduces the activity of all methylated receptors, and thus
at initial times X;* is small. In addition, when adaptation is completed, X,* is
small because the majority of receptors need to be doubly methylated in order
to balance the strong inhibitory effect of the saturating attractant. Thus, it seems
that X" is relatively small throughout most of the dynamics, Since X,* is small,
the demethylation {lux from X ,* to X, is small. lence, to a good approximation,
X, dynamics reflect only a reduction due to the action of CheR, because the term
with B in Equation P7.2 is negligible:

dX /dt = ~R V, X (X, + X,) (v7.5)

so that X, drops with time. At initial times (before attractant addition), let us
denote by q the [raction of X, among the possible substrates of CheR, q = X, /(X,
+ X,). Thus, the initial slope of the drop in X, is - q R V.. The adaplation time
to saturating ligand (time to recover to 50% activity) is the time necded to build
enough methylated receptors Lo restore activity, at the expense of most of the
unmethylated ones. Thus, it is approximately the time for X, to decline to 50%
of its initial value. This adaptation time is equal to the number of methylation
reactions needed (that is, methylations equal to 50% of X ) divided by the rate at
which they occur, namely (ignoring the changes in q over this time):

T~ 05X QR V, (P7.6)

Thus, the adaptation time becomes shorter the more R enzymes exist in the cell,
This makes sense because the more R enzymes there are, the faster methylation
occurs and the faster the adaptation.

Note that the single methylation model discussed in the text has a different
adaplation time, governed by B and not R. This is because we cannot ignore the
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7.2,

flux from X,* 1o X, which is necessary to produce exact adaptation in the singie
methylation model. But B governs the adaptation time only if we restrict our-
selves to a single methylation site, as we did for clarity in the text. In reality there
are multiple methylation sites. ‘The adaptation tirme is generally governed by R
in models with more than one methylation site {Barkai and Leibler, 1997). In
experiments, the adaptation time is found to decrease with R (Figure 7.11), in
agreement with the multi-site models.

c. We saw above that the adaptation time varies as v ~ 1/R (liquation P7.6) and the
steady-state activity varies as A,, ~ R (Equation P7.4). ‘Thus, if R is the protein
with the largest variation between genetically identical eells, one would expect
that A, ~ b/1, as observed. "lhe protein R is the least abundant chemotaxis sig-
naling protein in L. coli, with on the order of 100 copies per cell, whereas there
arc on the order of several thousand copies of CheB, CheY, CheZ, and CheA per
cell. CheR may therefore be the most prone to stochastie variations.

Integral feedback. A heater heats a room. The room temperature T increases in pro-
portion to the power of the heater, P, to other sources of heat, S, and decreases due
to thermal diffusion to the outside at a rate proportional to T:

dT/dt=aP+S-bT (P7.7)

An integral feedback device is placed in order to keep the room temperature at @
desired point T,,. In this feedback laop, the power to the heater is proportional to the
integral over time of the error in temperature, T - T

P=P,- KJ(T-"1)dt (P7.8)

This feedback loop thus reduces the power to the heater if the room lemperature is
too high, T > T,, and increases the power when the room temperature is too low.
Taking the time derivative of the power, we find

dPidt = K (T =T (17.9)

a. Show that the steady-stale temperature is T, and that this steady-stale does not
depend on any of the system parameters, including the room’s thermal coupling
to the heater, a, the additional heat sources, S, the room’s thermal coupling with
the outside, b, or the strength of the feedback, K. In other words, integral feed-
back shows robust exact adaptation of the room temperature.

b. Demonstrate that integral feedback is the only solution that shows robust exact
adaptation of the room temperature, out of all possible linear control sysiems.
That is, assume a general linear form for the controlier:

dPidi=¢c, T+, P +¢ (17.10)

and show that integral feedback as a structural feature of the system is neccssary
and sufficient for robust exact adaptation.

7.3, Integral fredback in chemotaxis. Demonstrate that a simple linear form of the robust

model for chemotaxis contains integral feedback. What is the integrator in this bio-
logical system (Yi et al., 2000)?

Solution:

In 2 linear model, CheR works at saturation and CheB works with first-order kmcht-

ics, and only on the active receptors. The rate of change of the total number ofmetl -

ylated receptors (X, = Xq+ X" = X, + A) is given by the difference between the
¢ m, m

methylation and de-methylation rates:

dX, fdt=V,R-V,BA (P7.1)

L

This can be rewritten in terms of the difference between the activity A and its

steady-state value Ay

(P7.12)

dX,_ Jdt=-V,B(A-A,)

m,t

where the steady-state activity is

A, =V, RIV,B (p7.13)

The total number of methylated receptors, X,,, thus acts as the intclgra.tor llsr.; Et;;%e
system that integrates the error in activity over time {in analogy to Equation P7.5}):

X, ~-Vy B (A=A dt (P7.14)

m,l
‘The activity A is analogous to the room temperature in Problem 7.2..T0 cfo:;pﬂ:l;ztz
the analogy with problem 7.2, let us write a dctailcd.equatmn for the*r_atc Zases‘ dic
of activity, A = X,,*. The number of methylated active receptors X,* incr e e
{0 transitions from X, to X,* at a ligand-dependent rate, k(1}. The num er i‘]‘
decreases due to the demethylating action of CheB and due lr:) transﬁu:ni tz the
inactive state X,, at a ligand-dependent rate k'(I). The dynfn.'mcs ().f :1(,“ = rii::
therefore given by the sum over the rates of all of these transitions with appropria

signs:

JAME =k X, -k A-V,BA (P7.15)
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X, + A (analogous to the heater power, P, in exercise 7.2; Equation P7.7). For this
purpose, we add and subtract k(1A to find

We want Lo rearrange this equation so that the first term is proportional to X

dAZdU=K() X, - (KW + kN A -V, B A (P7.16)

Thus, we end up with an integral feedback system, analogous to Equations P7.7 and
P7.9, in which

dA/t=aX, -bA (»7.17)

dX, At = K (A - A) (17.18)

wherea=k(I), b =k’(1) y k(l) + V; B, and K = VB,

To restate the analogy, think of A as the temperature and X, as the power to the
heater in problem 7.2. As shown in problem 7.2, the steady-state activity A, does
not depend on any of the parameters a, b, or K, and in particular on the ligand level
that enters only through k() and k'(l) in the parameters a and b. Thus, A,, does not
depend on the level of atiractant {or repellent), and exact adaptation is achieved.

Zero-order ultrasensitivity (Goldbeter and Koshland, 1981); In this exercise, we will
see how two antagonistic enzymes can generate a sharp switch, A protein X can be
in a modified X; or unmodified X, state. Modification is carried out by enzyme E,,
and de-modification by enzyme E,. The rate V, of E, is constant, whereas the rate V,
of E, is governed by an external signal. Consider V) as the input and X, as the out-
put of this system.

(a) Assume that E; and E, work with first-order kinctics. What is the output X, as a
function of input V,.

(b)

What is the sensitivity of this circuit, defined as the relative change in X, per
relative change in V.
vV, dX
S(X,.v)=_tL—
X, dv,
(¢) Assume now that £, and E, work with zero-order kinetics, What is X, asa func-
tion of V7 Note that X, + X, cannot excced the total concentration X

Lot
(d) What is the sensitivity of the zero-order circuit? Explain why this is called “zero-
order ultra-sensitivity™.

() Comparc the switching time (time to 50% change in X, upon a change in V)
between the cascs of (a) and (©) above.

7.5.

Robust model with a single methylation site: Consider the model of Section 7.4.2. 'L he

methylated receptor transits rapidly between the inactive form X, and the active

form X.*. Transitions from X,, to X,.* occur at @ rate k(l), and transitions back
m

occur at a rate k'(1). Note that k(iy and 1 '() depend on ligand level 1.

(@) What is the average activity, averaged over many trapsition events between X,
and X,*?

These transitions occur much faster than changes in the methylation level of X,
How can this be useful in analyzing the model?

(b)

(@ Solve for the dynamics of Al = X,,* following a step addition of attractant

ligand. What is the response time? Plot the dynamics schematically,

Same as (), for a step addition of repellent ligand.

()



CHAPTER 8

Robust Patterning in Development

8.1 INTRODUCTION

Development is the remarkable process in which a single cell, an egg, becomes a multicel-
lular organism. During development, the egg divides many times to form the cells of the
embryo. All of these cclls have the same genome. If they all expressed the same proteins,

the adult would be a shapeless mass of identical cells. During development, therefore, the
progeny of the egg cell must assume diflcrent fates in a spatially organized manner to
become the various tissues of the organism. 'The difference between cells in different tis-
sues lies in which proteins they express. In this chapter, we will consider how these spatial
patterns can be formed precisely.

To form a spatial pattern requires positional information. This information is carried
by gradients of signaling molecules (usually proteins) called morphogens. How are mor-
phogen gradients formed? In the simplest case, the morphogen is produced at a certain
source position and diffuses into the region that is to be patterned, called the field. A con-
centration profile is formed, in which the concentration of the morphogen is high near
the source and decays with distance from the source. The cells in the field are initially all
identical and can sense the morphogen by means of receptors on the cell surface. Mot-
phogen binds the receptors, which in turn activate signaling pathways in the cell that lead
to expression of a set of genes. Which genes are expressed depends on the concentration
of morphogen. The fate of a cell therefore depends on the morphogen concentration at the
cell’s position.

The prototypical model for morphogen patterning is called the French flag model (Fig-
ure 8.1y (Wolpert, 1969; Wolpert et al.,, 2002). The morphogen concentraticn M(x) decays
with distance from its source at x = 0. Cells that sense an M concentration greater than a
threshoid value T, assume fate A. Cells that sensc an M lower than T, but higher than a
second threshold, T,, assume fate B. Fate C is assumed by cells that sense low morphogen
levels, M < T,. The result is a three-region pattern (Figure 8.1). Real morphogens often
lead to patterns with more than three different fates.
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FIGURL 5.0 Morphogen gradient and the French flag model. Morphogen M is produced at x = ¢ and diffuses
e a ficld of cells. The morphogen is degraded as it ditfuses, resulting in a steady-state concentration pro
file that decays with distance from the source at x = 0. Cells in the held assume fate A if M concentration is
greater than threshold 1, fate B3 if M is between thresholds 1 and 2, and fate C if M is lower than threshold 2.

Figure 8.1 depicts a one-dimensional tissue, but real tissues are three-dimensional.
Patterning in three dimensions is olten broken down inlo one-dimensional problems in
which cach axis of the tissue is patlerned by a specific morphogen.

Complex spatial patterns are not formed all at once. Rather, patlerning is a sequential
process. Once an initial coarse pattern is formed, cells in each region can sccrete new
morphogens to generate finer subpatterns. Some patterns require the intersection of twe
or more morphogen gradients. In this way, an intricate spatial arrangement of tissues is
formed. The sequential regulation of genes during these patterning processes is carried
out by the developmental transcription networks that we have discussed in Chapler 6.
Additional processes (which we will not discuss), including cell movement, conlact, and
adhesion, further shape tissues in complex organisms.

Patterning by morphogen gradients is achicved by diffusing molecules sensed by bio-
chemical circuitry, raising the question of the sensitivity of the patterns to variations in
biochemical parameters. A range of experiments has shown that patterning in develop-
ment is very robust with respect to a broad variety of genetic and environmental pertur-
bations (Waddington, 1959; von IDassow et al., 2000; Wilkins, 2001; Eldar et al., 2004).
‘The most variable biochemical parameter in many systems is, as we have mentioned
previously, the production rates of proteins. Experiments show that changing the rate of

morphogen production often leads to very little change in the sizes and positions of the
regions formed. For example, a classic experimental approach shows that in many systems
the patterning is virtually unchanged upon a twofold reduction in morpliogen produc-
tion, generated by mutating the morphogen pene on one of the two sister chromosomes.

In this chapter, we will consider mechanisms that can generate precise long-range pat-
) ‘ : 3 PR P -

terns that are robust 1o such pCl'tUl'b‘.lii()nS, following the work of Naama Barkai and her
llL"u;uu (Eidar ¢t al, 2002, 2003 2004). We will see that the most generic patterning

colleagues (Eid: al., , 3, e eneric pat -

mechanisms are nat robust Requiring robustness leads to special and rather elegant bio

h 4 st.
chemical mechanisms,

62 EXPONINTIAL MORPHOGEN PROFITES ARENOTROBUST

Lct—n: begin with the simplest mechanism, in Wl.lidl nmrl?hogcn is pmd‘ucT:.d l\t 1‘,(;“{Lc
located at x = 0 and diffuses into a field of iLlC[‘:ElCLI] cells, he mnrp.hngm Ih. ( (%‘,l:‘l(\l.( at
rate a. We will see that the combination of ditfusion and degradation leads to an expo-
nentially decaying spatial morphogen profilc. . .

The concentration of morphogen M in our maodel is gov.crncd by a U;lzc-(’lll;’u.l)lsl‘(il‘];l.
diffusien-degradation equation. Tn this equation, the dlii’utﬁmn tm]n},i‘l) (‘ 1\{/{/( ); ﬁbu s
to stmooth out spaltial variations in mm'phogcn conccnlral.lons. The ‘ arger ?L is us,lm‘:;
constant [, the stronger the smoothing effect. T he degradation of morpliogen is ([t.:/;,ll )L
by a lincar term -a M, resulting in an equation that relates the rate of change o 10 its

diffusion and degradation:

IMAL=DPEMPE-aM (8.2.1)

o solve this diffusion-degradation equation in a given rcg%o'n, we need to consic?er the
values of M at the boundaries of the region. The bou ndary conditions are a stcncllyt cm‘u:cn.u-n-
tion of morphogen at its source at x = 0, M(x = 0) = M,, and zero bouxmflzxry condmzin.u, la; uinu
the field, M(eo) = 0, because far into the field all morphogen moic.culch havc.bccn L.grag e(:

At steady-state (@ M/8 1 = 0), Equation 8.2.1 becomes a linear ordinary differential

equation:
Dd*Midx?-aM=0

And the solution is an exponential decay that results from a balance of the diffusion and

degradation processes:
M{x) = M, ¢ (8.2.2)

Thus, the morphogen level is highest at the source at x = 0, and decays with distance
into the ficld. The decay is charactetized by a decay length A:

A=vD/a (8.2.3)

The decay length M is the typical distance that 2 morphogen molcculeuu'av}c;ls;nto tihc
field before it is degraded. The larger the diffusion constant D and thc sma e;; ; egr?(}a;\
tion rate & the larger is this distance. The decay is dramatic: at dlstancis oJ‘ f and 1 g
from the source, the morphogen conceutration drops to about 5% and 5107 of its initial
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. . . F F I g patte OUY ¥ uf ¢
l.‘dlllcll )( l)ll I(HP. 10gen concentration at X = 0, denoted \A;' The patlerr boung ary, defined by the POS 10 t
where M{x ceuals the threshole L shifts 1o the left b 5 when M, is reduced to M ’ (
1T Y o s reduced to "

value. Roughly speaking, A i i
S £, A is the typical size o ions
o ¥p of the regions that can be patierned with such
The fate of ea i i
el pomin, t}clls of];hfe cells in the field is determined by the concentration of M at the
e Positio l.’egmnc:_'o ate cha]nges when M crosses threshold T. Therefore, a boundary
$ occurs when M is equal 10 T. Th iti , (
‘ . The posit i i
given by M(x,) = T, or, using liqualion 8.2.2 postiom ofthis bondary x.. s

x,= X log (M, /T) (8.2.4)

What happens i . R
mnccm“r-i i n{.s 1|"l]1¢1 production rate of the morphogen source is perturbed, so that th
abion o ln()rp ](‘)gen at lhc sourc R L 24, so tha 'y
{ : ¢ M, is replaced by M ? :
that the positi o X v placed by M,,"? Equation 8.2.4 s o5y
" position of the boundary shifis to x,” = A log (M_YT). "the 1!13,)_ 4 suggests
original and the shifted boundary is (Figure 8.2) 1 e difference between the

6=1x,"-x,=\log (M, /M,) (8.2.5)

"Thus, a t . PO
left by .ib;u‘:"_’g\oid reduction in M, leads 1o a shift of the position of the boundary to the
pattern, Reg :g(l/?) ~ 0.7 A, alarge shift that is on the order of the size of th:;/ .
- Region A in Figure 8.1 would be almost completely lost ’ entire

Hence, this .
: st

in develonme );pe of mechanism does not seem to cxplain the robustness ob d

e . . 2o R S serve

s ‘} " ntz.\ patterning. To increase robustness, we must seek a mechanism y

cases the shift § that occurs upon changes in par ‘ chanism that

gen production. amelers such as the rate of morpho-

INCREASFD ROBUSTNESS BY SCLF-ENHANCED

_ MORPHOGEN DEGRADATION o — -
The simple diffusion and degradation process described above generates an exponential
o the morphogen level at its source M,

t us try a more general diffusion-degradation

8.3

morphogen gradient that is not robust t
To generate a more robust mechanism, le
process with a nonlinear degradation rate F(M):

3 M/t =D 3 M/d x> - F(M) (8.3.1)
a constant source concentration, Mx = 0) =
o) = 0. This diffusion process has a general
{or robustness: the shift & in the morpho-
ace — it does not depend on position x.

The boundary conditions are as before,
M,, and decay to zero far into the field, M(
property that will soon be seen to be important
gen profile upon a change in M, is uniform in sp
That is, all regions are shifted by the same distance upon a change in M,

This uniform shift certainly occurs in the exponential morphogen profile of the previ-
ous section. The shift in boundary position § described by Equation 8.2.5 does not depend

s, if several regions are patterned by this morphogen, as in Figure 8.1, all bound-

on x. Thu
m is perturbed.

aries will be shifted by the same distance & if morphogen productic
More gencrally, spatially uniform shifts result with any degradation function F(M) in

Equation 8.3.1. This property is duc to the fact that the cells in the field are initially identi-
This means that

cal (unpatterned), and that the field is large {zero morphogen at infinity).
Equation 8.3.1 governing the morphogen has translational symmetry: the diffusion—deg-

radation equations are invariant to a coordinate change x — x + 8. Such shifts only pro-

duce changes in the boundary value at x = 0, that is, in M,, as illustrated in Figure 8.3.

The spatial shift that corresponds to a reduction of M, to M, is given by the position &
at which the original proftle equals M, M(8) = M,". The solution of Lquation 8.3.1 with
is identical to the solution with M, shifted to the left by &.

hat is, to make the shift & as small as possible upon
hilt as small as possible, one must make the decay
rate near x = O as large as possible, so that M," is reached with only a tiny shift. This
could be done with an exponential profile only by decreasing the decay length A. How-
cver, decreased A comes at an unacceplable cost: the range of the morphogen, and hence

the size of the patterns it can generate, is greatly reduced.
eek a profile with both long range and high robustness. Sucha profile

boundary condition M,’
Our goal is to increase robustness, t
a change in M, to M,". To make the s

Thus, we s should

lave two features:
1. Rapid decay near x = 0 to provide robustness to variations in M,

2. Slow decay at large x to provide long range to M

egrade faster near the source X = 0 and slower

{ar [rom the source. However, we cannot make the degradation of M explicitly depend on
a(x) in Equation 8.2.1), because the cells in the ficld
uld require positional

A simple solution would be to make M d

posilion x (that is, we cannol sct a =
are initially identical. A spatial dependence of the parameters wo
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FIGURE 8.3 A change in morphogen concentration at the source from M, 1o M. led

ads to a spatially uni-
torm shift in the morphogen profile. Al arrows are of equal length. The size of the shilt is equal to the posi-
tion at which M(x) = M_"

information that is not available without prepatterning the field. Our only recourse is
nonlincar, self-enhanced degradation: a fecdback mechanism that makes the degradation
rate of M increase with the concentration of M,

A simple modecl for self-enhanced degradation employs a degradation rate that increases
polynomially with M, for example,

OM/t=1 @ MAx:-aM? (8.3.2)

‘Lhis equation describes a nonlinear degradation rate that is large when M cancentra-
tion is high, and small when M concentration is low.!

Al steady state (9 M/d t = 0), the morphogen profile thal solves Equation 8.3.2 is not
exponential, but rather a power law:

M=A@X+e?  e=(@MJGD)I2  A=gDia (8.3.3)

Ihis power-law profile of morphogen has a very long range compared to exponential
profiles. To obtain robust, long-range patterns, it is sufficient to make M, very large, so
that the parameter ¢ in Equation 8.3.3 is much smaller than the pattern size (note that

£~1/yMy }. In this limil, the morphogen profile in the field does not de

pend on M, at
all:

! A nonlinear degradation F{M) ~ M can be achieved by several imechanisms. For example, if M melecules dimer-
ize weakly and reversibly, and only dimers are degraded, one has that the concentration of dimers (and hence the
degradation of M) is proportional to the squaze of the monomer concentration [M;] ~ M2 Note that the parameter
& in Lquation 8.3.2 is in unils of 1(time - concentration).
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FIGURE 8.1 Comparisen ol exponentizl and power-law morphogen profiles. (a) A diffusible morphogen l?}ui
is subject to lincar degradation reaches an exponential prolile at steady state (solid line. A pcrlurhuc-i |)t'0|l.|.c
{dashed line) was oblained by reduging the morphogen at the boundary, M. by a factor ¢. The resulling shift
in cell fate boundary (8 is comparable W the distance AX between two boutdaries in the tnperturbed pro-
file, defincd by the peints in which the profile crosses thresholds given by the horizontal d(_mcd lines, Note
the Jogarithmic scale, (b) When the morphogen undergoes nonlincar 5c|f~cnhanccd dugr:ululmn..;l power-law
meorphogen profile is established at steady state. In this case, 8 is significantiy smaller than AX, The symbols
are the same as in (@), and quadratic degradation was used (Bquation 8.3.2). (From Ellar et al,, 2003))

M~ A/x? (8.3.4)

so that there are negligible shifts cven upon large perturbations in M,. Patterning is very
robust to variations in M, as long as M, does not become too small (Figure 8.4).

'The power-law profile is not robust to changes in the parameter A ~ D/a, the ratio of
the diffusion and degradation rates, However, parameters such as diffusion constants and
specific degradation rates usually vary much less than production rates of proteins such
as the morphogen.

In summary, self-enhanced degradation allows a steady-state morphogen profile with
a nonuniform decay rate. The profile decays rapidly near the source, providing robustness
to changes in morphogen production, It decays slowly far from the source, allowing long-
ranged patterning.

8.4 NETWORICMOTIS THAT PROVIDE DEGRADATION

FEEDBACK FOR ROBUST PATTERNING , N
Wesx«r—tlnt nr;g;l;;ﬁ(r)rng-r—z;ngc patterning can be achieved using feedback in which the
morphogen enhances its own degradation rate. Morphogens throughout the developmen-
tal processes of many species participate in certain network motifs that can provide this

self-enhanced degradation. The robustness gained by self-enbanced degradation might

explain why these regulatory patterns are so common.

The morphogen M is usually sensed by a receptor R on the surface of the cells in the
field. When M binds R, it activates a signal transduction pathway that leads to changes in
gene expression. Two types of feedback loops are found threughout diverse developmen-
tal processes (Figure 8.5),
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FTGURE 5.5 Two network molifs that provide self-enhanced degradation of morphogen M. (a) M hinds
receplor Rand activates signaling pathways that increase R expression, M bound to Rist
(endocytosis) and M is degraded. (b) M activates signaling pathways that repress R expression. ‘The receptor
R binds and inhibits an extracellutar protein (a protease) that degrades M, and thus R effectively inhibits M
degradation. In both (1) and (L), M enhances its own degradation rate.

aken up by the cells

"The first motif is a feedback loop in which the receptor R enhances the degradation
of M. An example is the morphogen M = Hedgehog and its receptor R = Patched, which
participate in patterning the fruit fly and many other organisms. Morphogen binding to
R triggers signaling that leads to an increase in the expression of R. Degradation of M is
caused by uptake of the morphogen bound o the receptor and ils breakdown within the
cell (endocytosis). Thus, M enhances R production and R enhances the rate of M endocy-
tosis and degradation (Figure 8.5a), forming a self-enhancing degradation loop.

The second type of fecdback occurs when R inhibits M degradation (Figure 8.5D). A
well-studied example in fruit flies is the morphogen M = Wingless and its receptor R =
Frizzled. Binding of M to R triggers signaling that represses the expression of R, R in turn
inhibits the degradation of M by binding to and inhibiting a protein that degrades M (an
extracellular protease) or by repressing the expression of the protease.

in both of these feedback loops, M increases its own degradation rate,

promoting
robust long-range patterning,

Next, we discuss a different and more subtle feedback mechanism that can lead 1o
robust patterning. Our goal is to demonstrate how the robustness principle can help us to
select the correct mechanism from among many plausible alternatives.

4.5 THIL ROBUSTNESS PRINCIPLE CAN DIS] INGUISH
BLTWEEN MECTIANISMS OF FRUIT LY PATTERNING

We end this chapter by considering a specific example of patlerning in somewhat more
detail (Eldar et al, 2002). We begin with describing the biochemical interactions in a snaall
network of three proteins that participate in patlernivg one of the spatial axes in the early
embryo of the fruit fly Drosophila. These biochemical interactions can, in principle, give
rise 1o a large family of possible patterning mechanisms. Of all of these mechanisms, only
a tiny fraction is robust with respect to variations in all three protein levels, Thus, the
robustness principle helps 10 home in on a nongeneric mechanism, making biochemical
predictions that turned out to be correct.

The development of the fruit fly Drosophila begins with a series of very rapid nuclear
divisions. We consider the emibryo after 2.5 h of development. At this stage,

it includes
about 5000 cells, which form a cylindrical layer about 500 pm across.

The embryo has
two axes: head-tail (called the anterior -posterior axis) and front-back (

called the ven-
tral-dorsal axis).
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FIGURE 8.7 Simple model for patterning of the dorsal region. Inhibitor is produced at the boundaries of the

region, at x - =Land x = 1. Inhibitor is degraded, and thus its concentration decays into the dorsal region,

Free morphogen, unbound to inhibitor, is thus highest at the center of the region, at x = 0, where inhibitor
is lowest,

We will consider the patterning of the dorsal region {(DR). Our story begins with a
coarse patiern established by an carlier morphogen, which sets up three regions of cells
along the circumference of the embryo {Figure 8.6a). The DR is about 50 cells wide. The
gaal of our patterning process is to subdivide (his region into several subregions using a
gradient of the morphogen M,

The cells in the DR have receptors that activate a signaling pathway when M is present
at sulliciently high levels. Proper patterning of the DR occurs when the activity of this
signaling pathway is high at the middle of the DR and low at its boundaries (Figure 8.6b)
that is, when active morphogen M is found mainly near the midline of the region.

The molecular network that achieves this patterning is made of M and two additional
proteins. ‘The first is an inhibitor I that binds M to form a complex C = [M1], preventing
M from signaiing to the cells, The final protein in the network is a protease P that cleaves
the inhibitor L Note that P is able to cleave T when it is bound to M, liberating M from
the complex. The morphogen M is not degraded in this system. The three proteins M, I,
and P ditfuse within a thin uid layer outside of the cells. M is produced everywhere in
the embryo, whereas [ is produced only in the regions adjacent to the DR, and I’ is found
uniformly throughoul the DR.

The simplest mechanism for patterning by this system is based on a gradient of inhibi-
tor 1, set up by diffusion of I into the DR and its degradation by P (Figure 8.7), The con-
centration of [ is highest at the two boundaries of the DR, where it is produced, and lowest
at the midline of the DR, Since the inhibitor 1 binds and inhibits M, the activity of M (the
conceutration of free M) is highest at the midline of the DR, and the desired pattern is
achieved. In this model, the steady-state concentration of total M (bound and free) is uni-
form, but its activity profile (free M) is peaked at the midline.
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FIGUIRE £.8 Patterning in nonrobust and robust mechanisms, (a) Profile of lree M in a typical n()‘nrul;)u‘sit
network, The profile of free M (full curve) is shown for 2 nonperturbed network and for tl!m:c p.Lan,uit‘ :.[l
networks representing half-production rates of M, 1, or P {dotted, d(>l-di\§lx, and flnshcd mc;).d I'I:L 0;)
concentration of M (free and bound to I, M + [MI)) is indicated by the hnnzlonlal Il‘nc. The dashed line ( ‘
indicates the threshald where robustiess was measured. (b} Profile of free M in a typical robust systen (note
logarithmic scale on the y-axis). (From Ellar et al,, 2002.)

Unfortunately, this simple mechanism is not robust to changes in the cxprcssion of
M, I, or P. Changes of twolold in the production rate of any of the three pTolcms lead to
significant changes in the morphogen profile and the resultm[?r pa.ttcrns (Figure 8.8a). Inn
contrast, experiments show that the profile of free morphogen is highly robust to changes
in the levels of any of the proteins in the system (Figure 8.6b). .

To make this mechanism robust, we might propose self-enhanced degradation nf'M,
as in the previous scction. However, we cannot directly apply the nonhnclar degradation
mechanism of the previous section, because in this system, M is not appreciably degraded.

To understand how a robust mechanism can be formed with these molecules, let us
consider the general equations that govern their behavior, .

The free inhibitor [ diffuses and is degraded by P at a rate ay. Since P 1slknown .tu be
uniformly distributed throughout the DR, thc.dcgradation rate of I is rspa.nall‘y %mlform
and proceeds at a rate a, P L. Free inhibitor is further consumed when it binds free M to
form a tightly bound complex, at rate k:

AUSt=D, R -kIM=-qPI (8.5.1)
The complex C = {IM] is formed at rate k1 M and degraded by P at rate ac:
3C/AL=D PCAx+kIM-q.PC (8.5.2)

The free morphogen M diffuses, binds inhibitor I at rate k, and is liberated when the

complex C is degraded:

IMAL=Dy P MEX -KIM+a.PC (8.5.3)



These nonlinear equations are too tough to solve amalytically. Eldar and Barkai there-

fore studied these equations numerically (Eldar et al., 2002). The profiles of M, 1, and C
were found for a given set of parameters (diffusion const
The shift in the free morphogen profi
production rate of each of the thye
sets of parameters, scanning four

ants, degradation rates, and k)
le wats determined upon a twofold change in the
¢ proteins M, 1, and . ‘Ihis was repeated for different
orders of magnitude of change in each parameter. It
wus found that the vast mujority of the parameter combin
(979 of the solutions were nonrobust

ations gave nonrobust solutions
according to the robustness threshold used).

‘The nonrobust solutions typically showed ex
‘The amount of total M (free and bound to 1) was uniform in space, as shown in Figure
8.8a. However, about 0.5% of the parameler sets showed a very different behavior. 1he
profile was highly robust 1o changes in any of the protein production rates. The morpho-
gen activity profile was nonexponential and had power-law tails. In addition, the distribu-

tion of total morphogen was not spatially uniform. Morphogen protein was concentrated

near the midline of the region (Figure 8,8b).

