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Parkin Deficiency Reduces Hippocampal Glutamatergic
Neurotransmission by Impairing AMPA Receptor
Endocytosis
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Mutations in the gene encoding Parkin, an E3 ubiquitin ligase, lead to juvenile-onset Parkinson’s disease by inducing the selective death
of midbrain dopaminergic neurons. Accumulating evidence indicates that Parkin also has an important role in excitatory glutamatergic
neurotransmission, although its precise mechanism of action remains unclear. Here, we investigate Parkin’s role at glutamatergic
synapses of rat hippocampal neurons. We find that Parkin-deficient neurons exhibit significantly reduced AMPA receptor (AMPAR)-
mediated currents and cell-surface expression, and that these phenotypes result from decreased postsynaptic expression of the adaptor
protein Homer1, which is necessary for coupling AMPAR endocytic zones with the postsynaptic density. Accordingly, Parkin loss of
function leads to the reduced density of postsynaptic endocytic zones and to impaired AMPAR internalization. These findings demon-
strate a novel and essential role for Parkin in glutamatergic neurotransmission, as a stabilizer of postsynaptic Homer1 and the Homer1-
linked endocytic machinery necessary for maintaining normal cell-surface AMPAR levels.
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Introduction
Loss-of-function mutations in the PARK2 gene, encoding the E3
ubiquitin ligase Parkin, are the leading cause of juvenile-onset,

autosomal recessive Parkinson’s disease (PD; Leroy et al., 1998;
Lucking et al., 1998). PD results from the selective loss of mid-
brain dopaminergic neurons, whose survival depends on Parkin-
mediated mitophagy downstream of the kinase PINK1 (Feany
and Pallanck, 2003; Greene et al., 2003; Berger et al., 2009; Wang
et al., 2011). However, Parkin is highly expressed throughout the
nervous system (Scuderi et al., 2014), and some PD symptoms,
such as cognitive decline and dementia, are suggestive of hip-
pocampal dysfunction (Svenningsson et al., 2012; Calabresi et al.,
2013; Cosgrove et al., 2015). Moreover, Parkin deficiency has
recently been associated with Alzheimer’s disease and autism
(Scheuerle and Wilson, 2011; Roberts et al., 2014; Sun et al., 2014;
Olah et al., 2015), disorders linked to dysfunctional glutamatergic
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Significance Statement

Mutations in Parkin, a ubiquitinating enzyme, lead to the selective loss of midbrain dopaminergic neurons and juvenile-onset
Parkinson’s disease (PD). Parkin loss of function has also been shown to alter hippocampal glutamatergic neurotransmission,
providing a potential explanation for PD-associated cognitive impairment. However, very little is known about Parkin’s specific
sites or mechanisms of action at glutamatergic synapses. Here, we show that Parkin deficiency leads to decreased AMPA receptor-
mediated activity due to disruption of the postsynaptic endocytic zones required for maintaining proper cell-surface AMPA
receptor levels. These findings demonstrate a novel role for Parkin in synaptic AMPA receptor internalization and suggest a
Parkin-dependent mechanism for hippocampal dysfunction that may explain cognitive deficits associated with some forms
of PD.
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neurotransmission in the hippocampus (Penzes et al., 2013;
Bartsch and Wulff, 2015; Raskin et al., 2015). In addition, Parkin-
interacting partners and substrates include many components
of glutamatergic synapses, including the endocytic protein
endophilin-A, the PDZ domain-containing proteins CASK and
PICK1, and the kainate receptor subunit GluK2 (Fallon et al.,
2002; Joch et al., 2007; Trempe et al., 2009; Maraschi et al., 2014),
and multiple groups have reported that Parkin loss of function
alters glutamatergic synaptic transmission and plasticity (Gold-
berg et al., 2003; Itier et al., 2003; Helton et al., 2008; Kitada et al.,
2009; Hanson et al., 2010; Rial et al., 2014). However, the conclu-
sions from these studies are oftentimes contradictory, and none
has clearly separated the effects of presynaptic versus postsynap-
tic Parkin loss on neurotransmission. Such an analysis is neces-
sary to fully understand Parkin’s roles at glutamatergic synapses,
since its substrates/interacting partners include presynaptic and
postsynaptic proteins, and its loss of function likely has distinct
effects in each compartment.

Here, we have used single- and paired-cell electrophysiological
recordings, biochemistry, and immunofluorescence microscopy to
examine Parkin’s role at glutamatergic hippocampal synapses. We
find that Parkin deficiency leads to a significant reduction in AMPA-
type glutamate receptor (AMPAR)-mediated currents and cell-
surface expression, and that these phenotypes are linked to decreased
postsynaptic expression of Homer1, a scaffold protein necessary for
coupling endocytic zones (EZs) for AMPAR internalization to the
postsynaptic density (PSD; Lu et al., 2007). Correspondingly, we
show that EZ density is decreased and AMPAR internalization is
impaired in Parkin-deficient neurons. Our findings demonstrate
that Parkin has a critical role in stabilizing postsynaptic Homer1 and
the Homer1-linked EZs required for AMPAR capture and retention
at synapses, and that Parkin loss of function leads to decreased cell-
surface AMPAR levels and signaling.

Materials and Methods
Reagents. The following primary antibodies and dilutions were used for
immunoblotting and immunoprecipitation: mouse Parkin (Prk8,
1:1000; Santa Cruz Biotechnology), rabbit GAPDH (1:500; Santa Cruz
Biotechnology), rabbit GluA1 (1:1000; Cell Signaling), rabbit GluA2/3
(1:1000; EMD Millipore), rabbit CaMKII (1:700; Cell Signaling), rabbit
CASK (1:500; Cell Signaling), rabbit PSD-95 (1:1000; Cell Signaling),
rabbit Homer1b/c (1:1000; Santa Cruz Biotechnology), mouse tubulin
(1:10,000; Sigma), rabbit tubulin (1:10,000; Abcam), rabbit GFP (1:1000;
Invitrogen), mouse Myc (1:500; Santa Cruz Biotechnology), rabbit HA
(1:500; Santa Cruz Biotechnology). HRP-conjugated secondary antibod-
ies were purchased from Bio-Rad and diluted 1:5000 –10,000, and Dy-
Light fluorescent secondary antibodies were purchased from Thermo
Fisher Scientific and diluted 1:10,000 –15,000. The following primary
antibodies and dilutions were used for immunostaining: mouse VAMP2
(1:1000; Synaptic Systems), rabbit Homer1, isoforms a-c (1:200; Synap-
tic Systems), mouse GluA1 (1:50; EMD Millipore), mouse GluA2 (1:100;
EMD Millipore), mouse HA (F7, 1:200; Santa Cruz Biotechnology), un-
conjugated anti-mouse secondary antibody (1:50; Invitrogen). Parkin
knock-out (KO) rats were purchased from SAGE Labs/Horizon Discov-
ery, and PINK KO rats (SAGE Labs/Horizon Discovery) were a generous
gift from Dr. M. Ciucci (University of Wisconsin, Madison, Wisconsin,
USA). Unless otherwise indicated, all other chemicals are from
Sigma-Aldrich.

