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Differential molecular interactions of j -catenin and plakoglobin 
in adhesion, signaling and cancer 
Avri Ben-Ze'ev* and Benjamin Geiger 
Plakoglobin and ~-catenin are homologous proteins functioning 
in cell adhesion and transactivation. Their activities are 
controlled by three types of interactions: those with cadherins 
in adherens junctions, linking them to the actin cytoskeleton; 
interactions in the nucleus, where they bind to transcription 
factors and stimulate gene expression; interactions of free 
cytoplasmic ~-catenin with axin and adenomatous polyposis 
coil (APC) protein which target it for degradation. Studies in 
the past year have demonstrated the complex interplay 
between these three types of interactions and the different 
behavior of 13-catenin and plakoglobin in their involvement in 
morphogenesis and tumorigenesis strongly suggesting that 
catenins play key roles in adhesion-mediated signaling. 
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Abbreviations 
APC adenomatous polyposis coli 
GBP GSK binding protein 
GSK glycogen synthase kinase 3~ 
HMG high mobility group 
LEF lymphoid enhancer binding factor 
NLS nuclear localization sequence 
TCF T-cell-specific factor 
Wg Wingless 

I n t r o d u c t i o n  
Adhesive interactions of cells exert major long-term 
effects on cell shape, organization of the cytoskeleton and 
cell fate. The  most obvious effect of adhesion is on mor- 
phogenesis, that is the assembly of individual cells into 
highly ordered tissues through cell-cell and cell-matrix 
interactions ([1,2] and Figure 1). These adhesions are 
mediated by transmembrane cell adhesion receptors of the 
cadherin and integrin families, which link cells to each 
other or to the matrix [1,3,4]. In cell-cell junctions, effec- 
tive adhesion also depends on the association of the 
relevant membrane  receptors with the cytoskeleton 
through specific 'anchor proteins', including 0t-, I]- and y- 
catenin (plakoglobin) [5,6,7°]. Recent studies have 
provided compelling evidence that, besides their direct 
role as physical linkers of the actin cytoskeleton to cad- 
herins, catenins can also play a central role in signal 
transduction and the regulation of gene expression 
(Figure 1). This has opened the way for very rapid and dra- 
matic progress in our understanding of the interplay 

between cell adhesion, cytoskeletal structure and gene 
expression, and has also significantly contributed to the 
unraveling of mechanisms that govern the concerted 
behavior of cell populations in embryonic and adult tis- 
sues. We will address here the localization, function and 
fate of 13-catenin and plakoglobin, members of a group of 
'moonshining proteins' that can interact with different 
partners in distinct subcellular compartments, and which 
have a dual role: one in the assembly of adherens junctions 
and the other in the Wingless (Wg)/Wnt signaling pathway, 
affecting embryonal axis specification in both insects and 
vertebrates (for recent reviews see [8°-10"]). We will 
describe the recent developments in our knowledge of the 
involvement of lS-catenin and plakoglobin in this interplay 
between cell adhesion and signal transduction and discuss 
their role in tumor development in humans. 

M e m b r a n e  assoc ia t ion  of  13-catenin and  
p lakog lob in :  the  j u n c t i o n a l  c o n n e c t i o n  
Immunofluorescence analysis of cultured cells and of 
intact epithelial and endothelial tissues has revealed a dis- 
tinct submembranal staining for [8-catenin, similar to that 
of other adherens junction components, including the clas- 
sical cadherins. At these submembranal sites I]-catenin is 
anchored to the cytoplasmic tail of cadherin and, via 0t- 
catenin, to the actin cytoskeleton. The  association with 
the cytoskeleton is mediated via either ~-actinin [11] or 
vinculin [12",13"]. In some cases, diffuse cytoplasmic 
staining for [8-catenin can also be seen, which is compati- 
ble with the observation that a significant fraction of this 
protein is associated with the soluble cytoplasmic pool that 
can be extracted with nonionic detergent [14°,15] (see 
below). Plakoglobin is also associated with adherens-type 
junctions and, in addition, it is present in desmosomal 
junctions of epithelial cells. The  'free' cytoplasmic pool of 
plakoglobin is usually small. Cadherin-[3-catenin interac- 
tion is critical for junction formation, since mutant 
cadherin with a deleted catenin-binding domain is unable 
to mediate cell-cell adhesion (for review see [51). 

