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ABSTRACT: In 1979, it was observed that parkinson-
ism could be induced by a toxin inhibiting mitochondrial
respiratory complex I. This initiated the long-standing
hypothesis that mitochondrial dysfunction may play a
key role in the pathogenesis of Parkinson’s disease (PD).
This hypothesis evolved, with accumulating evidence
pointing to complex I dysfunction, which could be
caused by environmental or genetic factors. Attention
was focused on the mitochondrial DNA, considering the
occurrence of mutations, polymorphic haplogroup-
specific variants, and defective mitochondrial DNA main-
tenance with the accumulation of multiple deletions and
a reduction of copy number. Genetically determined dis-
eases of mitochondrial DNA maintenance frequently
manifest with parkinsonism, but the age-related accumu-
lation of somatic mitochondrial DNA errors also repre-
sents a major driving mechanism for PD. Recently, the
discovery of the genetic cause of rare inherited forms of
PD highlighted an extremely complex homeostatic

control over mitochondria, involving their dynamic fis-
sion/fusion cycle, the balancing of mitobiogenesis and
mitophagy, and consequently the quality control surveil-
lance that corrects faulty mitochondrial DNA mainte-
nance. Many genes came into play, including the PINK1/
parkin axis, but also OPA1, as pieces of the same puzzle,
together with mitochondrial DNA damage, complex I
deficiency and increased oxidative stress. The search for
answers will drive future research to reach the under-
standing necessary to provide therapeutic options direct-
ed not only at limiting the clinical evolution of symptoms
but also finally addressing the pathogenic mechanisms
of neurodegeneration in PD. VC 2017 International Parkin-
son and Movement Disorder Society
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Parkinson’s disease (PD) is one of the most frequent
neurodegenerative age-related disorders, it affects

0.3% of the entire population and about 1% of peo-
ple older than 60 years of age,1 and it is clinically
characterized by the association of bradykinesia with
tremor or rigidity.2,3 Pathological hallmarks are the
loss of dopaminergic neurons in substantia nigra pars
compacta and the presence of Lewy bodies (LB) in
spared neurons, typically containing aggregates of a-
synuclein, neurofilaments, ubiquitin, and other com-
pounds.4,5 A great debate is ongoing about the pres-
ence or absence of LB in relation to the identification
of inherited forms of PD that may lack LB.6-8 The
pathogenesis of PD remains poorly understood. How-
ever, the seminal descriptions of 1-methy-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)–induced parkin-
sonism in humans in 1979-1983 led to the discovery
that inhibition of the respiratory complex I (nicotin-
amide adenine dinucleotide [NADH]: unibiquinone
oxidoreductase) in mitochondria was the biochemical
defect related to MPTP intoxication.9-12 This
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observation generated the hypothesis that mitochon-
drial dysfunction may be relevant for PD pathogenesis
and consequently led to consider also the role of mito-
chondrial DNA (mtDNA) defects.

Mitochondrial Involvement in
Parkinson’s Disease: Complex I

Impairment

Historically, the first observation involving mito-
chondria in PD relates to the evidence that an impair-
ment of complex I was present in different forms of
PD and parkinsonism.13 Research has focused on 2
main areas. The first investigated the occurrence of
parkinsonism in relation to intoxication with a variety
of compounds, mostly acting as complex I inhibitors.
The second area of investigation concerned the occur-
rence of a complex I defect in patients with idiopathic
PD as a result of genetic predisposition, possibly relat-
ed to mtDNA.

MPTP: A Complex I Inhibitor

The first observation that intoxication with MPTP,
a byproduct of the chemical synthesis of meperidine,
could induce a parkinsonian syndrome in a group of
young drug abusers dates back to 1979.9,10 A few
studies reproduced the parkinsonian features induced
by MPTP in both primate and murine models,14-16

and the biochemical details of MPTP toxicity were
hence elucidated, in particular the inhibitory effect on
mitochondrial complex I.11,12 These studies clarified
that MPTP is metabolized to MPP 1 by MAO-B in gli-
al cells17 and that MPP 1 through the dopamine trans-
porter (DAT) concentrates in dopaminergic neurons of
the substantia nigra, where it exerts an inhibitory
action on the mitochondrial complex I.18,19 The obser-
vation that MPP 1 inhibits complex I led to a wide
interest for all molecules with known complex I inhib-
itory activity, in particular compounds commonly
used as pesticides such as rotenone and paraquat.

Rotenone, Paraquat, and More: All Converging
on Complex I Inhibition?

Epidemiological studies on PD prevalence in relation
to environmental exposure to toxins suggested the role
of some pesticides,20-22 namely, rotenone and para-
quat attracted attention. In 2000, Betarbet and col-
leagues23 produced a rat model of parkinsonism by
chronic, systemic administration of rotenone, a classic
complex I inhibitor. This report showed some striking
pathological similarities with PD, such as cytoplasmic
inclusions in nigral neurons reminiscent of LB. A sub-
sequent in vitro study showed that chronic complex I
inhibition could increase oxidative stress and apopto-
tic cell death with ubiquitin/a-synuclein accumulation

and aggregation.24 However, an independent
rotenone-based rat model failed to reproduce the spe-
cificity of lesion for substantia nigra, probably owing
to ubiquitous complex I inhibition induced by the sys-
temic administration of rotenone, which would not be
selectively concentrated in dopaminergic neurons as
MPP1.25 Other discordant results have been pub-
lished challenging complex I inhibition as the central
mechanism of action for MPP1, rotenone, and
paraquat.26