Primary hippocampal culture. Rat primary hippocampal cultures were
prepared using a modified Banker culture protocol (Banker and Goslin,
1998; Waites et al., 2009). Briefly, neurons from embryonic (E18 –E19)
Sprague Dawley rat hippocampi, taken from animals of both sexes, were
dissociated in TrypLE Express (Invitrogen) for 20 min, washed with
HBSS (Sigma), and plated in Neurobasal medium with B27 supplement
and Glutamax (all from Invitrogen) at a density of 250,000 neurons per

well (12-well plates) or coverslip (22 � 22 mm square) or 75,000 –
100,000 neurons per coverslip for glial microisland cultures.

Primary astrocyte culture and microislands. Primary astrocytes and as-
trocyte microislands were prepared as described previously (Delgado-
Martinez et al., 2007; Albuquerque et al., 2009). Cortices from P0 –P2 rat
pups were removed, chopped into 1 mm 3 chunks, digested with TrypLE
Express for 30 min at 37°C, and triturated to dissociate the cells. The cell
mixture was spun at 1000 rpm for 8 min, resuspended in astrocyte me-
dium, and plated into T75 flasks. Two to three days after culturing,
astrocytes were washed in ice-cold PBS, followed by ice-cold astrocyte
medium. Seven to 10 days after culturing, AraC (1 �M) was added to each
flask and allowed to incubate overnight. The following day, cultures were
shaken for 4 – 6 h at room temperature and washed with ice-cold PBS
(Ca 2�/Mg 2� free). Cells were then trypsinized for 15 min and replated
into T75 flasks. They were then grown to confluence (with medium
changed once per week) and used for microislands after this time. For
microisland preparation, 22 mm coverslips were etched in 70% nitric
acid overnight, washed three times in double-deionized H2O (ddH2O),
sterilized in 100% ethanol, and coated with poly-L-lysine (0.25 mg/ml)
for 2 h. After three washes in ddH2O, coverslips were coated with agarose
(0.25%) and allowed to dry overnight. Agarose-coated coverslips were
stamped with a grid stamper containing rat-tail collagen (Invitrogen)
and astrocytes plated at 50,000 cells per coverslip. Two days later, neu-
rons were plated onto microislands at a density of 75–100,000 neurons
per coverslip.

Expression constructs and transduction/transfection. Parkin shRNAs
were designed corresponding to the 21-mer target sequences (with two-
nucleotide 5� overhang) generated by siDirect (sidirect2.rnai.jp). The
target sequence of shParkin is gcaatgtgcccattgaaaa (corresponding to nu-
cleotides 1262–1281 of Rattus norvegicus Parkin, GenBank accession
number AB039878.1). Oligonucleotides containing the shParkin target
sequence flanked by BglII and HindIII sites and hairpin loops were sub-
cloned into pZOff 2.0 vector and subsequently into pFUGW H1 and
pF-SAP102-GFP-W H1 (a gift from C. Garner, Stanford University,
Stanford, CA; now at Universitätsmedizin Berlin, Berlin, Germany) as
described previously (Leal-Ortiz et al., 2008) to create pFUGW
H1�shParkin and pFU-SAP102-GFP-W�shParkin. Human Parkin
(Parkin) was purchased from Addgene (plasmid 45876) and subcloned
into the pFUGW and pFUGW H1�shParkin vectors at the XbaI/EcoRI
sites. The GFP-Homer1 construct was a gift from A. M. Grabrucker
(University of Ulm, Ulm, Germany) and C. Garner. pFUGW constructs
were used to generate lentivirus for infection of primary neurons as
described previously (Leal-Ortiz et al., 2008), except that Calfectin (Sig-
naGen Laboratories) was used for transfection of HEK293T cells. HEK
medium was replaced with Neurobasal medium 18 –24 h after transfec-
tion, and this medium (viral supernatant) was harvested 24 h later. Neu-
rons were transduced with 50 –200 �l of lentiviral supernatant per well at
2–3 d in vitro (DIV) and used for experiments between 13–15 DIV. This
time course was optimized based on efficacy of the shRNA knockdown.
Transfections were performed on 5 DIV using Lipofectamine 2000 (In-
vitrogen). For each 22 � 22 mm coverslip, 2.5 �l of Lipofectamine was
incubated with 62.5 �l of Neurobasal medium for 5 min, combined with
1–2.5 �g of DNA diluted in 62.5 �l of Neurobasal medium for 20 min,
and added to neurons for 45 min at 37°C. Neurons were transfected in
Neurobasal medium containing 50 �M AP-5 and 10 �M CNQX and
returned to their original dishes and medium after transfection.

Electrophysiology. Whole-cell patch-clamp recordings were performed
to examine miniature EPSCs (mEPSCs) and evoked EPSCs (eEPSCs) as
described previously (Waites et al., 2009; Arons et al., 2012). mEPSCs and
eEPSCs were measured at 13–15 DIV from hippocampal pyramidal
neurons plated onto glial islands and transduced with the following
constructs: pFU-GFP-W (soluble GFP control), pFU-GFP-human-
Parkin-W (Parkin), pFUGW H1 plus shParkin (shParkin), or pFU-GFP-
human-Parkin-W plus shParkin (rescue). Cultures were perfused at
room temperature with an extracellular solution (145 mM NaCl, 5 mM

KCl, 10 mM HEPES, 1.3 mM MgCl2, 2 mM CaCl2, 10 mM glucose) con-
taining 1 �m of TTX (mEPSCs only) and 100 �m of picrotoxin. Neurons
were visualized by fluorescence microscopy, and those expressing GFP
were selected as postsynaptic, whereas uninfected (nonfluorescent) neu-
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rons were selected as presynaptic. Our cocultures contained a high con-
centration of mixed GFP�/� synapses and very few GFP�/� synapses.
For spontaneous events, neurons were held at �65 mV and mEPSCs
were recorded over 5 min using a MultiClamp 700B amplifier (Molecular
Devices) controlled with a PC running MultiClamp Commander and
pClamp (Molecular Devices) and pass filtered at 2 kHz. For evoked cur-
rents (eEPSCs), postsynaptic neurons were voltage clamped at �65 mV
whereas presynaptic neurons were held in current clamp and induced to
fire action potentials by brief injection of depolarizing current. The threshold
for action potential firing was determined for each presynaptic neuron, and
the current was set accordingly. The internal solution consisted of the fol-
lowing: for postsynaptic cell: 110 mM Cs-methanesulfonate, 10 mM Na-
methanesulfonate, 10 mM EGTA, 1 mM CaCl2, 10 mM HEPES, 10 mM TEA, 5
mM QX-314, 5 mM MgATP, 0.5 mM NaGTP; for presynaptic cell: 130 mM