Inspection of the parameter valucs th
all belonged to the same limiting ¢l

ponentially decaying profiles of M activity.

at provided the robust solutions showed that they
ass, in which certain parameters were much smaller
than others, In particular, robustness was found when free M could not diffuse; only M
within a complex C could diffuse (so that the diffusion constant of the complex is much
targer than the diffusion constant of the free morphogen, D.>> D

W) Furthermore, in the
robust model, free I is not degraded by the protease P, In fact, P can only degrade I within

the complex C (a, >> q,). The robust mechanism is well described by the following set
of steady-state equations, setting time derivatives to zero. They are simpler than the full
equations because they have two parameters set to zero (D, = 0, o, = 0):

D UIx-kIM=0=91/at (8.5.4)
Do Clax 1 KIM - ae. PC=0=9C/at (8.5.5)
SkIM ba P C-0- 0 ML (8.5.6)

Remarkably, these nonlincar equations can be solved analytically. Su mming Equations
8.5.5 and 8.5.6 shows that ¢ obeys a simple equation:
D3 C/Ax2 =0 (8.5.7)

The general solution of this cquation is Cx) = a x + C,, but due to the symmetry of the
problem in which the left and right sides of the DR are equivalent, the only solution is a
spatially uniform concentration of the complex:

Clx) — const - (8.5.8)

F Y R T O

Using this in Equation 8.5.6, we find that the product of free [and M is spatially uniform:
KIM=a.PC, (8.5.9)

1ct 14 ~lati o1 [
nd therefore, Equation 8.5.4 can be written explicitly for M, using the relation betweer
a , Eque L : citly -
and M from Equation 8.5.9, to find a simple equation for 1/M:

2 MD X = kD, (8.5.10)

whose solution is a function peaked near x = 0:
M{x) = AJ(x? + &%) A=2DJ/k (8.5.11)

'The only dependence of the morphogen profile on the total levels of M, M,,,, is through

the parameter &

¢ n AIML, (8.5.12)

The parameter £ can be made very small by making the tolta[ amount of 1110;5161?%;‘1; ::;:
sufficiently large. In this case the morphogen profile effectively E;f:io;;)cs/;)p
is not dependent on any of the parameters of the model (except A = 2D,/k),
M(x) ~ A/x? far from midline, x >> € (8.5.13)
idli i i ation
In particular, the {ree M(x) proﬁ;e awa); f;;)m thcﬁ;nﬁi?;:::i::?:i;i:t;iﬁt"l:vel
does not depend on the total level of M or L The profile nd on the feve
P or i e of action, since these parameters do not appear in s sol
gtf;ll]le ;’;if:’:;irj ::er?:ce morphogen profile is rok_)ust to the] lcvt(:{ls if all proteins in the
system and can gencrate long-range patterns due Fo 1t? power-law hec;tif'. ot morphogen
How does this mechanism work? The mechanism is b.ased 911 Sll.ll mﬁm DR e
by the inhibitor. Morphogen M cannot move u'nlcss it is slu;ltlec 1rnt}c;o e derasied
plexing with the inhibitor I. Once the complex is (legralded. the morphog s depanec
and cannot move until it binds a new molecule of 1. Smce’thcr.e are 1‘nort mosenes
; near its source at the boundaries of the DR, morphogen is eﬂectf;?iepul:ree o e
DR and accumulates where concentration of I is lowest, af the m; lS :.md © mhibuor
that wanders into the middle region finds so much M tl]fll‘lt comp c::trate o there e
rapidly degraded by P. Ilence, it is difficult for the inhibitor l:o pe o M orofle that 1
region to shuttle M away. This is a subtle but robust way to'ac t:evﬁc;d o propentic
sharply peaked at the midline and decays more slowly deep in tﬂ:at wc.discussed perties
are precisely the requirements for long-range m‘bust palternmgd T torestinaly, both
tion 8.3. But unlike Section 8.3, this is done without M degradation.
mechanisms lead to long-ranged power-law profiles. . R
The robust mechanism requires two important blochenmia dctg M a.nd entioned
above, The first is that inhibitor I is degraded only when complexe ,
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free. The second is that M cannot diffuse unless bound to 1. Both of these propertics have

been demonstrated experimentally, the latter following the theoretical prediction (Fldar

et al., 2002).

More generally, this chapter and the previous one aimed Lo point out that robustness
can help to distinguish between dillerent mechanisms, and point to unexpected designs.
Oniy a small [raction of the designs that generate a given pattern can do so robustly.
Therefore, the principle of robustness can help us 1o arrive at biologically plausible mech-
anisms. Furthermore, the robust designs seem to show a pleasing simplicity.

FURTHIER READING

Bery, FLC. (1993). Random Walks in Biology. Princeton University Press,

Eldar, A, Dorliman, R, Weiss, D., Ashe, EL, Shilo, B.Z., and Barkai, N. (2002). Robustness of the
BMD" morphogen gradient in Drasopfitla embryonic patterning, Nature, 419; 304-308.

Eldar, A, Rosin, D., Shilo, B.Z., and Barkai, N. (2003}, Sel-enhanced ligand degradation underlies
robustness of morphogen gradients. Dev, Cell, 5: 635-646.

Eldar, A, Shilo, B.Z., and Barkai, N. {2004). Llucidating mechanisms underlying robustness of
morphogen gradients, Curr. Qpin. Genet. Dev., 14: 435-439,

Adlditional Reading

Kirschner, MW. and Gerhart, .C. (2005). The Plausibility of Life. Yale University Press,

Lawrence, P.A. (1995). "The first coordinates. In The Making of a Fly: The Genetics of Animal Design,
Blackwell Science Ltd., Chap. 2.

Slick, .M. (1991). From Egg to Embryo. Cambridge University Press, UK., Chap. 3.

Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J.
heor, Biol, 25: 1-47.

LXERCISES

8.1 Diffusion from both sides. A morphogen is produced at both boundaries of a region
of cells that ranges from x = 0 to x = L. The morphogen diffuses into the region and
is degraded at rate a. What is the steady-state concentration of the morphogen as
a function of position? Assume that the concentration at the boundaries is M(0) =
M(L) = M,. Under what conditions is the concentration of morphagen at the center
af the region very small compared to M,?

Hint: 'The morphogen concentration obeys the diffusion-degradation equation at
steady-state:

Dd*Midx*-aM=0

‘the solutions of this equation are of the form:

M{x) = A ¢ 4 B exfh

8.2.

8.4,

tind A, A, and B that satisfy the diflusion-degradation cquation and the bound
ary conditions.

Diffusion with degradation at boundary. A morphogen is praduced at x = 0 and
enters a region of cells where it is not degraded. ‘The morphogen is, however, strongly
degraded at the other end of the region, at x = L, such that every molecule of M that
reaches x = L is immediately degraded. The boundary conditions are thus M(0) =
M, and M(L) = 0.

a. What is the steady-state concentration profile of M?

b. Is patterning by this mechanism robust to changes of the concentration at the
source, M(0) = M7

Hint: The morphogen obeys a simple equation al steady state:

DdMidx* =0

Try solutions of the form M{(x) = A x + T, and find A and B such that M(x = L)
= 0and M(x = 0) = M,,. Next, find the position where M(x) equals a threshold T,
and find the changes in this position upon a change of M,,.

Polynomial self-enhanced degradation. Find the steady-state concentration profile of
a morphogen produced at x = 0. The morphogen diffuses into a field of cclls, with
nonlinear sclf-enhanced degradation described by

OM/At=D I M/dx*-aM"

When is patterning with this profile robust Lo the level of M at the boundary, M,?

Hint: Try a solution of the form M{x} = a(x + b)™ and find the paramelersaand b in
terms of D, M, and a.

Robust timing. A signaling protein X inhibits pathway Y. At time t = 0, X production
stops and its concentration decays due to degradation. The pathway Y is activated
when X levels drop below a threshold T. The time at which Y is activated is &, Our
goal is to make ty as robust as possible to the initial level of X, X(t = 0) = X,

a. Compare the robustness of t, in two mechanisms, linear degradation and self-
enhanced degradation (note that in this probleny, all concentrations are spatially
uniform).

dX/dt=-aX

dX/dt=~-aX"



Which mechanism is more robust lo fluctuations in X_? Lxplain,
of LXT

lv.

Explain why a robust timing mechasnism requires

a rapid decay of X at times cloge
tot=0.

Activator accumulation vs, repressor decay (harder problem).
ness of t, in problem 8.4 to an alternative system, in which X is an activator that
begins to be produced at t = 0, activaling Y when it exceeds threshold T, Consider
both linear or nonlinear degradation of X. Is the accumulating activator mecha-

nism more or less robust to the production rate
mechanism?

Compare the robust-

of X than the decaying repressor

Answer;
An activator mechanism is generally less robust to variations in the production

rate of X than the decaying repressor mechanism of problem $.4. (Rappaport et
al., 2005).

8.6, Flux boundary condition: Morphogen M is produced at x = 0 and diffuses into a
large field of cells where it is degraded at rate . Solve for the steady-state profile,
using a boundary condition of constant flux Jatx =0, ] =DaM/ox. Compare with

the solution discussed in the text, which used a constant

concentration of M at x =
0, M,

CHAPTER 9

Kinetic Proofreading

9.1 INTRODUCTION o S o
;lrlithT;;'éé:erdrirt":;lwo chapters we have discussed how circuits can be dcsugn'ci;i ';(:]:c
robust with respect to fluctuations in their biochemical paranjnc!crs. Here, we will e a '
ine robustness to a different, fundamental source of errors in ce_lls. These clr‘ror]s?‘1 rtczzn
from the presence, for each molecule X, of many chemically similar molecu (.5 t :mine
confound the specific recognition of X by its imeractimll partners. Hence, werw.l -T.:r e
the problem of molecular recognition of a target despite the background o L;»mjn ar e
ecules. How can a biochemical recognition system pick out a specific molecule in a se
other molecules that bind it with only slightly weaker nﬁinit.y'f.‘ e cell seen
In this chapter, we will see that diverse molecular rccogml-mn ?'ystlcms'm lne ;cki.“c”c
to employ the same principle te achieve high precision. tl'hls pn'ncq;‘)le is c‘; eqdin netie
proofreading. The explanation of the structure and function of kinetic proofreading
hn Hopfield (1974). . .
pre'ls"znctlzgclziiokineticpproof(reading, we will begin with recognitlion in inforjnlal;on{lr;cg};
processes in the cell, such as the reading of the genetic code during translation. In ]]m:s
processes a chain is synthesized by adding at each step one of se\«teral type§ of monon“n.;
Which monomer is added at each step to the elongating chain is (le.tcrmmcd acc}xl)rc .ﬁ
lo information encoded in a template (mRNA in the case oftranslauon): Dlll(:‘ tot ferrr:d
noeise, an incorrect monemer is sometimes added, resulting in errors. Kinetic proofre:

ing is a general way to reduce the error rate to levels that are far lower than those achiey-
able by simple equilibrium discrimination between thLT monollners. . e
After describing proofreading in translation, we will consud%r this mc;_ aG(;‘dstein .
context of a recognition problem in the immune system (Mc—Kelthan,. 199}, Goldsen
al,, 2004), We will see how the immune system can rc.cogmzc Proteln:i t ])Ja ;:he ety
a dangercus microbe despite the presence of very simllér prote}ns made )‘fn e Dealtly
body. Kinetic proofreading can use a small difference in affinity of protein ligand
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niake a very precise decision, protecting the body from attacking itsclf. Finally, we will
discuss kinetic proofreading in other systems.

Kinelic proofreading is o somewhat subile idea, and so we will use three ditferent
approaches to describe it, In the context of recognition in translation, we will use kingtie
equations to derive the error rate. In the context of the immune recognilion, we will use g
delay time argument. But first we will tell a story about a recognilion problem in a muscun,

Asan analogy to kinetic proofreading, consider a museum curator who wants to design
a room that would select Picasso lovers from among the museum visitors. (n this museum,
balf of the visitors are Picasso lovers and half do not care for Picasso. The curator opens
a dour in a busy corridor. The door leads o a room with a Picasso painting, allowing
visitors Lo enter the room at random. Picasso lovers that happen to enter the room hover
near the picture for, on average, 10 min, whereas others stay in the room for only 1 min.
Because of the high affinity of Picasso lovers for the painting, the room becomes enriched
with 0 times more Picasso lovers than nonlovers.

The curalor wishes to do even better. At a certain moment, the curator locks the dour
to the room and reveals a second, one-way revolving doer, The nonlovers in the room
Icave through the one-way door, and after several minutes, the only ones remaining are
Picasso lovers, still hovering around the painting. Enrichment {or Picasso lovers is much
higher than 10-fold.

If the revolving door were two-way, allowing visitors to enter the room at random, only
a 10-fold enrichment for Picasso Jovers would again occur. Kinetic proofreading mimics

the Picasso room stratagem by using ncarly irreversible, nonequilibrivin reactions as one-
way doors.

9.2 KINGTIC PROOIREADING OF THE GENETIC CODE CAN
REDUCK ERROR RATES OF MOLECULAR RECOGNITION
Consider the fundamental biological process of translation. I translation, a ribosome
produces a protein by linking amino acids one by one into a chain (Figure 9.1). The type
of amino acid added at cach step to the clongating chain is determined by the information
encoded by an mRNA. Each of the twenty amino acid is encoded by a codon, a series of

three letters on the mRNA. ‘The mapping between the 64 codons and the 20 amine acids
is called the genetic code (Figure 9.2),

To make the protein, the codon must be read and the corresponding amino acid must
be brought into the ribosome. Each amino acid is broughl into the ribosome connected
to a specific tRNA molecule, That tRNA has a three-letter recognition site that is comple-
mentary, and pairs with the codon sequence for that amino acid on the mRNA (Figure
9.0). There is a tRNA for each of the codons that specily amino acids in the genetic code.

Translation therefore communicates information from mRNA codons to the amino
acids in the protein sequence. The codon must recognize and bind the correct tRNA, and
not bind Lo the wrong tRNA. Since this is a molccular process working under thermal
noise, it has an error rate. The wrong tRNA can attach to the codon, resulting in a trans-
lation error where a wrong amino acid is incorporated into the translated protein. These
translation errors oceur at a frequency of about 101, I his means that a typical protein of

[ T I N K I T S AN

Correct tRNA + aminae-acid

\ C-\)qéw
el 4
Lncarrect LIRNA ramino acid
l',h:ng;\llnp_\oo{v 1<,
protein o
chain

{linked aminn-acids) - L mRNA

Ribosome

FIGURE 4.1 "I'ranslation of a protein at the ribosome. 'The mRNA is _1'c-.1d by tRNAs that spc‘uhcayl); ll'ffl‘l’ﬂi'l
nize triplets of letters on the mRNA called codans. When a I_RN/\ I.nmls the codon, tlhIL: dl:"1:1“1;:_.1:](”1‘,.”,
carries {symbolized in the figure as an ellipse o top of the trident-like tRNA Vsynllul) )Im] TI;:;, \wwm ,&;“
ing protein chain (chain of ¢llipses). ‘the IRNA is ejected and the next g)dml is r(.ll’.'. .‘\c_-\‘ h .‘m“.“il K.
for binding with the other tRNA types in the cell. The correct tRNA binds with dissociation consts o
whereas the closest incorrect tRNA binds with K » K .

Second letter

U o A G
Phe Ser Tyr Cys u
Phe Ser Tyr Cys C
v Leu Ser STOP STOP A
Leu Ser STOP Trp G
Leu Pro His Arg U
Leu Pro His Arg [0 L
I ¢ Leu Pro Gin Arg A z
B Lou Pro Gin Ag ¢ &
B lle Thr Asn Ser U 3
e lle Thr Asn Ser o]
A lle Thr Lys Arg A
Met Thr Lys Arg G
Val Ala Asp Gly U
val Ala Asp Gly C
G Val Ala Glu Gly A
Vai Ala Glu Gly G

H e "o e . P s transla-
FIGURL 9.2 The gentic code, Lach 3-letter codon maps to an amino acid or a stop signal that c;nl» lran l
" ox. i i i i ids -polar
tion. For example, CUU cades for the amine acid leucine (Lew). Polar amino acids are shaded, non-pola
amino acids in white, This code is universal across nearly all arganisms.

100 amino acids has a 1% chance to have one wrong amino acid. A much higher error rate
would be disastrous, because it would result in the malfunction of an unacceptable frac-

Lion of the cell’s proteins.

y ilibri indi S Gl recisi C Translation
9.2.0  Equilibrium Binding Cannot Explain the Frecision of Transl

‘the simplest model for this recognition process is equilibrium binding of tRNAs Lo thL{
codons. We will now sec that simple cquilibrium binding cannot explain the observed



error rate, “This is because equilibrium binding generates crror rates that are equal to the
ratio of affinities of the correct and incorrect tRNAs, This would result in error rates that
are about 100 times higher than the observed error rute.

To analyze equilibrium binding, consider codon G on the mINA in the ribosome that
encodes the amino acid 1o be added to the protein chain. We begin with the rate of bind-
ing of the correct tRNA, denoted ¢, to codon C. Godon C binds ¢ with an on-rate k. 'The
tRNA unbinds from the codon with oll-rate k.. When the tRNA is bound, there is a prob-
ability v per unit time that the amino acid attached to the tRNA will be covalently linked
to the growing, translated protein chain. In this case, the freed tRNA unbinds from the

codon and the ribosome shifts 1o the next codon in the mRNA. The equilibritm process
is hence

c+Cg%ﬁ[cC]-‘%>correct amino acid (9.2.1)

AL cquilibrium, the concentration of the complex [cC] is given by the balance of the
two arrows marked k, and k.* (the rate v is much smaller than k. and k', and can be
neglected). Hence, at steady stale, collisions of ¢ and C that form the complex [¢C] at rate
k, balance the dissociation of the complex [cC], so that ¢C k.= [«C] k.". "This results in a

concentration of the complex [¢C], which is given by the product of the concentrations of
the reactants divided by the dissociation constant K

{cCl=cC/K, (9.2.2)
where K, is equal to the ratio of the off-rate and on-rate for the IRNA binding:'
K =k’ 7k, (9.2.3)

The smaller the dissociation constant, the higher the affinity of the reactants.

The incorporation rate of the correct amino acid is equal to the concentration of the bound
complex times the rate at which the amino acid is lintked to the clongaling protein chain:

R e = VICC] = v ¢ C/K, (9.2.4)

Inaddition to the correct tRNA, the cells contain different tRNAs that carry the other
amino acids and that compete for binding to codon C. Let us consider, for simplicity, only
one of these other (RN As, the LRNA that carries a different amino acid that has the high-
est aflinity to codon C. It is this incorrect tRNA that has the highest probability to yield
false recognition by binding the codon C, leading to incorporation of the
acid. The concentration of this incorrect t(RNA is about cqual to the

WIoilg amino
concentration of the

Pl rate v, at which the camplex produces the product {an amino acid linked 1o

the growing protein chain), is
much smaller than the other rates in the process, as menlioned above, The reactants can thus bind and unbind

miny times before product is formed. This is the case for BNy enzymatic reactions (Michaclis-Menten picture,
see Appendix A). When v is not negligible vompared to k', we bave K, - (k' + v)7k . The errar rate in kinetic praof-
reading is smaller the smaller the ratio vk,

correct tRNA (many of the tRNAs have approximalely the same concentrations). ‘The
incorrect tRNA, denoted d, can bind the codon Cin the following equilibrium process:

-

[ dC]— ino acid (9.2.5)
incorrect amino acid
(1+C(_?‘[( Cl "
The concentration of incorrect complex {dC] is governed by the disseciation constant

equai 1o the ratio between the off- and on-rates of d, K, = k/k;. Thus, the equilibrinm

concentration of bound complex is
[dC] = d CIK,

“The rate of incorrect linking is given by the concentration of lhi:’; incc.)rre.ct cm_nplex
times the rate of linking the amino acids into the elongating chain. The lmkmg process
occurs at a molecular site on the ribosome that is quite distant from the n.:cogmtl()n s1l_c,
and does not distinguish between the different tRNAs d and ¢, Hence, the linking rate v is

the same for both processes, and we obtain
Ry = v d CIK, (9.2.6)

Since d is the incorrect tRNA, it has a larger dissociation constant for binding C than
the correct tRNA, ¢, that is, K, > K, and hence R, 1, < Regrrea- _—
The resulting error rate, ¥, is the ratio of the rates of incorr(lrcl and co;lre?t al:ll:li) Cl;?::
incorporation. ‘The error rate is approximately equal 19 the ratio of the (.1550C;‘ » con
stants, since all other concentrations ({RNA concentralions) are about the same for ¢ 2 :

By = Ryrong/Reprresr = ¥ A C Ky ¢ CRy = KK ©.2.7)

To repeat the main conclusion, the error rate in cquilih-rium recognitizn ij:deterll:;n;c:
by the ratio of dissociation constants for the correct and mcorrcc.l tl'lNd 1: d.s.ﬂ(:lcqcion o
many biological binding events, the on-rates for both d and c‘are ?mutfa . y ~l; s on ;Gr‘
are about the same, k, = k, (Appendix A). If is the off-rate, k" wihich :-itstmg%us 1::5 o0 1
rect codon from the incorrect ane: the wrong tRNA unbinds more m}vm?ly t]h(‘ul} the c{ocr(l;;i_
tRNA, k,,’l>> k., because of the weaker chemical bonds that hold it in the boune
plex. Using Equation 9.2.3, we find

1:a = Rwrmm/Ru-m‘cx = Kc"Kd = kc "’kd’ (92‘8)

i seum visi icasso paint-

"The off-rales are akin to the dissociation rates of museum visitors from the Picasso pa
ing1i icass bove.
ing in the Picasso room story a . . .

How does equilibrium recognition compare with the actual error rates? The afﬁr}ty.:)f

i * 1n
codons to correct and incorrect tRNAs was experimentally measured, to ﬁnld an ad‘ ll c)ir
ratio of about K /K, ~ 1/100. Hence, there is a large discrepancy between the predicle
v b e T
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equilibrium recognition error, F,~ KJK; ~ 1/100, and the actual translation error rile, K
= 110,000, It therefore seems that equilibrium recognition cannot explain the high fide].
ity found in this system.!

.40 Kinetic Prooneading Can Dramatically Reduce the fror Rate

We just saw that equilibrium binding can only provide discrimination that is as good ag
the ratio of the chemical aflinity of the correct and incorrect targets, What mechanisiy
can cxplain the high fidelity of the translation machinery, which is a hundred-fold higher
than predicted from equilibrium recognition?

The solulion lies in a reaction that accurs in the translation process, which was well
known at the time that Hopheld analyzed the system, but whose function was not under-
stood and was considered a wasteful side reaction. In this reaction, the tRNA, after
binding the codon, undergoes a chiemical modification. That is, ¢ binds to G and then is
converted to ¢ "Lhis reaction is virtually irceversible, because it is coupled to the hydroly-
sis of a G'I'P molecule.? The modified IRNA, ¢*, can cither fall off of the codon or donate
its amino acid to the elongating protein chain:

correct aimino acid {9.2.9)

The fact that the modified tRNA can fall off scems wasteful because the correct tRNA
can be lost. However, it is precisely this design that generates high fidelity. ‘The secret is that
¢* oflers a second discrimination step: the wrong tRNA, once modified, can fall off ol the

codon, but it cannot mount back on. This irreversible reaction acts as the one-way door in
the Picasso story.

To compute the error rate in this process, we need to find the concentration of the
modified bound coinplex. The concentration of [c*C] is given by the balance of the two
processes described by the arrows marked with the rates m and | ” (since the rate v is
much smaller than the other rates), leading to a balance at stcady state between modifica-
tion of the complex [cC] and the dissociation of ¢* at rate |/, m{cC] = 1" [¢*C], yielding a
steady-stale solution:

¢l = m [eCYL,’ (9.2.10)

" Why not increase the ratio of the off-rates of the incorreet and correct 1RNAs, L7k, to improve discrimina-
tion? Such an increase may be unfeasible due to the chemical structure of codon-anticodon recognition, in which
different codons can ditfer by only a single hydrogen bond. Tn addition, decreasing the oif-rate of the (RNAs by
increasing the number of bonds they make with codons would cause them to stick to the codon for a lenger time,
"This would intertere with the need to rapidly bind and discard many different tRNAs in order 1o find the correct
ong, and slow down the transtation process {exercise 9.3). Thus, biological recopgnilion may face a trade-oif in
which high allinity means slow recognition rates.

¢ Near irreversibility is attained by coupling a reaction to a second reaction that expends free coergy. For exam-
ple, coupling a reaction to ATE hydralysis can shilt it away from equilibrium by factors as large as 167, achieved
because the cell continunusly expends energy to praduce A'TP.

] e bs the linking rate v times the modified complex con-
The rate of correct incorporabion s the linking v

centration (Equation 9.2.4):

v CGl=vme UK (9.2.11)

correet

IR,

. i as the con-
r d. The conversion of d to d* cecurs at the samwe rale, m, as the o

same applies (o the same rate, m, & .
The s o ation process does not diseriminate between tRNAs.

i f e to ¢, since the modific . ‘
;‘;}“‘011 0th it the wrong tRNA d* falls off of the codon is, however, much faster than the
s rate tha ' = e, muc
tL t which ¢* [alls off’ This is because the chemical atlinity of the wrong (RNA to the
: : . " e ati " . T e
mj n C is weaker than the aflinity of the correct tRNA, The ofl-rate ratio of the correct
codo 4

d incorrect modified {RNAs is the same as the ratio for the unmodified tRNAs, since
and ingort s

they are all recognized by the same codon C:

1,71 =k Tk = K/ K, {9.2.12)
Thus, d* undergocs a second discrimination step, with a significant chance that the

i aci i age | 5 asin Equation
is i\ ] > s WrOng aimino n\(.ld lll]kc\. 2o S th Sanu
WI’Oﬂg IRNA 15 remo Cd, The rate Of b <l b e e a

9.2.11, with all paramcters for ¢ replaced with the corresponding parameters for d:

Ryrung = ¥ [d*Cl=vm d Gl K, {9.2.13)
resulting in an error rate, using Equation 9.2.12Z:
1 o Ry R = (KK (071 ) = (KK = ©.214)
wreny! P eorredt 5

Thus, the irreversible reaction step affords a proofreading event that adds a multiplica-

tive factor of KJK, to the error rate. In effect, it allows two separate equilibrium recogni-
C L

tion processcs, the second working on the output of the first. This results in an error rate
ion , the s

that is the square of the cquilibrium recognition error rate:

F=T}2 {9.2.15)
It is important to noic that had all reactions been reversible and at equilibrium, no
is i : ; puilibrim,
improvement would be gained over {he simple schene (Lquation 9.2.1). lh?s is d“%lt:l
d tp'led balance and is discussed in exercise 9.2. The cquilibrium model wilth detaile
etal s dis . : ‘ e
balance is simitar to the Picasse room in which the one-way door is changed to a two-way
‘ isitors in and out at random.
door that allows visitors in an< - e
Thus, the proofreading step implemented by a modification of the tRNA canl:cl:duu
the crr‘(;r rate from the equilibrium recognition rate of about T, = 1/100 to a much lower
r rate, ¥ = F 2= 1/10,000, similar to the observed error rate. ’
’ \ an be attained by linking together n irreversible (or

erro .
An cven higher level of fidelity ¢
nearly irreversible) proofreading processes:



c+('2;,—:>[c(‘,]T>[c'C] — =" Cl——.. —c 'C]T>producl

lef JA"P J«l"
c+C c+C c+(
(9.2.16)

Kach irreversible step adds a proofreading factor F,, resulting in an overall error rate of

Ji= o (9.2.17)

0.3 RIC '()(}NIZJNQ ST AND Nﬁ(r)NV—SI-I_IiWHY THE IMMUNE SYSTEM 7
We have just seen how kinetic preofreading uses a nonequilibrium step to reduce errors
in translation. We will now use q stightly different (but equivalent) way to explain kinetic
proofreading, based on time delays. For this purpose, we will study a biological instance
of kinctic proofreading in the immune system.

‘The immune system monitors the body for dangerous pathogens. When it detects

pathogens, the immune system computes and mobilizes the appropriate responses. The
immne system is made of a vast collection of cells that communicate and interact in
myriad ways.

One of the major tools of the immune system is antibodies, Each antibody is a protein
designed to bind with high atfinity to a specific foreign protein made by pathogens, called
the antigen,

One of the important roles of the imnune s
antigens, for example, for proteins m
ning task is carried out by T-cells. Eac
body against a fore

ystem is 1o scan the cells of the body for
ade by a virus that has infected the cell. The scan-
h of the T-cells has recepters made of a specific anti-
ign prolein antigen, To provide information for the T-cells, each cell in

Cyloloxic I cell

- T-cell receplor
P 1
I'ragment
™ of foreign
protein

MIIC -

=
10 ym .
Antigen-presenting cell
or target cell
FIGEURL 90 Recognition of forcign peptides by T-cells. Target cells present fragments of their prolcing
bound to MIC proteins on the cell surface. Luch T-cell can recognize specific foreign peptides by means of
its T cell receplor. Recognition can resull in killing of the target cell by the T-cell. Note that the receptor and
MHC complex are not 1o seale (cells are ~ 10nm)

the body presents fragments of proteins on the cell surf'ace.ﬁ'llui’prote;las)are presented in
dedicated protein complexes on the cell surface called MH(f‘? (Figure .‘ . N
The goal of the T-cell is 1o eliminate infected cells. Ench. T-cell c;_ul} r:;()f,tj\fl:{;}i};ecep_
antigen i the MHC because its receptor can bind that fnrugn peptide. If the ll-cjt i
tor recognizes its antigen, the foreign protein fmgmutnt m. the MI-'I(? clm ':;‘c-ec“, . k'l”bthc
a signal transduction cascade inside the Tlccllj Tr‘m mgnalm.g cnrjse.s l‘];]:, -Ll i
cell that presented the foreign peptide. This eliminales the infected cell and ¢ E
bm]i: ?]:)en:clch()eg\l:liltil;; process, it is essential that the T-cell does n-ol ]fill clcl.ls that 5::\:}1\1::
proteins that are normally produced by the healthy l.)ody. Ifsl:lcll nusrcmgr{ltwn ](:]c‘cdise.aw
immune system attacks the cells of the body, put_cnlu\ll.y lcudn}‘g to an autourmzz;b;.e chc.“;.
The precision of the recognition of non-self prf)tems_ by %»cells 1sknf-mar‘1 " q.c]f_pm‘
can recognize minute amounts of a foreign prot.em antigen in a 1.>ac g1louf}¢-':!“.rcccpmr
teins, even though the self-proteins have only a sl¥ght_ly lower afﬁm}r to] ll he ; L‘he iy
than the foreign target. The error rate of recognition is !Ls\ than 10 llft \.Oltlj?:“ :
of the antigen is ofien only 10-fold higher than the affinities of the self-proteins.

