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SUMMARY

Loss of neurons after brain injury and in neurodegen-
erative disease is often accompanied by reactive
gliosis and scarring, which are difficult to reverse
with existing treatment approaches. Here, we show
that reactive glial cells in the cortex of stab-injured
or Alzheimer’s disease (AD) model mice can be
directly reprogrammed into functional neurons in vivo
using retroviral expression of a single neural tran-
scription factor, NeuroD1. Following expression of
NeuroD1, astrocytes were reprogrammed into gluta-
matergic neurons, while NG2 cells were reprog-
rammed into glutamatergic and GABAergic neurons.
Cortical slice recordings revealed both spontaneous
and evoked synaptic responses in NeuroD1-con-
verted neurons, suggesting that they integrated into
local neural circuits. NeuroD1 expression was also
able to reprogram cultured human cortical astro-
cytes into functional neurons. Our studies therefore
suggest that direct reprogramming of reactive glial
cells into functional neurons in vivo could provide
an alternative approach for repair of injured or dis-
eased brain.

INTRODUCTION

Gliosis is a common pathological process after brain injury that

involves the activation of glial cells to proliferate and become

hypertrophic to occupy the injured brain areas (Pekny and Nils-

son, 2005; Robel et al., 2011; Sofroniew and Vinters, 2010). Glial

cells, including astrocytes, NG2 cells, and microglia, undergo

reactive response to injury in order to form a defense system

against the invasion of micro-organisms and cytotoxins into

surrounding tissue (Pekny and Nilsson, 2005; Robel et al.,

2011; Sofroniew and Vinters, 2010). However, once activated,

many reactive glial cells will stay in the injury sites and secrete

neuroinhibitory factors to prevent neuronal growth, eventually

forming glial scar inside the brain (Sofroniew and Vinters,

2010). Reactive glial cells have also been widely reported after

stroke, spinal cord injury, glioma, and neurodegenerative disor-

ders such as Alzheimer’s disease (AD) (Gwak et al., 2012; Pekny

and Nilsson, 2005; Sofroniew and Vinters, 2010; Verkhratsky

et al., 2010, 2012). However, despite substantial progress in
188 Cell Stem Cell 14, 188–202, February 6, 2014 ª2014 Elsevier Inc
understanding the molecular pathways of reactive gliosis (Robel

et al., 2011), there has been little success in efforts to reverse

glial scarring after its formation.

Reprogramming adult skin fibroblasts into pluripotent stem

cells has opened a new field for potential stem cell therapy

(Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yu

et al., 2007). Many studies have since demonstrated transdiffer-

entiation across different cell lineages, including reprogramming

mouse or human fibroblasts directly into neurons (Ambasudhan

et al., 2011; Caiazzo et al., 2011; Kim et al., 2011; Ladewig et al.,

2012; Liu et al., 2012, 2013; Meng et al., 2012; Pang et al., 2011;

Pfisterer et al., 2011; Qiang et al., 2011; Son et al., 2011; Torper

et al., 2013; Vierbuchen et al., 2010; Yoo et al., 2011) or

oligodendroglial cells (Najm et al., 2013; Yang et al., 2013). It

has also been demonstrated that astroglial cells can be trans-

differentiated into neurons (Heinrich et al., 2010; Torper et al.,

2013) or reprogrammed into neuroblast cells (Niu et al., 2013).

However, it is unclear whether such transdifferentiation

studies can be applied to brain repair after brain injury or

neurodegeneration.

We demonstrate here that after brain injury, reactive glial

cells including both astrocytes and NG2 cells can be reprog-

rammed into functional neurons in the adult mouse cortex

when infected with retrovirus encoding a single trans-

cription factor, NeuroD1. Electrophysiological recordings

revealed both spontaneous and evoked synaptic responses

in NeuroD1-converted neurons. Interestingly, astrocytes were

mainly reprogrammed into glutamatergic neurons whereas

NG2 cells were reprogrammed into both glutamatergic and

GABAergic neurons after NeuroD1 expression. We also

demonstrated that forced expression of NeuroD1 in a mouse

model for AD was capable of reprogramming reactive glial

cells into functional neurons. Furthermore, NeuroD1 was

capable of reprogramming cultured human astrocytes into

functional neurons efficiently. Thus, in vivo regeneration of

functional neurons from reactive glial cells may provide a

potential therapeutic approach to restore lost neuronal

function in injured or diseased brain.