K-methanesulfonate, 10 mM Na-methanesulfonate, 10 mM EGTA, 1 mM

CaCl2, 10 mM HEPES, 5 mM MgATP, 0.5 mM NaGTP. Monosynaptic excit-
atory connections were evident as an inward current into the postsynaptic
neuron occurring within 5 ms of the peak of the presynaptic action potential.
Failures of synaptic transmission were defined as trials indistinguishable
from baseline and were evident by a lack of postsynaptic current immediately
after the presynaptic action potential. For evoked EPSCs, action potentials
were evoked at 0.2 Hz. A series of 10 independent stimulations were con-
ducted for each paired whole-cell recording, and the amplitudes were aver-
aged over this series. AMPAR-mediated currents were measured after local
application of the AMPAR agonist kainite (100 �M; Tocris Bioscience) using
a custom-built application system �200 �m from synapsing neurons on a
specific microisland.

Data analysis. Data acquisition and off-line analysis of AMPAR-
mediated EPSCs were performed with pClamp (Clampex version 10.4).
Statistical analyses were performed in GraphPad Prism using one-way
ANOVA or unpaired, two-tailed t tests, with p � 0.05 considered signif-
icant. mEPSCs were detected and analyzed with MiniAnalysis (version
6.0.3; Synaptosoft) as described previously (Waites et al., 2009).

Preparation of postsynaptic densities. Anesthetized rats [Long–Evans
hooded wild type (WT), Parkin KO, and PINK1 KO] were decapitated,
hippocampi were extracted, and PSD fractions were prepared as de-
scribed previously (Bermejo et al., 2014). Tissue was minced in 4 ml of
homogenization buffer (HB) with protease inhibitors (0.32 M sucrose in
4 mM HEPES) and homogenized using a glass tissue grinder with a Teflon
pestle. Nuclear material and unbroken cells were removed by centrifuga-
tion at 900 � g for 10 min. The remaining supernatant was centrifuged at
10,000 � g for 15 min, yielding an S2 cytosolic fraction and a P2 crude
synaptoneurosomal fraction containing both presynaptic and postsyn-
aptic material. The P2 synaptoneurosomal pellet was gently washed in 3
ml of HB and spun at 10,000 � g for 15 min. The P2 pellet was then
homogenized in 3 ml of ddH2O using a glass tissue homogenizer with a
Teflon pestle. The homogenate was immediately brought back to 4 mM

HEPES concentration and rotated for 30 min at 4°C to ensure complete
lysis. The synaptic homogenate was centrifuged at 25,000 � g for 20 min
at 4°C. The synaptoneurosomal pellet (P3) was resuspended in 1 ml of
HB. The P3 sample was layered onto a discontinuous sucrose gradi-
ent (1.2, 1.0, and 0.8 M sucrose in 4 mM HEPES). The samples underwent
ultracentrifugation in a fixed-angle rotor at 200,000 � g for 30 min at
4°C. The resulting pellet containing synaptic plasma membranes (SPMs)
was resuspended in 500 �l of 50 mM HEPES/2 mM EDTA solution (HE).
The SPM sample was added to 2.5 ml of lysis buffer (0.54% Triton X-100
in HE) and centrifuged at 32,000 � g for 20 min at 4°C. The resulting
pellet (PSD) was lysed in HE plus 0.01% SDS. Synaptic enrichment of the
PSD fraction was confirmed using common synaptic markers (i.e., PSD-
95, CaMKII). Protein content was quantified using the BCA protein assay
(Bio-Rad). Samples were prepared in reducing 4� Laemmli buffer and
heated at 65°C for 5 min before loading on SDS-PAGE. For Western
blotting, 40 �g of sample was loaded onto 4 –15% TGX (Bio-Rad) precast
gels and transferred onto polyvinylidene fluoride membranes (Milli-
pore). Membranes were blocked in 5% milk/PBS with 0.01% Triton
X-100 (PBST) for 30 min at room temperature; all primary antibody
incubations were done at 4°C overnight, followed by three 10 min washes
with PBST; and secondary antibody incubations were done at room tem-
perature for 1 h and washed three times for 10 min with PBST. Mem-

branes were then scanned and protein levels were detected using the
Odyssey CLx imaging system.

Coimmunoprecipitation assay. For coimmunoprecipitation studies,
HEK293T cells were transfected using Calfectin according to the manu-
facturer’s (SignaGen Laboratories) protocol. Cell lysates were collected
48 h after transfection in lysis buffer (50 mM Tris-base, 150 mM NaCl, 1%
Triton X-100, 0.5% deoxycholic acid) with protease inhibitor mixture
(Roche) and clarified by centrifugation at high speed (20,000 rcf). The
resulting supernatant was incubated with Dynabeads (Invitrogen) cou-
pled with anti-Myc or control mouse IgG antibodies at 4°C under con-
stant rotation for 1–2 h. Beads were washed two to three times with lysis
buffer and once with PBS. Bound proteins were eluted using sample
buffer (Bio-Rad) and subject to SDS-PAGE immunoblotting as de-
scribed below.

Immunoblotting. Cultured neurons were collected directly in 2� SDS
sample buffer (Bio-Rad). Samples were subjected to SDS-PAGE, trans-
ferred to nitrocellulose membranes, probed with primary antibodies in
5% BSA/PBS plus 0.05% Tween 20 overnight at 4°C, followed by fluo-
rescent or HRP-conjugated secondary antibodies for 1 h. Membranes
were imaged using an Odyssey Infrared Imager (model 9120; LI-COR
Biosciences) or incubated with SuperSignal West Pico Chemilumines-
cent substrate (Pierce) and exposed to autoradiography film. Protein
bands were quantified using the ImageJ (NIH) “Gels” function, and all
bands were normalized to their loading controls. Statistical analyses were
performed in GraphPad Prism using unpaired, two-tailed t tests compar-
ing the mean control or WT condition to the knockdown or KO. The p
value ( p � 0.05) was considered significant.