Notwithstanding these controversies, epidemiologi-
cal investigations on pesticides continue,27,28 support-
ing the view that a subgroup of idiopathic PD patients
may have had a chronic exposure to toxins, most of
them being complex I inhibitors (Fig. 1).29 The list of
these potentially harmful compounds is remarkably
long30 and also includes commonly used drugs such as
neuroleptics.31 Their role in triggering parkinsonism is
well known and ascribed to a blockade of the dopa-
mine D2 receptors in the nigrostriatal pathway,32 even
if the possible biochemical inhibition of complex I has
not yet been fully explored.31

Complex I Defect in Idiopathic PD

About a year after the seminal discovery of causa-
tive mtDNA mutations in human diseases,33,34 many
reports described complex I deficiency or a wider
impairment of respiratory complexes in different tis-
sues from PD patients.35-44 Depending on the tissue
investigated and the biochemical assay used, contrast-
ing results were reported. One controversy was cen-
tered on the tissue specificity of complex I deficiency,
which according to Mann and colleagues39 was limit-
ed to the substantia nigra, whereas other studies sup-
ported a systemic defect of complex I, recognizable in
muscle biopsies36,38,41,44 or circulating platelets.37,42

However, other authors failed to recognize defective
complex I in muscle39,40 or circulating blood cells.39,43

Another question was whether the enzymatic defect
was specific to complex I35,39 or more widespread,
extending to complex IV or other complexes.36,41,42,44

Further issues regarded the biochemical assays meth-
odology, the sensitivity of enzymatic activities to post-
mortem time and/or tissue conservation, the
confounding effect of age-related decline of mitochon-
drial efficiency, and the possible influence of therapy
or cigarette smoking.39,42,44 Immunoblotting and
immuohistochemical studies of postmortem substantia
nigra pointed to the specific deficiency of complex I
subunits in PD patients.45,46

The need to link the biochemical findings in differ-
ent tissues with the upcoming molecular investigation
of mtDNA at single cell level was envisaged by
DiMauro in 1993.47 Overall, it is currently accepted
that a partial complex I deficiency affects a subset of
patients with idiopathic PD (Fig. 1). The hypothesis
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was hence raised that not only environmental expo-
sure to complex I inhibitors but also genetic predispo-
sition could have a role in the pathogenic mechanism
of PD.48

Complex I Defect Is Transferred Into Cybrids:
mtDNA Becomes the Candidate

Complex I transfers electrons from NADH to CoQ,
thereby generating ubiquinol (CoQH2), which then
shuttles 2 electrons to complex III (ubiquinol:ferricyto-
chrome c oxidoreductase, cytochrome bc1 complex).49

Complex I contributes to energy conservation by cou-
pling the electron transfer to CoQ with proton trans-
location across the mitochondrial inner membrane,
thus charging the membrane potential.50 Complex I
also contributes to reactive oxygen species (ROS) pro-
duction, generating the superoxide anion.51 The mam-
malian complex I architecture has been recently
elucidated, and it results from the assembly of 45

subunits, 7 of which are mtDNA encoded, the remain-
ing being encoded by nuclear DNA (nDNA).52 It is
now established that complex I assembles into super-
complexes with complex III and IV, constituting the
“respirasome.”53 Thus, a new global hypothesis of
how respiratory chain functions is proposed, with par-
ticular reference to electrons channeling through the
alternative pathways of complex I and II.54

The double genetic determination of complex I sub-
units raised the question if the genetic contribution to
complex I impairment in PD belonged to nDNA or
mtDNA. To tackle this issue, a cell model was imple-
mented based on the transfer of the cytoplasmic mito-
chondrial organelles from enucleated cells (from
patients or controls) into a hosting immortalized cell
line (osteosarcoma-derived 143B.TK-) devoid of its
original mtDNA (rho0 cells) and with constant
nDNA.55 The result of this cellular fusion is the trans-
mitochondrial cytoplasmic hybrid or “cybrid.”55 Any
biochemical defect occurring in the original cell line if

FIG. 1. Mitochondrial DNA and Parkinson’s disease. The mitochondrial genome may be affected by somatic age-related accumulation of genetic
errors, or secondarily to nuclear DNA (nDNA) mutations in genes involved in mitochondrial DNA (mtDNA) maintenance (POLG, Twinkle, MPV17,
OPA1). The haplotype-dependent mtDNA genetic variation can influence longevity and predispose to or protect from neurodegeneration. These
mtDNA alterations, along with exotoxins, impact on respiratory function determining ATP production failure and increased ROS production, which
may contribute to further mtDNA damage. Also, mutations in PD-related genes, that is, DJ1 and a-synuclein, could contribute to reactive oxygen
species accumulation and complex I inhibition. The burden of mtDNA errors, clonal expansion of mutant mtDNA, and mtDNA depletion may lead
single neurons to energetic failure and degeneration. However, the damaged mitochondria can be rescued by fusion with normal mitochondria or
targeted to mitophagy by fission. Impaired fusion (as a result of OPA1 mutations) or impaired mitophagy (as a result of PINK1/Parkin mutations) pro-
mote neurodegeneration. ROS, reactive oxygen species.
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linked to mtDNA is transferred into cybrids, but if
determined by nDNA is complemented by the cybrid
nucleus. Cybrids have been useful for investigating the
mtDNA pathogenic mutations associated with mito-
chondrial diseases.56-58 Cybrid studies to dissect com-
plex I deficiency in PD were subsequently performed
by several research groups in the United States59,60