RESULTS

In Vivo Reprogramming of Reactive Glial Cells into
Functional Neurons after Brain Injury
A signature of brain injury is the loss of functional neurons and

the activation of glial cells. In the adult mouse cortex, astrocytes

are usually quiescent and not proliferative unless activated by
.
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Figure 1. In Vivo Conversion of Reactive Glial Cells into Functional Neurons after Brain Injury
(A) Injecting control retrovirus expressing GFP (green) into mouse cortex revealed GFAP-positive reactive astrocytes (red) in the injury site (14 days

postinjection, DPI).

(B and C) NeuroD1-IRES-GFP-infected cells (green) were immunopositive for neuronal markers DCX (B, 3 DPI) and NeuN (C, 7 DPI). Note a significant number of

NeuN-positive neurons in the injury site after NeuroD1 infection.

(D) After 21 DPI, NeuroD1-converted neurons (NeuN-positive, arrowhead) showed extensive neurites. Scale bar, 20 mm for (A) and (D); 40 mm for (B) and (C).

(E) Quantified data showing the number of converted neurons per imaged area (403, 0.1 mm2) and conversion efficiency after NeuroD1 infection.

(F and G) NeuroD1-converted neurons were immunopositive for cortical neuron marker Tbr1 (F) and deep layer marker Ctip2 (G, 12 DPI). Scale bars: 100 mm for

low-power image, 40 mm for high-power image.

(H and I) Representative traces from cortical slice recordings showing Na+ and K+ currents (H) and repetitive action potentials (I) in NeuroD1-converted neurons

(30 DPI).

(J) Representative traces showing spontaneous synaptic events in a NeuroD1-converted neuron (26 DPI) in cortical slice recording (CNQX, 10 mM; BIC, 20 mM).

(K) Evoked synaptic events recorded from a converted neuron.

See also Figures S1–S3.
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injury or diseases (Ge et al., 2012; Robel et al., 2011; Tsai et al.,

2012). Besides astrocytes, NG2 cells and microglia can also be

activated and proliferate rapidly in the injury sites or in diseased

brain (Aguzzi et al., 2013; Hines et al., 2009; Kang et al., 2013). To

test whether reactive glial cells can be reprogrammed into func-

tional neurons for brain repair, we decided to inject retroviruses

encoding neural transcription factors into adult mouse cortex

in vivo. We chose retroviral delivery for in vivo injection because,

unlike lentiviruses or adeno-associated viruses, retroviruses only

infect dividing cells such as progenitor cells or reactive glial cells,
Ce
and do not infect nondividing cells such as neurons (Zhao et al.,

2006). As a control, we first injected retroviruses expressing GFP

alone under the control of CAG promoter (pCAG-GFP-IRES-

GFP) (Zhao et al., 2006) into mouse cortex to examine what

type of cells will be infected by the retrovirus after stab injury.

As expected, many GFP-labeled cells were immunopositive for

astrocytic marker GFAP (Figure 1A; 52.1% ± 4.3% were GFAP

positive, n = 3 animals). We did not observe any neuronal cells

infected by control retrovirus expressing GFP alone (Figure S1

available online).
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Our strategy for reprogramming reactive glial cells into neu-

rons involved construction of a retrovirus encoding NeuroD1, a

bHLH proneural transcription factor that plays an important

role during embryonic brain development and adult neurogene-

sis (Cho and Tsai, 2004; Gao et al., 2009; Kuwabara et al., 2009).