Immunofluorescence microscopy. Primary antibodies and concentra-
tions are listed above. Alexa Fluor 488-, Alexa Fluor 568-, or Alexa Fluor
647-conjugated secondary antibodies (Thermo Fisher Scientific) were
used at 1:800 or 1:400 (for Alexa Fluor 647). Neurons were immuno-
stained as described previously (Leal-Ortiz et al., 2008). Briefly, cover-
slips were fixed with Lorene’s fixative (60 mM PIPES, 25 mM HEPES, 10
mM EGTA, 2 mM MgCl2, 0.12 M sucrose, 4% formaldehyde) for 15 min,
primary and secondary antibody incubations were performed in block-
ing buffer (2% glycine, 2% BSA, 0.2% gelatin, and 50 mM NH4Cl in 1�
PBS) for 1–2 h at room temperature or overnight at 4°C, and all washes
were done with PBS. For surface labeling, GluA1 or GluA2 antibodies
were added to live neurons at 1:100 concentration, incubated for 5 min at
37°C, washed three times in Neurobasal medium, and fixed and stained
with secondary antibodies as described. Coverslips were mounted with
DAPI VectaShield (Vector Laboratories) and sealed with clear nail pol-
ish. Images were acquired with a 40� objective (Neofluar, NA 1.3) or a
63� objective (Neofluar, NA 1.4) on an epifluorescence microscope
(Axio Observer Z1; Zeiss) with Colibri LED light source, EMCCD cam-
era (Hamamatsu), and Zen 2012 (blue edition) software or with the same
objectives on a Zeiss LSM 800 confocal microscope running Zen2
software.

GluA1 internalization assay. GluA1 internalization was measured us-
ing a protocol modified from Lu et al. (2007) and Piguel et al. (2014).
Neurons expressing GFP�/� shParkin were incubated with mouse
GluA1 antibody (1:50; Millipore) for 40 min at 25°C to label surface
AMPARs, washed four times with PBS, and either fixed immediately with
Lorene’s fixative or incubated at 37°C for 15 or 30 min before fixation to
allow for receptor internalization. Cells were then incubated with anti-
mouse Alexa Fluor 568 secondary antibody diluted in blocking buffer
(used for all remaining steps) for 40 min at room temperature, washed
three times, and incubated for 30 min with unconjugated anti-mouse
secondary antibody to block any remaining unlabeled cell-surface GluA1
antibody. Finally, cells were washed four times, permeabilized with
0.25% Triton X-100, and incubated for 1 h at 25°C with anti-mouse
Alexa Fluor 647 to label internalized GluA1.

GluA1 recycling assay. Neurons were incubated with anti-GluA1 anti-
body to label surface receptors as described above and incubated at 37°C
for 30 min to allow for receptor internalization. All noninternalized sur-
face antibody was subsequently blocked with an unconjugated anti-
mouse secondary antibody at 25°C for 30 min and washed four times in
PBS. Next, neurons were fixed or incubated at 37°C for 1 h to allow for
receptor recycling back to the plasma membrane. They were then fixed,
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incubated for 40 min with Alexa Fluor 568-conjugated anti-mouse sec-
ondary antibody diluted in blocking buffer (used for all remaining steps)
to label the recycled surface population of receptors, and washed three
times. The remaining surface primary antibodies were blocked with an
excess of an unconjugated anti-mouse secondary antibody at room
temperature for 30 min, and neurons again were washed four times. After
permeabilization, neurons were incubated with Alexa Fluor 647-
conjugated anti-mouse secondary antibody for 40 min to label the inter-
nalized population of receptors, washed three times, and mounted and
imaged as described previously.

Image analyses. All image analyses were performed in a blinded fash-
ion. VAMP2/Homer, VAMP2/SAP102, or Dynamin-3 (Dyn3) puncta
density analyses were performed manually in ImageJ/Fiji using the Time
Series Analyzer V2 plugin (Balaji) to create ROIs (8 � 8 oval) on immu-
nopositive puncta above a threshold value (determined empirically, typ-
ically �5% in threshold window) along primary dendrites. The length of
primary dendrites was traced using the freehand line tool followed by the
“Measure” command, and the average density (number/unit length den-
drite) of puncta was calculated for each condition. Intensity analyses
were performed by creating a selection using the GFP channel (for solu-
ble GFP or SAP102-GFP); applying it to the relevant GluA1, GluA2, or
Homer channels; and measuring average intensity values of GluA1,
GluA2, or Homer puncta using the “Analyze Particles” function with
puncta size set between 2 and 50 pixels. For internalization and recycling
assays, ratios of internalized GluA1 intensity to surface GluA1 intensity,
or recycled to internalized GluA1 intensity, were calculated per punctum
(after measuring raw intensity values in the red and far-red channels) and
averaged for each field of view. These averaged ratios were then normal-
ized to the control condition (average value set to 1) and expressed as a
fraction of control. For the GluA1 internalization assay, values �1 indi-
cate less efficient AMPA receptor internalization versus control. For the
GluA1 recycling assay, values �1 indicate less efficient recycling of inter-
nalized AMPA receptors back to the plasma membrane versus control.

Results
Parkin loss of function decreases spontaneous neurotransmission
We first evaluated the effects of Parkin loss of function on spon-
taneous excitatory neurotransmission. Rat hippocampal neurons
were lentivirally transduced with constructs expressing soluble
GFP (control), GFP-tagged human Parkin (Parkin), an shRNA
that reduces endogenous Parkin by �60% (shParkin; Fig. 1A,B),
or shParkin together with GFP-human-Parkin (rescue; Fig. 1A),
which is resistant to shParkin (designed against rat Parkin) and
served as a rescue construct. mEPSCs were recorded from 13–15
DIV neurons transduced on 2–3 DIV. Interestingly, neurons ex-
pressing shParkin had significantly reduced mEPSC amplitudes
(12.35 � 0.75 pA) compared with those expressing the control
(16.15 � 1.68 pA), Parkin (16.86 � 0.89 pA), or rescue (17.84 �
1.63 pA) constructs, but no changes in mEPSC frequency (Fig.
1C–E). These results indicated that AMPAR levels and/or activity

were reduced in Parkin-deficient neurons. Because these findings
contradicted those from a previous study (Helton et al., 2008), we
further investigated spontaneous neurotransmission in hip-
pocampal neurons isolated from Parkin knock-out rats (SAGE
Labs/Horizon Discovery). In agreement with our knockdown
findings, we observed a significant reduction in mEPSC ampli-
tude in KO neurons (5.48 � 0.25 pA) compared with wild-type
controls (9.68 � 0.57 pA; Fig. 1F,H). Unexpectedly, we also saw
a significant reduction in mEPSC frequency (WT, 2.48 � 0.36
Hz; Parkin KO, 1.54 � 0.13 Hz; Fig. 1F,G), likely reflecting pre-
synaptic effects of Parkin loss of function, which have been re-
ported in studies of Parkin knock-out mice (Itier et al., 2003;
Hanson et al., 2010). However, since our initial findings indicated
a striking postsynaptic phenotype for Parkin knockdown, we fo-
cused our remaining experiments on its role in the postsynaptic
compartment.