R e g u l a t i o n  of  I~-catenin d e g r a d a t i o n :  the  
A P C / a x i n / G S K  c o n n e c t i o n  
The  cellular levels of [3-catenin are constitutively down- 
regulated by a component of the Wnt signaling pathway, 
glycogen synthase kinase 313 (GSK). This enzyme phos- 
phorylates [3-catenin on specific serine and threonine 
residues [16], preparing it for degradation by the ubiqui- 
t in-proteasome system (Figure 1). Another essential 
component directly involved in regulating l~-catenin sta- 
bility, adenomatous polyposis coli (APC) protein, was first 
identified as a major tumor suppressor protein involved in 
predisposition to colon carcinoma in humans (reviewed in 
[17"l). APC and GSK can form a complex that also 
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The different molecular interactions of I~-catenin in Wg/Wnt signaling and cell adhesion. When Wnt signaling is activated, by binding of Wnt to the 
Frizzled (Frz) family of receptors, the dishevelled (dsh) protein is hyperphosphorylated and recruited to the membrane area. Activated dsh inhibits 
glycogen synthase kinase 31~ (GSK) action, which normally phosphorylates (P) I~-catenin (1~) and directs it together with adenomatous polyposis 
coil (APC) and axin family members to degradation by the ubiquitin-proteosome system. Decreased degradation of ~-catenin leads (dashed arrow) 
to its accumulation, nuclear translocation and association with lymphoid enhancer binding factor/T-cell-specific factor (TCF) transcription factors, 
leading to the activation of gene expression. This 'linear model' can vary, as suggested by recent studies in Drosophila, Xenopus and 
Caenorhabditis elegans (see [33 °] for review). In addition to its role in Wg/Wnt signaling, ~-catenin is a major component of the cadherin-catenin 
adhesion system that links cadherins via ~-catenin (o~) to the actin cytoskeleton. By varying the level of I~-catenin partners in the adhesion system, 
the role of ~-catenin (1~) in signaling can be significantly affected. Wg/Wnt can also apparently influence cell adhesion by mechanisms that are 
unknown yet. 

includes I]-catenin and possibly additional proteins of the 
axin family (see below). Phosphorylation of APC and 
~-catenin is involved in their binding to each other [18] 
and in the degradation of ~-catenin by the ubiquitin-pro- 
teasome system [19"',20,21"]. Mutations in the 
amino-terminal region of I~-catenin, which contains con- 
sensus sites for serine phosphorylation by GSK, can 
stabilize 13-catenin against this degradation [16,19"',22] in 
an APC and Writ signaling-independent manner. 
Accumulation of ~-catenin can also result from mutations 
in the 13-catenin-binding site of APC which block 
[3-catenin degradation [17",23]. 

Additional components of the 13-catenin-APC complex 
which also negatively regulate the level of I]-catenin are 
members of the recently described axin family 
[24"',25"-31"1. Axin interacts with [3-catenin, APC and 
GSK, stimulating GSK-dependent phosphorylation and 

degradation of [3-catenin. Axin is believed to act as a scaf- 
fold for this four-part complex, facilitating APC and 
~-catenin phosphorylation by GSK. The  involvement of G 
proteins in this process is also implicated, since the regula- 
tor of G-protein signaling domain of axin directly interacts 
with APC [29"]. In addition, a recently identified new com- 
ponent, GSK binding protein (GBP), was shown to inhibit 
GSK phosphorylation when injected into Xenopus embryos, 
bringing about an elevation in ~-catenin levels that results 
in axis duplication [32"]. Interestingly, GBP has high 
homology to proto-oncogenes of the FRAT family 
described in T-cell lymphoma [32"'], suggesting that GSK 
may also play a role in tumorigenesis. 