H e [2 1t
931 Lguilibrium Binding Cannol Explain the Low Frrar Rate
of mmune Recognition "
i specifi el ein, ch we
The receptors on a given T-cell are built to recognize a specific foreign protein Vf;“-l 1
. ‘ i 'S Wi igha . In
will call the correct ligand, ¢. The correct ligand binds the receptors with lngl:j \1 nity.

‘ , i -oleing i i e recep-
addition to ¢, the receptors are expased to a variety of sel{-proteins, which hll-l l' e [w
: ’ eins are simila
tor with a weaker affinity. In particulas, some of these self proteins are qunlle 8 o

ctlig ‘ ‘ i ition, 1 i receplors

the correct ligand and pose the highest danger for misrecognitien, in which the ‘ }m .
‘ i G Y r ligang

mistake a sell-protein for the correct ligand. For clarity, let us treal thcscbwrc})lng, lig e
2 single i 3 ill begi the simples

i i i aflinity to the receptor. We will begin by
as a single entity d, with a lower a / ! begin ples
model fir recognition, in which ¢ and d bind the receptor in an equilibrium Procr -

: i 5 i to the ratio of aflini-
i ious secti is yields error rates that are proportional
in the previous section, this yie roport e T
i 5. Sinc s of the correct and inc

i i : rrect targets. Since the affinities o ‘
ties of the incorrect and correct af . peorree
ligands are not very different, equilibrium recognition results in an unacceptably hig
rate of misrecognition. . _ <o rocesses.

The dyramics of binding of the correct ligand ¢ to the receptor R mcludcl,;t\f'n }:\,hiCh -
The ﬁrslfproccss is colfisions of ¢ and R at a rate k, to form a cun]?kl'x, [eR], ; e
‘ . ‘thei ] cess is dissociali the complex,

i i g y 'rse process is dissociation o .
tigand is bound to the receptor. the invers ; e
ﬂ%e ligand unbinds form the receptor at rate k,q. The rate of change of the conc

ision issociation rates:
bound receptor is the difference between the collision and dissociation rate

dleR)dt =k, c R -k 4 [cR]
At steady-state, d[cR}/dt = 0 and we find
[€R) = R /K,

ifra 3 , K, = Ko K
where K_ is the dissociation constant of the correet ligand to the receptor, K, = kK,
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When the ligand binds the receptor, it triggers a signal transduction pathway inside
the T-cell, which leads to activation of the 'Tcell. Once ligand binds the receptor, the sigy-
naling pathway is activated with probability v per unit time. Therelore, the rate of T-cell
activation in the presence of a concentration ¢ of correct ligand is

Apprrea = [€R] v = ¢ RVEK,

A similar set of equations describe the binding of the incarrect ligand d to the receptor,

The on-rate and off-rate of the incorrect ligand are k', and k', leading to

on

d[Rd]/dv =k, d R -k, [Rd]

"The steady-state concentration of the incorrect complex, [Rd] is given by the product of
the concentration of d and R divided by the dissociation constant for d:

[Rd] = R d/K,
where K = k,,/ki,..
The affinity of the incorrect ligand is smaller than that of the correct ligand, so that
K> K. As mentioned in the previous section, this difference in aflinities is usually duc
to the difference in the off-rates of the ligands, rather than to different on-rates. ‘The cor-
rect ligand dissociates from the receptor at a slower rate than the incorrect ligand duc to
its stronger chemical bonds with the receptor, k< k. In other words, the correct ligand
spends more time bound to the receptor than the incorrect ligand.
[n the equilibrium recognition process, when the incorrect ligand binds, it can acli-
vate the signaling pathway in the T-cell with the same intrinsic probability as the correct
tigand, v. In equilibrium recognition, the receptor has no way of distinguishing between

the ligands other than their affinities. The resulting rate of activation due to the binding
of the incorrect ligand is

Ao = AR v = d RV,
Heuce, the error rate of the T-cells, defined by the ratio of incorrect to correct activations, is
By = Ay Aaren = K d R VK € R = (K /K,) ()

The error rate in this equilibrium recognition process is thus given by the ratio of affin-
ities of the incorrect and correct ligands, times the ratio of their concentrations. In the
immune system, the incorrect ligands often have only a 10-fold lower affinity than the
correct ligand, K./K, ~ 0.1. Purthermore, the concentration of incorrect ligand (proteins
made by the healthy body) often exceeds the concentration of the correct ligand (pathogen
protein). Hence, the equilibrium error cate is F, > 0.1, This is far Ligler than the observed
error rale in T-cell recognition, which can be F = 107 or lower.

FIGURE L4 Kinetic proofreading model in T-cell receptors. Ligand binding initiates modifications to the
receptors. When sufficient modifications have occurred, signaling pathways are triggered in the ccl!. At
any stage, ligand can dissociate from the receptor, resulting in immediaie ioss of all of the maodifications.
‘The serics of modifications creates a delay between ligand binding and signaling. Only ligands that remain
bound throughout this delay can trigger signaling.

How can we bridge the huge gap between the high rate of equilibrium recognition
errors and the observed low error rate in the real system? The next scction describes a
kinetic proofreading mechanism in the receptors that amplifies small differences in aflin-
ity into large differences in the recognition rates.

932 Kinetic Proofreading Increases Fidelity of T-Cell Recognition

The actual recognition process in 1-cell receptors includes sc.veral adlditi.onal steps, which
may at first sight appear to be superfluous details. After ligand 'bmdmg, the t‘L‘Ccp'tor
undergoes a series of covalent modifications, such as phosphorylation on numerous sites
{Figure 9.4). These modifications are energy-consuming and alv'e held away fr9:11 thermal
equilibrium. When modified, the receptor binds several protein partners inside the c:cl.l.
Activation of the signaling pathway inside the T-cell begins only after all of these modifi-
cations and binding events are complete. Kinetic proofreading relies on thc.sc .cxlrs.l steps
to creale a delay T that allows the system 16 reduce its error rates. ’?hc basic idea is that
only ligands that remain bound to the receplors for a long enough time have a chance to
activate the T-cell {McKeithan, 1995).

To understand this, let us examine a binding event of the correct ligand. Once bound,
the ligand has a probability per unit time ko to dissociate from_ th(? rcc.cptor. Hence, the
probability that it remains bound for a time longer than t after binding is

P(t) = ¢ kot

Signaling in the cell only occurs at a delay T after ligand binds the rchplqr, duce to the
scrics of modifications of the receptors that is needed to activale th? signaling pathway.
Hence, the probability per ligand binding that the T-cell is activated is equal to the prob-
ability that the ligand is bound for a time longer than T:
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A = ¢kent

coniedl

Similarly, the incorrect ligand has an off-rate K. The ofl-rate of the incorrect ligand is,
as mentioned above, larger than that of the correct ligand, because it binds the receplor
more weakly, The probability that the incorrect ligand activates the receptor is

= pRar

wrong
Hence, the ervor rate in the delay mechanism is the ratio of these activation rates:

F=A /A

wiong

coredt = Ci“"“” bt

This allows a very snll ervor rate even for moderate differences between the ofl-rates,
provided that the delay is long enough (1> k0. For example, if the off-rate of the correct
ligand is kg = 1 sec! and the incorrect ligand is k', = 10 sec’, and the delay is T = 1.5 sec,
one finds

I~ c—(ma L5 . C-I'i:'v ~ 10 [

Thus, long delays can enhance fidelity. However, this comes at a cost. 'The longer the
delay, the larger the number of binding events of the correct ligand that unbind before
signaling can begin. Thus, increasing the delay can cause a loss of sensitivity. The loss of
sensitivity is tolerated because of the greatly improved discrimination between the correct
ligand and incorrect-but-chemically-similar ligands.

Kinetic proofreading is a general mechanism that provides specificity due to a delay
step that gives the incorrect ligands a chance to dissociate before recognition is complete,
In order for kinetic proofreading to work effectively, the receptors must lose their modi-
fications when the ligand unbinds before a new ligand molecule can bind. Otherwise. the
wrong ligand can bind to receptors that have some of the modifications from a previous
binding event, resulting in a higher probability for misrecognition,

Experiments to test kinetic proofreading use a series of ligands with different k,pvalues
(reviewed in Goldstein et al,, 2004). The experiments are designed so that the fraction
of the receptors bound by each ligand is the same. Ihis ts achieved by using higher con-
centrations of ligands with weaker binding (larger k), or by normalizing the results per
binding cvent. Simple equilibrium recognition predicts a constant probability for trig-
gering signaling per ligand binding event, regardless of the k_, of the ligand. In contrast,
the experiments show that the probability of activation of the signaling pathway depends
inversely on k. This means that the longer the ligand is bound 10 the receptor, the higher
the probability that it triggers signaling. "This is consistent with the kinetic proofreading
picture.

Kinetic proofreading uses modification of the T-cell receptor after ligand binding to
create a delay. This process is not unique to T-cell receptors. In facl, these types of modi-
fications oceur in practically every receptor in mammalian cells, including receptors that
sense hormones, growth factors, and other ligands, This raises the possibility that defays
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and kinetic proofreading are widely employed by receptors to increase the fidelity of
4

recognition. Kinetic proofreading can provide robustness against misrecognition of the
background of diverse molecules in the organism.

9.4 KINFTIC PROOFREADING MAY OCCUR IN
DIVERSE RECOGNITION PROCESSES IN THE CELL

The halimark of kinetic proofreading is the existence of o nonequilibrium reaction in the
recognition process that forms an intermediate state, providing a delay after ligand bind-
ing. The system must opcrate away from equilibrium, so that ligands cannot circumvent
the delay by rebinding directly in the modified state. New ligand binding must primarily
occur in the unmodihed state.

Thesc ingredients are found in diverse recognition processes in the cell. An example is
DNA binding by repair proteins (Reardon and Sancar, 2004) and recombination proteins
(Tlusty et al., 2004). One such process is responsible for repairing DNA with a damaged
base-pair. A recognition protein A binds the damaged strands, because it has a higher
affinity 10 damaged DNA than to normal DNA. After binding, protein A undergoes a
madification (phosphorylation). When phosphorylated, it recruits additional proteins B
and C that nick the DNA on both sides of A and remove the damaged strand, allow-
ing specialized enzymes (o fill in the gap and polymerize a fresh segment in place of the
damaged strand. The modification step of protein A may help prevent misrecognition of
normal DNA as damaged.

An additional example occurs in the binding of amino acids to their specific tRNAs
{Hopficld, 1974; Hopfield et al., 1976). A special enzyme recognizes the LIRNA and its spe-
cific amine acid and covalently joins them, Covalent joining of the wrong amino acid
to the tRNA would lead to the incorporation of the wrong amino acid in the translated
protein. Interestingly, the error rate in the tRNA formation process is about 104, similar
to the translation error rate we examined in Section 9.2 due te misrccognition between
tRNAs and their codons.! This low error rate is achieved by an intermediate high-energy
state, in which the enzyme that connects the amino acid to the tRNA first binds bath
reactants, then modifies the tRNA, and only then forms the covalent bond between the
two, Again, we sec the hallmarks of kinetic proofreading,

Intermediate states are found also in the process of protein degradation in eukaryotic
cells (Rape et al,, 2006). Here, a protein is marked for degradation by means of a specific
enzyme that covalently attaches to the protein a chain made of a small protein subunit
called ubiquitin (Flershko and Ciechanover, 1998). A different de-ubiquitinaling enzyme
can remove the ubiquitin, saving the tagged protein from its destruction. Here, addition
of ubiquitin subunits onc by one can implement a delay, so that there is a clance for the
wrong protein to be de-ubiguitinated and not destroyed. This can allow differential deg-
radation rates for proteins that have similar atlinities to their ubiquitialing enzyme.

"N is interesting to L-u”gid(-r whether the two error rates are tuned o be similar, 1t may not make sense to have one
error rate much larger than the other {the larger error would dominate the final errors in proteins).
; ary E
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In sumumary, kinctic proofreading is a general mechanism that allows precise recogni-
tion of a target despite the presence of a background neise of other molecules similar 1o
the target. Kinetic proofreading can explain seemingly wasteful side reactions in biologi-

<al processes that require high specificity. ‘These side reactions contribute (o the ficdelity of

recognition at the expense ol energy and delays. Hence, kinetic proofreading is a gencral
principle that can help us to understand an important aspect of diverse processes in a
Ulliﬁt‘d manncr.
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EXERCISES
9.1. At any rate. Determine the error rate in the proofrt.admg proccas ofl quattou 9 2.9,
What conditions (inequalities) on the rates allow for effective kinetic proofreading?

Solution:

The rate of change of [¢C] is governed by the collisions of ¢ and C with on-ratc k,
their dissociation with off-rate k', and the formation of [cC*] at rate m:

deClidt=kc C-(m+k.) [cC] (P9.1)

so that at steady-state, in which d[cC)/dt = 0, we have

[cCl =~k cCHm + k) (P9.2)

Similarly, {€C*] is produced at rate m, dissociates at rate " and produces a product
at rate v:

d[cC')/dt = m[cC] - (v + 1.7} [cC*] (P9.3)

so Lhat at steady state, using Equation P9.2, we have

mkeC
Cl=mfv+ 1) [eCl = T — 12.4)
€] v+ L el (v+1L’)(m ) ( !

Similar considerations for the wrong ligand d can be made, noting that for d the on-
rate k, the complex formation rate m, and the product formation rate v are the szme

9.2.

9.3.
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as for ¢, but that the off-rates k" and 1, are larger than the corresponding rates lor
¢ due to the wealker aflinity of d to C. Thus,
. mkcC
jdcry - el (v95)
+1 M m+k )
The error rate is the ratio of incorrect and correct production  rates
vdCHvieCr:

( 3 ( 'k) 9.6
+1,3m k) ("9:6)

When v <<l and Iy, and when m<< k" and k., we have the minimal error rate

vdCHiveCr] =

in this process:

dl kS

[T 3¢
<1k, (P9.7)

Thus, minimal ¢rrors require that the complexes {dC] dissaciate much faster than
the rate of formalion of [dC*], and that [dC*] dissociate nuch faster than the rate
of product formation. "This gives many opportunities for the wrong ligand to fall
off of the complex, before an irreversible step takes place,

In processcs where Lhe dissociation from the state (¢C] and [cC*] are based on
the same molecular site (e.g., the tRNA-codon inleraction), we have 1 =k and
the same for d, so that {assuming ¢~d)

F=|-% 1 =F (19.8)
where E, is the equilibrium error rate.

Detailed balance. Determine the crror rate in a praofreading scheme in which
transitions from [cC] to {¢*C] vccurs at a forward rate m, and backward rate m_’
transitions from [c¢*C] to ¢ + C oceur at forward rate | and backward rate 1% and
corresponding constants for d, and where the product formation rate v is negligible
compared to the other rates. Consider the case where all reactions occur at equilib-
rium. Use the detailed balance conditions, where the flux of each reaction is exactly
equal to the flux of Lhe reverse reaction, resulting in zero net flux along any cycle

{ais0 known in biochemistry as the thermodynamic box conditions).

a. Show that detailed balance requires that k. m. 1" =k_'m |, and the same for d.

(s

b. Calculate the resulting crvor rate F. Bxplain.

Optimal tRNA concentralions. In order to translate a codon, different tRNAs ran-
domly bind the ribosome and unbind if they do not match the cadon. This means
that, on average, many different tRNAs need to be sampled for cach codon until
the ¢correct match is found. Still, the ribosome manages to translate several dozen

o -
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codons per second (Dennis et al., 2004), We will try to consider the optimal rela-
tions between the concentrations of the different tRNAs, which allow the f

astest
translation process, ir a toy model of the ribosome.

a. Let the concentration of tRNA number j (j goes from 1 to the number of difler-
ent types of tRNAs in the cell) be ¢; The refative concentralion of tIRNA nunber
jis therefore r; = ¢/Le;. Suppose that each tRNA spends an average time t, bound
to the ribosome before it unbinds or is used for translation, What is the averape
time needed to find the correct tRNA for codon j? Assume that there is no delay
between unbinding of a tRNA and the binding of a new tRNA, and neglect the
unbinding of the correct tIRNA.

b. Suppose that the average prabability of codon j in the coding region of genes in
the genome is p,, What is the optimal relative concentration of each tRNA that
allows the fastest translation? Use a Lagrange multiplier 1o make sure that £ r=
1

Solution:

a. When codon j is to be read, the ribosome must hind tRNA,. The probability that
a random tRNA is tRNA; is r,. Thus, on average one must try l/r; tRNAs befure

the correct one binds the ribosome, Hence, the average time to find the correct
tRNA for codon j is

V=1t

b. The time to translatc the average codon is the sum of the times T; weighted by
the codon probabilitics in the genome:;

T=2Tp=2p /T,

To minimize the translation time, we need to minimize T, Taking the deriva-
tive of T with respect to each r we look for the relative concentrations that yicld
a minimum and thus have zero derivative, A Lagrange multiplier L is used to
make sure that Er= L

d1/dr; = d/dr, (Zp;tofr, + L 2r)=~typirt+ L =0

Solving for r, and using a value of L such that Zrj= 1, yields an optimal r; that is
related to the square root of the codon probability p;:

e 2

‘Thus, the rarer the codon, the lower the relative concentration of its tRNA.
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Optimal genetic code for minimizing errors. In this exercise we consider an addi.
ticnal mechanism for reducing translation errors, based on the structure of the
genetic code,

First consider a code based on an alphabet of two letters (0 and 1), and where codans
have two letters each. Thus, there are four possible codons ([00], (o, [10), and [11)).
This genetic code encodes two amino acids, A and B (and no stop codons). Each
amino acid is assigned two of the four codons,

a. What are the diflerent possible genetic codes?

b. Assume that misreading errors accur, such that a codon can be misread as a
codon that differs by one letter (e.g., [00] can be misread as [01] or [10], but not as
[11]). Which of the possible codes make the fewest translation errors?

c. Assume that the first letter in the codon is misread at a higher probability than
the second letter (e.g., [00] is misread as [10] more often than as [01}), Which of
the codes have the lowest translation errors?

d. Study the real genetic code in Figure 9.2. Compare the grouping of codons that
correspond to the same amino acid. How can this ordering help reduce trans-
lation errors? Based on the structure of the genetic code, can you guess which
positions in the codon are most prone to misreading errors? Can you see in the
code a reflection of the fact that U and C in the third letter of the codon cannot
be distinguished by the translation machinery {a phenomenon called “third-base
wobble™}?

e. In the real genetic code, chemically similar amino acids tend to be encoded by
similar codons (Figure 9.2). Discuss how this might reduce the impact of transla-
tion errors on the fitness of the organism.
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In Chapters 1 through 6 we saw that evolution converges again and again to the sume net-
work melifs in transcription nelworks. This suggests networls matifs are sclected because
they confer an advantage to the cells, as compared w other circuit designs. Can one develupa
theary that explains which circuit design is selected under a given environment?

In this chapter, we will consider simple applications of a theory of natural sclection of
gene circuils. We will discuss the forces that can drive evolutionary selection in bacteria,
The circuit that is sciccted, according to this theory, offers an optimal balance between
the costs and benefits in a given enviroument.

Are cellular circuits optimal? [t is well known that most mutations and other changes
to the cells' networks cause a decrease in the performance of the cells. To understand
evolutionary optimization, one needs to define a fitness function that is Lo be maximized.
One difficulty in optimization theories is that we may not know the fitness function in the
real world. For example, we eurrently do not know the fitness functious of cells in com-
plex organisms, Such cells live wilhin a society of other cells, the different tissues of the
body, in which they play diverse roles. Fitness functions might not even be well defined
in some cases; disciplines such as psychology and cconomics deal with processes that do
not wppear 1o optimize a {itness function, but only “satisfice” (Simon, 1996) in the sense
of fulfilling several conilicting and incomparable constraints. Lhis might apply to cells
under some conditions.

Our view is that optimality is an idcalized assumption that is a good slarting point for
generating testable hypotheses on gene circuits. ] his chapter will therefore treat the sim-
plest systems in which one can form a phenomenological description ol the fundamental
forces at play during natural selection. For additional examples, refer to the work un opti-
mality in metabolic networks in baoks by Savageau, Heinrich and Schuster, Palsson and
others (see Further Reading in Chapter 1).

We will begin with simple situations in which filness can be defined. One such sit-
untion oceurs in bacteria that grow in a constant environment that is centinually
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replenished. In this case, it is possible to define a fitness function based an the growth

rate of the organism. The bacterium with the fastest growlh rate eventually takes over

the pepulation, provided that its growlh advantage is large enough to overcome random
genetic drifl ellects. Hence, evolutionary selection under conditions of growth in a con-
stant envivenment tends to maximize the growth rate.

As adetailed example, we will describe an experimental and theoretical study of the fit-
ness function for the lactose (fac) system of Escherichia coli. We will ask what determines
the amoeunt of Lac proteins produced by the cells at steady-state. We will sce that express
ing the Lac proteins bears o cost: the cell grows slower the more proleins it expresscs.
Gn the other hand, the action of these proteing — breaking down the sugar lactose for

Ust as an energy source bestows a growth benefit to the cells. ‘The fitness function,
which is the diiference of the cost and benefit, has a well-defined maximum. ‘This maxi-
muin oceurs at the protein level that maximizes the growth rate in a given environnient.
Direct evolutionary experiments show that the population s rapidly taken over by cells
with mutations that tune the protein level to its optimal value. This analysis enables us to
understand why evolution selects a specific expression level for the Lac proteins, and sug-
gests thal this optimization can occur rather rapidly and precisely,

After describing the cost-benefit analysis in the lac system, we will examine simple
theories for the selection of gene regulation. Why are some genes regulated, whereas
others are expressed at a constant fevel? We will sce that gene regulation has a selective
advantage in environments that vary over time. This is because the benefit of regulation,
namely, the ability to respond 1o changes in the environment, can offset the cost of the
regulatory system.

Tinally, we will examine how the cost-benefit theory can be used to study the selee-
tion of the feed-forward loop network motif, described in Chapter 4, in environments
that contain pulses of the input signal We will see that it is possible to characterize the
environments in which the feed forward loop (FFL) cireuit increases fitness compared 1o
simple regulation with no FFL,

Our first question is: What sets the expression level of protein? Why are some pro
teins produced at a few copies per cell, others at thousands, and yet others at tens or hun-
dreds o thousands?

1022 OPTIMAL EXPRESSION LEVEL OF A PROTEIN UNDER
_ CONSTANT CONDITIONS o

We begin by forming a fitness function { — a quantity to be optimized. In the case of bac-
teria growing in a favorable environment, a good choice for f is the growth rate of the cclls,

Consider bacteria growing in a test tube. We start with a small number of bacleria,
The number of cells grows exponentially until they get too dense. 'The number of cells, N,
grows exponentially with time, with growth rate f

N{t) = N{0) 't an.z2.1
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Now, if two species with different values of f compete for growth and utilize the same
resources, the one with higher f will survive and be selected and inherit the test tube.
Thus, evolutionary selection in this simple case will tend to maximize [ over time. This
type of evolutionary selection process was elegantly described by G.F. Gause in The Strug-
gle for Existence (Gause, 1934).

Ihe fitness function can help us address our question: What determines the level of
expression of a protein? To be specific, we will consider a well-studied gene systeny, the fac
system of E. coli, which has already been mentioned in previous chapters. The lac system
encodes proteins such s LacZ, which breaks down the sugar lactose for use as an energy
and carbon source. When fully induced, E. coli makes about 60,000 copies of the LacZ
protein per cell. Why not 50,000 or 70,0007 What determines the expression level of this
protein?

Optin:ality theory maintains that a protein cxpression level is selected that maximizes
the fitness function. Therefore, our first goal is to evaluate the fitness as a function of the
number of copies of the protein expressed in the cell, We will consider the simplest envi-
ronment possible, in which conditions are constant and do not change with time, In the
case of LacZ, this means an environment with a constant concentration of the sugar lac-
tose, The fitness is composed of two terms: the cost of producing protein LacZ and the
benefit it provides 1o the cells.

10.2.1 The Benefit of the Lac/ Protein

Let us begin with the benefit. The benefit is defined as the relative inerease in growth rate
due to the action of the protein. In the case of LacZ, the benefit is proportional to the
rate at which LacZ breaks down its substrate, lactose. 'The rate of the enzyme LacZ is well
described by standard Michaclis-Menten kinetics (see Appendix A). Hence, LacZ breaks
down lactose at a rate that is proportional to the number of copies of the protein, Z, times
a saturating function of the concentration of lactose, L:

bz,1y = L&L (10.2.2)
K+L
where K is the Michaclis constant’ and § is the maximal growth rate advantage per LacZ
protein — the growth advantage per LacZ protein at salurating lactose. Hence, the benefit
grows linearly with protein level Z.

The benefit function was experimentally evaluated for the lac system (Figure 10.1). For
this purpose, a useful experimental tocl was used, the inducer IPTI'G. IPTG is a chemical
analog of lactose, that causes expression of the Lac proteins, but is not metabolized by the
cells, Thus, IPTG confers no benefit on its own. Benefit was measured by keeping the sys-
tem maximally induced by means of [PTG, and by measuring growth rates in the presence
of diflerent levels of lactose. The observed benefit function was well described by Equation
10.2.2."Ihe experiments indicate that the relative increase growth rate due to the fully vin-

" The Michaelis constant in this case is that of the transporter LacY, K = 0.4 mM. This is because the influx rate
of lactose is limiting under most conditions. The concentrations of LacY and LacZ are proportional to cach other
because both penes are on the same aperon,
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HOURE T0.1 Benefit of Lae proteins of E. colf as a function of lactose concentration in the envirenment,
Cells were grown with saturating [T'G so that LacZ is in its fully induced fevel Z,, and varying levels of
lactose. Growth rate difference is shown relative to the growth rate of cells grown with no [PTG or lactose.
87y~ 017 is the benefit of {ully induced Lac proteins at saturaling laclose levels. Full line: Theoretical
growth rate (Lquation 10.2.2) {with § - 0.17 Z“',L and I[C = 0.4 mM). (From Dekel and Alon, 2005.)

duced level of LacZ in the presence of saturating amounts of the sugar lactose is about 17%
under the conditions of the experiment.

Now that we have an estimate of the benefit, let us discuss the cost. The cost function for
LacZ was experimentally measured (Figure 10.2) by inducing expression of LacZ protein
to different levels by means of the inducer IPT'G in the absence of lactose. 'The inducer
TP'I'G incurs enly the costs of protein production, but gives no benefit because it cannol
be utilized by the cells.! Expression of LacZ was found to reduce the growth rate of the
cells. The cost, equal 1o the reduction in growth rate, is found to be a nonlinear function
of 7: the more proteins produced, the larger the cost of each additional protein.

Why is the cost a nontinearly increasing function of Z7 The reason is that production of
the protein not only requires the use of the cells’ resources, but also reduces the resources
available to other useful proteins. To describe this in s toy model, we can assume that
the growth rate of the cell depends on an internal resource R (such as the amount of {ree
ribosomes in the cell). “the growth rate is typically a saturating function of resources such
as R, lollowing a Michaelis function:

R

(10.2.3)
K, +R

‘The production of protein 7, places a burden on the cells: mRNA must be produced and
amino acids must be synthesized and linked to form Z. This burden can be described as

'Contral experiments show that IPTG itselt is not toxic to the cells. For example, PTG does not affect the grnwl!l
rate of cells in which the fac genes are deleted Irom the genome,
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FTGURE 10,2 Cost of Lae proteins in . coli. The cosl is defined as relative reduction in growth of £ coli
wild-type cells grown in defined glycerol mediom with varying amounts of IPTG (an inducer that induces
lac expression but gives no bencfit to the cells) relative to cells grown with no IPTG. The x-axis is Lac?, pro-
tein level relative to LacZ protein ievel at saturating IPTG (7). Also shown are the costs of strains evalved
aL0.2 mM lactose for 530 generations (data pointat i4-Z,,, open triangle} and 5 mM lactose for 400 genera-
tions (data points at 1,127, spen triangle). Full line: Thearetical cost functivn {(Equation 10.2.4) with 11 =
0.02 z'“fl. (From Dekel and Aloa, 2605.)

a reduction in the internal resource R, so that cach unit of protein 7 reduces the resource
by a small amount. The upshot is that the reduction in growth rate begins to diverge when

so much ¥ s produced that R begins to be depleted (see mathemalical derivation in solved
Exercise 10.4):

nz
1-Z/M

This cost function tells us that when only a few copies of the protein are made, the cost
is approximalely linear with protein level and goes as ¢{Z) ~ nZ. The cost increases more
steeply when 4 becones comparabie to an upper limit of ¢xpression, M, when it begins
to seriously inlerfere with other essential proteins. In real life, proteins do not came too
close to the point Z = M, where the cost function diverges.

c(Z) = (10.2.4)

‘The experimental measurements of the cost function agree reasonably with Equation
}0.2,4 (Figure 10.2). They show that the relative reduction in growth rate due to the fully
induced luc system is about 4.5%. Note that this cost of a few percent makes sense, because

tﬂe fully induced Lac proteins make up a few percent of the tolal amount of proteins in
the cell,

10.2.3 The Tithess Function and the Optimal Lxpression Level

Having discussed the cost and benelit functions, we can now form the fitress func-
tion, equal (o the difference between benefit and cost. The fitness function is equal to
the growth rate of cells that produce ¥ copies of Lac”, in an environment with a lactose
concentration of Lt
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HGURE 103 Predicted relative growth rate of cells (the fitness function) as 2 function of Lac protein expres-
siam, in different concentrations of lactose, based on the experimentally measured cost and benefit functions.
‘The x-axis is the ratio of protein level to the fully induced wild-type protein level, LIy Shown are relative
growth differences with respect to uninduced wild-type cells, for environments with tactose levels L. = 0.1
mM, L=06mM, andl.=5mM, according to Equation 10,2.5. The dot on each line is the predicted optimal
expression Jevel, which provides maximal growth (Fquation 16.2.7). Cells grown in lactose levels above 0.6
ma are predicted to evolve to increased Lac protein expression (top arrow), whereas cells grown at lactose
levels lower than 0.6 mM are predicted to evolve o decreased expression {lower arrow).