Parkin knockdown was previously reported to increase gluta-
matergic synapse formation (Helton et al., 2008), so we measured
the density of synapses on primary dendrites of pyramidal neu-
rons transduced with control, shParkin, or rescue constructs on
2–3 DIV and fixed on 14 –15 DIV. The average density (number/
unit length dendrite) of VAMP2/Homer1-positive synapses was
calculated for each condition and found to be comparable (Fig.
2A,C), indicating that Parkin deficiency does not affect excit-
atory synapse number in our cultures. However, because post-
synaptic Homer1 levels appeared to be reduced in dendrites of
shParkin neurons (Fig. 2A; see also Fig. 5), we confirmed these
findings with another excitatory postsynaptic protein, SAP102.
Here, SAP102-GFP was lentivirally expressed alone or together
with shParkin from 3–14 DIV, and the density of SAP102-GFP/
VAMP2-positive puncta was calculated as before. Again, we
found no difference in synapse density between control and
Parkin-deficient neurons (Fig. 2B,D).

Parkin deficiency reduces synaptic efficacy and cell-surface
AMPARs
To further investigate Parkin’s role in postsynaptic glutamatergic
transmission, we performed paired-cell recordings in cultures of
5–10 hippocampal neurons plated onto glial microislands, a
preparation that ensures high connectivity between neurons.
Neurons were lentivirally transduced with one of the four con-
structs on 2–3 DIV, and eEPSCs were recorded on 13–15 DIV
from pairs in which the postsynaptic (recording) cell was lentivi-
rally transduced whereas the presynaptic (stimulating) cell was
untransduced (Fig. 3A). This configuration allowed us to
isolate Parkin’s postsynaptic function. Strikingly, we found that
shParkin-expressing neurons had significantly decreased eEPSC
amplitudes (36.98 � 4.44 pA) compared with those expressing
the control (302.9 � 113.4 pA), Parkin (299.1 � 68.71 pA), or
rescue (264.8 � 80.44 pA) constructs (Fig. 3B,C). Furthermore,
shParkin neurons had a threefold increase in the number of post-
synaptic failures after presynaptic stimulation compared with the
other conditions, indicating a dramatic decrease in synaptic effi-
cacy (Fig. 3D,E).

An increased rate of synaptic failures can be caused by de-
creased presynaptic neurotransmitter release probability or de-
creased postsynaptic glutamate receptor number. To investigate
the latter possibility, we measured whole-cell currents induced by
local application of kainate to stimulate cell-surface AMPARs.
Kainate application induced robust AMPAR-mediated currents
in neurons expressing control (139.8 � 35.6 pA) or rescue
(413.0 � 26.0 pA) constructs, and these were dramatically in-

4

Figure 1. Loss of Parkin decreases spontaneous excitatory neurotransmission. A, Immuno-
blot of primary hippocampal neurons lentivirally transduced on 2–3 DIV with control, GFP/
shParkin (shParkin), or shParkin�GFP-hu-Parkin (rescue) constructs; collected on 14 DIV; and
probed with Parkin, GFP, and tubulin antibodies. B, Quantification of shParkin knockdown
efficacy, expressed as percentage of endogenous Parkin. Expression of shParkin for�11 d led to
a 	60% knockdown of endogenous Parkin (n 
 3 experiments; **p � 0.01, unpaired t test).
C, Representative traces of spontaneous mEPSCs from hippocampal neurons transduced on 2–3
DIV with control, GFP-hu-Parkin (Parkin), shParkin, or rescue constructs. D, E, Quantification of
mEPSC frequency (D) and amplitude (E) for the four conditions (n 
 16 for control, 22 for
shParkin, 21 for Parkin, 20 for rescue; *p 
 0.03, one-way ANOVA). Error bars represent SEM. F,
Representative traces of mEPSCs from hippocampal neurons cultured from wild-type and Par-
kin knock-out rats. G, H, Quantification of mEPSC frequency (G) and amplitude (H) for the two
conditions (n 
 15 for WT, 31 for Parkin KO; **p 
 0.004, ***p � 0.0001, one-way ANOVA).
Error bars represent SEM.
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creased by overexpression of Parkin (1395 � 127.4 pA; Fig.
4A,B). In contrast, shParkin-expressing neurons exhibited a
greater than twofold reduction in AMPAR-mediated currents
compared with controls (67.7 � 13.1 pA; Fig. 4 A, B). These
data indicate a postsynaptic origin for the high failure rates
observed in Parkin-deficient neurons, although we cannot
rule out a presynaptic contribution to this phenotype. How-
ever, given that all presynaptic inputs in our preparation de-
rive from wild-type neurons, any changes in neurotransmitter
release probability would presumably result from retrograde

signals emanating from the Parkin-deficient postsynaptic
compartment.

To directly measure cell-surface AMPAR levels, we performed
immunostaining with antibodies against the AMPAR subunits
GluA1 and GluA2. We found that the cell-surface levels of both
subunits were significantly reduced (by 25% for GluA1, 20% for
GluA2) in neurons expressing shParkin compared with control
or rescue constructs (Fig. 4C–E). To verify that the synaptic pools
of surface AMPARs were similarly reduced, we performed surf-
ace GluA1 immunostaining of neurons expressing SAP102-
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GFP�/� shParkin (Fig. 4F). Again, the average intensity of
GluA1 puncta colocalizing with SAP102-GFP was reduced by
nearly 30% (Fig. 4F,G), consistent with synaptic loss of surface
AMPARs. These findings suggest that Parkin is a positive regula-
tor of cell-surface AMPAR expression.

Parkin regulates Homer1 levels at the PSD
Parkin was previously shown to localize to PSDs and coimmu-
noprecipitate with a complex of PSD proteins, including CASK,
PSD-95, and Homer1, indicating that it is a molecular compo-
nent of the PSD (Fallon et al., 2002). To investigate whether loss

of Parkin alters the protein composition of the PSD, we per-
formed quantitative immunoblotting of purified PSDs isolated
from whole brains of wild-type and Parkin KO rats. Although the
levels of PSD-95, CaMKII, and GluA2/3 were unchanged in PSDs
from KO animals versus wild-type controls, those of Homer1b/c,
CASK, and GluA1 were significantly decreased (Fig. 5A,B). These
differences were not seen in PSDs isolated from PINK1 knock-
out rats (Fig. 5A,C), indicating that the changes in PSD compo-
sition were specific to Parkin loss of function and did not depend
on the kinase PINK1, which is required for Parkin activation
upstream of mitophagy (Wang et al., 2011; Caulfield et al., 2015).
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GluA1 or GluA2 (red). Scale bar, 10 �m. D, Quantification of cell-surface GluA1, expressed as a fraction of control (n � 5 fields of view per condition with 	50 GluA1 puncta per field, results
confirmed in 3 independent experiments; *p � 0.05, unpaired t test). Error bars represent SEM. E, Quantification of cell-surface GluA2, expressed as a fraction (Figure legend continues.)
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Since Homer1 levels were the most significantly decreased by
Parkin knock-out, we next assessed whether these changes could
be detected in Parkin-deficient hippocampal neurons by immu-
nofluorescence microscopy. Here, we performed quantitative
immunostaining of Homer1 in 15 DIV neurons expressing the
control, shParkin, or rescue constructs. We found that the aver-
age intensity of postsynaptic Homer1 puncta was decreased by
nearly 40% in shParkin-expressing neurons compared with the
control and rescue conditions (Fig. 5D,E). This decrease, also
observed in our previous experiments (Fig. 2A), demonstrates
that Parkin is essential for maintaining Homer1 levels in the PSD.