We first tested the effect of NeuroD1 in a brain injury model,

where reactive glial cells were induced by stab injury during ste-

reotaxic injection of retroviruses into mouse somatosensory cor-

tex. We limited our injection to cortical areas without penetrating

the hippocampus or subventricular zone, where adult neural

stem cells are known to reside. Interestingly, 3 days postinjection

(DPI) of the retrovirus encoding NeuroD1 (pCAG-NeuroD1-IRES-

GFP) into mouse cortex, many NeuroD1-GFP-infected cells

showed bipolar morphology and were immunopositive for dou-

blecortin (DCX), an immature neuronal marker (Figure 1B). One

week after viral injection, NeuroD1-infected cells started to

show staining for neuronal nuclei (NeuN), a typical neuronal

marker (Figure 1C). Three weeks after viral injection, NeuroD1-

infected cells showed extensive neurites and the NeuN signal

reached the level of noninfected mature neurons in the same

vicinity (Figure 1D). Quantitatively, we detected a large number

of NeuroD1-GFP-labeled newborn neurons (DCX) at 3 DPI

(19.3 ± 3.7 per 0.1 mm2, n = 5 animals), and the number of con-

verted neurons gradually declined during thematuration process

(Figure 1E). Nevertheless, at any given time point after NeuroD1

retroviral infection, the majority of NeuroD1-infected cells were

DCX- or NeuN-positive neurons, whereas control GFP viral

infection resulted in no neurons at all (Figure 1E; Figure S1).

We found that NeuroD1-converted neurons were usually

located in the deep cortical layer, with some exceptions in the

cingulate cortex or superficial layer of the cortex, as illustrated

with a general cortical neuron marker Tbr1 (Figure 1F). To further

test the neuronal properties of NeuroD1-converted neurons, we

used the deep layer cortical neuron marker Ctip2 and found that

NeuroD1-converted neurons were indeed immunopositive for

Ctip2 (Figure 1G). No GFP-labeled neurons were detected in

the dentate gyrus or the subventricular zone, because our viral

injection was restricted to the cortical layers.

Interestingly, we found that NeuroD1-converted neurons at 3

DPI were typically localized within 100 mm from the injection

site. However, 1–2 weeks after injection, NeuroD1-infected cells

were found in more broad areas, ranging from 100–500 mm away

from the injection site (Figure S2). It is possible that this gradual

spread is a reflection of distant cells being exposed to a lower
Figure 2. NeuroD1 Converts Astrocytes into Glutamatergic Neurons

(A and B) In vivo injection of GFAP-promoter-driven NeuroD1-IRES-GFP (green)

and Tuj1 (B).

(C) Cultured mouse cortical astrocytes were converted into NeuN-positive neuro

(D) Time course of GFAP::NeuroD1 conversion efficiency after infecting cultured

(E and F) Astrocyte-converted neurons were positive for VGluT1 (E) but negative

(G and H) Immunostaining with cortical layer neuronal markers showed deep layer

bars: 20 mm for (A–C) and (E), and 40 mm for (G).

(I) Mouse astrocyte-converted neurons showed large glutamate, GABA, and NM

current, 7 DPI, 405 ± 97 pA, n = 8; 14 DPI, 861 ± 55 pA, n = 13. Average glutamate c

current, 7 DPI, 676 ± 118 pA, n = 7; 14 DPI, 1,315 ± 95, n = 7.

(J and K) Mouse astrocyte-converted neurons showed repetitive action potentia

(L) Spontaneous synaptic events recorded from mouse astrocyte-converted neu

glutamatergic events.

Also see Figure S4.

Ce
level of viral infection and thus having later conversion or that

the newly converted neurons migrate away from the injury

core. Further investigation will be needed to distinguish between

these possibilities.

To test whether NeuroD1-converted neurons have functional

activity, we performed cortical slice recordings on NeuroD1-

GFP-infected cells �1 month after they received retroviral injec-

tion. The NeuroD1-converted neurons showed large sodium

currents (3,840 ± 302 pA, n = 5) and potassium currents

(4,672 ± 602 pA, n = 5) (Figure 1H) and were capable of firing re-

petitive action potentials (Figure 1I, n = 4). Importantly, we

recorded robust spontaneous synaptic events in NeuroD1-con-

verted neurons in cortical slice recordings (Figure 1J; frequency,

1.96 ± 0.43 Hz; amplitude, 23.7 ± 2.0 pA; n = 8; 25–31 DPI), sug-

gesting that these NeuroD1-converted neurons formed func-

tional synapses with other neurons. Moreover, we placed a stim-

ulating electrode nearby (50 mm) to stimulate axon fibers and

recorded evoked synaptic responses in the NeuroD1-converted

neurons (Figure 1K; n = 3 animals), suggesting an integration of

converted neurons into local neural circuits. The NeuroD1-con-

verted neurons can survive for a long time in mouse brain in vivo,

at least 2 months after the retroviral injection, and they showed

clear dendritic spines and large spontaneous synaptic events

(Figure S3, n = 3 animals). Thus, NeuroD1 can reprogram

brain-injury-induced reactive glial cells into functional neurons

in mouse brain in vivo.