and the United Kingdom.61 These studies consistently
showed that the complex I defect is transferred into
PD-derived cybrids, increases ROS production, induces
mitochondrial depolarization and reduces ATP, and
enhances sensitivity to MPP 1 and other toxins
involved in PD, enhancing cell propensity to undergo
apoptosis.62,63 Notably, a few of these studies docu-
mented the formation of a-synuclein aggregates remi-
niscent of LB in the PD-derived cybrids.64,65 However,
several methodological concerns have been raised by
experienced researchers in the field about these cybrid
studies when applied to neurodegenerative disorders
such as Alzheimer’s disease (AD) and PD.66 Although
all PD-derived cybrid results pointed to mtDNA
involvement,60,61 it remained problematic that none of
these studies provided the sequence analysis of the
cybrid mitochondrial genome. Thus, there was an
overall lack of direct evidence that complex I defect
assessed in patient’s tissues (in most cases platelets
used to generate cybrids) and transferred into cybrids
was truly a result of defective mtDNA. Notwithstand-
ing these controversies, mtDNA remained the most
natural candidate to investigate.

Mitochondrial DNA in PD

In the early 1990s, mtDNA mutations were first
associated with different sporadic or maternally inher-
ited neuromuscular disorders.33,34,67-69 A new class of
mtDNA-based diseases, segregating in a Mendelian
fashion, was further discovered. These disorders were
characterized by either the accumulation of multiple
mtDNA deletions in postmitotic tissues70 or by tissue-
specific mtDNA depletion,71 and a genetic defect
affecting nuclear genes involved in mtDNA replication
and maintenance was postulated to be the cause.72

Thus, mtDNA gained attention as the primary candi-
date for mutations possibly causing complex I defects
in PD patients48 and, over the years, there have been
3 different areas of investigations including mtDNA
sequence analysis, the assessment of mtDNA rear-
rangements (single and/or multiple deletions), and
mtDNA copy number.

Are There mtDNA Pathogenic Mutations
Specific for PD?

mtDNA sequence analysis has discovered an increas-
ing number of mutations associated with diverse clini-
cal phenotypes.73 However, specific PD-linked

mutations have not been found, and parkinsonian fea-
tures were only occasionally observed in mitochondri-
al disorders.74,75 For example, a serendipitous
identification of the common Leber’s hereditary optic
neuropathy (LHON) mutation m.11778G>A/MT-
ND4 was associated with a maternally inherited mul-
tisystem neurodegenerative disease including parkin-
sonism, but without optic atrophy.76 Despite the fact
that cybrid investigations pointed to mtDNA, only a
few studies aimed at sequencing partially77-79 or
completely80-82 the mtDNA in PD patients. Some
studies focused on DNA derived from postmortem
striatum, whereas others analyzed the DNA extracted
from peripheral tissues, frequently platelets from
blood. Among the numerous variants observed, the
m.4336A>G/MT-tRNAGln was suggested to be associ-
ated with both AD and PD,81,83 but this was not con-
firmed.79 Many authors focused on mtDNA variants,
subsequently defined as specific to mtDNA haplotypes,
as possibly relevant in predisposing or protecting from
PD.77-80

Are mtDNA Haplogroups Relevant for PD?

Since the early 1990s, Ozawa and colleagues84,85

proposed that PD patients could be characterized by
distinct clustering of mtDNA variants. van der Walt
and colleagues86 published the first systematic investi-
gation in a sufficiently powered cohort in 2003, find-
ing that haplogroups J and K, harboring the common
10398G variant in the ND3 subunit of complex I, had
a significantly reduced risk of developing PD than the
most common haplogroup H in European populations.
Other studies on geographically distinct cohorts also
associated a lower risk to haplogroups K,87 UK,88 or
UKJT,89 and an increased risk to haplogroup H.
Recently, a 2-stage association study followed by a
meta-analysis confirmed that haplogroups J, K, and T
are associated with a reduced risk of PD, whereas the
super-haplogroup HV has an increased risk of PD.90

Interestingly, the super-haplogroup HV also increases
survival after sepsis,91 prompting the authors to specu-
late that mtDNA haplogroups may exert antagonistic
pleiotropic effects impinging on predisposition to age-
dependent neurodegenerative diseases.

The most relevant risk factor for PD remains age,1-3

and increased longevity is paralleled by an increased
incidence of PD.92 Interestingly, haplogroup J presents
the apparent paradox of being associated with longevity
in some populations,93-95 but it is also solidly estab-
lished to increase penetrance in a mitochondrial neuro-
degenerative disorder such as LHON, characterized by
mtDNA mutations impairing complex I function.96,97

One interpretation for this paradox is that the genetic
variants defining some specific haplogroup J sub-
branches may lower the energetic efficiency by a slightly
uncoupled respiration.98 This, in turn, could reduce
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ROS production promoting longevity, but if a patho-
genic mutation arises on the haplogroup J background,
such as LHON mutations, their pathogenic effect is
enhanced as confirmed in cybrids,58 therefore increasing
disease penetrance. Haplogroup J, which branches with
haplogroup T from a shared phylogenetic root, is in fact
characterized by nonsynonymous variants affecting ami-
no acids in complexes I and III.96,97,99

Functional studies on control cybrids harboring
mtDNA with different haplogroups showed that
cybrids carrying haplogroups UK and J present with
lower mtDNA copy number, oxygen consumption, and
ATP levels when compared with haplogroup H
cybrids.100,101 This certainly fits the effect of hap-
logroup J on LHON penetrance and points to the co-
occurrence of nonsynonymous variants in complexes I
and III.96,97,99 In fact, increased penetrance for LHON
is associated with the specific sub-branches J1c and J2b,
characterized by the m.14798T>C and m.15257G>A var-
iants, respectively.96,99 Interestingly, the m.14798T>C var-
iant (J1c) is also shared by haplogroup K, which
emerged as a protective background for PD.87-90 How-
ever, there is currently no major insight on the possible
branches in haplogroups U, and in particular K, that
may be responsible for the protective effect on PD.