Homer1 is a member of the Homer family of adaptor proteins,
which have important roles in postsynaptic protein scaffolding,
signal transduction, and synaptic plasticity (Shiraishi-Yamaguchi
and Furuichi, 2007). Homer1 is known to facilitate the postsyn-
aptic clustering and signaling of metabotropic glutamate recep-
tor type 5 (mGluR5; Marton et al., 2015), and we hypothesized
that its loss from synapses could be responsible for the reduction
in synaptic AMPARs in Parkin-deficient neurons. To test this
hypothesis, we overexpressed Homer1 in Parkin knockdown
neurons, cotransfecting GFP-Homer1 with mCherry�/� shPar-
kin on 5 DIV, then fixing and immunostaining for surface GluA1
on DIV 15. The intensity of cell-surface GluA1 was measured and
compared between these conditions. Remarkably, we found that
overexpression of GFP-Homer1 did not significantly alter surface
GluA1 levels in control neurons but completely normalized
GluA1 levels in shParkin-expressing neurons (Fig. 6A,B). These
findings indicate that the loss of postsynaptic Homer1 is primar-
ily responsible for the decrease in surface AMPARs observed after
Parkin loss of function. To determine whether Homer1 and Par-
kin can directly interact, we performed coimmunoprecipitation
experiments in HEK293T cells transfected with Myc-tagged Par-
kin and either soluble GFP or GFP-Homer1. We found that GFP-
Homer1 was efficiently immunoprecipitated by Myc-Parkin
(Fig. 6C), indicating that these proteins can interact in the ab-
sence of other PSD proteins such as PSD-95 and CASK, and
suggesting that Parkin stabilizes Homer1 in the PSD through a
direct binding interaction.

Parkin deficiency disrupts postsynaptic endocytic zones
Homer1 was previously found to be necessary for positioning
postsynaptic EZs for AMPAR internalization adjacent to PSDs,
via its interactions with the endocytic GTPase Dynamin-3 (Lu et
al., 2007; Petrini et al., 2009). Disruption of the Homer1/Dyn3
interaction was shown to uncouple EZs from the PSD, thereby
reducing synaptic AMPAR levels by preventing their efficient
capture, internalization, and reinsertion at the PSD membrane
(Lu et al., 2007). Since we observed a loss of synaptic cell-surface
AMPARs, decreased AMPAR-mediated neurotransmission, and
significantly reduced postsynaptic Homer1 levels in Parkin-
deficient neurons, we tested whether EZs were disrupted by
Parkin loss of function. EZs were visualized by cotransfecting
neurons with HA-tagged Dyn3 and SAP102-GFP�/� shParkin
on 5 DIV, followed by fixation and image acquisition on 15 DIV.

In control neurons, we found that nearly 50% of SAP102-GFP
puncta colocalized with HA-Dyn3, indicating coupling between
PSD and EZ components. This colocalization was reduced by
�15% in shParkin-expressing neurons (from 46% to 30%; Fig.
7A,B). Moreover, the density of HA-Dyn3 puncta/unit length
dendrite was reduced by 40% in shParkin neurons compared
with controls (Fig. 7A,C). We repeated these experiments in hip-
pocampal neurons isolated from wild-type and Parkin KO rats
and obtained similar results (Fig. 7D–F). In Parkin KO neurons,
colocalization of SAP102-GFP with HA-Dyn3 was reduced by
17% (from 52% to 35%; Fig. 7D,E), and Dyn3 puncta density by
nearly 40% (Fig. 7D,F). We also confirmed that the density of
SAP102-GFP puncta was unchanged between wild-type and KO
neurons (Fig. 7D,G) and that Parkin expression was completely
absent from our KO cultures (Fig. 7H), again demonstrating that
Parkin loss of function does not alter synapse formation. Since
Parkin has been found to interact with several endocytic proteins
(e.g., endophilin-A, Eps15; Fallon et al., 2006; Trempe et al.,
2009), we used our HEK293T cell coimmunoprecipitation assay
to determine whether it could similarly interact with HA-Dyn3.
In contrast to Homer1, we did not observe any binding of Parkin
to HA-Dyn3 in HEK cell lysates (Fig. 7I). These findings demon-
strate that both acute and chronic Parkin loss significantly de-
crease EZ density, most likely through reduced tethering of EZs to
the PSD via Parkin/Homer1 and Homer1/Dyn3 interactions.

Parkin deficiency impairs AMPAR endocytosis but
not recycling
Since the loss of EZs was previously shown to impair AMPAR
internalization (Lu et al., 2007), we next evaluated whether this
phenotype was present in Parkin-deficient neurons. Here, we
used an antibody feeding assay to monitor the internalization of
endogenous GluA1 in control and shParkin-expressing neurons
over a 15–30 min time period. After primary antibody labeling
for 40 min at 25°C, neurons were incubated for 15 or 30 min at
37°C to allow for receptor internalization, then fixed and incu-
bated with Alexa Fluor 568-conjugated secondary antibody to
label cell-surface GluA1, and finally permeabilized and incubated
with Alexa Fluor 647-conjugated secondary antibody to label in-
ternalized GluA1 (Fig. 8A). The ratio of internalized to surface
GluA1 was calculated for control and shParkin-expressing neu-
rons at both time points and normalized to the average values
obtained for control neurons (Fig. 8B,C). We found that the
internalized/surface ratio of GluA1 was reduced by 25% at the 15
min time point and by 15% at the 30 min time point, indicating
that AMPAR internalization was significantly impaired in
Parkin-deficient neurons.

To determine whether the recycling of internalized AMPARs
back to the cell surface was also disrupted by Parkin loss of func-
tion, we used another antibody feeding assay to evaluate endog-
enous GluA1 recycling in control and Parkin knockdown
neurons. Here, surface receptors were labeled with primary anti-
body as before and allowed to internalize for 30 min at 37°C. After
this time period, the remaining surface-associated antibody was
blocked with an unlabeled secondary antibody, and neurons were
subsequently incubated for 1 h at 37°C to allow for receptor
recycling back to the cell surface. Neurons were then fixed and
incubated with Alexa Fluor 568-conjugated secondary antibody
to label recycled cell-surface receptors, and finally permeabilized
and incubated with Alexa Fluor 647-conjugated secondary anti-
body to label internalized receptors (Fig. 8D). The ratio of recy-
cled to internalized GluA1 was calculated for control and
shParkin-expressing neurons and normalized to the average val-