13-Catenin and Wnt signaling: the basic facts 
The  intricate negative regulation of [3-catenin levels by 
the Wnt/Wg signaling pathway is highly conserved 
throughout evolution from insects to vertebrates and is 
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primarily effective during embryonic development (for 
recent reviews see [8",33"]). The  main events during this 
signaling include association between members  of the 
Wg/Wnt family of secreted glycoproteins and their trans- 
membrane receptors, the Frizzled family (Figure 1). This, 
in turn, leads to phosphorylation and activation of the 
Dishevelled (Dsh) protein, which is recruited to the cell 
membrane [34,35]. Activated Dsh can inhibit GSK activi- 
ty, stabilizing and elevating the levels of extrajunctional 
(soluble) 13-catenin. Increased levels of ~-catenin lead to 
its nuclear translocation and the activation of Wg/Wnt 
responsive genes by a bipartite transcription factor con- 
sisting of ~-catenin and members  of the lymphoid 
enhancer  binding factor (LEF)/T-cell-specif ic  factor 
(TCF)  family. This  sequence of events was recently 
shown to be also followed in cultured 3T3 cells transfect- 
ed with Wnt-1 [36"]. 

Nuclear translocation of I~-catenin and its role 
in transactivation 
The  presence of nuclear 13-catenin, especially in transfect- 
ed cells expressing large amounts of the protein, was 
noticed some time ago, and usually dismissed as 'nonspe- 
cific labeling'. It is now established that the nuclear 
translocation of [~-catenin is a highly specific process which 
is essential for its transcriptional activity. Using a perme- 
abilized cell system [37"] it was demonstrated that 
I$-catenin can dock onto the nuclear envelope in the 
absence of other cytoplasmic factors, and this process is not 
inhibited by classic nuclear localization sequence (NLS)- 
containing peptides and does not require either importins 
or karyopherins that serve as receptors for NLS. It appears 
that ~-catenin and importin-1[~/13-karyopherin interact via a 
homologous domain with common nuclear pore compo- 
nents in an NLS-independent  manner [37"]. It remains to 
be determined how the activation of Wnt signaling induces 
the specific nuclear import of I~-catenin. 

The  accumulation of cytoplasmic ~-catenin is an important 
step in its nuclear translocation and complex formation 
with members of the family of the high mobility group 
(HMG) architectural L E F / T C F  transcription factors 
[38--40]. This discovery, was a major advance in our under- 
standing of the role of [3-catenin in the downstream steps 
of Wnt/Wg signaling. Since L E F / T C F  overexptession was 
shown to drive some of the endogenous 13-catenin into the 
nuclei of cultured cells and of two cell mouse embryos 
[14",38-40], and since T C F  overexpression mimics Wg 
hyperstimulation [41"], it was originally thought that 
[~-catenin, which lacks a consensus NLS, could translocate 
into the nucleus in a complex with L E F / T C E  It was pos- 
tulated that such a complex between L E F / T C F  and 
13-catcnin was formed in the cytoplasm. This, however, 
does not appear to be the favored mechanism for 13-catenin 
nuclear translocation, because the majority of this protein 
still accumulates in the nuclei of cells expressing mutated 
[3-catenin that cannot bind L E F / T C E  Furthermore, in 
cells expressing [3-catenin at very high levels with only 

small amounts of L E F / T C E  I$-catenin still accumulates in 
the nucleus [14",41",42]. 

Association between 13-catenin and members  of the 
L E F / T C F  family members in the nucleus is sufficient to 
activate the expression of synthetic reporter genes con- 
taining a L E F / T C F  binding site [14",39,40], and of several 
genes containing such sequences in their promoter region 
[41",43"'1. In Drosophila, and in some cases in Xenopus, 
these L E F / T C F  binding sequences are required for 
Wg,/Wnt signaling. In addition, Wnt overexpression in 
mammalian cells was demonstrated to lead to an increase 
in cytosolic l~-catenin levels [441, an induction of serum- 
independent cellular proliferation, and activation of a 
synthetic L E F / T C F  element 145"]. L E F / T C F  family 
members can bind to this consensus DNA motif by their 
carboxyl terminus and induce a bend in the DNA, but can- 
not by themselves activate transcription. The binding 
between the amino terminus of L E F / T C F  members and 
the armadillo repeat domain (see below) of [3-catenin was 
shown to relieve this bending [39], and the carboxyl termi- 
nus of ~-catenin was shown to act as the transcriptional 
activator of this bipartite transcription factor [14",43"']. 