871 _ mzZ (10.2.5)

»l: , — y‘:
W) =bZ L) - ety =

This function displays a maximum, an optimal expression level of protein Z, as shown
in Figure 10.3. The maximum occurs because benefit grows lincarly with protein level 7,
but the cost increases nonlinearly. The position of this maximum depends on L. The opti-
mal protein level Ly €an be found by taking the derivative of the fitness function with
respect to Y

dfdz -0 (10.2.6)

Differentiating Equation 10.2.5, we find that the eptimal expression level that maxi-
mizes the hitness function is
Z

“opt

(10.2.7)

The more lactose in the environment, the higher the predicted optimal protein level.
This is because the more lactose in the environment, the higher the benefit per LacZ
enzyme, and the higher the selection pressure to produce more enzymes. ‘The fully induced
wild-type expression level, 7., is predicted to be optimal when 1. ~ 0.6 mM under these
experimental conditions, as shown in Figure 10.3,

High lactose levels are thus predicted to supply a pressurc for the increase of Lac/
expression. Conversely, low levels of lactose show precicted optimal expression levels that
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are lower than the wild-type level of abeut Zowr = 60,000/cell (Figure 10.3). When there is
no lactose in the environment, the optimal level is Z,, = 0, because proleins confer only
costs and no benefits,

Generally, when costs exceed benefits, there is no need to produce any protein at all,
‘Ihis applies o environments with so litue lactose that Lac cannot provide a benefit that
justifies its costs, Such a situation occurs when L is smaller than a critieal level L, given by
asking when Z.m In Bquation 10.2.7 becomes equal to zero:

Zi ™ 0 when L <1, = K@m -1yt (10.2.8)

Inthe conditions of the experiments described above, the critical level of lactose needed
for selection of the gene system is L.~ 0.05 mM. If lactose environments with L<l.. persist
for many gencrations, the organism will tend to lose the gene encoding Lac”, The loss
of unused genes is a well-known phenomenon; for example, bacteria grown in a chemo-
stat' on glicose medium with no lactose lose the lac genes within a few days (Haretl and
Dykhuizen, 1984},

10.2.4 Laboratory Lvolution Experiment Shows That Cells Reach
Optimal Lac/ Lovels ina Few Hundred Generations

To test the predictions of this cost-benefit analysis, a laboratory evolution experiment
was carried out, by growing E. coli cells in tubes with a specified level of lactose. The lc-
tose levels in the experiment were high enough to warrant full induction of LacZ expres-
sion. Every day, 1/100 of the cells from each tube were passed to atube with fresh medium,
4 procedure known as serial dilution. The cells grew in the tube until they reached sta-
tionary phase. The next merning, 1/100 of the cells were again passed to a fresh tube, and
so on. Thus, every day, the cells grew 100-fold, corresponding to log,(100) = 6.6 genera-
tions. The experiment was conducted for several months, running seven tubes in parallel,
each with a different lactose level, The concentration of the LacZ protein was monitored
over time. It was found that the cells heritably changed their LacZ expression level. The
LacZ protein level reached the predicted optimal level within several hundred generations
(Figure 104 and ligure 10.5),

Analysis of this evolutionary process indicated that the cells reached their optimal,
adapted levels in cach case by means of a single mutation that changed the LacZ pratein
level. For each lactose concentration, there are on the order of 100 possible mutations that
can reach the desired optimal expression level. Many of these mutants arise and outgrow
the wild-type cells. Finally, the mutants take over the population in the tube.

In summary, the cost and benefit functiens can be directly measured to form a fit-
ness function. This fitness function, measured in the wild-type bacterium, predicts that
the protein level has an optima! value in each lactose environment. Cells rapidly evolve
to this optimal value in evolutionary experiments. This gives us a sense of the speed and

-
YA chemostat is a device that keeps bacteria growing at a constant growth rate, by supplying a conslant flow of
fresh mediunt into a mixed acrated chiamber, from which medium with cells is removed at Uhe sime rate, Cell gen-
eration time is locked onto the time for exeha npe of half of the medium in the chamber (Novick zind Weiner, 1957;
l!.\lugnd:lc etal, 2005; Ronen and Botstein, 2006.)
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HGURL 105 Experimental evalutionary adaptation of I coli cells l:_) ditferent cmu.:cnlralirms Olf idltl:}:,tn
LacZ protein level relative to wild-type protein level, i|71 cuIIAs grawn tor 530 guncr:\ln‘un‘s m‘ scn:} ('I l! ]1 "
experiments with ditferent lactose levels, is shown as a function of generation llllllllth Cells :VC[’(. Brows i
0,0.1,0.5, 2, and 5 mM lactose in a glycerol minimal medium supplemented v?nlh . lS(mM PTG, L:{n(c; ﬂrk
population genetics simulations of the serial dilution conditions (Crow .nnq Kimuara, 1)70,_ }l—lnr}:l an [.m:l /
1997). In these simulations, cells grew exponentiaily and underwent ch-luh(m; m.ulnnls_wn H lc .0}) ll .ﬂ,i[j
level arise with probability p per generation. The only fitting p;\'r:lmclcr in lhcs_c suml]nhm;s is tz(;vz)g;() %

ity p per cell division for a mutation that yields the optimal LacZ level. {(From Dekel and Alon, .

H b ae 018 ] W G100
precision in which biological networks can adjust parameters such as protein expressio
levels.
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We have just discussed the optimal expression level of a protein in constant condition ;
What happens when conditions change with time, that is, in nonconstant LI].VIIO]'.IJ.HC.I“

‘The next section will treat the principal way that cells deal with changes: gene regulation-

OPTIMAL GENE CIRCULT DISIGN = 201

05 1O RFGUEATE OR NOT TO REGUTATE: O] IMAL

REGULATIC INGIN VARIABTE TNWVIRC INMENTS
and other genes expressed con-
tinuatly without regulation. When does it pay to regulate a gene?

In this section, we will ask why are some genes regulated

lor this purpose, consider a variable environment, one that is nol constant in time,
suppose that our gene product ¥, provides benefit to the cells only in environmental con-
dition C,, which occurs only some of the time, For example, ¢ sugar metabolism enzyme
7.is beneficiaf only when the sugar is available in the environment,

Regulation means that protein 7 is only produced in condition ¢, when it is needed,
and not in other conditions. Regulation has a cost: the cost of production and main-
tenance of a regulatory system that can read the environment, and then calculate and
implement the required changes in Z production. Thus, regalation will oaly be feasible if
the benefits of such a system exceed its costs.

To analyze the optimal strategy, we compare three organisms with different desi s for
Z regulation. The envirenment of all three organisms displays condition ¢, with probabil-
ity p, and other conditions, in which 7, is superfluous, with probability 1 - p, This prob-
ability p is called the demand for Z. Demand will figure prominently in the next chapter.

In organism one, protein Z is not regulated and is produced at a constant rate under
all conditions. This is known as constitutive expression. In the second organism, a regula-
tory system Ris in place, so that 7 is produced only under condition C,» the condition in
which its function is required. Organism three has neither Lhe gene for 7 nor the genes for
its regulation system R on its genome. It cannot express protein Z at all,

The fitness function of the organisms includes two factors: cost and benefit, as in the
previous section. First, producing protein Z leads to a reduction in growth rale due to the
burden of synthesizing and maintaining Z. This cost is denoted c. The second factor is the
benefit that the celt gets from the action of Z. ‘The benelt is described by

a growth rate
advantage b,

The unregulated organism constantly produces 7, but gains its benefit only a fraction p
of the time, when 7 is in demand, so that it has & Atness

fi=pb-c {10.3.1)

The second organism regulates 7. using the dedicated regulatory system R, to produce
Z only under the proper conditions. This organism thus saves unneeded production and

pays the cost, ¢, only a fraction p of the time. However, it bears the cost, r, of producing
and maintaining the regulatory system R:

fo=pb-pec-r (10.3.2)

Finally, the third organism that lacks the system altogether wili have fitness zero, where
fitness zero is the baseline fitness without cost or benefit ol Z:

f,=0 (10.3.3)
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Regulation will be selected when organism two has the highest fitness, f, > {, and fi> 1.
This leads 10 the following inequalities;
p<l-ricandp>r/b-¢) regulation selected (10.3.4)

similarly, the unregulated design in which Z is constitutively expressed will be selected
when f,> £, f; > f,, leadling to the inequalities:

pe>c/bandp>1- e (10.3.5)

‘these inequalities (lquations 10.3.4 and 10.3.5) link a property of the environment, the
demand for 7 defined as the fraction of time p that condition C, occurs, to the cost and
benefit parameters of protein 7 and its regulatory system. For each value of p, these equa-
tions tell us whether regulation will be sclected over simpler designs.

The range of environments in which each of the three designs is optimal is shown in
Figure 10.6. Regulation is selected at an intermediate range of demand, p. High demand
tends to favor systems that are continually expressed. The design where Z is continually
expressed is always optimal when p = 1, because if Z is always needed, regulation becomes
superfluous. When p = 0, the protein is never needed and the optinial mechanism is to
never express il,

The three domains in Figure 10.6 meet at a point. This point has coordinates p* = ¢/b
and {r/c}* = 1 ~ ¢/b. The larger the cost of producing the proteir, c, relative to its benefit,
b, the more this point, which corresponds 1o the apex of the triangular region in Figure
10.6, moves to the right and down, When costs exceed benefits, ¢ > b, this region vanishes
and regulation is never selected. In fact, when ¢ > b, selection favors organisms that lack
7 altogether, because its cost exceeds its benefil. The smaller the ratio of protein cost to
benefit, ¢/b, the larger the range of environments in which regulation is selected.

There exist organisms in nature whose environment is quite constant. An example is
intracellular parasites, organisms that live within cells and are supplied with nutrients
and stable conditions (Moran, 2002; Wernegreen, 2002; Moran, 2003; Wilcox ¢t al., 2003)
Isuch constant environments, every protein has cither p — 1orp =0 "lThese organisms

indeed lose most of their regulation systems, such as transcription factors. ‘They hold a
small set of genes continually expressed and lack nrany of the genes found in related, non-
parasitic organisms. ‘This agrees with the behavior shown in Figure 10.6, on the lines p =
landp=0.

At the other extreme are bacteria that live in constantly changing and challenging

environments such as the soil. These organisms have comparatively large genomes dense
with prolific regulation systems.! These hacteria probably have 0 < p < 1 for most genes, so
that extensive regulation is selected as shown in Figure 10.6.
" In bacteria, the number of transcription factors tends 1o increase with the number of genes in the genome. The
mimber of transeription factors increases as N%, where N is the number of genes and a - 2 in bacterinand a ~ 1.3 in
cukaryates (uynen and van Nimwegen, 1998; van Nimwegen, 2003), Thas, mereasing the munmber of genes seems
to require increasingly elaborate regulation mechanisms with more tea nseription factors per gene,

OPTIMAL GLNE Cimcnn v

ric
System System
- E always always
S % orr ON
g
PR
= 8
=8
o 2 .
= 5 Reputation
4
a o
i
P

DBemand for 7. in the environment, p 5

Y enes
1es always N f’f %high
-« conditions3® E ‘o
\ation 5Y$

FIGURE 106 Selection phase diagram, showing regions where gene rcgulatinn, g: o
always OFF, are eptimal. ‘[he x-axis is the {raction of time p that the mlwlronmcn'l s ‘0‘1 o reg!
protein Z is needed and provides benefit (the demand for Z). ‘The ratio of protein cos
cosl is rfc. e
, iently V7'
In summary, regulation makes sense only if the environment 15 Sum;’:ztdzﬂnmge o
In variable environments, the cost of the regulation system is offset by t
information processing that can respond to changes in the enviromnent- and the selec-
We have thus examined the selection of the expression level of a Pmmindersl“”
tion of gene regulation systems. Cost-benefit analysis gives us a way mmw wurn 19
forces that drive these evolutionary processes. As a final example, we ;“_
cost-benefit analysis of a gene circuit, the feed-forward loop network mott:

S 5 I
10.4  ENVIRONMENTAL SELECTION OF TIHE FLED-FORWAR! -
LOOP NETWORK MOTIF B R

contain

As we have seen throughout this bool, gene regulation networks T dependen c "
mentary circuits termed network motifs. Evolution appears 19 have ‘T‘ stems within t N
verged on these motifs in different organisis, as well as in dlﬂ'crcntv"\’]"; wi now Iy )
same organism {(Conant and Wagner, 2003; Mangan et al., 2003). ¥ onditions a par
understand, in a highly simplificd model, under which environmenta i}
ticular motif might be selected. , motifs. the coht]: .
For this purpose, we will examine one of the most common nelwofFFL can Perforn 1
ent feed-forward loop (FFL}. As we saw in Chapter 4, the cohercnt‘ ¢ signis it n(;s
basic dynamical function: it shows a delay following ON steps ofzmll"t}’n01 overy eneé
after OFF steps. The FFL is widespread in transcription networks, bu pout :
included in an FFL. In the E. coli transcription netwozk, for example:‘/O S rcgulated )é
known genes regulated by two inputs are regulated by an FI?L» f‘.nd 6010 s therefor
a simple two-input design (both types of circuits are shown in !-1gt?rf-‘ th.er5~ e
interesting to ask why the FIL is selected in some systems and not in T’]t analysts or o
To answer this question, let us perform a simplified cof;t_bene~r0;1lnf3" Dek;'" n
selection of this gene circuit in a given dynamically ﬂuctuatmg‘ Cr;:vtlhc input s n:;\r:;mt
al,, 2005). By environment we mean the time-dependent profiles o " viron ent
the natural habitat of the organism. We will find conditions that the
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HGURLE 10,7 Feed-forward loop (type-1 coherent FFL with AND in‘put f\mcli‘on) nmli 1 .&;nlxplc :\:-\IJ)L;CE;:
lation circuil. {a) Feed-lorward loop, where X d(llVi‘.lCS‘Y and both Jmnlly: nc]lwlulc gl.vll(l: /“1 “;m[mu 1; ¢
tushion. ‘The inducers ure §, and §,. Tn the ara system, for example, X = CRP, ‘( -::' .‘\‘m‘,, ,7—]:] o I"; “:5,
cAMI, and 8, - arabinose. (b) A simple AND pale regulation, where X and Y: :u.)( l.-V-“; E,L_m;\,}wp :
tem, for example, Y = Lacl is a repressor that is induced by S, = lactose, X = CRP, and §,= .

satisty in order for the TIL to be selected over a simplc-t‘cgula.ﬂ(m circuiF. We willi \s‘ccl lliuf
the FIL can be selected in environments where the distribution of the ‘mpul pl.laht. ( u-m‘
Lion is sutficiently broad and contains both long and short Pulses. We Wll.l-ﬂlsﬂ (iltl(.‘rmlnt.
the optimal values of the delay of the FIL circuit as a function of the cnvuonmunl.. .
We will not go through the full calculations in the main text — fhcsc calclulalm.nz (mj
given in solved exercises 1025 to 10.9. The main results of the annlysm ;m:' as t(.)ll(m‘:ts.f. up-
posc that the system is presented with a pulse of input $, of duration D. The fitness u.nL
tion, based on the cost and beneht of protein Z, can be mtcgmtcd. over th‘c pulse du)rﬂll;),lzl,
(D) = [,2 f{0dt. This integrated fitness shows that short pulslcs of input s.:‘;?rriuls\h‘a'w a; ;‘;n.
rimental cffect on growtl (Figure 10.8): they lead to a reduction in ﬁt.n.c.s.x. lhc‘ ]C{ls.(.”- ’
the fitness reduction is that when the input pulses are shorter .lh;m eritical pulse L;l{)‘l‘h?n[
D, protein 7 does not have time to build up to levels in which the accumulated bene
exceeds the costs of production. o N
Since fitness is reduced by expression of protein Z in response 1o brict input p‘.u‘l.sc\s;
a circuit that can avoid responses Lo bricf pulses, and allow responscs (jley to perb?te‘ﬂl
pulscs, can be advantageous, As we saw in Chapter 4, lh‘e‘colfer'ent FFL Fan pe}:l (,)‘:na
exactly this type of filtering task. In the coherent ly_pc-l P}*L, Z s expf'c:las'ed oln Yd;m,
delay after the signals appear. Thus, only pulses of input signals longer than the
time of the FFL will lead to 7 expression, ,-
The delay in the FEL, which we will denote T, results from the ‘timc it }_aklt{’s‘ -I.?ii
transcription factor Y to accumulate and cross its activation thrcs.hold hAu' gf:nc'/,. ‘l‘tc}ls
that this delay lime is related to the biochemical parameters of protein Y, namely,
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Growth rate integrated av
inputpulse duration, ¢
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o

Balse duration, 1,

HGLURE 10 Integrated titness (integrated growth rate} of simple regulation during a short pulse of input 5,
b the presence of S, Fitness is negative for pulses shorter than a eriticy duration, D <D,

degradation rate, maximal level, and activation threshold tor 7, {Equation 4.6.5), The delay
can therefore be tuned by natural seleclion 1o best fit the environment,

The delay in the FFL acts to filter out pulses that are shorter than Ton (Tigure 10,9},
This avoids the reduction in growth for short pulses. [However, the delay property of the
FFL also has a disadvantage, because during long pulses, 7 is produced only at a deluy and
misses some of the potential benefit of the pulse (Figure 10.9). This mcans that there are
some situations in which the FFL doces more harm than good. 1o assess whether the FF[,
conlers a net advantage to the cells, relative 1o simple regulation, requires analysis of the
fuil distribution of pulses in the envirenment,

The environment of the cell can e characterized by the probability distribution of the
duration of input pulses, P(D). Let us assume for simplicily that the pulses are far apart,
50 that the system starts each pulse from zero initial Z levels {and Y levels in the case of
the FEL). In this case, the average fitness, averaged over many input pulses, can be found
by integrating the fitness per pulse over the pulse disteibution, & = [1{D) @) dD. The
design with higher average fitness has a selective advantage.

These considerations map the relation between the selection of these gene circuits und
the enviroument in which they evalve. This is expressed as refations between certain inte-
grals of the pulse distribution. Excrcises 107 and 10.8 show that these relations can be
salved exactly for certain distributions. These solutions indicate that the FFL is selecled in
some environments and not in others, For example, the FEL is never selected over simple
regulation in environments with an exponential pulse distribution, P(D) ~ ¢ ™% O, the
other hand, the FEIL can be selected i environments with a bimodal pulse distribution,
which has a probability p for short pulses that reduce fitness, and a probability 1 - p for
long, beneficial pulses. ‘The optimal delay for an FFI in such an eavirenment is a delay
that precisely cquals the duration of the short pulses. This delay flters out the non-ben-
eficial pulscs, but has a minimal negative impact on the fitness during long pulses. For
this environment, one can draw a selection diggram that shows which circuit design has
highcr mean fitness (Figure 10.10). This sclection diagram shows that the FEL is more i
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{reduction in growth rate) due 10 the production load of Z. Cost begins aficr the delay Ty (4) Normalized
growth rate advantage (benefit) from the action of 7. (5) Net normalized growth rate (fitness).
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than simple regulation in a region where brief pulses are common and the benefit-to-cost
ratio of the gene system is not too high. Simple regulation is superior when brief pulses
are rare. When costs exceed benefits, neither circuit is sclected. Exercise 10.10 applies this
to the case of two sugar metabolism systems in E. coli, the lactose simply regulated system
and the arabinose FFL system that was mentioned in Chapter 4.6.5.

I hope that this simplified analysis gives a taste for the possibility of studying the
selection of gene circuits, and their optimal parameters, in temporally changing
environments.

0.5 SUMMARY

In this chapter we discussed cost-benefit analysis as a theoretical framework for optimal
circuit design. We saw that for growing bacteria, the fitness function corresponds to the cell
growth rate, The cost and benefit functions can be directly measured, showing for the lfac
system a cost that increases nonlinearly with the amount of protein produced. The fitness
function, cqual to the diflerence between benefit and cost, has a well-defined optimum in
cach environmental condition. Optimal protein levels that maximize growth rate are reached
rapidly and precisely by evolutionary selection in controlled evolutionary experiments.

We also analyzed the cost and benefit of gene regulation. We saw that gene regulation
is worth maintaining only in variable environments. In constant environments, regula-
tion would tend 1o be lost, as is the case in organisms living as parasites within the rela-
tively constant conditions provided by their hosts.

Finally, we saw that cost-benefit analysis can also be carried cut in a dynamically
changing environment, to suggest criteria for the selection of network motifs such as the
coherent FFL. According to this simplified analysis, the FFL can be selected in environ-
ments that have deleterious short pulses of induction, which need to be filtered cut by the
function of the FFL,

We currently have more information about the structure of transcriptional networks
than about the precise environment and ecology in which they evolved. One might imagine
an inverse problem —- “inverse ecology” — deducing information about the environment
based on the observed gene regulation networks. This is based on the idea that optimal
circuits contain, in a sense, an internal model of the environment. For example, the optimal
delay time of the FEL contains information about the distributions of input pulses. Thus,
an intriguing goal is to use optimality considerations to understand the molecular details
of mechanisms based on the environment in which they were selected.

We will continue with these ideas in the next chapter, in which we will use optimiza-
tion concepts to deduce rules for patterns of gene regulation.
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LXLRCISES - o

10.1. Limiting substrate. Protein X is an enzyme that acts on a substrate (o provide fitness
to the organism, The substrate concentration is L. Caleulate the fitness function X,
L) assuming lincar cost, ¢ ~ -nX, and a benefit that is a Michaelis-Menten term,
b(L, X} = b, L. X/(X + K), appropriate for cases where the substrate, rather than the
enzyme X, is limiting. Caleulale the optimal enzyme level as a function of L and K.

10.2. For excrcise 10.1, what is the minimal substrate level L, required for maintenance of
the gene for X by the organism? When is the gence lost? Explain.

10.3. Optinial expression of a subunit.

2. Multiple units of protein X act together in a multi-unit complex. The benefit is a
Hill function, b(X) = by X#/(K" + X%, and the cost function is lnear in X. What
i the optimal protein level? Explain.

b. Protein X brings benefit te the cell only when its concentration exceeds X, so
that b(X} = 0(X » X_), where 0 is the step function, What is the oplimal expres-
sion level of X?

10.4. Cost function,

a. Derive the cost function in Equation 10,2.4, based on a limiting resource R, such

that the growth rate is equal to £ = £, R/(K,, -+ R). Each unit of protein 7 reduces R
by a small amount ¢,

b. In bacterial cells, the resource R often increases as the growth rate decreases. For
example, the fraction of fice ribosomes increases as growth rate slows, because at
high growth rates the ribosomes are mostly engaged in making new ribosomes.
This effect can be added to the model to find similar cost funclions at the low to

e this B
s e | wepibed in ;
intermediate expression levels of 7 relevant (o Lhe experiments de

Cwhere 18
H y - bt 12/l where
chaptct', but Wi“] no diVCl'gUl‘.CL‘ al hlgh 7. Assume i}ml R . e case ;
{ -ost [uncti 1S bl :
B"owlh rale and misa pzn‘nmctcr. Derive the cost [unchicin 1 :

Solution for a:

A i 'Ilﬂl
i e a reduction in the e
a. 'Ihe burden of 7 production can be described as a reduction

a
i inZr ses the resourcd
resource R, such that each unit of protein 7 reduces thl e
. . sied as the rels
amount & so that R gocs to R - &7, 1ence, the cosl, defined as

tion in growth rate, is as in Lquation 10.2.4:

b)’ 1 gn'li\“

FZ)=1(0) (R (Ky+ R)~ [ (R-eZ)/ (K pR=t4) N /ﬁ'w
ORI LRI(K+R) L=

K 1 R) and the 1"‘“‘"mmr

7 depletes
because when Z deple 1
R

- 0 and the cost is e

where the initial reduction per subunit of 7, is 1= K,
M is M = (K, + R)fe. Note that the cost can never dwcl:gc.
all of the resource R, that is, when 7 - R/, one (inds [£2)

1he ao

log= 1.

. Ixercises 10.5 W 109 build 2

10.5. Short input pulses have a negative cffect on grow! s, Corr-

. jon cire
. o e BT i simple-regulation ci
story for the sclection conditions of the FFL and simy b’md ¢ that control the

X Y in the FFL):
be (lcscribcd asa
3. In this Llcsing,
I signals 5

sider a simple gene regulation mechanism with (wo inputs Xl
expression of gene Z (that is, regulation without the third cdge
N [ essi is ma
"Ihe two inputs are both needed for 7, expressios, so ihatﬂtlns i”()yﬂ’
simple-regulation circuit with an AND input function (Figurc 10- i
; e cence
the production of Z occurs at a constant rate B in the p'rLsu;c ey ot
i ise zero. S i ses of the signals are _

and S, and is otherwisc zero. Show that pulscs i et 10 a et gmw[h
Jead 1o a reduction in fitness. Only pulses that are long cnougit 1
advantage.

Solution: _penefit analy-
115, The
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| employ cost

. . il
e the cts of time-dependent inputs, we wi i
To analyze the effects I o e o e ce

sis that describes the effects of production of Z on the 5 where B isthe ¢
cost of Z production entails a reduvction in growth raie ¢ = -1 ecule Pr()duCC‘l-l
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of production of Z and 1 is the reduction in growth sate per 20 ot © the
: -onveys an advd
On the other hand, the action of the Z gene product conveys an " gmwth aate
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cells. This advantage, the benefit, is described by b(Z), the incre + sum of B¢ cost
- ) 7 ' T f 15 & S
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and benefit terms: ;
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because the FEL prevents anneeded ¥ production.
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Now consider a pulse of input signals, in which S, is present at saturating levels for
a pulse of duration D. The growth of cells with simple regulation, integrated over
time D, is given by:

n 1

@(Iy) = J.f(l)dt = -nBAD + J L{Z)dt (P10.2)
il 0

When the pulse begins, protein Z begins to be produced at rate 8, and degraded or

dilated out by cell growth at rate a. The dynamics of 7 concentration are given by

the simple dynamical equation we discussed in Chapter 2 {Equation 2.4.2):

d{f =f-oZ (P10.3)
G

resulting in the familiar exponential approach to steady-state 7, = Bix:

Z{t)=2,(1-c™) (P10.4)

For long pulses (Da >> 1], the protein concentration Z is saturated at its steady-state
value Z = Z,,. Protein Z has a net positive effect on cell growth:

@(D) = -nfD + b{Z ) >0 {P16.5)

provided that the benefit of Z exceeds its production costs:
b(Z,)>nj {P10.6)

Short pulses, however, can have a deleterious effect on growth. To see this, consider
short pulses such that Da << 1. During the short pulse, the concentration of Z rises

linearly with time (as we saw in Equation 2.4.7}, wilh a slope cqual to the produc-
tion rate

)~ 31 (P10.7)

Since Z cannot reach high levels during the short induction pulse, we can use a
series expansion of the benefit function W{Z) ~ b’ Z, where b' = d b/id Z at 7, = 0.
Using this in Liquation P10.2, we find that the integrated growth rate is a quadratic
function of the duration of the pulse, D (plotted in Tigure I0.8):

[0}

o (P10.8)
5 .

(D) = J- (=B + b’ POdt - —nfD + b P

[
Importantly, the expression of Z causes a reduction in growtlr ((D) < 0) for pulscs
shorter than a critical pulse duration, [3,, found by solving ¢ (D) = 0 (Figure 10.8):

10.6.

D= 2N (P10.9)
b’

Pulses with D = ID, are at the break-even point, because the cost cxncll}./ cquals t’th
benefit. Only pulses longer than 3, give a net benefit to the cells. Thus, simple l'(i’[,ll
lation leads to reduction of growth in environments that have mainly short pu SL.SC,
even theugh Z confers a net advantage for sufliciently long input pulses (Figur
10.92).

Conditions for selection of FFL over simple regulation, Lxercise 10.5 showcd_ .lll::
expression of Z in response to short input pulscs reduces fitness. Ience, a‘.c‘nuCC
that can avoid responses to short pulses, and allow responses only to purstbtfctl ¢
pulses, can be advantageous. As we saw in Chapter 4, the coherent FFL can [?lCT 0;‘
this type of filtering task. In the coherent FFL, 7 is expressed only ot a d;- ﬂ)’de]::
afier the signals appear. Thus, only pulses of input signals longer than hc‘h A
time of the FFL, will lead to Z expression. 1lowever, the filtering of short pulscs -ﬁis
disadvantage, because during long pulses, Z is produced only at a delay andlml;!;L
some of the potential benefit of the pulse (Figure 10.9b). To asscss whct_her t lt‘l .
confers a net advantage to the cells, relative to simple regulation, requires ana ch
of the distribution of pulses in the environment. The environment of the cell c;;!(lm
characterized by the probability distribution of the duration of input plll.SGSv Zm;
Assume that the pulses are far apart, so that the system starts each pulse frm; "
initial Z levels (and Y levels in the case of the FFL). In this case, the overall l{lt-e-;
averaged over many cell generations, can be found by inlcgrnfmg the ?;‘;Eboier
pulse over the pulse distribution. Find conditions for the selection of the

simple regulation.

Solution:

. ; ver all
For simple-regulation circuits, the integrated fitness includes an integral 0

possible pulses, times the fitness per pulse ¢ {D}:

210.10)
D= | POYOMD (P10

1

. . v than T restiit
For FEL circuits, production starts after a delay Ty Pulses shorter than Ton

: YN fter
in no Z production and ¢{D < Ty) = 0. Long pulses begin m- be unhz.c: Oli);;i“g
the delay Ty, so that their duration is effectively D - Ty (Figure 10.9D), res
in a contribution in the integral only from pulses longer than Toy:

Al
Ty = JP(ID)q)(DJr(,N)dD (P10.11)

TN
Note that the simple-regulation case, Equation P10.10, is equivalent to
Ton=0.

an IFL with

——
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The resulting condition for sclection of FELL aver simple regulation is when its aver
aged fitness exceeds that of simple circuits and is posilive:

By, > P Oy >0 (Pi0.12)

smple

Sitple regulation is selected when its integrated fitness exceeds that of the FEL

Dipple > Py, D ipte > 0 (P10.13)

Neither eircuit is selected otherwise by < @ and d < 0). For the purpose of

this comparison, the FFL is chosen to have the optimal value for Tyy {that maxi-
mizes Oy ), because natural selection can tune this parameter to best adapt to the
environment,

10.7. The FEL is not selected in the case of exponential pulse distributions, Analyze the
average fitness of the FFL and simple regulation in an eavironment in which pulses
have a conslant probability per unit time to end. Such environments have an expo-
nential pulse distribution:

PD)=D;'e M (P10.14)

Sofution:
Using Equations P10.10 and P10.11, we find that

T -1 “Tong T -y Tonf
‘I’l.m:_[l);‘c DTy D= jl);'c % pdD=c M, <d

Tom

simple siple

(P10L15)

Thus, the FFL is never selected since My, <

winiples

An intuitive reason why FEL is not selected in enviramments with exponential
pulse distributions is related to the fact that exponential distributions are men-
oryless. Knowledge that a pulse has lasted for time t does not help us to predict
how long it will continue to last. The FFL, which effectively reduces the pulsc
duration by a delay Ty, confers no advanlage relative to simple regulation.

10.8. The FFL can be selected in bimodal distributions with long and short pulses. Consider
an environment that has two kinds of pulses. A pulse can have cither a short dura-
tion, D, << [, with probability p, or a long duration, D, >> 1/a, with probability 1
- p. Analyze the conditions for seleclion of FFL and simple regulation as a function
of p and the ratio of the benehit to cost ratio of protein 7 (Figure 10.10).