4

(Figure legend continued.) of control (n � 4 fields of view per condition with 	50 GluA2
puncta per field, results confirmed in 3 independent experiments; *p � 0.05, unpaired t test).
Error bars represent SEM. F, Images of 15 DIV neurons expressing SAP102-GFP�/� shParkin
immunostained for cell-surface GluA1. Scale bar, 10 �m. G, Quantification of synaptic cell-
surface GluA1 based on colocalization with SAP102-GFP, expressed as a fraction of control (n �
6 fields of view per condition with 	50 GluA1 puncta per field, results confirmed in 3 indepen-
dent experiments; ***p � 0.0001, unpaired t test).
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ues obtained for control neurons (Fig. 8E). Surprisingly, we did
not see any difference in these ratios for control and Parkin-
deficient neurons (Fig. 8E), suggesting that the recycling of
AMPARs was not altered by Parkin loss of function. These find-
ings indicate that the phenotypes observed at excitatory synapses
lacking Parkin (reduced AMPAR-mediated currents and cell-
surface expression, increased synaptic failure rate) are due to
reduced EZ density, leading to inefficient cell-surface AMPAR
capture and endocytosis, but not to defects in AMPAR recycling
or exocytosis (Fig. 8F).

Discussion
Multiple studies implicate Parkin as a regulator of glutamatergic
neurotransmission (Fallon et al., 2002; Goldberg et al., 2003; Joch
et al., 2007; Helton et al., 2008; Hanson et al., 2010; Maraschi et
al., 2014), but its mechanism of action at synapses has remained
unclear. For example, Parkin loss of function has been reported
to enhance glutamatergic transmission (Helton et al., 2008) and
also to attenuate it (Itier et al., 2003; Hanson et al., 2010), and the
observed defects in transmission have been attributed to de-
creased presynaptic neurotransmitter release (Itier et al., 2003;
Hanson et al., 2010) as well as to reduced postsynaptic efficacy
(Goldberg et al., 2003). Our study, the first to specifically examine
Parkin’s role in the postsynaptic compartment of glutamatergic
neurons, demonstrates its essential function in stabilizing
Homer1 at the PSD, thereby maintaining endocytic zones for
efficient AMPAR capture and internalization (Fig. 8F). In the
absence of Parkin, Homer1 levels are reduced and EZs are less
efficiently coupled to the PSD, leading to AMPAR diffusion away
from the synaptic cleft (Fig. 8F). Parkin loss of function therefore
impairs excitatory synaptic transmission by reducing the number
of cell-surface AMPARs available to detect presynaptic glutamate
release.

Parkin as an organizer of postsynaptic endocytic zones
Disruption of EZs was previously linked to reduced cell-surface
AMPAR levels and attenuated transmission, as synaptic AMPARs
could no longer be efficiently captured, endocytosed, and rein-
serted at the cell surface, but instead diffused away (Lu et al., 2007;
Petrini et al., 2009). We found that Parkin-deficient neurons ex-
hibited multiple phenotypes indicative of EZ disruption, includ-
ing reduced mEPSCs, eEPSCs, and cell-surface AMPARs, as well
as decreased postsynaptic Homer1 levels, decreased density and
PSD colocalization of the EZ protein and Homer1-binding part-
ner Dynamin-3, and impaired GluA1 internalization. However,
two of the phenotypes we observed in Parkin-deficient hip-
pocampal neurons differed from those previously reported after
EZ disruption (Lu et al., 2007). For instance, we found that Par-
kin loss of function caused defects in GluA1 internalization after
both 15 and 30 min incubation times, whereas EZ disruption via
overexpression of the Dynamin-3 proline-rich domain (Dyn3-
PRD) was shown to impair GluA1 internalization after 5 or 20
min but not 30 min of incubation. One potential explanation for
this discrepancy is that Parkin loss of function more effectively
disrupts EZ function than overexpression of Dyn3-PRD. Fur-

thermore, Parkin interacts with other endocytic proteins known
to regulate AMPAR internalization, including endophilin-A,
Eps15, and PICK1 (Chowdhury et al., 2006; Fallon et al., 2006;
Hanley, 2006; Rial Verde et al., 2006; Joch et al., 2007; Trempe et
al., 2009; Lin and Man, 2014), and the loss of these interactions in
Parkin-deficient neurons may cause more profound endocytic
defects than disruption of Homer1/Dynamin-3 binding alone.

The other difference noted between our studies and those
performed previously was the effect on AMPAR recycling back to
the cell surface. In particular, we found that Parkin deficiency did
not alter the recycling of GluA1, whereas Dyn3-PRD-mediated
disruption of EZs was reported to significantly impair synaptic
GluA1/GluA2 recycling (Lu et al., 2007). One possible cause of
this discrepancy is methodological, as we looked at endogenous
GluA1 and normalized the intensity of recycled AMPARs to that
of the internalized pool (thus taking into account the internaliza-
tion defect at Parkin-deficient synapses), whereas Lu et al. (2007)
examined transfected, HA-tagged GluA1 and HA-GluA2 and
normalized the intensity of recycled receptors in a different way.
Moreover, Lu et al. (2007) found that there was no recycling
defect in the extrasynaptic pool of AMPARs, and we were unable
to distinguish between synaptic and extrasynaptic GluA1 pools in
our antibody feeding assays. Thus, it is conceivable that defects in
synaptic AMPAR recycling were masked by normal extrasynaptic
recycling in Parkin-deficient neurons and simply not detected.
Whatever the differences, both of our studies demonstrate that
reduced coupling of EZs to the PSD, whether through disruption
of Parkin/Homer1 or Homer1/Dyn3 binding, ultimately results
in the net loss of AMPARs from the neuronal cell surface.

Parkin regulation of PSD composition
We propose that Parkin-mediated stabilization of Homer1 at the
PSD is essential for proper EZ/PSD coupling and the efficient
local capture, internalization, and replenishment of cell-surface
AMPARs (Fig. 8F). This concept is consistent with our coimmu-
noprecipitation experiments showing direct binding between
Parkin and Homer1, and with our finding that Homer1 overex-
pression is sufficient to rescue the decrease in cell-surface GluA1
levels observed in Parkin-deficient neurons. Parkin may also in-
fluence PSD composition through other mechanisms. For in-
stance, previous studies have shown that Parkin interacts with the
PDZ domain-containing proteins CASK and PICK1 (Fallon et
al., 2002; Joch et al., 2007), which in turn interact with the PSD
proteins PSD-95, SAP-97, and GluA2 (Nix et al., 2000; Hirbec et
al., 2002; Leonoudakis et al., 2004). Although we did not detect
changes in PSD-95 or GluA2/3 levels in purified PSDs from Par-
kin KO brain tissue, our survey of PSD proteins was not exten-
sive. It is possible that the levels and/or localization of other
Parkin or Homer1-interacting proteins (i.e., NMDA receptors,
mGluR5, Shank; Shiraishi-Yamaguchi and Furuichi, 2007; Gao et
al., 2013; Marton et al., 2015) are also affected. Future studies will
address this important question.