The  candidate genes for regulation by the L E F / T C F - ~ -  
catenin complex are, first of all, those that are known to be 
influenced by the Wg/Wnt pathway. The  Wnt target gene 
Siamois in Xenopus was shown to contain T C F  binding sites 
in its promoter [46",47] and in Drosophila, engrailed and 
ultrabithorax were show to contain such motifs in their pro- 
moter region [41"'1. In mammalian cells, E-cadherin has 
been shown to contain a LEF-1 consensus sequence in its 
promoter [38], but its significance for the regulation of E- 
cadherin expression and function is unclear. 

Plakoglobin and I~-catenin: nonidentical twins 
In vertebrates, two proteins closely related to the 
Drosophila armadillo protein are expressed: [~-catenin and 
It-catenin (plakoglobin) [48,49]. The  three proteins are 
highly homologous, especially in their central part, which 
consists of so-called armadillo repeats [49,50]. Plakoglobin, 
like [3-catenin, interacts with a multitude of proteins, 
including classical cadherins [51], 0t-catenin [52], the actin 
bundling protein fascin [531, axin [25"-31"], APC [54] and 
L E F / T C F  transcription factors [14",38]. The levels of 
both plakoglobin and 13-catenin were shown to be elevated 
when the ubiquitin-proteasome degradation system was 
inhibited [14",19"'], and the rise was followed by nuclear 
accumulation of both proteins [21"]. It was noted, howev- 
er, that plakoglobin is less sensitive to this proteolytic 
regulation, and in contrast to 13-catenin, stable overexpres- 
sion of plakoglobin in cells lacking cadherins and catcnins 
can readily be obtained [14",55]. In addition, although 
LEF-1 overexpression in MDCK cells was shown to result 
in nuclear translocation of endogenous ~-catenin [14",391, 
plakoglobin remained junctional under these conditions 
[14"], suggesting that the two proteins differ in their tran- 
scription factor specificity. The  phenotypes in knockout 
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Figure 2 
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The effects of plakoglobin, cadherin and 
~-catenin on ~-catenin level and function. (a) 
A moderate increase in plakoglobin (PG) level 
could lead to the displacement of ~-catenin 
(~) from cell-cell junctions by competition for 
cadherin binding (black arrow), leading to an 
enhanced turnover of ~-catenin in cells 
containing an APC/GSKJaxin-competent 
degradation system (solid gray arrows) [19"]. 
(b) Massive overexpression of plakoglobin 
may result in effective competition with 
~-catenin for both cadherin and APC binding 
(black arrows), leading to the accumulation 
and nuclear translocation of ~-catenin (gray 
arrows) [14",63"]. In the nucleus, plakoglobin 
may either displace ~-catenin from complexing 
with TCF,, or allow transactivation by ~-catenin, 
if ~-catenin complexes more effectively than 
plakoglobin with TCE Transactivation studies 
with plakoglobin in ~-catenin-null cells will 
show if plakoglobin, in addition, has TCF- 
responsive transactivation potential on its 
own. (c) Overexpression of cadherin or 
o~-catenin (o~) results in the recruitment and 
stabilization of 'free' cytoplasmic and nuclear 
~-catenin (black arrow) [14"] by cell-cell 
junctions and inhibits transactivation and 
signaling [14",72,76,80"]. 
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mice are consistent with differences in the properties of 
[~-catenin and plakoglobin: l~-catenin null mutations result 
in very early defects in the embryo [561, while plakoglobin 
knockout embryos progress normally through early stages 
of development, but die at latter stages as a result of fail- 
ure in heart development [57,58]. 