Overall, we emphasize 2 main considerations. First,
these results have been frequently contradictory because
of 2 different methodological approaches. In 1
approach, the aggregation into super-haplogroups val-
ued most the ancient polymorphisms fixed by selection,
whereas the highest definition reached by complete
mtDNA sequence analysis took into consideration all
the recent and even private variants.102 Second, all
results obtained from haplogroup studies should under-
go rigorous functional validation, as partially provided
by the few cybrid studies that have been recently
undertaken.100,101 The functional investigations by
multiple metrics assessing mitochondrial function and
homeostatic regulation (mtDNA copy number, cell res-
piration, ROS production, etc.) are relevant for the cor-
rect interpretation of these results. For example, similar
mitochondrial respirations may be maintained by
different homeostatic settings of different hap-
logroups103,104 based on differential ROS production
that leads to different efficiencies in mitochondrial bio-
genesis.104 This becomes important for predisposition
to neurodegenerative disease, such as PD, as well as for
longevity itself (Fig. 1). However, during aging, the
mtDNA haplogroup differences may be overshadowed
by the accumulation of somatic mutations, in particular
of deletions,105 affecting mtDNA.

mtDNA Maintenance: Age-Dependent and
nDNA-Driven Multiple mtDNA Deletions

After the seminal discovery that single heteroplasmic
mtDNA deletions can cause both mitochondrial

myopathy33 and a more severe multisystem disorder
known as Kearn-Sayres syndrome,106 many research
groups searched for107,108 and some described the
occurrence of mtDNA deletions109,110 in various brain
areas of PD patients. The issue of deletion amount
and the techniques used to detect them became imme-
diately evident. In fact, those studies employing south-
ern blot analysis failed to recognize mtDNA deletions
in the postmortem substantia nigra and frontal cor-
tex.107,108 Instead, the use of the newly introduced
PCR technique, designed to amplify and detect only
the “common” mtDNA deletion of 4,977-bp already
observed in patients with mitochondrial myopathy
and Kearn-Sayres syndrome,33,106 highlighted its
occurrence in the striatum. Thus, the failure of detec-
tion by southern blot,107,108 as opposed to the PCR-
based approach,109,110 pointed to the very low amount
of mtDNA-deleted molecules. These latter studies also
noted that this mtDNA deletion was recognized in
both PD patients and age-matched controls, found in
higher amounts in PD patients.109 Furthermore, when
the striatum was compared with the cerebral cortex,
the amount of mtDNA-deleted molecules was far
more abundant in the striatum.109 These observations
were consolidated by a subsequent study of normal
adult brains, showing that 3 regions with high dopa-
mine metabolism—caudate, putamen, and substantia
nigra—had the highest levels of deleted mtDNA mole-
cules.111 The use of more sophisticated PCR protocols
(in situ and long-extension PCR) showed that in the
substantia nigra, and other brain regions, a mixture of
mtDNA deletions of different sizes was accumulating
with age, being higher in PD patients112 but also char-
acterizing normal individuals (Fig. 1).113

Recently, the landscape of age-related accumulation
of mtDNA defects has been redefined at the single cell
level. This became possible thanks to the availability
of the laser-capturing technique for the molecular
investigation of single cells in postmortem tissues.
Thus, 2 studies confirmed that a mixture of multiple
mtDNA deletions was accumulating with age in the
substantia nigra from normal people,114 being signifi-
cantly more abundant in PD patients, however.115

Remarkably, as predicted by DiMauro,47 the single-
cell analysis showed that clonal expansion of a single
mtDNA deletion was prevalent in isolated COX-
negative dopaminergic neurons,114,115 paralleling the
same finding in isolated COX-negative muscle fibers
from patients with mitochondrial myopathy.116 This
established a direct link in single neurons between the
mtDNA damage and the functional mitochondrial
impairment (Fig. 1).

The pathologic accumulation of multiple mtDNA
deletions also characterizes the still expanding catego-
ry of mitochondrial diseases determined by mutations
in nuclear genes involved in mtDNA replication and
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maintenance,117 as initially proposed by Zeviani.70,72

Interestingly, there have been premolecular descriptions
of patients with mitochondrial myopathy and chronic
progressive external ophthalmoplegia (CPEO), mani-
festing parkinsonian features.118-121 In the early 2000s,
3 genes—ANT1 (SLC25A4), Twinkle (PEO1/C10orf2),
and mitochondrial DNA polymerase g (POLG)—were
discovered to cause these mitochondrial phenotypes.122-124