We also cannot rule out a role for Parkin’s ubiquitin ligase
activity in regulating PSD protein levels or stability. Interestingly,
a recent study showed that the kainate receptor subunit GluK2 is
a Parkin substrate whose degradation is regulated by Parkin-
mediated ubiquitination (Maraschi et al., 2014). Parkin was also
recently reported to ubiquitinate Dynamin-1 (Cao et al., 2014),
raising the possibility that it could directly regulate Dynamin-3
stability rather than working indirectly through Homer1. How-
ever, whereas the levels of Parkin substrates, including GluK2, are
reported to increase after Parkin loss of function (Maraschi et al.,
2014), we find that the levels of GluA1, Homer1, and CASK all

4

(Figure legend continued.) puncta per field, unpaired t test). H, Immunoblot of primary hip-
pocampal neurons cultured from E18 WT and Parkin KO rats, collected on 14 DIV, and probed
with Parkin and tubulin antibodies. Note the absence of Parkin from the KO lysate. I, Immuno-
blot of lysates from HEK293T cells expressing Myc-Parkin and HA-Dynamin3, immunoprecipi-
tated (IP) with IgG (control) or Myc antibody, and probed with HA or Myc antibodies. The
arrowhead indicates Myc-Parkin (just below the IgG band).
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Figure 8. Impaired AMPAR internalization but not recycling in Parkin-deficient neurons. A, Images of 15 DIV hippocampal neurons expressing soluble GFP�/� shParkin, immunostained for
cell-surface (surf) and internalized (inter) GluA1 after 0, 15, or 30 min incubation at 37°C. Scale bars, 10 �m. B, Quantification of GluA1 internalization at 15 min, expressed as the ratio of internalized
to cell-surface GluA1 and normalized to GFP control condition (n � 10 fields of view per condition, 	50 GluA1 puncta per field, results confirmed in 3 independent experiments; ***p � 0.0001,
unpaired t test). C, Quantification of GluA1 internalization at 30 min, expressed as the ratio of internalized to cell-surface GluA1 and normalized to the GFP control condition (n � 10 fields of view
per condition,	50 GluA1 puncta per field, results confirmed in 3 independent experiments; ***p �0.0001, unpaired t test). D, Images of 15 DIV hippocampal neurons expressing soluble GFP�/�
shParkin and immunostained for internalized (inter) or recycled (rec’d) GluA1 after 0 or 60 min incubation at 37°C. Scale bars, 10 �m. E, Quantification of GluA1 recycling at 60 min, expressed as the
ratio of recycled to internalized GluA1 and normalized to the GFP control condition (n � 10 fields of view per condition, 	50 GluA1 puncta per field, results confirmed in 3 independent experiments;
p � 0.0001, unpaired t test). F, Model of how Parkin deficiency may disrupt postsynaptic AMPAR recycling. In wild-type neurons, Parkin stabilizes Homer1 at the PSD, allowing for PSD/EZ coupling
via Homer1/Dynamin-3 interactions and thereby supporting efficient AMPAR capture, internalization, and reinsertion at the cell surface (Lu et al., 2007; Petrini et al., 2009). Parkin-deficient synapses
have decreased Homer1 levels, leading to reduced PSD/EZ coupling, impaired AMPAR capture and internalization, and ultimately the diffusion of cell-surface AMPARs away from synapses.
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decrease, suggesting that any Parkin-mediated ubiquitination
acts indirectly, or by mediating protein trafficking rather than
degradation.

Parkin and presynaptic function
Our findings demonstrate a critical role for Parkin in postsynap-
tic AMPAR-mediated signaling. They also hint at a role for Par-
kin in presynaptic neurotransmitter release, as we observed
significantly decreased mEPSC frequency in hippocampal neu-
rons isolated from Parkin KO rats (Fig. 1G), a phenotype not
observed in our mixed culture preparation wherein a majority of
presynaptic inputs derived from wild-type, untransduced neu-
rons. Several electrophysiology studies (Itier et al., 2003; Hanson
et al., 2010) and reports that Parkin ubiquitinates the synaptic
vesicle-associated proteins CDCrel-1 and synaptotagmin XI
(Zhang et al., 2000; Huynh et al., 2003), as well as the presynaptic
endocytic machinery, including endophilin-A, dynamin-1, and
synaptojanin (Trempe et al., 2009; Cao et al., 2014), further sup-
port a role for Parkin in the presynaptic compartment. Intrigu-
ingly, Parkin levels are significantly and specifically increased in
the brains of endophilin knock-out mice (Cao et al., 2014), sug-
gesting a reciprocal relationship between these two proteins.
Moreover, endophilin interacts genetically and biochemically
with LRRK2, a kinase that regulates synaptic vesicle cycling and
whose mutation is a major genetic cause of PD (Matta et al., 2012;
Arranz et al., 2015; Konno et al., 2016). Clearly, additional studies
are needed to investigate Parkin’s functions and links to other
PD-associated proteins in the presynaptic compartment.

Parkin deficiency in neurological disease
There are few effective treatments for the nonmotor symptoms of
Parkinson’s disease, which include cognitive dysfunction, memory
impairment, and dementia (Svenningsson et al., 2012; Calabresi et
al., 2013; Cosgrove et al., 2015). Although these symptoms are
thought to arise from defects in excitatory glutamatergic transmis-
sion, very little is known about their underlying cellular and molec-
ular mechanisms. Moreover, Parkin deficiency is implicated in other
brain disorders characterized by dysfunction of glutamatergic sig-
naling, including Alzheimer’s disease and autism (Scheuerle and
Wilson, 2011; Roberts et al., 2014; Sun et al., 2014; Olah et al., 2015).
Not only do our findings provide new insights into the role of Parkin
at glutamatergic synapses, they also suggest potential therapeutic
strategies for treating PD and other disorders resulting from Parkin
deficiency. For instance, Homer1 regulates synaptic plasticity via
modulation of mGluR5 and NMDA receptors (Gao et al., 2013;
Marton et al., 2015), both of which are highly druggable targets (Ma-
tosin et al., 2015; Park et al., 2015; Scharf et al., 2015; Tsai, 2016). It is
therefore conceivable that the cognitive deficits present in patients
with Parkin mutation/loss of function could be ameliorated by phar-
macologically altering these Homer1-mediated signaling pathways.

In summary, we report that Parkin has an essential role in the
postsynaptic compartment of glutamatergic hippocampal neu-
rons, where it stabilizes Homer1 and thereby regulates EZ den-
sity, synaptic cell-surface AMPAR levels, and ultimately the
ability of neurons to respond to presynaptic glutamate release.
These findings suggest a potential mechanism through which
Parkin deficiency contributes to the dysfunction of glutamatergic
signaling in Parkinson’s disease and other brain disorders.
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