NeuroD1 Reprograms Astrocytes into Glutamatergic
Neurons
After a brain injury, many glial cells are activated and become

proliferative. To examine whether reactive astrocytes, a major

subtype of reactive glial cells in gliosis, can be reprogrammed

into neurons by NeuroD1, we generated a retrovirus expressing

NeuroD1 under the control of human GFAP promoter. After

injecting GFAP::NeuroD1-IRES-GFP retrovirus into the mouse

cortex, we found that NeuroD1-infected cells weremostly immu-

nopositive for the neuronal markers NeuN (Figure 2A; 92.8% ±

2%wereNeuNpositive, 8DPI; n = 4 animals) and Tuj1 (Figure 2B;

n = 4 animals). Therefore, reactive astrocytes induced by brain

injury can be reprogrammed into neurons in vivo after overex-

pressing a single transcription factor, NeuroD1.

To further characterize the properties of astrocyte-converted

neurons, we infected cultured mouse cortical astrocytes with

GFAP::NeuroD1-IRES-GFP retrovirus. Our mouse astrocyte
retrovirus revealed astrocyte-converted neurons immunopositive for NeuN (A)

ns.

mouse astrocytes.

for GAD67 (F).

neuronal properties (Ctip2 and Otx1) after NeuroD1-induced conversion. Scale

DA receptor currents within 2 weeks after NeuroD1 infection. Average GABA

urrent, 7 DPI, 517 ± 145 pA, n = 7; 14 DPI, 1,060 ± 159 pA, n = 9. AverageNMDA

ls (J) and large INa and IK (K).

rons. All events were blocked by CNQX but not BIC, suggesting that they were
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cultures were enriched with GFAP-positive astrocytes, with little

contamination from microglia or NG2 cells (Figure S4A). Similar

to our in vivo reprogramming, cultured mouse astrocytes can

be efficiently reprogrammed into NeuN-positive neurons after

GFAP::NeuroD1 infection (Figure 2C). Quantitatively, we found

that the NeuroD1-induced reprogramming efficiency dramati-

cally increased in the first 3 days after GFAP::NeuroD1 infection

and reached >90% after 7 DPI (Figure 2D). To examine

whether GFAP::NeuroD1-converted neurons are glutamatergic

or GABAergic, we performed immunostaining with VGluT1 and

GAD67-specific antibodies and found that the majority of

neuronswere positive for VGluT1 (Figures 2E and 2F) but virtually

none stained for GAD67 (Figure 2F; Figure S4B). Thus, NeuroD1

reprograms astrocytes into glutamatergic neurons. We also

used superficial and deep layer cortical neuronal markers to

characterize the NeuroD1-converted neurons. The GFAP::

NeuroD1-converted neurons were positive for the deep layer

markers Ctip2 and Otx1, as well as Tbr1 (Figures 2G and 2H),

but negative for the superficial layermarkers Cux1 and Lhx2 (Fig-

ure 2H; Figure S4C). This finding may explain why we observed

more NeuroD1-converted neurons in deep cortical layer in

mouse brain in vivo.

We also functionally characterized the cultured mouse astro-

cyte-converted neurons after NeuroD1 infection and detected

large GABA (100 mM), glutamate (100 mM), and NMDA

(100 mM) currents (Figure 2I). The mouse astrocyte-converted

neurons also showed repetitive action potentials (Figure 2J,

n = 18) and large Na+ and K+ currents (Figure 2K; INa, 2,979 ±

626 pA, n = 11; IK, 5,136 ± 1,181 pA, n = 11, 14 DPI).

More importantly, we recorded robust synaptic events in

astrocyte-converted neurons, which were blocked by glutamate

receptor antagonist CNQX (10 mM), but not by GABAA receptor

antagonist bicuculline (BIC, 20 mM) (Figure 2L; frequency,

1.15 ± 0.71 Hz; amplitude, 21.5 ± 0.71pA, n = 13; 14 DPI), con-

firming that astrocyte-converted neurons are glutamatergic

neurons.