A report subsequently described patients affected by
CPEO, parkinsonism, and premature menopause in
women, carrying dominant and recessive mutations in
the POLG gene.125 This study highlighted that parkin-
sonism could be a frequent manifestation of genetically
disordered mtDNA maintenance. Many other reports
on CPEO/parkinsonism followed,126-130 including other
genes involved in mtDNA maintenance such as
C10orf2,131-133 SLC25A4,134 and MPV17135 (Fig. 1).
Interestingly, the postmortem examination of 2 individ-
uals from the same family carrying a dominant POLG
mutation (Family S in reference 125) revealed a severe

loss of pigmented neurons in the substantia nigra and
no LB in 1 case,136 whereas in the other there was also
the hallmark pathology of AD with neuritic plaques
and neurofibrillary tangles.137 This second case was
coincidentally homozygous for the APOE epsilon 4
allele. A further compound heterozygous POLG case
suffering with parkinsonism and cognitive decline
showed LB pathology and minimal Alzheimer-type
pathology.138 The COX/SDH combined histochemistry
revealed more than 20% of COX negative-spared neu-
rons in the substantia nigra, and single-cell analysis
confirmed high levels of multiple mtDNA deletions.
These findings reinforced the similarities with studies
on idiopatic PD patients.114,115 Remarkably, in a large
study from Norvegia, POLG encephalopathic patients
without clinical signs of parkinsonism have been inves-
tigated by DAT imaging and fluorine-18 fluorodeoxy-
glucose positron emission tomography, showing severe
nigral neuronal loss and nigrostriatal depletion.139 The
postmortem investigation in 6 of these patients

FIG. 2. The life cycle of mitochondria and Parkinson’s disease. Mitochondria are a dynamic network of organelles undergoing continuous cycles of
fusion and fission, with a balance between mitochondrial biogenesis and mitophagic elimination of dysfunctional organelles after their fission.
Although mitochondrial biogenesis may be regulated by Parkin, through Paris and PGC-1a, the loss of membrane potential may be recovered after
fusion promoted by Mitofusins and OPA1, the latter also regulated by Parkin through Nemo. Thus, mitochondria can re-enter the life cycle. Alterna-
tively, a loss of membrane potential may be segregated by fission, mediated by Drp1, to isolate damaged components for elimination by mitophagy.
Under conditions of low membrane potential, PINK1 accumulates on the outer membrane, activating a complex signaling cascade that includes the
recruitment of Parkin and ubiquitination of various mitochondrial proteins, ultimately targeting the damaged mitochondria for mitophagy. Other PD-
related genes may participate with the maintenance of the delicate balance between mitochondrial fusion and fission and ultimately mitochondrial
homeostasis and function. Indeed, a-synuclein can increase mitochondrial fragmentation by inhibiting fusion, whereas DJ1, OMI/HtrA2, and leucine-
rich repeat kinase 2 (LRRK2) regulate fission acting on Drp1. Furthermore, a-synuclein may also modulate mitochondrial biogenesis by directly inter-
acting with PGC-1a. mtDNA, mitochondrial DNA.
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documented complex I deficiency in dopaminergic neu-
rons, with a combination of mtDNA depletion and
high levels of multiple mtDNA deletions.139 Concor-
dantly, DAT imaging in a cohort of patients with
mixed mitochondrial diseases confirmed that nigrostria-
tal degeneration occurred exclusively in patients with
defective mtDNA maintenance carrying POLG or
C10orf2 mutations.140 The relatively frequent occur-
rence of parkinsonism associated with POLG muta-
tions prompted the investigation of this gene for
possible variants predisposing to idiopathic PD. In par-
ticular, a trinucleotide CAG repeat in exon 2 of
POLG, encoding a polyglutamine tract and previously
associated with male infertility,141 was investigated
yielding conflicting results.142-151

In 2008, patients combining dominant optic atrophy
with CPEO and multiple mtDNA deletions were
found to harbor heterozygous mutations in the OPA1
gene,152,153 a key factor involved in mitochondrial
fusion and dynamics,154 (Fig. 2), but not yet formally
involved in mtDNA replication. This observation
widened the spectrum of mitochondrial diseases char-
acterized by disturbed mtDNA maintenance,155

highlighting that mitochondrial dynamics and life
cycle156 are crucial to the preservation of mitochondri-
al homeostasis, and thus provided a novel mechanism
for the pathologic accumulation of mtDNA deletions
in postmitotic tissues.157 This concept was recently
expanded to other genes involved in mitochondrial
dynamics, such as MFN2,158 DRP1,159 AFG3L2160

and SPG7,161 mutations of which may lead to defi-
cient mtDNA maintenance. We recently reported 2
families segregating a heterozygous dominant OPA1
mutation associated with syndromic CPEO, parkin-
sonism and dementia, and abnormally increased
autophagy and mitophagy (Fig. 1).162 This report
established a link with the developing field of genetic
forms of PD, many of which are tightly implicated
with mitochondrial quality control and homeostasis
(Table 1).163

Monogenic PD: The
Mitochondrial Perspective

The identification of PD genes163,164 has prompted
an extraordinary wave of studies demonstrating that
mitochondrial dysfunction is central to PD pathogene-
sis. The detailed analysis of PD genetics is beyond the
scope of this review, so we limit our discussion to
how this relates to mtDNA (Table 1). To this end, the
2 key PD genes are parkin (PARK2) and PINK1
encoding for Parkin165 and PINK1,166 respectively, an
E3 ubiquitin ligase167 and a PTEN-induced serine/
threonine kinase 1.166 Although PINK1 has been rec-
ognized to target mitochondria since its discovery,166