AL LIRS NN L LN LA 3y - PR
Solution:

"Lhe short pulses D, are nonbeneficial, since they are shorter than the critical pulse
width at which gene Z reaches the break-cven point, Dy < D), (Figure HL8). In con-
trast, the long pualses D, are benehcial and have a benefit ol approximately (applying
Equaltion P10.5)

@(D) =B, + b{Z, 12, >0 (P10.16}

m

In this case, it is casy to caleulate the optimal delay in the FFL: the optimal delay is
Tow = D,. That is, the optimal 'L has a delay that blocks the short pulses preciscly;
a longer delay would not further filter out short pulses, and would only reduce the
benetit of the long pulses. The condition for selection of FI'L over L;implc rq,ulnlion.
found by solving Equations P10.10 and P10.11 to find @y, . = (1 ~ p}b(Z,) - D

- pnBD, and dyy, = {1 - pH{b(Z,) - n3) (D, - D). This shows that thc FFL is maore
fit when the probability ofshort pulses exceeds a factor related to the ratio of cost lo
benefit of Z:

(. MB

11017
b{Z,,) o

p>
The phase diagram for selection is shown in Figure 10.10. When the ratio of benefit
to cost, B(Z, )P, is small, neither circuit is selected (costs outweigh benefits). At
large relative benefits, the FEL is selected if short pulses are commion enough -- that
is, if p is large enough (Equation P10.17). If short pulses are rare, simple regula-
tion is selected, Ata given p, the higher the benefil-to-cost ratio, the more likely the
selection of simple-regulation cireuits.

10.9. Why is FEL selected in the ara systen bul not in the lac system of L. coli? In this
exercise, we will apply, in a qualitative way, the resuits of excrcise 10.8 to the case
of sugar systems in E. coli. Why is the FFL sclected in some sugar sysiems, such as
arabinose utilization {ara system discussed in Section 4.6.5), whereas simple regula-
tion is selected in others, such as the lactose system (lac system)?

Solution:

The models are only simplified toy models, but let us proceed for demonstra-
tion purposes. Both ara and fac systems share the same transcription activator,
X = CRP, stimulated by §, = cAMP, a signaling molecule produced by the cell
upon glucose starvation. Thus, both ara and lac systems have the same S, pulse
distribution. However, these systems differ in the benefit they yield per sugar
molecule: the benefit-to-cost ratio, b(Z,,)mP, appears to be different for the two
systems, The benefit per lactose molecule, which is spiit into glucose + galactose,
is greater than the benefit per arabinose molecule (approximately 70 ATPs per
lactose molecule vs, approximately 30 ATDs per arabinose molecule). In addition
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to its smaller beneht, the cost of the ara system may be larger than the cost of
the luc system, because there are at least seven highly expressed ara proteins (the
metabolic enzymes AraB, AraA, and AraD, and the pumps Arak and AraFGH),
compared 1o only three highly expressed lac proteins (LacZ, TacY, and LacA).
Thus, the parameter b(Z,, )P for the ara system may be more to the left in Fig-
ure 10,10 relative o the lae system, favoring selection of FEL in the former.

'The delay in the FPL can be tuned by natural selection. As mentioned in Chapler
4, the detay in the ard system appears to be on the timescale of the deleterious
short pulses in the environment.

Cascades vs. FFLs. Repeat the calculations of Ixercises 10.6 and 10.7 for a cas-
cade X - Y —» Z. Show that cascades are never more optimal than FFLs for envi-
ronments with pulses of input signals. Explain this result.

(Advanced students) The cost and benefit of SIM. X controls genes 2, and Z, in
a single-input module (SIM). Gene products Z, and Z, assemble into a complex,
such that n, units of protein Z, first assemble into subunit S, and then n, units of
protein Z, join subunit 5, and form the final product §,. X begins 1o be produced
at rate } at time t = 0. What are the optimal activation thresholds and production
rates for genes Z, and Z,? Use logic input functions. The production costs for Z,
and 7, are n; and n,, and benefit only occurs when a unit of §, is produced.

CHAPTER 1 1

Demand Rules for
Gene Regulation

111 INTRODUCTION

'The control of gene expression involves complex mechanisms that show large variation in

design. In this chapter, we will discuss whether the mechanism that is used in cach case is
a result of random historical choice, or whether there are rules that can help us to under-
stand the design in cach case. For this purpose, we will return to transcription networks,
and attempt to deduce rules for gene regulation. The specilic question we will ask is: why
arg there positive and negative modes of regulation? That is, why are some genes regulated
by a repressor, and others by an activator? What determines the mode of the regulation in
cach case?

It is important to first note that activators and repressors can achieve exactly the same
regulatory goals. For example, a gene that is fully expressed only in the presence of a sig-
nal (Figure 11.1), can be regulated by one of two mechanisms: Fither an activator binds
the promoter to activate the gene, or a repressor falls off the promoter to activate the gene.
These two mechanisms realize the same input-output relationship: Expression is turned
on by the binding of an activator in the positive mode of control, and by the unbinding of
a repressor in the negative mode of control. More generally, a gene controlled by N regula-
tors, each of which can be either an activator or a repressor, has 2V possible mechanisms
that can generate a given input-output mapping.

Among these equivalent mechanisms, evolutionary selection chooses one for each sys-
tem. Arc there rules that govern this selection? One possibility is that evolution chooses
randomly between equivalent designs. Hence, the selected mechanism is determined by
historical precedent. Another possibility is that general principles exist, which govern the
choice of mechanism in each system.

The question of rules for gene regulation was raised by M.A. Savageau in his pioneer-
ing study of transcriptional control (Savageau 1974, 1977, 1983). Savageau found that the
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FIGRIRE T Transeription regulation mechanisms of gene Z, ) Positive control (activator), 1o the absence of
an inducing signal {input-state X=0), the binding site O, of activator A is free. This causcs the gene 1o be expressed
atalow level £, When the signal is present (X=1), €2, ts bound by the activator A, which causes the gene 1o be fully
expressed (Z=4,). (b) Negative contral (repressor), When the inducer signal is absent (X=0), respressor bhinding
site Oy is bound by repressor K. 'This causes the gene to be expressed at a low level Za When the inducer is pru.\cn;
(X=13 (0 is free, which causes the gene to be fully expressed (7.=7.). (&) Mapping between input-states X, binding-
states 1 and output-states 7 in the case of pasitive control. Y=0/1 corresponds (o a free/bound site, respectively. (:j)
Mapping between input-slates, binding states and output states in the case of negative control,

made of control is correlated with the demand, defined as the fraction of tinie in the natu-
ral environment that the gene product is needed near the high end of its regulatory range,
High-demand genes, in which the gene product is required most of the time, tend to have
positive (activalor) control. Low-demand genes, in which the gene product is not required
most of the time, end o have negative (repressor) control. This demand rule appuars (o
bein agreement with over 100 gene systems (Savageau 1988) from E. coli and other organ-
isms, where the mode of control is known and the demand can be evaluated.

In this chapler, we will describe demand rules for gene regulation based on intrinsic dif-
ferences between the modes of control. These differences are due to the fact that biologi-
cal internal-states are prone W errors, which lead to errors in the outpul. ‘The errors result
in a reduction of the organism’s fitness. ‘This reduction is called the error-load. Equiva-
lent mechanisms, which implement the same input-outpul relationship, can differ in their
error-loads.

After describing the Savageau demand rules, we will examine the proposal that evo-
lution selects the mechanism that minimizes the error-load. We will sce how error-
load mininzation can explain the connection between the mode of regulation and the
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demand [or a gene in the organisim’s envirenment: rarely needed genes tend to be regu-
lated by repressors, and genes commuonly needed at tull expression tend o be regulated
by activators. This theory can be extended to the case of multiple regulators. We will see
how error-lond minimization can explain detailed features of the structure of the £ coli
fac system. We will also discuss the eriteria for when selection according to these rules
dominates over histarical precedent.

More generally, the goal of this chapter (and one of the main goals of this book) is to
encourage the point of view that rules can be sought to understand the detailed structure
of biological systems.

IE SAVAGEAU DEMAND RULL

M. A. Savageau noted a strong correlation between the mode of bucterial gene regulation
and the probability that the gene is {ully expressed in the environment. Te formulate this
rule, Savageau defined the demand for a gene system as follows:

“When a system operates close to the high end of its regulatable range most of the time
i its natural environment it is said to be a high-demand systern, When it operates at the
low end of its regulatable range most of the time in it natural environment it is said to be
a low-demand system”.

Demand corresponds to the frequency at which the function carried out by the gene
system is needed within the ecology of the organism. For example, a system that degrades
a certain sugar for use as an energy source is in low demand if the sugar is rare in the
environment. ‘The system is in high demand if the sugar is often available. A system that
synthesizes an amino-acid is in low demand if that amino-acid is commonly available in
significant amounts in the environment - demand is low because de-novo synthesis of the
amino-acid is not often nceded. Conversely, a system that synthesizes an amino-zcid that
is only rarely available from the outside is in high demand,

Each of these systems can be regulated cither by a repressor or by an activator- that is,
cither by a negative or by a positive regulation mode. The demand rule may be stated as
follows. “The molecuiar maede of gene regulation is correlated with the demand for
gene expression in the organism’s natural environment. e mode is posilive when
the demand is high and negative when the demand is low,” Thus, rarely needed genes
tend (o be regulated by repressors, commonly needed genes by activators.

11.2.1 Fvidence for the Demand Rule in £ coli

To test the demand rule, one needs 1o have knowledge of the mode of regulation and of
the demnand for the gene system in question. For this purpase, Savageaa collected data on
the natural environment of the bacterium E. cofi. One of the principle habitals of E. coli
is the intestinal system of its mammalian host. Studies of this environment suggest that
different sugars and amino-acids have different abundances. Some sugars are taken up
readily by the body, and are thus rarely available for the bacteria. Other sugars are less
readily absorbed and are much more common in the bacteria’s environment. This leads to
the following estimated ranking of sugar abundances: D-glucose < D-galactose < glycerol
< Dxylose < L-glycose < L-mannose < L-fucose < L-rhamnose < L-arabinose
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FABEE TE T Maolecular Mode of Regulation and Demand for Degradation Gene System in the Environment
ol I coli
Degradation system Mode of regulation Regulator Demand for
{induced in presence of substance) expression
Arabinose Positive AraC High
Tucose Positive FucR High
Galaclose . Negative GalR, Gal$ Low
Glycerol Negative GlpR Low
Lactose Negative Lacl Low
Lysine Positive Cad(e High
Maltose Positive MalT High
Rhamnose Pasitive Rha$ High
Xylose Positive CylR High
Proline {degradation) Negative putA Low

(Savageau 1976, 1977, 1983). The sugar lactose is also a rare sugar in the environment of
E. coli, because it is cleaved by specialized enzymes in the upper intestinal tract. Similarly, esti-
males for amino-acid abundances ave: ghycine > leucine > phenylalanine > histidine > alanine >
serine > valing > aspartate > proline > threonine > cystine > isoleucine > methionine,

A comparison of the mode of control of inducible systems that degrade nuirients is
shown in Table 11.1. For example, the sugar galactose is seldom present at high concentra-
tions in the environment of E. coli, which corresponds to low demand for the galactose
grenes that degrade and utilize this sugar. According to the demand rule, the galactose sys-
tem should have negative control. This is in agreement with the repressors GalR and Gal$
that control this system. On the other hand, arabinose is found at high concentrations,
corresponding to high demand of the arabinose utilization system. Its mode of regulation
is positive, with the activator AraC, in agreement with the demand rule.

Similar results are shown in Table 11.2 for 4 number of biosynthesis systems that pro-
duce a compound in the cell, The expression of these systems is reduced if the compound
that they synthesize is available from the outside. For cxample, the arginine biosynthe-

FARIT 11 Mode of Regulation and Demand for Biosynthesis Gene Sysiems

Biosynthetic system (induced Mode of regulation Regulator Demand for
in the absence of substance) expression
Arginine Negative Argl Low
Cysteine Positive CysB High
Isoleucing Positive TivY Itigh
Leucine Positive Lep, LeuQ High
Lysine Posilive LysR Low
Tryptophan Negative TrpR Low
Tyrosine Negalive TyrR Low

Note: Note that Lysine biosynthesis is an exceplion o the demam rules (though itappears o have additienal control
mechinisms incuding o ribe switeh! an RNA-based lysine sensor).

DEMAND KULES FOR GENF KLUGULAIILUN = 21y

sis system of E. coli produces the amino-acid arginine that is relatively abundant in the
natural environment of the cells. The corresponding biosynthesis system is thus in low
demand, and the demand rules allow one Lo predict a negative mode of control. Indeed,
this system is regulated by a repressor ArgR. On the other hand, cysteine biosynthesis, a
high demand system duc to the low abundance of eysteine, is regulated in a positive mode
by the activator CysB.

‘The rule also successfully predicts that systems with antagonistic functions, such as
biosynthesis and degradation of a compound, tend to have opposite modes of regula-
tion. In conlrast, systems with aligned functions, such as rransport and utilization of a
compaund, tend 1o have the same regulation mode (Savagean, 1977, 1989). These predic-
tions follow from the demand rule because antagonistic systems tend to have opposite
demands, and systems with aligned functions tend fo have the same demand (both high
or both low). Note that predictions of this kind do not require knowledge of the precise
demand for the systems,

More complete data on gene regulation networks tends to support the demand rule,
but some exceptions to the rule are also found. One possible example is the biosynthesis
system of lysine, an abundant amine acid. Since lysine is relatively abundant, the demand
for its de-novo synthesis is low. However, this system is controlled in a positive mode by
the activater LysR, in contrast to the predicted negative mode. The definition of demand
is often tentative, because we lack information on the ecology of the cells for many sys-
tems. On the whole, however, the Savageau demand rule seems to caplure the mode of
many of the known gene regulation interactions in bacteria where the demand can be
reasonably estimated.

11.2.2 Mutational Ixplanation of the Demand Rule

The demand rule was deduced by Savageau based on the effects that mutations have on
the two modes of regulation. This theory first assumes that there are no inherent func-
tional differences between the two modes of regulatien. That is, precisely the same modu-
lation of genc expression in response to a signal can be achieved either by a repres.sor
binding the promoter or by an activator unbinding frem the promoter. This assumption
suggests that one should focus on the behavior of mutants that are altered in the regula-
tory mechanism.

The theory next uses the fact that most mutations in highly evolved structures are det-
rimental, and very few mutations are beneficial. Consequently, most mutations in a rcgll-
latory mechanism lead to loss of regulation. In the case of positive mode, loss ofregul.atlon
results in super-repressed low expression, because the activator is no longer functlm?al.
In the case of a negative mode, loss of regulation results in constitulive high expression
because the repressor is not functional. Thus, mechanisms with different modes respond
in opposite ways to mutations.

The result of these considerations is that the two modes wil) fare differently in a given
environment (Table 11.3). 'The positive mode of regulation is more stable against
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TABEL TS Selection of Mutants Tor Ditferent Modes of Control According o the Mutant-Sdection
Theary

Demund Made of regulalion

[ositive Negalive

High Regulation selected Regulation lost
Low

Regulation lost Regulution selected

mutations in a high demand environment, and the negative mode is more stable in a low
demand environment.

To understand this, consider a positively regulated gene ina high demand environment.
‘The wild-type organism will induce the gene to high levels most of the time. Mutants who
have lost the regulation, will not express the gene. As a result they will be at a disadvan-
tage most of the time, and will be fost from the population,

In a low demand environment, however, expression of the gene will be shut off most
ol the time, The mutants, who have lost the activator, will be unable to express the gene.
‘There will be relatively weak selection against this loss of regulation in this systern, because
the gene is rarely nceded at kigh expression. Super-repressed mutants will accumulate as
a resull of mutations, and the functional regulatory system will be lost. Henee, a positive
made is more stable in a high demand environment than in a low demand environment.

The predictions are just the opposite when one considers a negative mode of regula-
tion. In this case, mutants will be strongly selected against in a low demand environ-
ment because these mutants have lost the repressor and have un-needed high expression.
The high expression has a fitness cost and leads Lo loss of the mutants from the popula-
ton. In contrust, there will be a relatively lower sclection pressure against mutants in a
high-duemand eavironment, because the gene is needed at high levels most of the time. Thus,

according to this argument, mutants will accumulate over time, and the negative regulatory
system will be lost,

Lo summary, the mutant selection theory suggests that negative mode is stuble in low
demand environments, and positive mode is stable in high demand environments.

FL20 The Prablem with Mutant Selection Arsuments

Mutant-selection arguments are valid only if there is no intrinsic fitness advantage to one of
the two mades of control. It such intrinsic ditferences exist, they would dominate over the
differential eflects of mutations. The fitter mechanism would readily take over the popula-
tion. In other words, mutational eflects are second-order with respect Lo inherent differences
in the wild-type mechanisms. In the next section, we will develop a theory to understand
the demand rules based on intrinsic differences between the modes of regulation. Thesc dif-
ferences between modes of regulation correspond to their resistance to errors.

1.3 RULES FOR GENE REGULATION BASED ON MINIMAL FRROR LOAD
We will now describe a framework for deducing demand rules based on inherent fitness
ditferences between the two modes of control (Shinar et al., 2006). "Lhe idea ts simple Lo

understand. The main assumptian is that in many regulatory a"yatcnm, DNA 3|tc?lfl‘1;;l);|:'
bound tightly to their regulatory protein are more PI'OK‘FlCLl from C'l'T()I'S 111§1|1 ?Iu. :\‘
sites. ‘Lhis is because free sites are exposed 1o non-specific binding. st'u l?mdmﬁ ¢l nlxl :
lgad to changes in gene expression, which reduce the OrgEanisny’s Illll(‘..‘i"’\“ 1his l("nlt.s T)< .]1:,
proposal thal in order Lo mininize ervors, such systems will C\fcll\"c pasitive w‘mm lkn ‘111.,“;
demand environments and negative control in low-demand cm’n‘mmwn_ts: in b(->t Amiv.rm\,
the DNA regulatory sites are bound most of the time and thus protected from cnm"s. ]

To understand the demand rules in more detail, consider a gene regulated by a tmn--‘
scription factor, which can be an activator or a repressor {Figure 11.4). In cithvcr Cai%-",:hm:
is one state in which the regulator binds its site tightly, and another state ||1_w 1ich o
site is free. “Ihis is the idealized picture. T reality, the system is cmbcml(lcd_m.lh(f ul.
where many additional repulators and other faclors are p‘rcscnt, VVEILT]‘I the sllu‘ ls,:?:,]:qu
bound by its designated regulator, the site is protecled from these lacu?r_.s. n Ll( , l;
when the site is free, it is exposed to non-specific binding. This nnn—spcu‘hc l)ll]EIIT% cja ;
lead Lo crrors in the expression level of the gene, and thus to a reduction -m the lllx?ts\s'lg)]]
the organism. The relative reduction in fitness is called the crmr—lf)ad. -llllll].‘:. {;L,l:,::[(b
assumption is that free DNA sites are exposcd lo errors, whercas sites bg itly be Y
their regulators are protected {rom these errors. U

There are at least two sources of errors connected with the free site. The ?11’51 source
errors is cross-talk with the other transcription regulators in the cell, in which the wr;);g
transcription factor binds to the site (Gerland et al., 2002; Scngupt?q ct al, ‘2(???)-[“[‘);2
cross talk is diilicult 1o prevent, because the concentration and activity of the l.t.btl L 0‘{‘
in the cell changes in response to varying conditions, leading to an c’vcr—c’ll‘a‘nfg,ll:%,C::mn
cross-reacting affinities to the site. This cross-talk canact l(.> rcduc_c m.‘ ll'lUC-l!}-L‘t(i(! 1 r.[;md.
leading 1o errors. A second souree of error arises from residual l)mdtvgl ol t ;-Lll fsilf],'l;tivc
regulator in its inactive form to its own site: in many cases, the fllfll]}Fy'O ‘ “t-he‘,ml-we
regulator is only about one to two orders of magnitude lower than 1t:s nﬂmnly 11.11 wili e
state. Since regulator levels fluctuate from cell to cell (see Appendix D)'. t.1c1‘L.n o
varying degree of residual binding o the free site, causing celi-cell [ll.](,tlldll()n.h‘-ll “.klm -
sion. "These errors in expression deviate from the optimal level, leading lo a reduc

ness. _ .

. l(jcl 1Ls Now compare the error-loads af the positive and negative mndnl;.sl()I‘l'c%liz‘;:::::_.
Consider a gene regulated by an activator, and the same .gcnc rcgul;lLu‘l.)X a :_;li \ 1A :[l];
such that the two regulatory mechanisms lead to the same |.nput-()utpul re ‘monﬂ(ml (.)f ,
regulated gene has a demand p, defined as the frac‘tion. of time that full e;':p]lrc‘srsrlors o
gene product is needed in the environment. Now, lor cither mode o.f co‘n.irol. L o
mainly when the DNA site is (ree and exposed; The two modes differ -m the t p e
state that is associated with a free site. In the case of a repressor, 4 free 51.tc correspon : X
high expression, which occurs a fraction p of the time. Errors in qpr‘cﬁsn?ll ‘l.cad tlo taC wil;aL
tive fitness reduction of Af; , where the subscript ‘1 denotes the high expression state.

i o ceriteria such as the sharpness of the response
! 'The reguiators are assumed o be equivatent in terms of design criteria such as the 3!“‘Ilr=t|,c,,‘\¢1\-¢g e,
function. its dynamic range cle., as well as the production cost of the regulatory proteins 8

i i ‘hes are 1] activators and repressot.
sharp and high gain switches are Lnown with both activators 4 )
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average reduction in fitness for a repressor, laking into account only errors from the free
sile, is therefore

w7 PAf (1L1)

For an activator, the free site corresponds to low expression, which occurs a fraction
1-p of the time (the fraction of time that the gene is not in demand). Errors in the expres-
sion level lead to a refative Btness reduction of Af,, where the subscript ‘0° denotes the
low expression state. The average reduction in fitness for an activator, taking into account
only errors from the free site, is therefore

Ey = (1 - pAS, (11.2)

[ this simplest case, a repressor will have a fitness advantage over an olherwise equiv-
alent activator when it has a lower error-load

B, <l {11.3)
R A

Using Equation 11.1 and Equation 11.2 in Equation 11.3, we see that repressors arc
advantageous when the demand is lower than a threshold determined by the ratio of the
relative reductions in fitness:

p < LI+ Af A (11.4)

"Thus, repressors are advantageous for low-demand genes, and activators for high-
demand genes (Figure 11.2). The reason for this is that repressers in low-demand genes
and activators in high-demand genes ensure that the site is bound to its designated regu-
lator most of the time. The demand rule therefore minimizes the fraction of time that the
site is exposed to errors,

ALATHE SITFCTHON PRIFSSLIRF FOR OPTIMAL REGULATION

(,.m error-load create a selection pressure sullicient to cause a regulatory systtm w be
replaced by a system with the apposite mode of control? Consider a wild-type population
with a regulatory system in place. Suppose that conditions vary, leading to a permanent
change in the demand for the gene, so that the opposite mode of control becomes optimal.
Mutants with the opposite mode of control arise in the population, by genomic mutation
or lateral gence transfer from other organisms’. These mutants have a lower error-load,
and hence a relative fitness advantage, which is equal to E, - E, in the case of a repres-
sor and Ey - E, in the case of an activator. The mutants can become fixed if their relative

' here are well characterized examples where the same regulatory protein can act either as a FEPressor or as an

activator depending on the position and strength of fts regulatory site (Collado-Yides et al., 1991, Choy ¢t al,,
1995, Monsalve et al., 1996); Other cases are known where mutations in the regulator coding region can cause a
repressor o become an activator and vise versa {(Bushman ot al, 1988, Bushman et al., 1989, Lamphicretal,, 1992,
Prashie elal, 2002),

L L L S N N S I S T N I - PRpR

Activator

Cernand p

Repressor

Bf78f,

MGURT 1.2 Selection diagram for error-load minimization, Each region corresponds to the mode of con-
trol witl the smaller error-load. The vertical axis is the demand p, defined as the raction of the time that
the gene praducet is needed at full expression. The horizontal axis is 1he ratio of the fitness reductions atising
from errors in the free sites of the positive and negative contral mechanisms.
fitness advantage exceeds a mirimal selection threshold, s,,,.. The selection threshold s,
has been estimated in bacteria and yeast to be in the range 10107 (Hartl et al., 1994,
Wagner, 2005a).

The condition for fixation of a repressor mutant is thus £, ~ E, > s

ninT

whereas the

miny

condition for fixation of an activator mutant is B, ~ F, > 5., These inequalities lead to

i
a selection diagram (Figure 11.3), in which the error-minimizing regulatory mechanism
becomes fixed at a given demand p only if the ratio s, / (Af, + AJ)) is sufliciently small.
In cases where the fitness advantage is smaller than s

space where historical precedent determines the mode of control.

i there exists a region in parameter

One can estimate whether the fitness reductions caused by expression errors, Af, and
Af, lead to selectable error-load differences. The fitness as a function of protein expres-
sion was described in the previous chapter for the lac system of E. cpii. The fitness func-
tion indicates that a 1% error in expression leads to relative fitness reductions Afy and Af,
on the order of 103, which is four orders of magnitude higher than the selection thresh-
old s, Similarly, Wagner estimated that in yeast, 4 2% change in the expression level of
any protein is sufficient to cause fitness differences that exceed the selection threshold
(Wagner, 2005a). These considerations suggest that even minute expression errors lead to
error-load effects that can dominate over historical precedent in determining the choice
of regulatory system.

5 DEMAND RULES FOR MULTI-REGULATOR SYSTEMS

So far, we have analyzed the demand rules for a gene with a single rcguhtor We have
seen that activators are better than repressors for regulating high demand genes and that
repressors are better than activators for regulating low demand genes. In both cases, the
DNA site is bound for most of the time, minimizing errors. Let us now turn to systems
with multiple regulators. For clarity, we will consider in detail the lac system of E. coli,
even though the present considerations can be generally applied to other systems.
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s, the repressor Lacl
ationship is implemented by two tegulators, the repressor La

This input-output rel el does not bind its

and the activator CRP. When lactose enters the cell, the repressor -
. ' ) ’ ) C H 2 3 1Y s
wsed expression of the Lac proteins. When glucose enters

DNA sites, causing increy . hen g1 o
ot bind | site, le 1 1o o reduction in exprest
cells, the activator CRE does not bind its DNA site, leading 1

inhibi ression i resence of
additional mechanism that inhibits expression 10 the presence
ose is pumped into the cell, lactose
ostma ct al,, 1993, Thattal

The lac system has an l
glucose, which is called inducer-exclusion: when gluc

i v A ),
entry is blocked, preventing the induction of the lac system (1

and Shraiman, 2003). o ‘ et
The relation between the input-states, the DNA binding-states and the output levels

1 1 ) i T
the lac system is shown in Figure 11.4b. There are l'(?ur possible 1-“n(-img‘.m:tﬁs;ic%;[;ii,iz
on whether the CRP and Lacl sites are bound or free. These hmdm{g-bla E,T-I.CC o
[CRPLact] = [0,0], (.1, [1,0] and iL.l], where 1/0 correspond to >'ounct-5[“e. -
the four binding-states, [CRD, Lacl] = {0,0], is not rcuAched by :m?’ l.nlpl:l “L,“’lhc -
inducer-exclusion prevents lactose and glucose f.-om.bcmg present in 11_ 1-(. c‘c‘ )mw.m .
time. Thus, in U presence of glucose, the Lacl site is bound even if lactose 1s pres
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the environment, As a result, the binding-state [0,0] does not carrespond Lo any input-

state, and may thercfore be called an excluded state. lis expression level was experi-
mentally determined by using artificial inducers such as PTG, which

are noel subject (o
inducer exclusion,

The naturally occurring mechanism, with a glucose-responsive activator and
responsive repressor, is only ene of the lour possible mechanisius in which the
lators can have either mode of control (Figure 11.5)

a lactose-
two regu-
The four mechanisms can be denoted

RR, RA, AR and AA where the first letter denotes the mode of the glucose regulator, the

second letter denotes the mode of the lactose regulator, and the designation A/R corre-
sponds Lo activator/repressor. The wild-type lae system has the AR mech

vator CRP and repressor Lacl (Figure 11.5a).

anisin, with acti-

‘These four mechanisms all map the input-states onlo the expression levels in the same

way. The mechanisms ditfer only in the promoter binding-states that correspond 1o each

input- and output-state. All four mechanisns have inducer exclusion, and thus have an
excluded state, although the identity of the exclidled stale differs between the mechanisms
(Figure 10.5): The excluded state is [CRP.Lact]=[0,0], [0,1], [1,0], [L1]in the AR, AA, RR
and RA mechanisms respectively.

Let us now consider the errors in this system. As before, crrors

ciated wilh free binding sites. Table 11.4 lists the fitness reductions resulling from errors
that occur when one or both of the regulator sites

are assumed to be asso-

are [ree. For example, consider the
AR mechanism with the input-state {glucose, lactose) = (0,1). This inpul-state, which cor-
responds to the highest expression level Z,, is mapped onto binding-state [CRP, [
(1.0}, where the glucose-responsive regulator site is bound and the lactose-
ulator site is frec. Thus, only the latter

4fF o fitness.

Aacl] =
respoasive reg-
site is exposed to errors, contributing a reduction

The average error-load is calculated by multiplying the probability of each inpul-state
by the appropriate fitness reductions and summing over all input-states (Table 11.4). It
turns out that in this system, the probabilities of the input states can be fully described by

two numbers: py, the probability that neither glucose nor lactose are present in the

TABLL Tk Error-Load of Four Possible Mechanisms for the e System

TNPUT-STATE (BLUCASE, LaCTasE) (0.0) (0,1} (LOY 741D
ReGuLAToRY MECHANISH

AA Afy 0 Af 4 AL
AR 0 Al Af,

RaA Al AL AL, AfT
R Af, A+ AL 4

Table 11.4: Filzress reduction due to exrors lrom free DNA sites in the
system, Columns carrespond to inpul-states {glucose, |
fittess duc 1o errors fram the plucose responsive

four possible regulatory mechanisms of the fue

actosed, where /0 means saturating/no input. The reductions in
{lactose-responsive) regulator binding site are ALAS ) wherei = 1.,
coresponds 1o the output-level. The input-states {glucose, lactose) - (1,0}

c and (1, 1) are botdy mapped onto the same
Plading-state due to inducer-exclusion.
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Tae systemn Ghicose and lactose levels are 1O corresponding Lo saturating/ne sugar in‘ the L'|1V||‘01!|1‘mn,l.. L
£y Zyand 7 are the relative protein expression levels from the fae promoter. ‘The bl‘mlﬁng--smlcs 01‘(,151 it |}d
LacT are shown, {b) IYiagram mapping the input-states (glucose, lactose) onto the binding-states [CRP, ldcl]
and finally onto the output-states 7., Z,, 7, and 7. The dashed arrow indicates the cxcluded state, which is
not reached by any of the input-states due to inducer exclusion.

environment, and p,,, the probability that glucose is absent but lactuse is present. For

example, the error-load of the AR mechanism is

= P+ () - pyg - Puddf,
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HEGURE G115 The four possible regulatory mechanisms of the fac system. The mechantsms are labeled by the
mode of regulalion of the glucose-responsive and lactose-responsive regulators, where A/R means activalor/
repressor. Excluded states map 10 output states with dashed arrows.