NeuroD1 Reprograms NG2 Cells into Glutamatergic and
GABAergic Neurons
In addition to reactive astrocytes, NG2 cells also proliferate

significantly in response to brain injury and accounted for about

19.0% ± 3.9% of control retrovirus-infected cells in our stab

injury model, whereas only 6% of infected cells were microglia.

To investigate whether NG2 cells can be reprogrammed into

neurons by NeuroD1, we generated a retrovirus expressing

NeuroD1 under the control of the human NG2 promoter

(NG2::NeuroD1-IRES-GFP). Interestingly, we discovered that

injecting NG2::NeuroD1 retrovirus into mouse cortex also re-
Figure 3. NeuroD1 Converts NG2 Cells into Glutamatergic and GABAe

(A and B) In vivo injection of NG2::NeuroD1-GFP retrovirus revealed the convers

(C and D) Cultured NG2 cells were converted into NeuN-positive neurons within

(E–G) NG2 cell-converted neurons after NeuroD1 infection were immunopositive f

also showed glutamatergic and GABAergic puncta on converted neural dendrite

(H and I) Cortical layer neuronal marker immunostaining showed deep layer neuro

Scale bars: 100 mm for left panel in (A); 40 mm for (A, right two panels), (C), (E), a

(J and K) NG2-converted neurons showed repetitive action potentials (J; n = 9) a

(L and M) NG2-converted neurons showed large glutamate-evoked current (L; n

(N) Spontaneous synaptic events recorded from NG2-converted neurons show

convert NG2 cells into both excitatory and inhibitory neurons.

Ce
programmed NG2 cells into NeuN- and Tuj1-positive neurons

(Figures 3A and 3B; 42.5% ± 6.6% GFP-labeled cells were

NeuN positive, 8 DPI, n = 3 animals). We then characterized

NG2-converted neurons using cultured NG2 cells dissociated

from mouse cortex. In our mouse NG2 cultures, the majority of

cells were NG2 positive (79.2%± 3.2%, n = 3 repeats of cultures)

(Figure S4D). Consistent with our in vivo study, we found

that NG2::NeuroD1 also efficiently reprogrammed cultured

mouse NG2 cells into neurons (Figures 3C and 3D; 7 DPI,

98.2% ± 1.8%, n = 484, 4 repeats). While the majority of

NG2::NeuroD1-converted neurons were also glutamatergic

(VGluT1 positive), about 10% NG2-converted neurons were

immunopositive for GAD67 and presynaptic GABAergic termi-

nals (GAD65) were found on neuronal dendrites (Figures 3E–

3G). Therefore, it appears that NG2 cells can be reprogrammed

into both glutamatergic andGABAergic neurons after expressing

NeuroD1. Immunostaining with cortical layer markers revealed

that NG2-converted neurons also stained mainly for the deep

layer markers Ctip2 and Otx1, but rarely for Cux1 and Lhx2 (Fig-

ures 3H and 3I; Figures S4E and S4F). Patch-clamp recordings

demonstrated that NG2-converted neurons generated after

NeuroD1 infection were able to fire repetitive action potentials

(Figure 3J) and showed large Na+ and K+ currents (Figure 3K)

and large glutamate- and GABA-evoked receptor currents (Fig-

ures 3L and 3M; IGlu = 438 ± 78 pA, n = 7; IGABA = 496 ± 32 pA,

n = 7). Moreover, we detected both glutamatergic and

GABAergic events in NG2-converted neurons (Figure 3N),

confirming that NG2 cells can be reprogrammed into both gluta-

matergic and GABAergic neurons. Therefore, a single trans-

cription factor, NeuroD1, not only reprograms astrocytes into

glutamatergic neurons, but also reprogramsNG2 cells into gluta-

matergic and GABAergic neurons.