Parkin cellular localization did not apparently target

mitochondria.168 The understanding of Parkin func-
tion focused initially on its interaction with a-
synuclein in the formation of LB.169,170 In fact, Parkin
was recognized as 1 of the protein components of
LB,171 and patients with PARK2 mutations apparently
did not have LB deposition in their brains.8 However,
studies on PARK2 mutant animal models also provid-
ed evidence of mitochondrial impairment.172,173 In
particular, Parkin-deficient Drosophila was character-
ized by male sterility and both flight muscle and dopa-
minergic neuronal degeneration.172 The identification
of mutations in PINK1 as causative for recessive PD
led to a turning point. It became clear that PINK1-
deficient Drosophila had a virtually identical pheno-
type as Parkin deficient and that Parkin could rescue
the PINK1-deficient fly, but not the opposite, thus
linking the 2 proteins in the same pathway, with
PINK1 being upstream of Parkin.174-176 This was also
confirmed in HeLa cells with silenced PINK1 and
patient-derived fibroblasts carrying PINK1 mutations,
which displayed fragmented mitochondrial network
and altered membrane potential that could be rescued
by either wild-type PINK1 or Parkin, but not by
mutant PINK1 or DJ1,177 the latter being another PD-
associated gene product implicated with mitochondrial
function (Table 1).178 Altered mitochondrial dynamics
consequent to both PINK1 and PARK2 mutations
was also reported in the Drosophila models.179-181

Further studies in mammalian cells showed that exces-
sive fission as a result of either Parkin or PINK1 loss
could be counteracted by the mitochondrial fusion
proteins Mfn2 and OPA1 or by a dominant negative
mutant of the fission protein Drp1.182 Thus, mito-
chondrial dynamics came prominently into play, and a
few reports pointed to mitochondrial fission as a pow-
erful promoter of mitophagy (Fig. 2).183,184 This pro-
cess was mediated by the mitochondrial recruitment of
Parkin from the cytoplasm, as highlighted by challeng-
ing cells with the mitochondrial uncoupler carbonyl
cyanide m-chlorophenylhydrazone,183 and was
observed in PINK1-silenced cells.184 Finally in 2010,
the 2 proteins were locked by Narendra and col-
leagues185 into the same mechanism showing that
PINK1 senses mitochondrial dysfunction/depolariza-
tion and becomes stabilized on impaired mitochondria
to then recruit Parkin for mitophagic targeting of these
dysfunctional organelles. Others confirmed this para-
digm, highlighting the quality control of mitochondria
as the key pathway through which the PINK1/Parkin
axis operates, 1 protein upstream of the other.186 The
cascade of events leading to Parkin recruitment on
mitochondria and mitophagy activation has been
greatly refined, being very complex, and we refer to
specific reviews for this topic.187-189 A direct conse-
quence of the mitochondrial quality control on the
accumulation of mtDNA mutations was shown in
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vitro by the inhibition of fission, which brought an
increased tolerance to higher mtDNA mutation
load,190 whereas Parkin overexpression selected
against mtDNA mutations.191 Overall, the mitochon-
drial life cycle seems to be crucially involved in toler-
ance and complementation of mtDNA mutations
through fusion192 as well as in their selective elimina-
tion through fission and mitophagy (Fig. 2).193

Following the elucidation of the PINK1/Parkin axis
in mitochondrial quality control, critiques were raised
about the nonphysiological experimental conditions
(carbonyl cyanide m-chlorophenylhydrazone) used in
vitro,194 and doubts were cast on the real in vivo
occurrence of such dysfunctional quality control.195

For both PINK1 and Parkin, many other functions
and potential pathogenic pathways have been
described.188,196 For example, PINK1-mutant animals
and cells were characterized by complex I deficien-
cy,197-199 the mitochondrial paradigm for PD. It was
found that PINK1 could influence complex I function,
as the NdufA10 subunit is phosphorylated in a
PINK1-dependent manner.200,201 Similarly, complex
I deficiency was also evidenced in cells from
PARK2-mutant patients as well as in animal mod-
els.202-204 Remarkably, it has been reported that the
PINK1/Parkin pathway promotes mitophagy with
some degree of selectivity for turnover of membrane-
bound subunits of respiratory chain complexes, com-
plex I being the most represented.205 Furthermore, a
study investigating induced pluripotent stem cells
derived from a mitochondrial encephalomyopathy, lac-
tic acidosis, stroke-like syndrome patient carrying the
common m.3243G>A/tRNALeu mtDNA mutation
reported that upon neuronal differentiation, complex I
was specifically sequestered into perinuclear PINK1/
Parkin positive autophagosomes, suggesting its active
degradation through mitophagy.206 Thus, a direct link
emerges between complex I deficiency and the PINK1/
Parkin driven mitophagy. Parkin has been reported to
have at least 36 outer mitochondrial membrane pro-
tein substrates that ubiquitinates upon activation in
response to mitochondrial depolarization.207 Of inter-
est, Paris (ZNF746) has been reported to be a Parkin
target and accumulates in models of Parkin inactiva-
tion and in human PD brains.208 Paris is a repressor
of the transcriptional coactivator PGC-1a, the master
regulator of mitochondrial biogenesis and possibly
mtDNA copy number.209 Thus, Parkin is at the cross-
road of the mitochondrial life cycle: by Paris ubiquiti-
nation, it may promote mitochondrial biogenesis210

while regulating mitophagy through the PINK1-
induced pathway (Fig. 2).193 Similarly, PINK1-mutant
Drosophila is also characterized by the upregulation
of genes involved in nucleotide metabolism critical for
mtDNA maintenance.211 Another target that under-
goes linear ubiquitination is the NF-kB essential

modulator (NEMO), which, as part of the NF-kB sig-
naling, upregulates OPA1.212 OPA1 exerts many other
functions besides the canonical role in mitochondrial
fusion, including mtDNA maintenance and control of
apoptosis,154 and it has been shown to mediate dopa-
minergic neurodegeneration linked to MPP 1 induced
complex I deficiency.213 Overall, at least these 2 Par-
kin targets, Paris and NEMO, establish a link with
mtDNA maintenance, mitochondrial biogenesis, and
dynamics, with a central role for the complex I/OPA1
axis (Fig. 2).