Overexpressed plakoglobin was shown to be able to induce 
a Writ-like phenotype in Xenopus embryos (i.e. axis dupli- 
cation) [59,60] that was similar to that observed with 
~-catenin overexpression [61]. It was therefore surprising 
when membrane-tethered constructs of both plakoglobin 
[62"] and [3-catenin ([63°1; Figure 2) were found to be active 
in Wnt signaling in Xenopus, in contrast to the intuitive 
expectation that they would not be capable of signaling 
without entering the nucleus. Tethered plakoglobin and 
~-catenin, however, were shown to bind and block the APC 
degradation system and/or release the endogenous wild- 
type I]-catenin from cell-cell junctions, allowing it to enter 
the nucleus and act in signaling [63"]. Results consistent 
with this notion were also obtained in transactivation stud- 
ies in mammalian cells using a L E F / T C F  consensus 
binding site synthetic DNA construct together with mutant 
plakoglobin and ~-catenin proteins lacking the carboxy-ter- 
minal transactivation domains [14"]. Interestingly, a recent 
study has identified a transactivating domain also in the 
amino terminus of [3-catenin [36"]. 

While the transactivation capacities of the carboxy-termi- 
nal domains of either plakoglobin or [3-catenin fused to the 
Gal4 DNA-binding domain were similar, LEF-l- respon-  
sive transactivation was significantly lower with full-length 
plakoglobin than with I]-catenin [14"]. The  abilities of 
human plakoglobin and [3-catenin in signaling were also 
examined using Drosophila armadillo mutants [64"]. A 
comparison of the two molecules' ability to rescue the seg- 
ment polarity phenotype of armadillo, showed that both 
proteins could rescue armadillo adhesion, but I]-catenin 
had only a weakly detectable signaling activity and plako- 
globin had none [64"]. It will be necessary to use 
13-catenin-null cells in future studies to directly determine 
if plakoglobin can induce transactivation or signaling in 
mammalian cells on its own. 

T h e  W g / W n t  s igna l ing  m o d e l :  not  so  per fec t  
a f te r  all  
The  Wg/Wnt signaling model presented in Figure 1 is con- 
sistent with numerot, s studies in different species 
including Drosophila and Xenopus and in mammalian cells. 
A number of studies in the past year have shown that, 
while the components in this signaling system were highly 
conserved in evolution, their function diverges largely 
between different organisms (see for reviews [33",65"]). 
For example, in addition to the distinct signals that can be 
induced by the binding of Wg/Wnt to different members 
of the Frizzled receptor famil% the role of APC also 
appears to be more complex than expected. In 
Caenorhabditis elegans, for example, the APC homolog has a 

positive rather than a negative role in Wnt signaling [66°°]. 
In Xenopus development APC can function to activate Wnt 
signaling and induce axis duplication [67"], a process 
dependent on increased [3-catenin levels, in contrast to the 
role of APC in stimulating 13-catenin degradation observed 
in mammalian cells [17",23]. In addition, Drosophila APC 
null mutants also do not appear to display the same pheno- 
types as those seen with null mutations of components that 
act in the Wg signaling pathway [68°]. Furthermore, a recent 
study has demonstrated that inactivation of the Drosophila 
APC-/- homologue causes retinal neuronal degeneration 
similar to germline mutations in humans [69"']. This disease 
in APC-/- Drosophila was shown to result from apoptotic cell 
death and could be rescued by reducing the levels of 
Drosophila 13-catenin (armadillo), or by mutations in dTCF 
[69°°]. This suggests that the armadillo/TCF complex may 
also be involved in the activation of apoptosis, in addition to 
tumor progression (see below [70]). 