Reactive Glia-Neuron Conversion in an ADMouseModel
Besides activation by mechanical injury, reactive astrocytes

have been widely reported in the cortex of AD patients or animal

models (Rodrı́guez et al., 2009; Steele and Robinson, 2010). We

employed a transgenic mouse model with AD (5xFAD) (Oakley

et al., 2006) to test whether reactive astrocytes in the AD brain

can be reprogrammed into functional neurons. We first

confirmed that there were indeed many reactive astrocytes in

the cortex of 5xFAD mice compared to WT (Figure 4A). Next,

we injected NeuroD1-GFP retrovirus (CAG promoter) into the

cortex of 5xFAD mice and observed NeuN-positive neuron-like

cells (Figure 4B, 14–16 DPI). To further confirm that the reactive

astrocytes in the AD model mouse brain can be reprogrammed

into neurons, we injected GFAP::NeuroD1-GFP retrovirus to

infect cortical astrocytes specifically, and indeed observed
rgic Neurons

ion of NG2 cells into neuronal cells positive for NeuN (A) or Tuj1(B) (8 DPI).

1 week after infection by NG2::NeuroD1.

or both VGluT1 (>60%) and GAD67 (10%). VGluT1 and GAD65 immunostaining

s (F).

nal properties (Ctip2 and Otx1) after NeuroD1-induced conversion of NG2 cells.

nd (H); 20 mm for (B) and (F).

nd large sodium and potassium currents (K; n = 10).

= 7) and GABA-evoked current (M; n = 7).

ed both glutamatergic and GABAergic events, confirming that NeuroD1 can
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Figure 4. NeuroD1 Converts Reactive Glial Cells into Functional Neurons in AD Mouse Brain In Vivo

(A) Reactive astrocytes (labeled byGFAP, red) in 5xFADmouse cortex (5months old) were significantly increased compared to that inWT cortex. Ab plaques were

labeled by thioflavin-S (blue).

(B) NeuroD1-infected cells (16 DPI) in AD mouse cortex (7 months old) showed clear neuron-like morphology (green) and NeuN staining (red).

(C) Injecting GFAP::NeuroD1 retrovirus into AD cortex also converted astrocytes into NeuN-positive neurons (7 DPI).

(D) NeuroD1-converted neurons in the AD brain were innervated by glutamatergic (VGluT1, red) and GABAergic terminals (GAD65, blue). Scale bars: 20 mm for (A)

and (C); 40 mm for (B); 5 mm for (D).

(E) Efficient induction of many new neurons in 14-month-old AD animals after NeuroD1-GFP retroviral infection. Scale bar: 100 mm for low-power image, 40 mm for

high-power image.

(F) Quantified data showing enhanced neural conversion in AD animals compared to WT animals, likely due to more reactive glial cells in old AD brain.

(G) Representative traces of sodium and potassium currents recorded from NeuroD1-infected cells in AD cortical slices.

(H) Spontaneous synaptic events recorded from NeuroD1-converted neurons (28 DPI) in AD cortical slices.

(I) All synaptic events were blocked by CNQX (10 mM) and BIC (20 mM).
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NeuroD1-converted neurons labeled by NeuN (Figure 4C).

Immunostaining with VGluT1 andGAD65 revealed glutamatergic

and GABAergic terminals innervating NeuroD1-converted neu-
194 Cell Stem Cell 14, 188–202, February 6, 2014 ª2014 Elsevier Inc
rons in the 5xFADmouse brain (Figure 4D). Because AD is a pro-

gressive neurodegenerative disorder, we wondered whether

in vivo reprogramming could occur in very old animals.
.
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Remarkably, when we injected NeuroD1-GFP retrovirus into 14-

month-old 5xFAD animals, we observed many NeuroD1-GFP in-

fected cells immunopositive for NeuN (Figure 4E). Interestingly,

we found that the number of NeuroD1-converted neurons was

higher in 5xFAD than in WT mouse brain and even higher in

14-month-old animals than in 7-month-old animals (Figure 4F).

This increase might occur because there are more reactive glial

cells in older diseased animals that can be reprogrammed into

neurons. Using cortical slice recordings, we further demon-

strated that the NeuroD1-converted neurons in 5xFAD mouse

brain were functional, with the peak amplitude of INa at 2,270 ±

282 pA (n = 5) and IK at 5,498 ± 706 pA (n = 5) (Figure 4G).