We should also mention that other forms of mono-
genic PD relate to mitochondrial dysfunction (Table
1). DJ-1 mutations are associated with autosomal
recessive early-onset PD,178 and DJ1 may be located
both in the cytoplasm, where it senses ROS, and in
the mitochondrial matrix and the intermembrane
space.214 DJ1 was recently identified as an atypical
peroxiredoxin-like peroxidase able to scavenge
H2O2.215 Mutant DJ1 induces mitochondrial network
fragmentation by modulating Drp1 expression,216 and
suppression of DJ1 expression has been linked to com-
plex I deficiency.217

Dominant mutations in the leucine-rich repeat
kinase 2 (LRRK2) gene are also associated with PD
and a spectrum of other neurodegenerative disorders
displaying variable histopathology.218,219 LRRK2 has
been implicated in regulating the a-synuclein homeo-
stasis.220 LRKK2 is mostly cytoplasmic, but a fraction
is also associated with the outer mitochondrial mem-
brane.221 LRRK2 interacts with Drp1 regulating mito-
chondrial fission222 and with Parkin.223 LRKK2
mutations have been reported to induce neurodegener-
ation in SH-SY5Y cells and primary neurons,223

accompanied by mtDNA damage in the iPSC-derived
neural cells from PD patients.224

OMI/HtrA2 is a serine protease targeted to the
mitochondrial intermembrane space, where it exerts a
proapoptotic function.225 OMI/HtrA2 variants have
been controversially implicated as a susceptibility fac-
tor in PD,226,227 but OMI/HtrA2 suppression leads to
parkinsonian features in animal models.228 Silencing
of OMI/HtrA2 in cells results in mitochondrial dys-
function and hyperelongated network, which was
attributed to a functional and physical interaction
with OPA1.229 Loss of OMI/HtrA2 also leads to
mtDNA damage,230 and its protease activity is regu-
lated by PINK1.231

Finally, a-synuclein, the key protein deposited in
LB,4 was the first gene associated with dominant
PD.164 Either mutant a-synuclein or an increased
expression of wild-type a-synuclein232 may promote
the pathological aggregation forming LB.233 However,
it has also been reported that both mutant and wild-
type a-synuclein may bind to and enter within the
mitochondria,234,235 possibly through the voltage-
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dependent anion channel,236 ultimately affecting com-
plex I function at the inner mitochondrial mem-
brane.237 The binding of a-synuclein to the outer
mitochondrial membrane inhibits mitochondrial fusion
in a fashion that is rescued by PINK1, Parkin, and
DJ1,238 and drives excessive fission and mitochondrial
network fragmentation.239 Finally, a-synuclein may be
enriched at the mitochondrial-endoplasmic reticulum
contact sites,240 highlighting the overwhelming com-
plexity of crossing and converging pathogenic path-
ways in PD.163

Breaking News on mtDNA
Depletion and Conclusions

In 2016, a new investigation of mtDNA in the dopa-
minergic neurons241 expanded on the previous results
showing a prevalent deletion in single neurons on a
background of multiple mtDNA deletions.114,115 This
new study focused on complex I deficiency and by
combining a multiple-label immunofluorescence proto-
col and laser capture microdissection, it showed that
complex I and complex II are most consistently affect-
ed in single neurons, which also displayed a reduced
mtDNA copy number.241 Occasionally, complex IV
deficiency was also observed, but only in neurons that
had already complex I deficiency, confirming a prima-
ry role for this biochemical defect. mtDNA copy num-
ber reduction has been confirmed by another study
showing that an overall mtDNA depletion affects the
substantia nigra, but not the frontal cortex.242 More-
over, a significant reduction of mtDNA copy number
was also found in the blood cells of PD patients when
compared with controls.242 In a parallel study, the
same laboratory reported that PD patients have an
increase in mtDNA mutational burden in, but not lim-
ited to, the substantia nigra when compared with con-
trols.243 Recently, a further study tackled the same
issue by investigating mtDNA copy number, deletions,
and point mutations in laser-captured single neurons
from 3 brain areas, the dopaminergic neurons from
the substantia nigra, pyramidal neurons from the fron-
tal cortex, and Purkinje cells from the cerebellum.244

Remarkably, the mtDNA copy number increased with
age in the dopaminergic neurons of healthy controls,
maintaining the pool of wild-type mtDNA despite
accumulating deletions. Strikingly, this compensatory
up-regulation was blunted in PD patients, resulting in
relative mtDNA depletion unable to cope with the
increasing occurrence of clonally expanded mtDNA
deletions leading to the well-documented respiratory
deficiency of these neurons. This did not apply to the
frontal cortex or cerebellar neurons, and mtDNA
point mutational loads did not differ either, and, in
particular, did not significantly increase with age in

dopaminergic neurons of PD patients, in contrast with
other reports.243,245

These novel studies defined conclusively the
pathological features of mtDNA in substantia nigra
dopaminergic neurons in PD, revealing a loss of com-
pensatory biogenesis in mitochondrial homeostasis.
This is consistent with the evidence that PGC-1a plays
a key protective role in PD by orchestrating the com-
pensatory control of mtDNA copy number and mito-
chondrial biogenesis, which includes the coexpression
of key ROS-detoxifying enzymes. In fact, in animal
models the suppression of PGC-1a sensitizes the neu-
rodegenerative effects of MPTP and other stressors,
whereas the overexpression of PGC-1a exerts a pro-
tective role, qualifying as a potential therapeutic target
in PD.246,247 Remarkably, a-synuclein can also sup-
press the expression of PGC-1a under conditions of
oxidative stress, further reinforcing the importance of
protective mitochondrial biogenesis.248