We can now compare the different mechanisms, and find which one has the lowest error-
load in a given environment {(Pow> Par)- This results in the selection diagram shown in Fig-
ure 11.6. The diagram is triangular because py, + p,, < 1. We can see that three of the four
mechanisms minimize the error-load, cach in a different region of the diagram. One of
the four possible mechanisms (RA) never minimizes the error-load. The wild-type mech-
anism of the lac system, AR, minimizes the error-load in a region of the diagram that
includes environments where lactose and glucose are present with low probability, namely
Po << 1 and py, = L. This is consistent with the empirical observation that in the natural
environment of E. cofi, both glucose and lactose are rare.

It is easy to see why the AR mechanism minimizes the error-load in the natural envi-
ronment of £, coli. The most frequent input-state in the environment is that both sugars
arc absent, (glucose, lactose) = (0,0). This input state maps onto the second lowest output-
level Z;, in which the lac system is induced to a low but non-zero level, in order to main-
tain Lac proteins to sense lactose in the case that the sugar appears. In the AR mechanism,
this most frequent state corresponds to the binding-state [CRP.Lacl] = [1,1], where both
regulators bind their DNA sites. Thus, the AR mechanism keeps the DNA sites protected
from errors most of the time.
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In addition, the AR mechanism has another error-minimizing fCiltllr.f:: the maost
errar-prone binding-state [CRP, Lacl] = [0,0}, in which both‘ sites are free, Js.conccalcd
by inducer exclusion. Ilence, not only does the AR mechanism map the mos‘t fl’C(]l.lCllI‘
input-state onte the error-free binding-state {1,t], bul also it cxcludes.lhc most e roi-pronc
binding-state [0,0] and prevents it from ever being reached by any mput-slat.c. '[:1'115 is in
contrast to the three other possible mechanisims that make the error-prone binding-state

[0,0] accessible to environmental conditions.

1.6 SUMMARY

We have scen that one can formulate rules to understand the selection of Il'egulutory
mechanism in transceiption. In the realm of bacteria, accemulated evidence points to %hﬁ
following tendency, called the Savageau demand rule: Genes that are ofien necded 11.t (-L‘Jl ,
expression in the natural covironmient lend Lo bave activator control, whereas genes rarely
needed at full expression tend to have repressor control.

We saw that the demand rule can be understood in terms of error minimizing strate-
gies. In such strategics, biological regulation systeras in which open sites are cr.mr‘pmnc
will tend 1o evolve mechanisms that keep the sites bound for most of the time, thus
minimizing errors. Hence, genes whose product is required at full expression forra sm.'ixl{
traction of the time (low-denand genes) will tend to have repressar control, so lha‘t the
repressor binds and protects the site most of the time. Genes nccdc‘d at full cxprcs‘snor‘:
large fraction of the time (high-demand genes) will tend to have activator c<?nlrol, 50 1‘1:‘
the activator binds and protects its site most of the time. The expected sclective advanlzut,'-
of ervar-load minimization appears to be sufflicient to overcome historical precedent in

the choice of regulatory mechanism.

DEMAND RULES TOR GENEL RLGUILATION  n 229

We also saw that this approach can be generalized 1o multi-input systems, as denon-
strated tor the I coff lue system. We saw how the most common environmental stale maps
onlo an internal state in which both regulators bind their sites in the promoter, protecting
il from wis-binding errors, “The most creror-prone state, in which the promoter is free and
exposed Lo mis-binding, is kept hidden and inaceessible to normal environmental condi-
Lions by inducer exclusion.

‘These conclusions for transcription regulation assume that free DNA sites are nore
crror-prone than sites bound o their coguale regulators. In cases where the reverse is
true, that is when bound sites are more error-prone, the predictions are oppesite, namely
that repressors {activators) correspond to high (low) demand genes. One possible scenario
in which bound sites miight be more crror-prone than free sites may oceur in cukaryolic
genes. In eukaryates, DNA regions that bear genes that are nol expressed are ofien packed
into a compact conformation studded with protective proleins, called closed cliromatin,
When the gene needs to be expressed, the chromatin is changed to open conformations
thal allow better access Lo regulalory proteins. In this case, closed chromatin may protect
the free sites from errors, whereas regulator binding may requite opening of chromatin
allowing increaseed exposure o mis-binding errors. ‘Thus, some cukaryotic gencs may
have apposite demand rules. Further study is needed 1o assess the error-loads associated
with such chromatin states.

Although this chapter addressed transcription regulation, note that the same consid-
eralions can be applied to other biological systeins in which regulation involves the bind-
ing of bio-molecules, Qne example is protein-protein interactions mediated by specific
protein binding domains. In this case, positive and negative modes of regulation corre-
spond to the activation of proleins cither by the binding or the unbinding of a regulatory
domain. Indeed, experiments suggest that cross-talk between different members of the
same class of binding domains sets a selectable constraint on the fituess of the organ-
ism (Zarrinpar et al,, 2003), Hence, selection of mode of control (positive or tegalive)
according to demand rules is a possible way for the cells to evalve increased specificity, by
minimizing the time that a given site is frec and exposed to cross-reactivity. These con-
siderations might help us to make sense of what may otherwise appear to be an arbitrary
choive of mechanism in cach instance.

In conclusion, we have examined rules for biolegical regulation based on minimizing
errors. In systems where a frec site is more exposed Lo errors than a site bound to its cog-
nate interaction partner, it is predicted that mechanisms that keep the site bound most
of the time will have a lower error-load and hence a selectable advantage. In the context
of transcription, this explains the Savageau demand rule, as weil as offers rules for multi-
regulator systems,

Biolegical mechanisms are rich in variety, and different systems often have different
biochemical details. How can we understand this varicty? We end with the words of Sav-
ageau (Savageau, 1989):

“Such differences fin biochemical details] might be the result of historice] accidents
that are functionally neutral, or they might be governed by additional rules that
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lave yet to be determined. One can always assume that certain differences are the
result of historical accident, but such an explanation has no predictive power and
tends to stifle the search for alternative hypotheses. 1t generally tends to be more
preductive if onc starts with the working hypothesis that there are rules. One may
end up attributing differences 1o historical accident, but in my opinion it is a mis-
lake to start there”
FURTHER RFADING
Savageaw, M.A. (1989). Are There Rules Governing Patterns of Gene Regulation? In Theoretical
Biology, Goodwin, B.C. and Saunders, PIT., Bds. Edinburgh University Press. pp. 42-66.
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Shinar, G., Dekel, B., Tlusty, T, and Alen, U. (2006). Rules for Gene Regulation Based on Error
Minimization. Proc, Natl, Acad. Sei. U.S.A. 103; 3999-4004.

IFXERCISES P

11.1. Optimization versus historical precedent: Imagine a population of organisms with
a regulatory mechanism in place for a certain gene. Conditions change, and the
opposite mode of regulation is now more optimal for that gene, in the sense that it
has a lower cerror load. The demand for the gene in the new environment is p, and
the error loads associated with errors in the high and low expression states are Af,
and Afy,. Mutants with the opposile mode arise in the population, but they can only
fully replace the original population if their fitness advantage exceeds a minimal
value s

Tt

(a) Calculate the conditions on the demand p so that the mutants with the optimal
mode can take over the population,

(b) When is the mode of regulation determined by historical precedent? Explain.

VL2, Lrror-load of variability in protein expression: The expression of proteins varies frem
cethto cell. This means that different cells deviate from the aptimal expression level.
In this exercise we will caleulate the average reduction in fitness due to sucly varia-
tions, for the case of the lac system, lhe fully induced lac promoter has a cell-cell
vartation in expression with a coeflicient of variation (standard deviation of protein
level 7 divided by the mean) ef about V=0.1 in the fully induced state (Elowitz et al.,
2042). "The fitness function for this exercise, similar to the function we saw in chap-
ter 10, is f(2)= n Z/(1-Z/M) +8 Z, with 8 = 0.£77,", n = 0024, "and M = 27,, where
7, is the fully induced expression level.

(2) Show that the mean reduction in fitness due to small cell-cell variations 7 + AZ
is Af = C <AZ?>, where C is the curvature of the fitness function near its maxinum
C172 FIAZ7 and the brackets <> denote a population average. 1Tint: use a Taylor

expansion of [ near its maximum.

—
e
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(b} Compute the mean reduction in fitness due to variations in Z in the fully induced
state (the average value of Z in the population is Z,). Answer: Af,~0.1%,

- Demand rules for developmental genes: Consider a cell which, during the develop-

mental process of the organism, can assume either fate A or fate B. A set of genes G,
is expressed in fate A and not in fate B, and a different set G, is expressed in fate 1{3
and not in A. ‘This cell-fate decision is regulated by two transcription-factors X and
Y. X activates its own transcription and represses the transcription of Y, whercas Y
activates its own transcription and represses the transcription of X, Furthermore, X
transcriptionally activates G, and represses Gy, and Y hag the opposite effect, acti-
vating Gy and repressing G,

(@) Draw the transcription network in this case.

(b} Explain the mode of regulation of cach gene in terms of the demand rule,

Error-load of two-input gencs: Compute the error-loads of all possible four regula-
tory mechanisms for the lac system, according to Table 11.4. Compute the condj-
tions {the range of py, and p,,} in which each of the four mechanisms is optimal.
Compare your results to Fig 11.6.

Lrror-load of a feed-forward loop (FFL): Consider a type-1 coherent FFL (Chapter
4). In this gene circuit, activators X and Y activate gene Z, and X also activates Y so
that at steady state, Y levels are zero unless X is transcriptionally active. The regula-
tors X and Y respond te input signals S, and 8. 'The promoter of gene Z is activated
in an additive fashion by X and Y, such that at steady-state the expression level is
Z=a X*+b Y,

{a) Plot the steady-state relationship between input states (8,,5,), internal states
[X*Y*] and output states (7, Z,, 2., Z,) for all four combinations of §,. S, =0o0r 1
(Similar to Fig 11.4). .

(b) Is there an excluded-state in this case (at steady-state)?

{c} Repeat this for an incoherent type-1 FFEL in which the output is Z=a X*-b v,
Assume that bea, and that at steady-state, Y levels are zero unless X is transcrip-
tionally active,



Epilogue: Simplicity in Biology

1 have almost finished writing this book and have gone over may drafts. Tam happy to
sUll have a sense of wonder when reading the cliapters. The wonder comes because nc.t‘
works of thousands of interacting components are generally incmuprchcnsible. There 18
no @ priori reason that immensely complex biological systems would be anderstandable.
But despite the fact that biological networks cvolved to function and not to be compres
hensible, simplifying principles can be found that make biological design understandable
to us. .

This cpilogue will discuss simplicity in several aspects of biological networks. We Wlllf
review simplicity in structure and timescales, in the ability to form simP“f"‘:d models 0
regulatory networks, and in recurring design principles.

One level of simplicity occurs in the structure of biological networks. In large “tho_rks
there are a huge number of possible interaction patterns. The surprise is that b'mlogl.cal
nelworks are built, to a good approximation, from only a few types of recurring interaction
patterns called network motils.

Each of the network motifs can perform defined information processing fu “Cti(_'ns' ihe
main network motifs found in scnsory transcription networks and their functl‘@!i are
summarized in Figure 5.15. For example, feed-forward loops can act as sign-sensitive fil-

. : eed and
ters, pulse generators, and response accelerators. Negalive autoregulation can Specc?

stabilize responses. Single-input modules can generate temporal programs of expression-
No doubt additional functions of these motifs will be discovered as our knowledge of net-
works becomes more complete. o

The same network motifs appear in the sensory transcription networks of diverse

| o imilarity in circui eces-
organisms. [t is importanl to stress that the similarity in circuit patterns does not 1n
ed on the same

sarily stem from circuit duplication. Evolution appears to have converg peted
¢ sclecte

network motifs again and again in different systems, suggesting that they ar
because of their function. These functions can be readily tested cxpcrimentally
system.

Netwark motifs are embedded in the network and are connected 10 each other. Ium"t
tantly, the motifs often appear to be embedded in a way that allows them to carry ou

in each

233

e i AT T
TR TN



234w CHAPIIR 12

their functions even in the presence of additional interactions. This property is due (o
the particular ways that the motils are wired together. In many systems, network motifs
appear to be connecled to each ather in ways that do not spoil the independent function-
ality of cach motif, allowing us to understand the network, at least partially, based on the
functions ol indivichial motifs. Simple examples include the way that three-node FFLs are
connecled Lo each other to form a multi-output FFL, This pattern preserves the function-
ality of each three-node FFL (sign-sensitive filtering, etc.). In addition, the multi-eutput
FEL can generate rather elaborate programs of expression timing between outpul genes,
as we saw in Chapter 5, As a result of the way the motifs are embedded into the network,
they can, at feast in many cases, be considered as elementary cireuit elements.

In addition te the simple ways in which motifs are wired together, motifs can act as ele-
mentary circuit elements due to the separation of timescales of different interactions. ‘The
strong scparation of timescales between different biological processes is a general princi-
ple that is found in virtually all of the networks in the cell. Jtallows us to understand the
dynamics on the slow timescale by using steady-state approximations for the interactions
on fast timescales. For example, transcriptional motifs that carry out their computations
on a slow timescale of minutes 1o hours can be understood, al least schematically, as if
they acted in isolation, despite the fact that they are embedded in additional feedback
loops on the level of protein-protein interactions that {unction on the timescale of sec-
onds. In short, biolugical networks can be understood, to a first approximation, in terms
of a rather limited set of recurring circuit patterns, each carrying out computations on a
different Limescale.

In addition to the reuse of network motifs, biological networks have an additional
important structural feature: modularity (Iartwell et al, 1999; IThmels et al., 2002; Segal
et al,, 2003; Woll'and Arkin, 2003; Schlosser and Wagner, 2004). Most biological func-
tions are carried out by specific groups of penes and proteins, so that one can separate
the structure into functional modules, For example, proteins work in coregulated groups
such as pathways and complexes. Transeription networks are nearly decomposable into
single-input modules and multi-input dense overlapping regulons {IMORs), as described
in Chapter 5. Signal transduction networks display distinct signaling pathways shaped as
multi-layer perceptron modules, discussed in Chapter 6, ete. 'The modules in biological
netwarks can be compared on the metaphorical level to the modules used in engineering,
such as subroutines in software and replaceable parts in machines,

A working definition of a module is a set of nodes that have strong interactions and a
common function. A module has defined input and output nodes that control the inter-
action with the rest of the network. A module also has internal nodes that do not signifi-
cantly interact with the nodes outside the module. Modules in engineering, and probably
also in biology, have special features that make them easily embedded in almost any sys-
tem. For example, autput nodes should have Jow impedance, so that adding on additional
downstream clients should not drain the output to existing clients (up to some limit).

Why does modularity exist in biological networks? It is important to realize that not all
evolved networks are modular, The oppuosite is truer nonmodular solutions are the norm

in simple computer simulations of evolution. Tn evelutionary simulations, a population of
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networks is evolved by randomly adding, removing, and changing connections betw
nodes — and even duplicating and recombining parts of the networks — unti] the net-
works perform a given computation goal, that is, until the networks give the correct out-
put-to-input signals. Unlike biological networks, simulated networks cvolved in this way
are usually nonmodular (Figure 12.1a). They typically have a highly interconnected struc-
ture that cannot be decomposed into nearly independent subsystems {Thompson, 1998).

cen

Viewed in this perspective, the modularity of biological networks is puzzling. The evo-
lutionary simulations make it clear that modular structure is usually less optimal than
fully wired, nonmodular structures. After all, modules greatly limit the number of pos-
sible connections in the network, and usually a connection can be added that reduces
maedularity and increases the fitness of the network. This is the reason that the evolution-
ary simulations almost always display a nonmodular solution.

A clue to the reason why modules evolve in biology can be found in engincer-
ing. Madules in engincering convey an advantage in situations where the design
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specifications change from lime to time. New devices or software can be casily constructed
from existing, well-tested wodules (Lipson ctal, 2002). Similarly, modular biological net-
works might ofler an advantage in real environments that change over time (Gerlart ane
Kirschier, 1997). Indecd, modulat networks can, in some cases, evolve in simulations in
which the evolutionary goal changes over time. Importantly, in order for modularity (o
arise spontancously, the goals need 1o change such that each new goal shares the same
subproblems with the previous goals: Each goal is cormposed of the same set of subprob-
lems in a different combination (Kashtan and Alon, 2005), Under such modularly varying
guals, networks rapidly evolve that have high fitness 1o the current goal and, every time
the goal changes, rapidly rewire to satisly the new goal. These networks are highly modu-
lar in structure (Figure 12.1b and ). They include a module for cach of the subproblems
shared by the goals. It is as though the network learns the shared subproblems and creates
a specific module for cach subproblem. Every time the goal changes, these modules need
only be rewired in order to satisfy the new goal. If the goal stops changing for a sufficient
length of time, the networks in the simulation begin to lose modutarity and evolve toward
a nonmodular design, a design that is typically more optimal (e.g., uses fewer compo-
nents} Thus, the ability to reconfigure and adapt to new conditions may be one force that
helps to maintain modular structure in biological systems.

In addition to the structural simplicity associated with modularity and the small num-
ber of network motifs that make up the networks, there ks a second level of simplicity.
‘[his simplicity is found in the realm of models of biological interactions, in the ability
to treat regulatory circuits with simplificd mathematical models that capture the essence
ol the behavior and have a cerlain degree of universality. ‘Lhis abstract mode of descrip-
tion is surprising because it contrasts with the complex and idiosyncratic biochemical
mechanisms by which each protein carries out its function. ‘These biochemical particulars
are astoundingly rich, Baroque, but on the level of the dynamics of transeription circuits,
we saw that one can use rather simple mathematical models that do not require precise
knowledge of most of the molecular details. These molecular details are insicad chunked
into systems-level parameters. The models include only informmation on whether X acti-
vales or inhibits Y, and at what activity threshold.

In these models, logic input functions can be used to gain a back-of-the-envelope
sketch of the behaviour of diverse circuits, aided by the graphic intuition of piccewise-
exponential dynamics that cross activity thresholds. Simplificd models are particularly
uselul for schematically deducing dynamical behavior and its qualitative dependence on
biechemical parameters. This analysis can readily be experimentally tested, by using con-
trolled experiments that keep many parameters relatively constant, and thus approach the
idealized situations described by the models.

Furthermore, the same mathematical models often apply to different networks. For
example, production-degradation equations describe gene expression dynamics in tran-
scription networks (Chapters 3 to 5), kinase activitics in signal transduction netwerks
(Chapter 6), and even simple models of neurons (Chapter 6). Thas, simplificd models can
connect motits that work in different networks on different timescales.

A third level of simplicity is the conceptual similarity of seemingly unrelated systems,
a similarity expressed in terms of unilying design principles. One such design pringiple is
robustness 1o compenent fluctuations: A biological system must work under all possible
insults and interferences that come with the inherent properties of the components and
the cnvironment. Thus, £. coli needs Lo be robust with respect to lemperature changes
aver a few tens of degrees, aad no circuit in the cell should depend on having precisely
100 copics of protein X and not 103, The fact that a gene circuit must be robust 1o such
perturbations imposes severe constraints on ils design: only a small percentage of the pos-
sible circuits thal perform a given function can perform it robustly. Since most possibie
mechanisms are not robust, robustness can help theorists Lo recognize the correct model.

We examined specific examples of robustness in bacterial chemotaxis and in embry-
onic patterning in Chapters 7 and 8,

There are several ways to achieve robustness, For example, integral feedback can pro-
vide robust adaptation: it can lead the outpul of a system o a desired goal in the face of
wide variations in the environment or the internal parameters of the system (Chapter
7). Integral feedback employs a negative feedback signal proportional to the time inte-
gral over the difference between the actual output and the goul. Integral [eedback can be
shown in many cases to be a unique solution (o the problem of robust adaptation in the
context of engineering control theory.

Biological systems can veadily implement integral feedback because integration over
time is an inherent feature of the production-degradation equations mentioned above,
which describe many of the biochemical interactions in the cell. We saw how integral
feedback is implemented in the chemotaxis system by means of accumulating methyla-
tion that regulales the aclivity of the chemotaxis receptars. In other systems, accumulat-
ing protein levels or protein modifications can play the role of the integrator to achieve
integral feedback and robust adaptation.

An additional principle of robustness in spatial patterning systems is self-cnhanced
degradation of the morphogen, as we saw in the case of {ruit fly development (Chapter 8).
Scif-enhanced degradation allows long-range pattern formation that is nearly independent
of the production rate of the morphogen. This principle appears to be used again and
again in different patterning systems with different morphogens.

A third general principle that conlers robustness is kinetic proofreading, & mechanism
that allows molecular detection of a specific moleeule despile the background signal of
chemically similar molecules in the cell (Chapter 9). Kinetic proofreading relies on time
delays that can be implemented by diverse kinds ol nonequilibrium reactions. The same
principle seems to appear in systems ranging from translation in the ribosome to antigen
detection in the immune syslem.

All of these design principles allow us o understand subtle biochemical details that
might otherwise appear as wasteful side reactions. The few ways to achicve robustness
help te limit the number of possible circuils in biology, and to give the circuits that do
appear a2 defined style. Tis likely that additional general ways ol achieving robust designs
will be discovered that can unite our undersianding of diverse systems (Kitano, 2004
Wagner, 20050},
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‘Throughout this baok, we have used enginecring metaphors and gained inspiration
from engincering principles. One example is the consideration of response time and sta-
bility in awtoregulatory feedback loops (Chapter 3) and other netwark motifs. Stability
and response time trade-ofls are of the essence in electronic and mechanical engineering
design. Another point of simila ity is the principle of robustness 1o component fluctua-
tions. Robustness is a guiding principle in engineering; for example, clectronic circuits
must wurk despite variations in the resistance of cach resistor. Engineering texthooks are
Mlled with robust designs, and many alternative nonrobust designs for the same circuits
are avolded. Good engineering uses modulurity and recurring circuit elements (network
motifs) to build reliable and scalable devices from simpler subsystems. An additional sim-
ilarity is optimal design, with cost and benefit trade-ofls, which we saw guides evolution-
ary selection tn simple systems (Chapter 10). Such cost -benefit trade-offs are ubiquitous
in engineering,

In addition to the similarities with engineering, biological circuitry also has funda-
mental coneeptual diflerences from engineered devices. One important difference is the
stochastic nature of biological function. Here, I mean that gencetically identical cells in
the same environment respond in a probabilistic way to a given stimulus (see Appendix
D). Often, the response of cach cell is not predictable, but the proportion of cells with
a given response is predetermined and is regulated according to environmental signals,
Tor example, we saw that swimming bacleria have individual characters and perform
chemotaxis with different tumbling rates and adaptation times. More dramatic examples
include cellular decisions such as differentiation or cell death, in which a fraction of the
cells assume one fate and other cells a completely different fate. Evolution appears to select
for a probabilistie outeome.

An element of randomness in behavior is one of the mast familiar features of living
organisms. In contrast, mest enginecred (lcsigns are made 1o try and avoid stochastic out-
comes. Engineered devices such as a radio are designed to function with 100% probability
if, say, the ON butlon is pressed. We would say that a probabilistic radio is a malfunction-
ing radio.

Stochastic designs are not normally found in many areas of engincering

o

but they are
commaon in the fiekls of game theory and economics. In game theory, it can sometimes
be shown that a probabilistic strategy is optimal when competing with other organisms.
A deterministic response would be casily exploited by competitors, 'The stochastic nature
of cellular responses broadens the range of possible responses in an unpredictable future,
increasing the probability that at least a fraction of the cells will be able to cope with sud-
den unforeseen changes in circumstances. Studty of the role of probabilistic design in biol-
ogy is only at its beginnings.!

An additional intriguing set of questions concerns the interplay between the ecology
and the biological design of the organism. We currently have more information on the
detaifed structure of biological circuits than on the environment in which they evalved.
We know little about the constraints and functional goals of cells within complex organ-

P See Kerr et al, 2002 Nowak amd Sigmand, 2002, 2004; Woll and Arkin, 2003; Balaban et a) 2004; Thattai and
v Gudenamden, 200-1 and Kusselt aned Leibler, 2005 fur mteresting theoretica

aned expriimental studies.

isms, and are only beginning Lo understand the optimizations and irade-ofls that underlie
their design. It is an interesting question whether it would be possible to form a tlu.iory of
biological design that can help unify aspects of ecology, evolution, and mu]ecul-nr biology.
We are almost at the end of this book, which tried 1o present an introduction to sys-
tems biology. Al this time, one can only wrile an introduction, since we are only at lh.c
beginning of the adventure to find the design principles of biological systems. Ir-z this
book 1 have tricd to emphasize simplicity in biology, within its undoubted complexity, to
encourage the optimistic point of view that general principles can be discovered, Without
such principles, it is dificult to imagine how we can make sense of biology on the level of
an entire cell, tissue, or organism. .
Will a complete description of the bielogical networks of an entire cell or orgar)151}1
ever be available? The task of mapping an unknown network is known as reverse engi-
neering, Much of engineering is actually reverse engineering, because prototypes oﬂcn.do
not work and need to be understood in erder to correct their design. ‘The program of biol-
ogy is reverse engineering on a grand scale. There are many diflicultics to be overcome in
this project. Reverse engineering of a nonmodular, highly wired network of a few thou-
sand compenents and their nonlinear interactions is virtually impossible. However, the
simplifying features that we have discussed give hope that biological networks are struc-
tures that human beings can understand. Modularity, for example, is at t_hc root of our
ability to separate the problem into smaller bits that can be studied nearly 1lndcpcm.lcnl]y,
to assign functions to genes, proteins, and pathways, and so on. The prlnap]v? of mb.usb
ness limits the range of possible circuits that function on paper to only a fch dee;lg.ns
that can work in the cell. This can help theorists to heme in on the correct design with
limited data. Network motifs define the few basic patterns that make up a network, and
the dietionary of elementary dynamical functions that the network can perform. These
concepts, together with the current technological revolution in bioiegy, may eventually
allow characterization and understanding of cell-wide networks, with great benefit to
medicine. The similarity between the creations of evolution and engineering also raises a
fundamental scientific challenge: understanding the laws of nature that unite evolved and

designed systems,
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The Input Function of a
Gene: Michaelis—Menten
and Hill Equations

Al BINDING OF A REPRESSOR TO A PROMOTER
This appendix provides a simplified introduction to basic models in biochemistry. We will
begin with understanding the interaction of a repressor protein with DNA and with its
inducer.! We will then turn 1o activator proteins. The repressor X recoguizes and binds to
a specific DNA site, D, in a promoter: X and D bind to form a complex, [XD)], Transcrip-
tion of the gene occurs only when the repressor is not bound, that is, when D is frec. The
DNA site can thus be either free, 12, or bound, [DX], resulting in o conservalion equation:

D+ [XD]= D, (ALY
1

where D, is the total concentration of the site. For example, a single DNA binding site per
bacterial cell means that D = Teell volume ~ pm?* ~ 1 nM, In cukaryotic cells, the vol-
ume of the nucleus is on the order of 10-100 pm’.

'The repressor X and its target I difluse in the cell and occasionally cotlide to torm a
complex, [XD). This process can be described by mass-action kinetics: X and D collide
and bind cach other at a rate k,,. 'The rate of complex (ormation is thus proportional to
the coilision rate, given by the product of the concentrations of X and D:

rate of complex formation =k, XD

Ihe theoretical treatment for the input function of simple gene regulation was initiated by Gad Yagil in the con-
text of the lac system of Escherichia coli (Yagil and Yagil, 1971).

241
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The comples [X U3 Talls apart (dissociates) at a rate kg, The rate of change of [X13] based

on these collision and dissociation processes is described by
XD =k, XD = ko [XD] (A1.2)

‘the rale parameter for the collisions, k., deseribes how many collision events occur per
second per protein at a given concentration of D, and thus has units of 1/limefconcentra-
tion. It is useful to remember that k| in biochemical reactions is often limited by the rate
of collisions of a diffusing molecule hitting a protein-size target, and has a diffusion-lim-
ited value of about k, ~ 10% - 10® M ! sec ', independent of the details of the reaction. TFor
the case of a trauscription factor and DNA, the diffusion limit is usually higher because of
one-dimensional diffusion effects due to sliding of the transcription factor along the DNA,
k,, - 10— 10" M {sec ' (Berg clal, 1981} The ofl-rate k, on the ather band, has units of
time and can vary over many orders of magnitude for different reactions, because kg, is
determined by the strength of the chemical bonds that bind X and 1.

‘Ihe kinetics of Equation A.1.2 approach a steady-state in which concentrations do not
change with time, d[XD/dt = 0. Solving Equation A.1.2 at steady-state, we find that the
balance between the collision of X and D and the dissociation of [XD] leads to the chemi-
cal equilibrium equation:

K, [XD] =XD (A13)
where Ky is the dissociation constant,

Ky = kK.

The dissociation constant K, has units of concentration. The larger the dissociation
conlant, the higher the rate of dissociation of the complex, that is, the weaker the binding
of X and D.

Selving for the concentration of free DNA sites, D, using Tquations. A, 1.1 and A.1.3, we

ind K, (1D - 1) = X13, which yields
(B 1
e e (A1)
D 1+X/K,

For many repressors, [XD] complexes dissociate within less than 1 sec (that is, k,y > 1
sec'D). Therefore, we can average over limes much longer than 1 sec and consider D/I as
the probability that site I7 is free, averaged over many binding and unbinding events.

'The probability that the site is free, /D, is a deereasing Tunction of the concentration
of repressor X. When there is no repressor, X = 0, the site is always free, D/Dy = 1. The site
has a 50% chance ol being free, IV, = U2, when X = K,

When site I is free, RNA polymerase can bind the promoter and transcribe the gene.
The rate of transeription (number of mRNAs per second) from a free site is given by
the maximal transcription rate 5. (Note that i the maim text we used 5 to denote the

rate of protein production, This rate is proportional to the transcription rate times the
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NIGURE AL Normalized promoter activily vs, repressor concentration in units of its 1. Lalf-maximal
activily accurs when X = K, {dashed lines). Here X corresponds to the concentration of repressor in its active
form, X~

number of proteins translated per mRNA provided thal there is a constant mRNA life-
time ang translation rate.) The maximal transcription rate depends on the DNA sequence
and position of the RNA polymerase binding site in the promoter and other factors. It can
be tuned by evolutionary selection, for example, by means of mutations that change the
DNA sequence of the RNAp binding site. In different genes, B ranges aver several orders
of magnitude, B ~ 107 - | mRNA/sec. The rate of mRNA production, called the promater

activity, is b times the probability that site D is free:

B

—_— (A.15)
+X/K

promaoder activity =

Figure A.l shows the promoter activity as a function of X. When X is equal to K,
transcription is reduced by 50% from its maximal value. The value of X needed for 50%
maximal repression is called the repression coefficient.