More importantly, we recorded robust synaptic events in

NeuroD1-converted neurons in cortical slice recordings (Figures

4H and 4I; frequency, 2.80 ± 0.95 Hz; amplitude, 20.5 ± 2.7 pA;

n = 7), suggesting that these newly reprogrammed neurons are

functionally connected with surrounding neurons in 5xFAD

mouse brain. Therefore, overexpression of NeuroD1 in reactive

glial cells has the potential to regenerate functional neurons in

an AD model brain.

Reprogramming Cultured Human Astrocytes into
Functional Neurons
We next investigated whether NeuroD1 can reprogram human

astrocytes into functional neurons using a human cortical astro-

cyte cell line (ScienCell, San Diego, CA). The majority of our

cultured human astrocytes were immunopositive for GFAP and

S100b (Figure 5A; Figure S5), but with very low level of neuropro-

genitor marker Sox2 or Musashi (Figures S5A and S5B). We

infected human astrocytes with GFAP::NeuroD1-IRES-GFP

retrovirus and found that the majority of NeuroD1-infected cells

were immunopositive for NeuN (Figure 5B), suggesting that

human astrocytes can also be efficiently reprogrammed into

neurons by expressing NeuroD1. We then examined the time

course of NeuroD1-induced astrocyte-neuron conversion using

a series of neuronal markers including DCX, NeuN, and MAP2.

We found that the conversion efficiency increased dramatically

between 3–5 DPI, with 90% of NeuroD1-infected human astro-

cytes becoming neurons by 5 DPI (Figures 5C–5F). Infection by

NeuroD1 significantly changed the cell morphology from astro-

cytes to neurons, as shown by the phase contrast images in

Figure 5G. To investigate whether NeuroD1-induced reprogram-

ming involved a transient neuroprogenitor stage, we monitored

the transdifferentiation process from 24 hr until 5 days after

NeuroD1 infection of human astrocytes (Figures S5C and S5D).

No transient increase in the expression level of the neural stem

cell markers Sox2 (Figure S5C) orMusashi (Figure S5D) occurred

during the early conversion period. In fact, after only 3 days of

infection by NeuroD1, some astrocytes already became

neuron-like cells with clearly extended neurites (Figures S5C

and S5D). Therefore, NeuroD1 appears to reprogram astrocytes

directly into neurons without transition through neuroprogenitor

stage.

Next, we investigated what types of neurons were reprog-

rammed from human astrocytes. Immunostaining with VGluT1

and GAD67 revealed that human astrocytes infected by

NeuroD1 were mainly reprogrammed into glutamatergic neu-

rons as shown by immunopositivity for VGluT1 (Figure 5H),

but not GAD67 (Figure S6B), consistent with our observations
Ce
for mouse astrocyte conversion. Using cortical layer markers,

we found that, as for mouse astrocytes, human astrocyte-con-

verted neurons also stained positive for the cortical neuron

marker Tbr1 and the deep layer markers Ctip2 and Otx1 (Fig-

ures 5I–5L), but much less for the superficial layer markers

Cux1 and Lhx2 (Figure 5L; Figures S6C and S6D). To investi-

gate whether human microglia can be reprogrammed into

neurons, we cultured human microglia and infected them with

NeuroD1-GFP retrovirus, but did not detect any DCX-positive

neurons (Figures S6E–S6H; 0 DCX+ neurons out of 33

NeuroD1-GFP infected microglial cells). However, this appar-

ently different result might be influenced by the low infection

efficiency of microglia by retrovirus (9.9% ± 0.8%, n = 3 batches

of culture), compared to the high infection efficiency of astro-

cytes (51.6% ± 2.9%, n = 3 batches) or NG2 cells (57.8% ±

5%, n = 3 batches).

To examine whether NeuroD1-converted human neurons are

functionally connected, we performed immunostaining with the

synaptic marker SV2 and the glutamatergic synapse marker

VGluT1 (Figures 6A and 6B). After NeuroD1-induced conversion,

we observed numerous SV2 puncta on MAP2-labeled neuronal

dendrites (Figure 6A, 45 DPI). Some neurons even showed

mushroom-like mature spines, which were colocalized with

VGluT1 puncta (Figure 6B). Next, we employed patch-clamp

recordings to test the function of reprogrammed human neurons.