The  role of the GSK/APC/axin complex and the kinases 
involved in the phosphorylation of the 13-catenin amino 
terminus and the subsequent targeting of [3-catenin for 
degradation by the ubiquitin proteasome system are also 
incompletely understood. The  degradation of plakoglobin 
was also shown to be directed, at least in part, by the ubiq- 
uitin-proteasome system [14",19"°], and it has been 
suggested [62",63"] that an overexpressed plakoglobin in 
Xenopus could bind to and saturate the degradation system, 
therefore resulting in stabilization and nuclear transloca- 
tion of endogenous [3-caterin, followed by signaling [63"]. 
In mammalian cells, however, induction of plakoglobin 
expression could result in displacement of ~-catenin from 
adherens junctions and its enhanced degradation by the 
ubiquitin-proteasome system ([21"1; Figure 2). In a cell 
type that does not express either cadherins or catenins 
[55], stable overexpression of plakoglobin that accumulat- 
ed in the cytoplasm and the nucleus was inefficient in 
blocking the rapid degradation of 13-catenin by the protea- 
some degradation system [14"]. Nevertheless, very high 
overexpression of plakoglobin, as obtained in transient 
transfections, could lead to the accumulation of 13-catenin 
in the nucleus, further pointing to the importance of the 
degradation system in the fine-tuning of both the level and 
function of [~-catenin and the possible role of plakoglobin 
in regulating 13-catenin activities. 

The positive role of the [3-catenin-LEF/TCF complex in 
Wg_JWnt signaling via transcriptional activation is supported 
by genetic analyses in Drosophila, but is not supported by 
studies in C elegans, where Wnt signaling and L E F / T C F  
activities are antagonistic to each other [66",71"].  In addi- 
tion, expression of different members of the L E F / T C F  
family may [39,41"] or may not [40,43"] result in the acti- 
vation of the Wnt pathway: The possibility that [3-catenin 
acts to relieve repression of Wnt-responsive genes imposed 
by L E F / T C E  by its binding to and sequestering 
LEF /TCE is still another possibility supported by several 
studies [62",72,73"]. Taken together, these studies further 
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emphasize the divergence in the mode of action of the var- 
ious components in the Wg/Wnt signaling system in 
different cell types and species. 

Closing the circle: ~-catenin, plakoglobin and 
the relationships between cell adhesion, 
signaling and tumorigenesis 
Several of the binding partners of ~-catenin, such as E-cad- 
herin, L E F / T C E  and APC, interact with ]3-catenin, in a 
mutually exclusive fashion [54,74], via the armadillo repeat 
region of ]3-catenin. The  armadillo repeat region, whose 
three-dimensional structure was recently determined 
[75"'], was shown to generate a groove enriched in basic 
amino acids that confer a positively charged domain to 
which highly acidic areas in the binding sites of E-cad- 
herin, APC or L E F / T C F  bind. By blocking the groove, 
these proteins may exclude the association of the other 
partners with I]-catenin. 

Mutational analysis has indicated that the cell-adhesive 
effects of ~-catenin and those regulating gene expression 
(signaling) can be separated [42,76,77]. Wnt signaling, 
however, was shown to influence cell-cell adhesion and 
cell morphology in mammalian cells [45°,78,79] and recent 
reports indicate that adhesive interactions of 13-catenin that 
sequester it to junctions can strongly antagonize its signal- 
ing activity in Xenopus by reducing the level of free 
[3-catenin [76,80°]. In addition, Wg signaling induced by 
Dsh overexpression in cultured cells was shown to tran- 
scriptionally activate the expression of the E-cadherin 
gene [81 °] which has a LEF-1 binding site within its pro- 
moter [38]. Interestingly, an integrin linked kinase that 
modulates integrin-dependent cell-matrix adhesion was 
shown to influence cell-cell adhesion by downregulating 
E-cadherin expression, followed by [3-catenin translocation 
into the nucleus, complex formation of ~-catenin with 
LEF-1 and activation of LEF-responsive transcription 
[82"]. Finally, the discovery of a new isoform of Drosophila 
armadillo with a different carboxyl terminus indicates that 
in Drosophila, armadillo plays an important role in both 
Wnt signaling and cell-cell adhesion at different stages 
during neural development [83"], further implying the 
existence of an interaction between Wg/Wnt signaling and 
cell adhesion. 