For eflicient repression, enough repressor is needed so that site 12 is almost always
occupied with repressor. Frem Tquation A.1.4, this occurs when repressor concentration
greatly exceeds the dissociation constant, such that X/K, >> 1. This is the case for many
repressors, including the lae repressor Lacl.

So far we discussed how the repressor binds the promoter and inhibits transcription.
To turn this gene system ON, a signal must cause X to unbind from the DNA. We will
treal the simplest case, in which a small molecule (an inducer) is the signal. The inducer
direetly binds to protein X and causes it to assume a molecular conformation where it
does not bind I with high affinity, Typically, the affinity of X to its DNA sites is reduced
by a factor of 10 to 100. Thus, the inducer frees the promoter and allows transcription of
the gene, We now consider the binding of inducer to X.
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A2 BINDING OF A REPRESSOR PROTEIN 1O AN

INDUCER: MICTHALLIS MENTEN EQUATION o )
The repressor protein X is designed to bind a small molecule inducer S,» which can be
considered as its input signal. The two can collide to form a bound complex, {XS,]. 'The

repressor is therefore found! in cither free form, X, or bound form, [XS,], and a conserva-
tion law states that tolal concentration of repressor protein is X

X, =X +[XS,] (A2}

X and 8, collide to form the complex [XS,] at a rate k,,, and the complex [XS,] falls
apart {dissociates) at a rate k. ‘Thus, the mass-action kinetic equation is:?

8 (XS it =k, X8, - K, [XS,] (42.2)
At steady state, d[X8,)/dt = 0, and we ind the chemical equilibrium relation:
K, [X§]=XS, (A.2.3)

where K, is the dissociation constant (for the lac repressor, Ko~ 1 pM ~ 1000 inducer
{(IPTG) molecules/cell).? Using the conservation of total repressor X (Equation A.2.1), we
arrive at a useful equation that recurs throughout biology (this cquation is known as the
Michaclis-Menten equation in the context of enzynie kinetics; we use the same name in

the present context of inducer binding):
X,S,

———— SX + KK

' Weassume that §, can bind X regardless of whether it is bound ta I3 or not.

? Usually the number of $, molecules is much larger than the number of X molecules, and so we need not worry

aboul conservation of S, Sx.mtnl =S5, +[XS,]. For example, in the lac system, the number of Lact repressors, cach

made of a tetramer of La¢l proteins, is X ~ 10 units/cell, which is negligible relative to Sy which is at least 1000/

cell for a detectable response.

*In the case of the Jue repressor, Ky~ 1 pM. Using the diffusion-Yimited value for k

lifetime ol the complex is kg~ 1 msec.

[XS,] = Michaelis-Menten equation (A.2.4)

~ 109 M fsee, we find the

an
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The Michaelis-Menten function (Figurce A.2) has three notable features:
L It reaches saturation at high S .
2. It has a regime where {XS, ] increases linearly with §, when S, << K.

3. "The fraction of bound protein reaches 50% when 5 =K,

The dissociation constant thus provides the scale for detection of S, S, concentrations
far below K, are not detected; concentrations far abgye K, saturate the repressor at its
maximal binding, The saturated regime (5,2> K,) is known as zero-order because [XS,] ~
5% and the lincar regime (S, << K,) is known as first-order since [X5,]~S,%

Recall that in cases like Lacl, only X unbound to S, is active in the sense that it can bind
the promoter D to block transcription. Because frec X is active, we denote it by X*. Active
repressor, X* = X - [XS, ), decreases with increasing inducer levels:

= — concentration of X not bound to S, (A.2.5)

A3 COOPERATIVITY OF INDUCER BINDD-
INPANF) THE HILL LQUATION - o
Before returning to the input function, we comment on a more realistic description of
inducer binding. Most transcription factors are composed of several repeated protein sub-
units, for example, dimers or tetramers. Fach of the protein subunits can bind inducer
molecules. Often, full activity is only reached when multiple subunits bind the inducer.,
A useful phenomenslogical equation for this process can be derived by assuming that n
molecules of S, can bind X.

To describe the binding process, we need to describe the binding of n molecules of S, to
X. 'The protein (protein multimer) X can either be bound to n molecules of S, described
by the complex [nS, X], or unbound, denoted X, {in this simple treatment, intermediate
states where fewer than n molecules are bound are neglected). The total concentration of
bound and unbound X is X and the conservation law is

[0S, X] + X, = X, (A.3.1)

The complex [nS, X] is formed by collisions of X with n malecules of §,. Thus, the rate
of the molecular collisions nceded to form the complex is given by the product of the
concentration of free X, X, and the concentration of S, to the power n (the probability of
finding n copies of §, at the same place at the same tinie):

collision rate = k, X, 8,» (A.3.2)

where the parameter k,, describes the on-rate of complex formation. The complex [n$, X)
dissociates with rate k-

dissociation rate = k ; [n8, X] (A.3.3)
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FIGURE A3 il curves for Tigand binding with Hill cocflicient n = 1, 2, and 4, Note thal the curve is steeper
the higher the Hill coeflicient n. Half maximal binding occurs at 8, = K.

The parameter k4 corresponds to the strength of the chemical bonds between §, and
its binding sites on X. The total rate of change of the concentration of the complex is thus
the difference between the rate of collisions and dissociations:

d[nS, X])/dt =k, X, 5, ~ k. [nS, X] (A34)

This cquation reaches equilibrium within milliseconds for typical inducers. Hence, we

can make a steady-state approximation, in which d[n$, X]/dt = 0, to find that dissociations
batance collisions:

ko [08, X] =k, X, 8, (A.3.5)

We can now use the conservation equation (liquation A.3.1) to replace X, with X, -
[nS, X], to find

(koufk,a) NS, XI = (X - [0S, X} S,7 (A.3.6)
Finally, we can solve for the fraction of bound X, to find a binding equation known as
the Hi!l equation:
[nS X} &
Xo  Ki+s!

where we have defined the constant K, such that

Hill equation (A3.7)

K=Kk, {A.338)

Equation A.3.7 can be considered the probability that the site is bound, sveraged over
many binding and unbinding cvents of S .

THE INPUT FUNCTION OF A GENE = 247

The parameter n is known as the Hill coeflicient. When n = 1, we obtain the Michae-
lis-Menten equation (Equation A.2.4). As shown in Figure A.3, both the Michaelis—-Men-
ten and Hill equations reach half-maximal binding when §, =K.

‘Ihe steepness of the FHill curve is greater the larger the Hill cocthicieut n {ffigure A3 In
the lac system, n = 2 with the inducer IPTG (Yagil and Yagil, 1971). Reactions deseribed
by Hill coeflicients n > 1 are often termed cooperative reactions.

The concentration of unbound repressor X is given by:

Ao (A.39)

A4 THE MONOIDY, CHANGEUX, AND WYMANN MODEL
We nate that a more rigorous and clegant analysis of cooperative binding based on sym-
melry principles is due to Menod, Changeux, and Wymann, in a paper well worth read-
ing (Monod et al,, 1965), usually also described in biochemistry textbooks. In this model
X switclies to an active state X* and back, The signal 8, binds X with dissociation constant
K., and binds X* with a lower dissociation constant K.*. Up ton molecules of S, can bind
1o X. The two states, X and X* spontancously switch such that in the absence of 5, X is
found at a probability larger by J. than X*. The result is:
X (LS /K"

Xo LO#S_ K P +048 1K)

Interesling extensions Lo this model make analogies to Ising models in physics (Duke
et al, 2001). One difference between the rigorous models and the Hill cusve is that bind-
ing at low concentrations of §, is linear in §, rather than a power law with coefhicient n, as
in Equation A.3.7.'This linearity is duc to the binding of a single site on X, rather than all
sites at once.

A5 THEINPUT FUNCTION OF A GENE REGULATED BY A REPRESSOR

We can now combine the binding of inducer to the repressor (Equation A.2.5) and the
binding of the repressor to the DNA {Lquation A.1.4) to obtain the input function of the
gene. The input function in this case describes the rate of transcription as a function of
the input inducer concentration 5,

{59 = b : (A.5.1)
X 7K, X I (S, 1K)

Figure A.4 shows how the transcription rate of a gene repressed by X increases with
increasing inducer concentration S,. Note, when no inducer is present, there is a leakage
transcription rate, f{S, = 0) = /(1 + X;/K,), also called the basal promoter activity. This
leakagge is smaller. The stronger X binds its DNA site.

'Lhe input function reaches half-maximal value at inducer concentration S, = S,;;. This
halfway induction point is approximately (when X, >> K})
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Sl.'z ~ (XI”Kd)”“ Kx (A,5.2)

‘The halfway inducer concentration §,,, can be significantly larger than K, {Figure A 4).
For Lacl, for example, X,/K,~ 100 and n = 2, so that §,,, ~10 K,.

We now turn to describe transcription activators.

In the decade following the discovery of the lac repressor, other gene systems were found
ta have repressors with a similar principle of action. It is interesting that it took several
years for the scientific community to aceept evidence that there also existed transcrip-
tional activators,

An activator protein increases the rate of transcription when it binds to its DNA site
in the promoter. ‘Lhe rate of transcription is thus proportional to the probability that the
activator X is bound to D. Using the same reasoning as above, the binding of X to D is
described by a Michaelis-Menten function:

px’

promoter activity =
X +K,

(A.6.1)

Many activators have a specific inducer, S, such that X is functional (in the sense that it
can bind DNA to activate transcription) only when it binds 5,.) Thus, we obtain

"I some systems, the aclivator is active when it is urbound to 8, and inactive when it is bound. In such cases 8, is
an inhibitor of X. Similarly, some repressars can be activazed by binding $,. These cases can be readily deseribed
using the reasoning in this appendix.
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FIGURE A5 Input function for a gene regulated by an activator as a function of the inducer level. Shown
are the curves for X3/Ky = 10 {bottom curve) and X/K, = 50 {top curve), both with n = 2. There is no basal
transcription at S, = 0, and half-maximal induction is reached at §, ~ 1/3 K, and S.~ V7K,

X* = [XS,] X5 (A.6.2)
R K}+s? -
‘The genes input function is
f(S) = B XK, +X) (A.6.3)

This function, shown in Figure A.5, is an increasing function, The basal transcrip-
tion level is zero in this regulation function, (S, = 0) = 0. Simple activators thus can have
lower leakage than repressors. If needed, however, a nonzero basal level can be readily
achieved by allowing RNAp to bind and activate the promoter to a certain extent even in
the absence of activator,

The inducer level needed for hall-maximal induction of an activator can be much
smaller than K ;

Sip ~ (Ky/ X )0 K, (A.6.4)

in contrast to the repressor case {Equation A.5.2). Overall, however, similar input func-
tion shapes as a function of inducer S, can be obtained with either activator or repressor
protcins. Rules that scem to govern the choice of activator or repressor for a given gene
are discussed in Chapter 11.

In this appendix we described a simplified model that captures the essential behavior of
a simple gene regulation system, in which proteins are transcribed at a rate that increases
with the amount of inducer S,. Many real systems have additional important details that
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FIOLRE AL Activation of Y by X with logic and 1ill input functions. Three forms of the input function f(x)
are compared, where dY/dt = ((X*) - @Y. The Mol curve results from a Jogic input function, f(X) - (X > K).
‘The dotted line results from the Fll input function, with Hill cocficient n = 1 (a Michaelis-Mcnten func-
tion), T(X) = XHK + X), and the dashed curve from Hill kinetics, with n = 2, f{X) = X2AK2 + X?). In all cases,
K = 143, ¢ 02 1. Right pancl: the normalized input functions.

make them tighter and sharper switches.! The present description is sufficient, however, to
understand basic circuit elements in transcription networks.

Al Comparison of Dynanmics with fogic and P Inpat Functions

How good is the approximation of using logic input functions (sce Section 2.3.4) instead
of graded functions like Hill functions? In Figure A.6, the dynamics of accumulation of a
simple one-step transcription cascade are shown, using three different forms of the input
function f{X). 'The input functions are Hill functions with n = 1 and n = 2, and a logic
input function. At time t = 0, X* slarts to be produced, and its concentration increases
gradually with time. The graded input functions show expression as soon as X* appears,
whereas the logic input function shows expression only when X* crosses the threshold K.
Overall, the dynamics in this cascade are quite similar for all three input functions.

A7 MICHARLS- MENTEN ENZYME KINETICS - S
We now briefly describe a useful model of the action of an enzyme X on its substrate S,

to catalyze formation of product P, Enzyme X and substrate $ bind with rate k,, to form

a complex [XS), which dissociates with rate k. ‘This complex has a small rate v to form
product P, so that

k
X+5 e:“;'i':s‘ [X§} — X +P {A.71}
ol
‘Ihe rate equation for [XS}, taking into account the dissociation of [X§] into X + §, as
wellasinto X + P is

d[X8]/dt = k,,, X S - k¢ [XS$] ~ v[XS) (A7.2)

At steady-state, we ubtain

"'the model is actually a reasonable description of genetically engineered fec promoters that include a single Lact

site i a bacterium lacking the LacY pump, used as a general tool for expressing proteins under control of the
inducer IPTG.

THE INPU T FUNGCTION Q0 /4 v, = e

(XS] = kv + k) X $ (A7.3)

If substrate S is found in excess, we need only worry about the conservation of enzyme X:
X+ XS] = Xy (A.7.4)
Using this in Equation A.7.3, we find the Michaclis-Menten equation:
rate of production = v[X5] = v X SHK,, + 5) Michaclis-Menten enzyme kinetics (A7.5)
where the Michaelis-Menten cocflicient of the enzyme is:
K, = v+ kK, (A.7.6)

This constant has units of concentration and is equal to the concentration of substrate
at which the production rate is half maximal. When substrate is saturating, 5 >> K. pro-
duction is at its maximal rate, equal to v Xy. Thus, the production rate does not depend on
S (that is, it depends on S to the power zero) and is known as zero-order kinetics:

production rate = v Xy zero-order kinetics {A7.7)

In the main text we will sometimes make approximations to this function, in which
the substrate § is found in low concentrations, $ << K,,. In this case, the production .rntc
becomes linear in S, as can be seen from Equation A.7.5 by neglecting S in the denomini-

tor. This regime is known as first-order kinetics:

production rate = v X, 5/K,, first-order kinetics
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EXERCISES
LAL.  Given a simple repressor with parameters B, Xp» K K,oand n,.dcmg? an acti-
vator that best matches the performance of the repressor. That is, assign values

to B, X, Ky and K, for the activatar so its input function will have the same
¥ «
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Solution:
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maximal expression, and the same §,;,, and the same slope around §,,, as the
repressor input function.

Derive the approximate value of diffusion-limited k,, based on dimensional
analysis. Dimensional analysis seeks a combination of the physical parameters
in the problem that yields the required dimensions. If only one such combina-
tion exiss, it often supplies an intuitive solution to otherwise complicated physi-
cal problems. Assume a target protein with a binding site of arca a = 1 nm?, and
a small molecule ligand that diffuses with diffusion constant I = 1000 pm?/sec,
The affinity of the site is so strong that it binds all ligand molecules that collide
with it.

To study the on-rate k,,,, place a single protein in a solution of 1 M ligand L (con-
centration of ligand is p = IM = 6.10” molecules/l ~ 10° mol/um?). The num-
ber of L molecules colliding with the binding site of the protein has dimensions
of molecules/sec and should be constructed from p: D, and a. The combination
with the desired dimensions is k,, ~ p Dv/a , because I has units of [xJ¥/[t] and a
has units of [x]%. This combination makes sense: it increases with increasing p, a,
and 1D as expected. Inserting numbers, we find k,, ~ p 3 Va ~ 107 mol/pum?-1000
pm*/sec-l0? um = 10* mol/sec, hence k,, ~ 10%M/sec. Note that dimensional
analysis ncglects dimensionless prefactors and is often only accurate to within
an order of magnitude.

What is the expected diffusion-limited k,, for a protein sliding along DNA to
bind a DNA site. ‘The protein is confined to within r = 1 nm of the DNA. The
total length of DNA in a bacterium such as E. coli is on the order of 1 mm, and
the volume of the E. cofi cell is about ~1 um?. Discuss the biological significance
of the increase in k,, relative to free diffusion in space.

Estimate the off-time (1/k,,) of a diffusion-limited repressor that binds a site
with K= 10 "' M. What is the off-time of a small-molecule ligand from a recep-
tor that binds it with K = 105 M, K, = 10 M?

APPENDIX B

Multi-Dimensional
Input Functions

Many genes are regulated by more than one transcription factor, The combined effects

of these regutators can be described by a multi-dimentional input function. As an exam-

ple, let us examine one simple case and then discuss the more general forms of the input
,

function.

B1 INPUT FUNCTION THAT INTEGRATES
AN ACTIVATOR AND A REPRESSOR

Vljcit:lsrtnke a look at an input function that integrates an activator X and a repressor Y ata
pramoter. How can an activator and repressor work together? '

A common situation is that the activator and repressor bind the promoter indepen-
dently on twe different sites. Thus, there are four binding states of promoter D (Figure
4.11b): I, DX, DY, and DXY, where DXY means that both X and Y bind to D. Transcrip-
tion occurs mainly from the state DX, in which the activator X but not the repressor Y
Lind. In the following we use X and Y to denote the active forms X* and Y*.

The probability that X is bound is given by the (now familiar) Michaelis-Menten func-
tion {Appendix A):

Py hoand = 4X =-Xf“<1* (B.LD)
K AKX 1+XUK

The probability that Y is not bound is given by the Michaelis-Menten term equal to 1
minus the probability of binding:

Y 1

—— (B.1.2)
K, +Y 1+Y/K,

PY notbound = 1-
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08!
0.6
04
A pa

N

FIGURE 11 Input function ef a gene regulated by activator X and repressor Y. (a) full repression B,” = 0,
and (b) with partial repression 3, = 0.3 {b), In buth cases, K, = K;= 10

Since the two binding events are independent, the probability that the promoter DD is
bound to X and not 10 Y is given by the product of the two probabilitics:!
X/K,
14X /K +Y /K, +XY /KK,

(B.1.3)

P b ant0 ¥ o bt = P tound PY won bound =
and the output promoter activity is given by the production rate {3, 1imes this probability:
P, = B, X/K 1+ X7K, + YIK, + XY/KK,) (B.1.4)

Thisresulls inan X AND NOT Y input function, shown in Figure B.1a,

In many promoters, when the repressor binds, repression is only partial and there is
basal transcription (leakage). In such cases, the state in which both X and Y bind, DXY,
also contributes a transcription rate, B, < B3, to the promoter activity of Z:

b BXIKABXY/KK,
"OMX/K YK, XY /KK,

(B.i.3}

‘This results in an input function with three plateau levels: zere when X = 0, B, when X
is high but Y is low, and 3’, when both are high (Figure B,1b}. ‘This continuous input func-
tion can be approximated by a logic function:

P,=6(X>K)B, (1 -8(Y>K) +[,0(Y>K,) (B.1.6)

where we remember that 8 is the step function, equal to O or 1.

These results have some generality. The input funclions can often be described by the
ratio of palynomials of the active concentrations of the input transcription factors X,, i =
1, ..., for example,

' Fans of statistical physics will recognize the partition function in this expression. Ihe relation of partition Munc-
tions 10 promoters has been worked out by Ackers et al,, 1982 and Gerland ¢t al., 2002,
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‘lhe parameter K| is the activation or repression coefficients for transcription fncmr. X,
B, is its maximal contribution to expression, and the Hill coeflicients are n = m for actlya—
tors and n = 0, m > 0 for repressors. These types of functions have been found to describe
experimentally determined input functions (Setty et al., 2003). Mare complicated expres-
sions are possible if the different transcription factors interact with each other on the pro-
tein level (Buchler et al,, 2003).

(X, X (B.1.7)

EXIRCISES. :

Bl This pru.n-z"o!cr ain’t big enough. Activator X and repressor Y bind a promoter. "The
repressor and activator sites ovetlap so that X and Y cannot both bind at the same
time. What is the resulting input function? How does it differ from the input func-

tion obtained from independent binding?



APPENDIX C

Graph Properties of
Transcription Networks

CA TRANSCRIPTION NETWORKS ARE SPARSE

Wh'\t is the nmxmml numhcl of edges in a network with N nodes? Each node can huvc an
outgoing edge to cach of the N - 1 other nodes, for a total of I, = N(N - 1) edges. If we
also allow self-edges, there ave an additional N possible edges, for a total of Il = N% Nole
that a maximally connected network has a pair of edges in both directions (mutual edges)
between every two nodes.

‘The number of edges actually found in transeription networks, I, is much smaller than
the maximum possible number of edges. The netwarks are sparse, in the sense that B/E|
<< 1. Typically, less than 0.1% of possible edges are found in the network.

Transcription networks are the product of evolutionary selection. It is important to
note that it is very casy to lose an edge in the network: a single mutation in the binding
site of X in the promoter of Y can cause the loss of the interaction. Therefore, every cdge
in the network is under evolutionary selection The sparse nature of the network reflects
the fact that only very few and specific interactions, with useful functien, are selected and
appear in the network.

C.2  TRANSCRIPTION NETWORKS HAVE LONGTAILTD OUTTPUT
DEGRFE SEQUINCES AND COMPACT INPUT DEGREL STQUL NCES

We saw that nodes in the transcription network correspond to genes. Incoming cdges
to a node in the network correspond to transcription factors that regulate the gene. The
number of edges that point inte a node is called the node’s in-degree. The out-degree is
the number of edges pointing out of a node, corresponding to the number of genes regu-
lated by the transcription factar protein that is encoded by the gene (or operon) that cor-
responds to the node.
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‘The mean number of edges per node, called the mean connectivity of the network, is A
= E/N. Typically A is on the order of 2 to 10 edges/mode.

Do all nodes have similar degrees? Transcription networks almost always have nodes
that show much higher out-degrees than the average node, Transcription networks often

have many transcriplion factors that regulate a few genes, fewer nodes that regulate tens of

genes, and even fewer that regulate hundreds of genes. The latter are called global regula-
tors and usually respond to key environmental signals to contrul large ensembles of genes
(examples of global regulaters in bacteria include CRP, which responds to glucose star.
vation, and RpoS, which responds to general stresses). Thus, the out-degree distribution
has a long tail and can be roughly described as o power law, at least over a certain range
(Barabasi and Oltvai, 2004). that is, the number of nodes with out-degree k is roughty
P(k} ~ k>, with y ~ 1 to 2, Note that the out-degree distribution is only approximately
power law; for example, it is bounded by the total number of genes N.

The long-tailed distribution is sometimes called “scale-free” because there are sets of
regulated genes of many different sizes with no typical scale. Nodes with many more con-
nections than the average are called hubs. Hubs are found in many types of natural and
engineered systems. ‘The question of their origin in biclogical networks is an interesting
one.!

In contrast to the long tail of the out-degree distribution, the in-degree distribution is
concentrated around its average value? (Thieflry et al,, 1998; Guelzim ct al,, 2002; Shen-
QOrr et al, 2002). The in-degrees range between zero and a few times the mean connectiv-
itv, A There is Jittle chance of finding a node regulated by 10 ar 100 times more inpuls
than the average node. In other words, the in-degree distribution does not have a long
tail, and instead resembles compact distributions such as the Poisson distribution, whose
standard deviation is about the same as the mean.

‘The compact distribution of in-degrees may correspond in part to a physical limitation.
In simple organisms, premoters are short. ‘The region near the RNAp binding site that par-
ticipates in regulation is on the order of a few hundred base-pairs (IDNA letters). There is no
space in the pramoter region to accommaodate more than a few binding sites for transcrip-
tion factors (cach on the erder of 10 base-pairs). In more complex organisms, transcrip-
tion factors can affect a gene even i€ bound far away on the DNA, through DNA-looping

' Many natural and enginecred networks have hubs and degree distributions that appear to be power laws Gver a
certain range {Barabasi and Glivai, 2004). 'This power law behavior can stem from multiple different reasons, and
probably has a different origin in cach type of network. A general mechanism for generation of power law con-
nectivity was proposed in the context of nelworks by Barabasi and Albert, 1999, In this maodel, called preferential
attachment, new nodes are added to a growing network and connect with higher probability te nodes that aleeady
have many connections, This process generates networks with scale-free degree distributions, However, this is not
a reasonable model of the evolution of transeription networks in which edges are continually sclected for function,
In some communication networks, scale-free distributions have been proposed to aiford robustness of network
cunnectivity with respect to the deletion of nodes. However, robustness to node removal does not appear to be the
function of the degree distribution in transcription networks. These networks are often not robust o mutations
{deletion of nodes), especially in bacteria, We believe that the origin of long-tailed degree distribution lies in a
broad distribution of the benefit of the functions that need to be performed by the cells, and which require parti-
tioning ul‘j;(’nc resources into coregulated modutes of wi:l('ly diﬂ’uring sizes. An interesting lhn'(:ry on the onigin of
power Laws in designed or optiniized systems along these lines has been suppested by Carlson and Doyle, 1999,

S The average i-degree is equal to the average out degree, because the sum ol the in (Il,‘i’;l’(fk‘.\ s L'lthl] to the total
number ubedyes, as is the s of the out degrees,
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interactions and other effects. Such action al a distance can increase the number of input
transcription factors to a given gene, Higher organisms often display larger in-degrees than
microerganisms, accommodating the complex computations needed during development.

C3 0 CLUSTERING COFFIICIENTS OF TRANSCRIPTION NETWORKS

}\_1-1 additional statistical property of graphs is the clustering coefficient, which corre-
sponds to whether the neighbors of a given node arc connected to cach other. Let us con-
sider the network as nondirected; that is, disregard the direction of the edges. A node
with k neighbors can be a part of at most k (k- 1)/2 triangles, one for cach possible pair of
neighboring nodes. 'The clustering coellicient C is the average number of triangles that a
node participates in, divided by this maximal number. Transcription networks have aver-
age clustering coeflicients larger than those of randomized networks.

As described in Chapters 4 through 6, network motifs in sensory transcription net-
works generally include one main type of friangle, the feed-forward loop. The major
contribution to the clustering coeflicient of transcription uetworks thercfore stems from
feed-forward loops, This paltern appears 1o be selected due to its functions, such as filter-
ing and response acceleration.

The clustering coefficient can also be measured as a function of the number of neigh-
bors that cach node has, resulting in a clustering sequence C(k). Often, C{k) ~ l/k over a
certain range, so that the more neighbers a node has, the lower its clustering cocfficient
(Barabasi and Oltvai, 2004). In transcription nctworks, this tendency appears to corre-
spond to the way that feed forward loops connect to cach other. The chief arrangement of
feed-forward loops in sensory transcription networks is the multi-output FUL, discussed
in Chapter 5. In the multi-output FFL, node X regulates {and is thus a neighbor of) Y, and
both X and Y regulate k output nodes. These cutput nodes are typically not neighbors.
Thus, node X has k + 1 neighbors (Y and the k output nodes), with only k connections
between these neighbors (the connections of Y to the outputs), resulting in a clustering
coefficient CC ~ k/k?~ /k.

Generally, it appears that global statistical propertics of biological networks such
as degree sequences and clustering sequences are the result of selection working on the
detailed circuit patterns in cach individual system. Different networks have different selec-
tion constraints, which must be understood in order to understand their graph propertics,

G4 QUANTITATIVE MEASURE OF NETWORK MODULARITY

Network modularity is the degree to which it can be separated into nearly independent
sub-networks. A quantitative measure of modularity was developed by Newnian and Gir-
van {Newman 2004; Newman and Girvan, 2004). Bricfly, the Newiman and Girvan algo-
rithm finds the division of the nodes into modules that maximizes a measure Q. This
measure is defined by the fraction of the edges in the network that connect between nodes
in a module minus the expected value of the same quantity in a network with the same
assignment of nodes into modules but random connections between the nodes:
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where K is the number of modules, L is the number of edges in the network, 1, is the
number of edges between nodes in module s, and d, is the sum of the degrees of t’hc‘ n\od:.
in module s. the rationale for this modularity measure is as foilows (Guimera and Amg )
ral, 2005): a good partition of a network into modules must comprise many wil]lin-mm‘;_
ule edges and as few as possible between-module edges. However, if we try to minimiré
the nember of between-module edges {or equivalently maximize the number of wilhinl
module edges), the optimal partition consists of a single module and ne bclwccnvmodu];
edges. Equation C.1 addresses this difficulty by imposing Q = 0 if nodes are placed at ra
dom into modules or if all nodes are in the same module. "
This measure can be further refined by normalizing it with respect to randomized net-
wuorks. The normalized measure Q, is (Kashtan and Alon, 2005): ‘

Qm = ((QIL‘-I] - Qmml )/(Qm.n( - Qr.md ) (CZ)

where @, is the Q value of the network, Q. is the average () value of randomized
networks, and Q,,, is the maximal possible Q value of a network with the same dcgl"cc
s?qucncc as the real network. The values of Q. Q,.. and Q.. can be calculated by effi-
cient algorithms (Kashtan and Alon, 2005).

'The @, measure of modularity normalizes out the effects of network size and con-
ncc'livity. Biological networks show high medularity according to this measure: The tran-
scription network of the bacterium Fscherichia coli has Q,, = 0.54, the neuronal synaptic
network of the nematode Cuenorhabditis elegans has @ = 0.54, and a human signal trans-
duction network has Q,, = (.58, ) s
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APPENDIX D

Cell-Cell Variability in
Gene Expression

‘The concentration of a protein X in a papulation of genetically identical cells varies from
cell to cell due to stochastic processes (reviewed in McAdams and Arkin, 1999 Kaern ct
al,, 2005). The concentration of a given protein often has a coefficient of variation {(stan-
dard deviation divided by the mean) in the range CV = 0.1 1o 1 (Elowitz ct al, 2002;
QOzbudalc et al., 2002; Blake et al, 2003; Raser and O’Shea, 2004). That is, the cell-cell
variations are on the order of tens of percents of the mean. The dynamics of protein levels
thus have a stochastic component (Figure D.1).

One imporiant source of noise is extrinsic noise, in which the cellular capacity to pro-
duce proteins, and the regulatory systems that regulate a gene, fluctuate over time. For
example, fluctuations in a transcription factor concentration can affect the expression
rate of its targets. The correlation time of these variations in production rates is oficn on
the scale of a cell generation; that is, a cell with high production levels often tends Lo stay
high for a cell cycle or more (Rosenfeld et al., 2005).

In addition to extrinsic noise, there is also intrinsic noise, which is due to stochastic
variations in the transcription and translation events of the gene. An clegant experiment
by Michael Elowitz and colleagues (Elowitz ct al., 2002) measured the relative level of
intrinsic and extripsic noise, by measuring the levels of two fluorescent proteins expressed
by identical promoters {Figure [2.2). Intrinsic noise appears to fluctuate on a timescale of
minutes in bacteria (Rosenfeld et al, 2005).