This history, 3 decades long, of mtDNA and primary
mitochondrial dysfunction in PD provides paramount
evidence that mitochondrial function is vital to dopami-
nergic neurons and mitochondrial failure is the ultimate
event leading to their degeneration. There is a “fil
rouge” that connects complex I with mitochondrial
dynamics and life cycle (mitobiogenesis and mitophagy)
and with mtDNA maintenance. The common ground to
all of these connections remains age, the most impor-
tant risk factor for PD, and the related features of
mtDNA. The slight differences in mtDNA haplogroup
sequence and mitochondrial functionality, fixed by nat-
ural selection, impinge on both longevity and predispo-
sition/protection for PD. Mitochondrial genome
damage that somatically accumulates with age—includ-
ing low heteroplasmy point mutations, multiple
mtDNA deletions and their clonal expansion in single
cells, and the mtDNA copy number set up—is a major
contributor to the final functional failure that leads to
the neurodegeneration of dopaminergic neurons.
Although this seems now fairly accepted, we are still
left with important areas of incomplete understanding.
For example, do we really appreciate the intimate
nature of complex I dysfunction in PD, in particular its
molecular basis in relation to mtDNA? The last studies
highlighted a multilayered contribution of mtDNA,
with a new focus on mtDNA copy number control,
which shifts our attention from mitophagy to mitobio-
genesis, or their upstream balanced control.241,242 Do
we correctly weigh the elegant model of PINK1/Parkin-
dependent mitophagy into the context of in vivo PD
pathogenesis? The paradigm that the key factor is how
efficiently dysfunctional organelles and mutant mtDNA
are cleared by mitophagy is probably too simplistic. If
mitochondrial quality control exerts such an efficient
surveillance, this pathway should prevent the occur-
rence of primary mitochondrial diseases as a result of
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heteroplasmic mtDNA mutations, whereas there is no
evidence of in vivo negative selection against such
mtDNA mutations in postmitotic tissues. We predict
that studying mitophagy in neurons from patients with
common mitochondrial diseases will be informative.
Primary mitochondrial diseases can be considered the
extreme far end of the spectrum that starts from age-
related accumulation of mtDNA errors. Furthermore,
how much does the current mitophagy paradigm fit the
super-specialized functional architecture of dopaminer-
gic neurons? Noticeably, the MitoPark mouse model
with dopaminergic neuron-specific knockout of mito-
chondrial transcription factor A, needed for mtDNA
replication, failed to confirm Parkin recruitment on the
mtDNA-depleted mitochondria of degenerating dopa-
minergic neurons.195 This model, characterized by
mtDNA depletion, now becomes relevant in the light of
recent findings in humans.241,242,244 These authors also
showed that the possible mechanism for neuronal degen-
eration is a “dying back” axonopathy as a result of an
impaired supply of mitochondria to axons and synapses,
with large aggregates of enlarged mitochondria engulfing
the axon hillock.195 Interestingly, another study using
the Mutator mouse, characterized by the accumulation
of multiple mtDNA deletions as a result of a proofread-
ing mutation in POLG, reported the activation of com-
pensatory mitochondrial biogenesis in dopaminergic
neurons that exerts a neuroprotective effect, thus avoid-
ing their neurodegeneration.249 Remarkably, by crossing
the Mutator mouse with the Parkin knock-out mouse,
which does not display a loss of dopaminergic neurons,
the resulting double mutant animal convincingly reprodu-
ces the PD pathology, highlighting both the protective
role exerted by Parkin and the key role of accumulated
mtDNA mutations.250 These last 3 animal model studies
demonstrate how the balance between mitochondrial bio-
genesis and mitophagy remains central to PD pathogene-
sis (Fig. 2). The final question is whether we should
proceed with a more thorough “deep phenotyping” of
patients with PINK1 and Parkin mutations as well as
with other genetic forms of PD to really understand the
multisystem nature of mitochondrial dysfunction? To
emphasize this point, it is standard for CPEO patients
with ptosis to undergo muscle biopsy as a diagnostic pro-
cedure. This usually reveals the accumulation of multiple
mtDNA deletions and/or a partial depletion, which in
turn leads to the molecular identification of mutations in
POLG, C10orf2, MPV17, or OPA1. Interestingly, there
is 1 report of a patient with an early-onset parkinsonism
developing over time ptosis who had muscle biopsy alter-
ations along with 2 heterozygous Parkin mutations.251

This might suggest that we are still missing components
of the phenotypic expression of PD patients.

In conclusion, although the story is quickly evolving,
it remains incomplete, and the puzzle needs more criti-
cal units to be filled in. Mitochondrial dysfunction is

central to a continuum of clinical phenotypes, and
parkinsonism may be just the expression of mitochon-
drial dysfunction in dopaminergic neurons. The
increased understanding of PD pathogenesis casts
hope for finally making available a true neuroprotec-
tive therapeutic strategy for PD that can be applied at
early stages of the disease.
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