Modulation of the expression of components in the mole- 
cular link between the cadherin-catenin system and other 
junctional plaque proteins with the actin cytoskeleton has 
often been observed in cancer cells (see I7 °] for review). A 
significant advance in understanding the link between 13- 
catenin-mediated regulation of gene expression and 
tumorigenesis was provided by the demonstration that 
transfection of APC can decrease the level of !3-catenin 
[23] and subsequently, decrease 13-catenin-mediated 
transactivation in colon cancer cells that express inactive, 
mutant APC [84°°,85°°]. These studies suggest that the 
tumor suppressor activity of APC is related to its ability to 
target [~-catenin for proteolysis, and thus suppress the 

oncogenic transcription driven by ]3-catenin. Mutations in 
the APC gene appear to be common in colon cancer and 
other malignancies, leading to elevated ~-catenin content 
and constitutive transcription of genes downstream in the 
Wnt signaling pathway; this transactivation can be demon- 
strated with a synthetic L E F / T C F  reporter gene [85"]. In 
addition to APC mutations, in certain coiorectal cancers 
and melanoma, mutations were discovered in [3-catenin 
that result in its accumulation and the enhanced formation 
of 13-catenin-LEF-1 complexes [86"] and enhanced 
transactivation [84"']. These  mutations are of serine 
residues at the amino terminus of [3-catenin, phosphoryla- 
tion of which is involved in the regulation of ~-catenin 
turnover [16,19"1. 

A common current view is that ~-catenin can act as an 
oncogene by excessively activating gene(s) that directly 
contribute to tumor progression. Consequently, mutations 
in APC lead to accumulation of ~-catenin and hence acti- 
vation of the oncogenic process [70,87"]. This view is 
supported by studies showing that expression of int-1, the 
mammalian homolog of Wnt-1, by viral insertional activa- 
tion in mice promotes tumor formation [881, and by the 
finding that a fragment of 13-catenin lacking its amino ter- 
minus can transform NIH 3T3 cells [89]. Furthermore, the 
majority of the somatic mutations in APC that are found in 
colon cancers are in an area that regulates the binding and 
degradation of [3-catenin [90°]. Mutations in APC and the 
N-terminus of [3-catenin were recently found to be mutu- 
ally exclusive in a large number of colorectal tumors, which 
is consistent with their equivalent effect on [3-catenin sta- 
bility [91"]. In addition to melanoma and colorectal 
cancers, mutations in the amino terminus of [3-catenin 
were also discovered in sporadic medulloblastomas ]92"] 
and ovarian carcinomas in humans [93"1, and in 
azoxymethane-induced colon cancer in rats [94°]. 

The  possible involvement of cadherin in the oncogenic 
activity of [3-catenin raises some interesting points. On the 
one hand, cadherin binding may stabilize 13-catenin and 
increase its level in cells (similar to mutations in APC). Yet, 
the cadherin-associated ~-catenin is largely membrane- 
bound and thus unavailable for transcriptional activation. 
Indeed, it was recently demonstrated that the overexpres- 
sion of cadherin or of e~-catenin in a colon carcinoma cell 
line that accumulated high levels of [3-catenin (due to 
mutations in APC) resulted in the inhibition of LE F /T CF-  
driven transactivation by the cytoplasmic sequestration of 
the nuclear 13-catenin ([14°]; Figure 2c). Key unresolved 
questions are, first, what are the physiological mecha- 
nism(s) that regulate(s) the dissociation of the 
cadherin-catenin complex and the release of free, transac- 
tivation-competent [3-catenin in normal cells, and second, 
is excessive dissociation of this complex also involved in 
[~-catenin-induced tumorigenesis. 