The cell-cell distribution of protein numbers is often similar to lognormal (a Gaussian
distribution in the variable log{X}). Whereas Gaussian distributions describe processes
that are a sum of random variables with finite mean and variance, lognormal distribu-
tions characterize processes with several multiplicative stochastic steps (because log(X) is
then a sum of random variables). Examples of multiplicative steps in the production ofa
protein are transcription and translation.
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FIGURE 1.2 An experimental measarement of extrinsic and intrinsic noise. Two almost identical gene
encode proteins with different fluorescent colors, yellow and cyan fluorescent proteins (YEP and CFP;} 'lhz
1\\'(.) genes are expressed in the same cell from identical prometers. Extrinsic noise is the component 0fo

noise shared by the genes due to upstream factors such as variations in regulators and the ccfls' metab l?C
capacity. Intrinsic noise is due to stochastic steps in transcription and trauslation of each *cn.e ‘The noclc
suremients in the right panel are on E. coli cells, where each point is one ccll. {From Elowitz cll’al AZO(}Z ]) N

Regulatory circuits can aflect the variability. For cxample, protein levels can be
made to fluctuate less by means of negative feedback leops (sce Chapter 3). Con-
versely, posilive auto-regulation can increase cell-cell variability. Strong positive feed-
back can cven lead to bistability (Figure D.3). Bistability often leads to a bi-modal
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FICURE 13,4 Schensatic distributions of protein concentrations in a regulatory cascade. Va riability tends to

increase with the steps in the cascade.

distribution, with two cell populations, with high and low expression (Novick and Weiner,
1998; Isaacs et al, 2002; Oybudak ct

1957; Sicgele and Hu, 1997; Verrell and Machleder,
al,, 2002). Noise can also be amplified by regulatory cascades: cach step in the cascade
receives variability from ) (Blake et al,, 2003 Hooshangi

its upstream regulator (Figure D.4
et al,, 2005 and Pedraz have narrower

a ot ab, 2005). Rapidly degraded proteins can
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distributions than stable proteins, because stable proteins integrate the noise in produc-
tion rates over longer finies. As a rule of thumb, the faster the response time of a system,
the smaller the fluctuations in the system.

One interesting obscervation is that the position of the noisiest step in a pathway can
influcnce the overall noise (McAdams and Arkin, 1999; Ozbudak et al., 2002). This is
because cach step in the pathway usually smplifies noise in the previous steps. For exam-
ple, consider two mechanisms that produce 100 proteins per hour: In mechanism A, one
MRNA molecule is made on average per hour and is translated to 100 proteins on aver-
age. In mechanism B, 100 mRNAs are made per hour and are each translated 1o one pro-
teiny on average, The fluctuations in protein production arc much larger in mechanism A,
because an average of one mRNA nermally means that in some cells cither 0 or 2 mRNAs
will be made in a given hour, resulting in 0 or ~200 proteins. In mechanism B, there is
little ehance to make zero mRNAs during an hour, and fluctuations are smaller.

‘The chromasomal position of a gene can also affect noise, due to local differences in
chromatin regulation (Blake et al., 2003; Beeskei et al,, 2005). Generally, noise level can be
tuned over evolutionary timescales by changing the parameters of the noisy steps in the
expression of each gene (Fraser et al, 2004). It appears that essential proteins and com-
plex-forming proteins are less noisy than other proteins.

Neise in biological systems can be modeled using stochastic mathematical equations.
Such theoretical treatment of stochastic effects is beyond the present scope. Excellent
texts on stochastic processes, such as those by Gardiner and Van Kampen, can give access
to the highly developed field of stochastic theory in physics, chemistry and engineering.
Theory on biological noise has been reviewed (Paulsson, 2004; Kaern et al,, 2005). Other
theoretical studies are cited in the bibliography.
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Glossary

Activator — A transcription factor that increases the rate of transcription of a gene when it binds a
specific site in the geue’s promoter.

Activation threshold -- Concentration of activator in its active state needed for half-maximal activa-
tion of a gene.

Adaptation — Decreasing response o a stimulus that is applied continuously.

Adaptation time — Time for output to recaver to 50% of prestimulus level following a step stimulus,

Allele — One of a set of alternative forms of a gene. In a diploid organism, such as most animal ¢clls,
cach gene has two alleles, one on each of the two sister chromosomes.

Amino acid — A mwlecule that contains both an amina group (NIL) and a carboxyl group (COOIT).
Amino acids are inked together by peptide bonds and serve as the constituents of proteins.

AND gate - - A logic function of two inputs that cutputs a one only if both inputs are equal to one.

Anti-motif — A patters that occurs in a network less often than expected at random.

Antibody — A protein produced by a cell of the immune system that recognizes a protein present in or
on invading micreorganisms.

Antigen — A part of a protein or other molecule that is recognized by an antibody.

Arabinose — A sugar utilized by E. coli as an energy and carbon source, using the aru genes. These
genes include metabolic genes uraBAD, and the transporters araf and araFGH. Arabinose is
not pumped into the cells if glucose, a better encrgy source, is present.

ATP (adenosine triphosphate) — A molecule that is the main currency in the cellular energy econ-
omy. The conversion of ATP to ADP (adenosine diphosphate) liberates energy.

B. subtilis (Bacillus subtilis) — A bacterium commonly found in the soil. Tt forms durable spores upon
starvation.

Binomial distribution —- A statistical distribulion that describes, for example, the probability for k
heads out of o throws of a coin that has probability p o give heads and 1-p to give tails.

Chemoreceptor -— A receplor that responds to the presence of a particular chemical,

Chemotaxis — Movement up spatial gradients of specific chemicals (attractants), or down gradients of
specific chemicals (repellents).

Chromosome — A strand of DNA, with associated proteins, found in the nucleus; carries genetic
information.

Circadian rhythm — A daily rhythmical cycle of cellular activity. Generated by a biochemical oscil-
lator in many diflerent cells in animals, plants, and microorganisms. The oscillations can be
entrained by periodic temperalure and light signals. The oscillator runs also in the absence of
entraining external signals (usually with a pericd somewhat different than 24 h).

Codon — Three consccutive letters on an mRNA. There are 64 codons (cach made of three letters, A,
C. G, and U}, These code for the 20 amino acids (with most amino acids represented by more
than one codon). Three of the codons signal translational stop {end of the protein),

Coherent feed-forward foop — A feed-furward loop in which the sign of the direct path from X to Z is
the satne as the sign of the indirect path from X through Y to 7.

Coherent patiern — A pattern with signs on the cdges, in which, for each pair of nodes, the sign of all
dirccted paths between the nodes is the same.
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Cost-benelit analysis -— A theory that seeks the optimal design such that the difference between the
fitness advantage gained by & system (benefit) and fitness reduction due to the cost of its parts
is maximal.

Cytoplasm — The viscous, semiliquid substance contained in the interior of a cell. ‘The cytoplasm is
densely packed with proteins.

Degree-preserving random networks — An ensemble of randomized networks that have the same
degree sequence (the number of incoming and outgoing edges for each node in the netwark)
as the real network, espite the fact that the degree sequence is the same, the identity of which
nade connects to which other node is randomized. Such random networks can be generated
an the computer by randomly switching pairs of edpes, repeating the switching operations
many times until the network is randomized. For a given real netwark, many thousaixds of dif-
ferent randomized degree-preserving networks can usually be readily generated.

n - In this book, desigh means structure as related to function.

Developmiental transcription networks — Networks of transcription interactions that guide changes
in celt type. Important examples are networks that guide the selection of cel! fate as cells
in the embryo differentiate into tissues. Developmental transcription networks work on the
timescale of cell generations and often make irreversible decistons. They stand in contrast (o

sensory transcription networks that govern responses to environmental signals.

Differentiation - - The process in which a cell changes to a different type of cell,

DNA (deoxyribonucleic acid) — A long molecule composed of two interconnected helical strands.
Contains the genetic information. ach strand in the DNA is made of four bases, A, C, T, and
(. The two strands pair with cacl: other so that A pairs with T, and C with G. 'Thus, DNA s
made of a chain of base-pairs and can be represented by a string of four types of letlers.

Dorsal — Side of an animal closer to its back.

Drosophila — Fruit fly, a model organism commonly used for biological research.

LEdge — A link between two nodes in a netwaork, Edges describe interactions between the components
described by the nodes. Edyes in most networks have a specific direction. Mutoal edges are
edges that link nodes in boih directions, See transcription network for an example.

Endocytosis — Uptake of material into a ccll.

Enzyme — A protein that facilitates a biochemical reaction. ‘The enzyme calalyzes the reaction and
does not itsell become part of the end product.

ER {Erdos-Renyi) random networks — An ensemble of random networks with a given number of
nodes, N, and edges, £, The edges are placed randomly between the nodes, ‘This model ¢an be
used for comparison 1o real networks. A more stringent random model is the degree-presery-
ing random network.

E

E. coli (Escherichia coli) — A rod-shaped bacterivm normally found in the colon of humans and other
mammals. It is widely studicd as a model organism.

Fukaryotic cells and organisms — Organisms made of cells with a nucleus. Includes all forms of fife
except for viruses and bacteria (prokaryotes), Yeast is a single-celled cukaryotic organism.

Exact adaplation (precise adaptation) — A property of an adapting sensory system in which the
steady-state output is independent of the stimulus level.

Exponential phase — A phasc of bacterial growth in which cells double with a constant cell generation
time, resulting in exponentially increasing cell numbers. This occurs in a test tube when there
are so few cells that nutrients are not depleted from the medium, and waste products do not
accumulate to high levels, Sce afso stationary phase.

ror load — The reduction in the organisnt’s fitness doe tointernal errors in a system,

Feedback — A process whereby some proportion or function of the output signal of a system is passed
(fed back) ta the input.

Feedback inhibition -— A common control mechanisi in metabolic networks, in which a product
inhibits the first enzyme in the pathway that produces that product.
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Feed-forward loop (FIL) — A pattern wilh three nodes, X, Y, and 7, in which X has a directed edge to Y
and 7, and Y has a directed edge to 7, The FEL s a network motil in many biological networks,
and can perform a variety of tasks (such as sign-sensitive delay, sign-sensitive acceleration, and
pulse generation). . A

Fine-tuned property —— A property of a biological circuit that depends sensitively on the biochemical
parameters of the circuit (opposite to robust property).

First-order kinetics — Mathematical description of the rate of an enzymatic reaction in the limit
where the substrate concentration is very low and is far from saturating the enzyme, such that
the rate is equal to (W/K) B S, where vis the rate per enzyme, E is the enzyme concentration,
K is the Michactis constant, and § is the substrate concentration. See also Michaelis-Menten
kinetics, zero-order kinetics. .

Flagellum (plural flagella) — A long filament whase rotation drives bacteria through a fluid medium.
Rotated by the llagellar moter. -

Functionalism — The strategy of understanding an arganism’s structural or behavioral (eatures by
attempting 1o establish their uselulness with respect to survival or reproductive success.

Gene — ‘The functional unit of a chromesome, which directs the synthesis of one protein {or several
alternate forms of a protein). The gene is transcribed into mRNA, which is then translated
into the protein. The gene is preceded by a regulatory DNA segion called the promoter that
includes binding sites for transcription factors that regulate the rate of transcription.

Gene circuit — A term used in this bouk to mean a set of biomolecules that interact to perform a
dynamical function. An exampleis a feed forward loop.

Gene product - The protein encaded by a gene. Somelimes, the RNA transcribed from the gene, when
the RNA has specific functions.

Generation time --- Mean time for an organism to produce offspring.

Genetic code — The mapping between the 64 codons and the 20 amine acids. The genetic code is iden-
tical in nearly all organisms (Figure 9.2).

Genetic drift - The statistical change over time of gene frequencies in a populalion due to random
sampling effects in the formation of successive generations.

Genome — The total genctic information in a cell or arganism.

Glucose — A simple sugar, a major source of energy in metabolism.

Hertz (HHz) — A cycle per second, a measure of frequency.

Homeostasis — The process by which the organism's subslances and characteristics are maintained at

their optimal level.

Homologous — Similar by virtue of a common evolutionary origin. Homologous genes generally show
similarity in their sequence.

liormone — A chemical substance liberated by an endocrine gland that has effects on target cells in
other vrgans.

Immune system — 'Ihe system by which the body protects itself from foreign proteins. In response to
an infection, the white blood cells can praduce antibodies that recognize and attack invading
microorganisms. )

Incoherent feed-forward Joop — A feed-forward loop in which the sign of the direct path from X 1o 7
is the opposite as the overall sign of the indirect path from X through Y to 7. ,

Incoherent pattern — A paltern with signs an the edges, in which there exists a pair of nodes wn.h
two different directed paths between these nodes, such that the overall sign of the paths is
different. .

Integral feedback -~ Feedback on a device in which the integral over time of the error {output minus
the desired output) is negatively fed back into the input of the device. Integral feedback can
lead to robust exact adaptation.

Lac operon — A group of three genes in B, coli that are adjucent on the chromosome and TT(\II\SL'l'iITC(I
on the same MRNA. These genes are lacZ YA, encoding for the metabolic enzyme LacZ, which
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cleaves lactose into glucose and galactose; the permicase (pump) LacY, which pumps lactose into
the cells; and LacA, whose function is unknown. Lactose is not pumped into the cells if glucose,
a beller eneryy source, is present, a phenomenon called “inducer exclusion”. The e aperon is
repressed by Lacl and activated by CRE. Lacl unbinds from the BNA and the system is induced
in the presence of lactose (Lacl binds a derivative of lactose called alle Tactose) (1;' non-metaboliz-
able analogs of factose, such as 1PTG.

Lactose - A sugar utilized by E. coli as an energy and carbon source, using the lac genes expressed
fromy the lae operon,

Ligand — A molecule that specificatly binds the binding site of a receptor.

Mathematically controfled comparison — A comparison between mechanisms that is carried out
with cquivalence of as many internal and external parameters as possible between the alter-
native designs (Savageaw, 1976). Internal parameters include biochemical parancters, such as
the lifetime of the proteins that make up the cirenit, and external parameters include desired
oulput propertics, such as steady-state levels.

Membrane — A structure consisting principally of lipid molecules that define the outer boundarics of
acell

Membrane potential — ‘The dificrence in electrical potential inside and outside of the cell expressed as
valtage relative o the outside voltage. Membrane potential is maintained by protein pumps
that transport ions across the membrane at the expense of cnergy supplied by ATP,

Michaelis—-Menten kinet

— A mathematical deseription of the rate of an enzymatic reaction as a
function of the concentration of the substrate. The rate is cqual to v /(K + S), where v is the
rate per enzyme, Fis the enzyme concentration, § is the substrate concentration, and K is the
Michaelis constant, When § = K, one obtains zero-order kinetics {rate = v E), and when § <<
K, one obtains first order kinetics {rate = (v/K) E §).

Micron — One millionth ol a nxeter,

Modularity - - A property of a system which can be separated into nearly independent sub-systems.

Morphogen — A molecule (protein) that determines spatial patterns, Morphogens bind specific recep-
tors te trigger signal transduction pathways within the cells to be patterned. ‘The signaling
leads the cells to ussume different cell fates according to the morphogen level,

Morphology — Physical shape and structure.

mRENA -~ A macromolecule made of a sequence of four types of bases, A, C, G, and U. Transcription
is the process by which an RNA-polymerase enzyme produces an mRNA molecule that cor-
responds to the base sequence on the LINA (where DNA T is mapped 10 RNA U). The mRNA
is read by ribosonies, which produce a protein according to the mRNA sequence.

Mutation — A heritable change in the base-pair sequence of the chramosone.

Network motif — A pattern of interactions that recurs in a network in many contexts. Network maotifs
can be detected as patterns that vccur much more often than in randomized networks.

Neuron {nerve cell) — Cell specialized 1o receive, transmit, and conduct signals in the nervous system.

Nucleus — A structure enclosed by a membrane found in enkaryotic cells (not in bacteria} 1hat con-
tains the chromosomes,

Operon — A group of genes transcribed on the same mRNA. Each genc is separalely translated. Oper-
ons are found only in prokaryotes.

Peptide — A chain of amine acids joined together by peptide bonds, Proteins are long peptides.

Point mutation — A change of a single letter (base-pain) in the DNA.

Paisson distribution —— A distribution that characterizes a random process such as the number of
heads in a coin-toss experiment, with mauy tosses, N, and a smal] probability for heads, p <<
1. The mean number of heads is m = p N. The variance in a Poisson process is cqual to the
mean, o= m, and hence the standard deviation is the square roet of the mean, o = ¥m |

Promoter — A regulatory region of IDNA that contrals the transcription rate of a gene. ‘The promoter
containg a binding site for RNA polymerase (RNAp), the enzyme thal transcribes the gene o
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produce mRNA. Lach promoter alse usually contains binding sites for transcription factor
proteins; the transeription factors, when bound, allect the probability that RNAp will initiate
transeription of an mRNA.

Protease — An enzyme thal degrades proteins. Proteins are often targeted for degradation in biologi-
cally regulated ways. For example, many cukaryotic proleins are targeted for degradation in
the proteosome by enzymes that attach a chain of ubiquitin molecules to the target protein.
Different prateins can have diiterent degradation vates.

Protein — A long chain of amino acids {on the order of 1ens 1o hundreds of amino acids) that can
serve in a structural capacity or as an enzyme. Each protein is enceded by a gene, Proteins are
produced in ribosomes, based on information encoded onar mRNA that is transcribed from
the gene.

Protein kinase — An enzyme that attaches a phosphate (PO,) group to a protein and thereby causes it 1o
change its shape.

Receptor -~ A protein molecule, usually situated in the membrane of the cell, that is sensitive to a par-
ticular chemical. When the appropriate chemical (the ligand) binds to the binding site of the
receptor, signal transduction cascades are triggered within the cell,

Repression threshold — Concentration of active repressor needed for half-maximal repression of a
gene.

Repressor — A transeription factor that decreases the rate of transcription when it hinds a specific site
in the promoter of a gene.

Ribosome — A structure in the cytoplasm made of about 100 proteins and special RNA molecules that
serves as the site of production of proteins transtated from mRNA. In the ribosome, amino
acids are assembled to form the protein chain according to an order specified by the codons
on the mRNA. The amino acids are brought into the ribosome by tRNA molecules, which
read the mRNA codons. Each tRNA is released when its amino acid is linked to the translated
protein chain.

RNA Polymerase (RNAp) — A complex of several proteins that form an enzyme that transcribes [INA
into RNA,

Robust Property — Property X is robust with respect to parameter Y, i X is insensitive (o changes in
parameter Y.

Sensitivity (Parameter sensitivity) -— ‘The parameler sensitivity coeMcient of property X wilh respect
ta parameter Y upon a small relative change in Y is

S(x,y)= SlogX Y dX

dlngY X dY

Sensary transeription networks — ‘Transcription networks that respond to envirommental and inter-
nal signals such as nutrients and stresses, and lead to changes in gene expression. "These net-
works need to function rapidly, usually within less than a cell generation time, and usually
make reversible decisions, They stand in contrast to developmental transcription networks,

Stationary phase — A state in which cells cease to divide and grow, that occurs when grow(h condi-
tions are unfavorable, such as when the bacteria run out of an essential nutricat. See also
exponential phase.

Teleology — The usc of design or purpose as an explanation of natural phenomena.

Transcription factor — A protein that regulates the transcription rate of specific target genes. Tran-
scription factors usually have two molecular states, active and inactive. They transit between
these states on a rapid timescale {e.g., microseconds). When active, the transcription factor
binds specific sites on the IXNA 1o aflect the rate of transcription initiation of target genes.
Also called transeriptional regulator, See aclivator, repressor.

Transcription network — ‘Lhe sct of transcription interactions in a cell. The network is made of nodes
linked by direeted edges. Each node represents a gene {or, in bacteria, an operan). Fach edge
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is a transcriptional interaction. X & ¥ means that the protein encoded by gene X is a tran-
scription factor that transcriptionally regulates gene Y.

XOR pate {exclusive OR) - A logic function of two inpuls that outputs a ane it either, but not both,
inputs ts equal to one,

Yeast — A single-celled cukaryote, a unicellular fungus. In this book, usually the budding yeast Sac-
charomyces cerevisae. Yeast is used for brewing and bread making and is a well-studied
research model erganism.

ZYero-order kinetics — Mathematical deseription of the rate of an engymatic reaction in the hmit
where the substrate concentration is saturating, such that the rate is equal to v E, where v is

the rate per enzyme and Eis the enzyme concentration. Sce alse Michaelis-Menten kinctics,
first-order kinetics.
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incoherent, 47, 57, 65, 98-99, 103
multi-input, 81, 122, 124, 127, 229
multi-output, 75, 81, 83, 87, 104, 234,
259
as persistence detector, 52, 53, 70, 125
as pulse generator, 57, 58, 62, 70, 233
as response aceeleratar, 63, 70, 233
as sign sensitive delay, 50, 52, 54, 70
steady-state logic of, 67
three-nade, 42
types of, 41, 47, 48, 65, 70, 98-94

as uninterrupted input source, 87

FFL, see Feed-forward loop
Field, 159

FIFO, see Tirst in first ont
Fine-tuned model, 143
Fine-tuned property, 146
First in first out (FIF(), 81, 83, 87
First-order kinctics, 108, 251
Fiest-order linear regime, 245
Fitness function, 193, 194, 197
Fixation of mutants, 222--223
Flagella, 56, 83, 86, 137
French flag model, 159

Fruit fly patterning, 166172
¢

Genels)
homologous, 69
input function, 247
low- demand, 216
system, demand for, 217
Gene circuit design, optimal, 193-214
environmental selection of feed-forward loop
network motif, 203-207
optimal expression level of protein under
constant conditions, 194-200
benefit of LacZ protein, 195-196
cost of LacZ protein, 196-197
fitness function and optimal expression
ievel, 197-199
optimal regulation in variable environments,
201-203
Generalization, 113
Gene regulation, demand rules for, 215-231
demand rules for multi-regulator systems,
223-228
rules for gene regulation based on minimal
crror load, 220-222
Savageau demand rule, 217-220
Genetic code, 175, 176, 177, 191
GFP, see Green fluorescent protein
Global regulators, 77, 258

Graceful degradation, 113
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Green fluorescent protein (GEP), 11, 25, 36, 63,
73,86

Cirowth factors, 104

i

High demand system, 217

Hill cocflicient, 13, 39, 247

Hill function, 13, 32, 245
Hlistorical accident, 222-223, 230
Homeoslasis, 116

Homologous genes, 69

Hubs, 258

Hysteresis, 117

/

Inceherent YFL, 47, 57, 65
[n-degree distribution, 258
Individuality, 149-151
Inducer exclusion, 224
Input function, 13
Integral feedback, 149, 154, 155, 156, 237
Integrate and fire model, 123
Inverse ccology, 207
Ising models, 247
K
Kinase cascades, 106-111
Kinase -recepler complex, 144
Kinetic proofreading, 175-191
diverse recognition processes in cell,
187-188
in DNA repair, 187
in protein degradation, 187
recognizing self and non-self by immune
system, 182-187
i

Laboratary evolution experiment, 199
lge system, 16, 194, 204, 223, 241
LacZ protein, 195, 196, 224

Last in first out (LIFO), 78, 79, 81
Leakiness, 58, 247

LIFO, see Last in first out

Ligands, 104, 141

Lock-on mechanism, 99
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Lagic approxinution, 15
Logic input function, 14, 15
Low-demand genes, 216, 217

A

MAP Kinase cascades, 106111
Mathematically centrolled comparison, 33, 34
Mean connectivity, 43,45, 258
Methylation modifications, 142
Miinder, 45
Michaclis--Menten equations, 143, 241.-252

Michaelis -Menten enzyme kinetics,

250 251

Monod, Changeux, and Wymann medel, 247
Model(s)

Barkai-Leibler, 146-148, 150

Lrdos-Renyi, 29

fine-tuned, 143

French flag, 159

integrate and fire, 123

Ising, 247
Modularity, 2, 234

1 engineering, 2338

of genes and promoters, 11

quantitative measure of, 259

spuntaneous evolution of, 235--236
Morphogen(s), 159

degradation, sell-enhanced, 163, 165

French flag model, 159

patterning model, 159

robustness of profiles, 161
Motif(s), see wlso Network motif
Multi-dimensional input functions, 16, 253-255
Multi-layer perceptrons, 98, 106

discrimination, {13

generalization, 113

graceful degradation, 113

in neuronal networks, 125

in signaling networks, 106, 127
Multiloutput FFL, 81, 83, 84, 87
N

Negative autoregolation, 27, 30, 33
Netwark(s)

degree sequence of, 46

developmental transeription, Y7
edges, 8
mean connectivity of, 43, 258
muodularity, quantitative measure of, 259
neuronal, 98
nodes, 8
randomized, 27
rate limited, 91
sclf dissimilazity of, 89
sensory transcription, 5, 7, 98
signals, 8
sparse, 43, 257
Network motif{s), 2, 27, 89, 203, 233, see also
Autoregulation
C. clegans, 119
compaosite, 115 117, 127
FFLas, 45
information processing functions, 41
occurrence of, 31
Network motifs in developmental, signal
transduction, and neuronal networks,
97-134
composite network motifs, 105 -117
developmental transcription networks,
98-103
interlocked feed-forward lovps in B. subtilis
sporulation network, 102-104
long transcription cascades and
developmental timing, 102
regulating feedback and regulated
feedback, 101-102
two-node positive feedback loops for
decision making, 99-100
information processing using multilayer
perceptrons, 106-115
multi-layer perceptrons performing
detailed computations, 111-115
netwerk motifs in the neuronal network of €.
clegans, 118-126
multi-input FEL in neuronal networks,
122-125
multi-layer perceptrons in the C. elegans
ncuronal network, 125--126

signal transduction networks, 104 -105

Neural netwaorks, artificial, 106

Neuronal network{s), 98, sce alse Network motifs

in developmental, signal transduction,

and neuronal networks
C. clegans, 118- 126
higher arganisms, 126

network motifs in, 126

Naise {cell-cell variability), 34-37, 52, 135,

119-150, 261-264
cascades and, 263
error load of, 230
extrinsic, 261
intrinsic, 261
negalive auto-regulation and, 262

positive auto-regulation and, 263

O

One-dimensional ditfusion, 242

ON pulses, persistence detector for, 52
Operons, 10

Optimality and evolution, 193-194
Oscillators, biological, 80, 147, 119
Qut-degree distribution, 258

P

Parameter sensitivity, see Sensitivity
Persistence detector, for ON pulses, 52
Phage lambda, 63, 100
Phoesphatase, 107
importance for signal timing, 133
rates, 110, 133
Phosphorylation, 106-108, 141
Piecewise expanential dynamics, 58
Positive control, 12
Preferential attachment, 258
Production- degradation equation, 32
Promoter, 8, 9, 243
Protein(s)
degradation, 19, 187
kinase cascades, 105, 106, 107, 130
Kinase temporal signals, 130
lag, 224
LacZ, 195, 196

~protein interactions, 115

INDEX

stahle, 21
Pulse generator, 58, 62

Q

Quorum-sensing, 85

R

Randomized networks, 27
Rate limited networks, $1
Receptors, 104, 141
Redundancy, 113
Regulated feedback, 104
Repelients, 136, 142
Repressilatar, 63,73, 117, 119
Repression, 12
Repression coefficient, 15, 243
Repressor(s), 8, 244
cascade, 94, 102
Response timy, 18
acceleration of, 34, 37, 62, 64
definition of, 19
degradation and, 20, 34, 64
11-FF1, 61, 62
limits of, 21, 62
in negative avtoregulation, 31, 63
positive auteregulation, 37
in simple gene circuits, 21, 31
of stable proteins, 21
transcription interactions, 27
Reverse engineering, 239
Ribosome, 6, 18, 62, 176, 237
RNAp, see RNA polymerase
RNA polymerase (RNAp), 8, 66
Robustncss
bacterial chemotaxis, 135-157
definition of, 135
to mutations, 258
negative autoregulation and, 34

of temporal programs, 94

Robust patterning in development, 159-174

exponential morphagen profiles are not

robust, 161-162

increased robustness by self-enhanced

morphogen degradation, 163165
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nctwark maotifs that provide degradation
feedbuck for robust patterning,
165 106 /

robustness principle distinguishing between
mechanisms of fruit fly patterning,

166-172

Saccharomyces cerevisae, see Yeast

Savagean demand rule, 217, 228

Scale free networks, 258

Scaling relation, 44

Scll-dissimilarity of networks, 89

Self-edges, 30

Self-enhanced degradation, 163, 164, 165, 237

Sumilivi!y. 39, 141, 160, 186

Sensory transcription network, 98

Separation of timescales, 9-12, 31, 98, 141, 234

Serial dilution, 199

Signal{s)

duration, 132
intergration and combinatorial control, 88-89
network, §

Signal transduction networks, 11, see also
Network motils in developmental,
signad transduction, and neuronal
networks

developmental transcription networks and, 91
multi-layer perceptrons in, 106

network motifs in, 104

timescale of, 104 -105

Sign-sensitive delay, 52

SIM, see Single input module

Simplicity, 1, 2, 69, 88, 233

Single input module (§TM), 75, 76

evolution of, 80-81
temporal programs and, 77-80

Sparse networks, 43, 257

Sporulation, 103

Stability, 92, 116, 238, 262

Syathetic bialogy, 63

Synthetic gene circuits, see Synthetic biology

T-cell

receptor, 183, 186

recognition, kinetic proofreading and,

185

Temporal programs of expression, 77, 79
‘Thermodynamic box, 189

‘Third-base wobhble, 191

‘Ihreshold of activation, 110

Topgle swiich, 63, 127

Topelogical generalizations

of diamond, 106

T'FL, 81,83, 122

of motifs, 81

Transcription, Y

factors, 7

interactions, response time of, 27

Transcriptional activators, 8, 248

Transcription networks, §-25

clustering coefficients of, 259
cognitive problem of coll, 5-7
developmental, 37, 91, 97, 98, 127
dynamics and response time, 18-22
E. cofi, 30

clements of transcription networks, 7-18

activators and repressors, 12
input function, 13..15

logic input functions, 15-16

multi-dimensional input fenctions, 16

separation of timescales, 9-12
graph praperties of, 257-260
clustering coefficients, 259

degree sequences, 257-259

quantitative measures of modularity,

259-260

temparal programs and global structure of,

75-95

Stable proteins, 21 tRINA

Step function, 15

Subgraphs, 42

-cadon interaction, 189

formation process, error rate in, 187

e ——— e

INDEX

U

Ubigquitin, kinelic proofreading and, 187
Understandability, of circuit patterns, 104

Uniaterrupted input source, §7

1%

Variability, see Nuise

¥

Yeast, 6, 12, 45, 48, 57, 84, 89, 911,91, 116, 121, 135,
223
7z

Zero-order kincties, 131, 251

Zero-order ultrasensitivity, 156, 157
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