In contrast to [3-catenin, its closely related homolog, plako- 
globin, which also has a carboxy- terminal domain that can 
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function in transactivation [14°], was shown to suppress the 
tumorigenesis of cells that either possess or lack a cad- 
herin-catenin system [55]. Moreover, the plakoglobin 
gene displays loss of heterozygosity in some sporadic 
breast and ovarian cancers [95] and its expression is often 
lost in tumor cells (for review, see [7°]). While the exact 
role of plakoglobin in WgJWnt signaling and its influence 
on tumorigenesis are unknown, possible mechanisms 
whereby plakoglobin affects the function of 13-catenin can 
be suggested. The  first involves competition of plakoglo- 
bin with 13-catenin for cytoplasmic partners participating in 
the formation of adherens junctions, such as ~-catenin and 
cadherin (Figure 2b). The  release of 13-catenin from this 
complex may lead to its rapid degradation in a cell harbor- 
ing an APC-dependent degradation system ([14°,21°]; 
Figure 2a). Another possibility could involve the transcrip- 
tional activation, by a plakoglobin/LEF complex, of genes 
which, contrary to those activated by 13-catenin, are tumor 
suppressive (Figure 2b). Finally, the possibility that plako- 
globin can displace ~-catenin from its association with 
L E F / T C F  to form an inactive (plakoglobin-LEF/TCF) 
complex, and thus inhibiting transactivation, cannot be 
excluded at present. 

While the activity of catenins in signaling events may 
indeed play a major role in their effect on tumorigenesis, 13- 
catenin could affect tumorigenesis indirectly, by interacting 
with E-cadherin [96], vinculin, 0t-actinin, and 0c-catenin [97] 
(see [7 ° ] for review). All these proteins were shown to have 
tumor suppressive effects when expressed in tumor cells 
that are deficient in these proteins, and to affect the organi- 
zation of cell-cell adhesion in these cells (reviewed in [7°]). 
It is possible that such effects are attributable to the capaci- 
ty of these junctional molecules to bind 13-catenin and other 
junctional molecules, thus affecting both the structure and 
organization of cell adhesions and the expression of specific 
target genes which, together, are responsible for the various 
manifestations of the cancer cell phenotype. 

Conclusion 
The  network of molecular interactions involving 13-catenin 
and plakoglobin displays an intriguing complexity which, 
at present, is only partially understood. Major dilemmas 
and unresolved issues in this area are listed below. 

The  differential transcriptional specificity of [3-catenin and 
plakoglobin has yet to be fully understood. While both 
proteins appear to be potent transactivators interacting 
with members of the L E F / T C F  family of transcription fac- 
tors, their specificities in binding and regulating target 
genes in mammalian cells are unknown. As signaling by 13- 
catenin and plakoglobin is thought to result from their 
transactivation potential, unraveling the nature of their tar- 
get genes is of utmost importance. 

Cadherin could play a dual role in regulating catenin-dri- 
ven signaling. On the one hand, it can stabilize these 
proteins (especially 13-catenin), yet most of such stabilized 

molecules are transcriptionally inactive, being membrane- 
bound with their LEF/TCF-binding  site blocked. A 
related key question is what are the physiological condi- 
tions which confer both a regulated release of catenins 
from the junctional sites and their controlled transport into 
the nucleus. 

Plakoglobin-13-catenin relationships have yet to be fully 
characterized. Being so similar and sharing molecular part- 
ners, changes in the relative levels of the two proteins can 
trigger a variety of indirect responses. For example, overex- 
pression of plakoglobin can release [3-catenin from 
junctions and target it either for degradation (in cells con- 
taining a competent APC-related turnover system) or for 
transactivation (when the A_PC-degradation pathway is 
defective or inhibited by a Wnt signal). Excess plakoglobin 
may compete with I]-catenin for APC binding and thus 
block [3-catenin degradation. Other joint molecular partners 
are (x-catenin, which can bind to both molecules in the 
cytoplasm, and transcription factors of the L E F / T C F  fami- 
ly. Competition between the two molecules for ~-catenin 
and LEF /TCF  binding may also have dramatic, and very 
different, effects on catenin signaling. Better understanding 
of these aspects and their physiological relevance depends 
on direct characterization not only of the affinities of the 
two proteins towards their different cytoplasmic and 
nuclear partners, but also of the cellular mechanisms that 
may selectively modulate such interactions. 

Finally, we should be aware of the diverse roles of the 
Wg/Wnt signaling components in the various organisms 
studied and of the complex interactions between them as 
demonstrated in the past year. A combination of genetic 
and biochemical characterization and microscopic studies 
will be necessary to shed light on this complex network of 
molecular interactions and their role in adhesion- 
mediated signaling. 
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