Human astrocyte-converted neurons started to show detectable

NMDA receptor currents at 20 DPI, but very small GABA or gluta-

mate receptor currents at this stage (Figure 6C). However,

after 30–40 DPI, we detected large glutamate receptor currents

(548 ± 138 pA, n = 7; 31–35 DPI), GABAA receptor currents (599 ±

114 pA, n = 8; 31–35 DPI), and NMDA receptor currents (966 ±

101 pA, n = 8; 40 DPI) (Figures 6C and 6D). At 20 DPI, we also

detected clear sodium (INa) and potassium currents (IK) (Fig-

ure 6E), which increased dramatically by 40 DPI (Figures 6E

and 6F). Accordingly, we recorded repetitive action potential

firing in human astrocyte-converted neurons (Figure 6G, n =

15). Furthermore, we detected functional synaptic events in

NeuroD1-converted human neurons (frequency, 1.6 ± 0.3 Hz;

amplitude, 23.2 ± 0.8 pA; n = 13), which were blocked by

CNQX (10 mM) but not by BIC (20 mM) (Figure 6H). Thus, it

appears that NeuroD1 can reprogram human astrocytes into

functional glutamatergic neurons.

DISCUSSION

We show here that reactive glial cells generated after brain injury

or in an AD model can be directly reprogrammed into functional

neurons by a single transcription factor, NeuroD1, inmouse brain

in vivo. Interestingly, after expressing the same transcription

factor, astrocytes are mainly reprogrammed into glutamatergic

neurons, whereas NG2 cells can be reprogrammed into both glu-

tamatergic and GABAergic neurons. Such different cell fates

after reprogramming by the same transcription factor may pro-

vide important clues regarding the lineage relationship between

neurons and glial cells. We also show that human astrocytes in

culture can be reprogrammed into functional neurons after

expressing NeuroD1. The in vivo reprogramming of reactive glial

cells into functional neurons after brain injury or in diseased

mouse brain could potentially provide a therapeutic approach
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Figure 5. Conversion of Cultured Human Astrocytes into Functional Neurons

(A) The majority of cultured human astrocytes were labeled by GFAP (green).

(B) Infection by GFAP::NeuroD1 retrovirus converted human astrocytes into NeuN-positive neurons.

(C–E) NeuroD1-induced conversion of human astrocytes into neurons as shown by a series of neuronal markers: DCX (C), NeuN (D), and MAP2 (E).

(F) Quantified data showing a significant increase of conversion efficiency during 3–5 DPI.

(legend continued on next page)
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for treating reactive gliosis, which is widely associated with nerve

injury and neurodegenerative disorders.

Direct Reprogramming of Reactive Astrocytes into
Functional Neurons
During mammalian brain development, neurogenesis typically

occurs in embryonic stage before birth, while gliogenesis usually

occurs in postnatal stage (Miller and Gauthier, 2007). In the cen-

tral nervous system, neurons, astrocytes, oligodendrocytes, and

NG2 cells (oligodendrocyte precursor cells) are all generated

from neural stem cells, whereas microglial cells are generated

from hematopoietic stem cells. Astrocytes maintain proliferative

properties after differentiation from neural stem cells, and the

majority of astrocytes in the cortex are generated locally by astro-

cytes themselves in the postnatal stage (Ge et al., 2012). Astro-

cyte proliferation largely stops after 1 month of age in rodents

(Ge et al., 2012; Tsai et al., 2012). However, after brain injury or

neurodegenerative disorders, astrocytes become activated and

start to proliferate again (Robel et al., 2011; Sofroniew and

Vinters, 2010). Previous studies reported that reactive astrocytes

after injury may have certain stem cell properties, since isolating

and culturing reactive astrocytes in vitro can generate neuro-

spheres (Buffo et al., 2008; Lang et al., 2004; Shimada et al.,

2012; Sirko et al., 2009, 2013). However, a number of studies

have pointed out that the reactive astrocytes cannot generate

neurons in vivo, although they may be able to generate glial cells

(Buffo et al., 2008; Shimada et al., 2012). Therefore, injury itself

can activate astrocytes to proliferate and even dedifferentiate

to acquire certain properties of progenitor cells, but reactive as-

trocytes genetically remain within glial lineages. Our forced

expression of NeuroD1 in reactive astrocytes may help them to

overcome translineage barriers that cannot be surmounted by

injury alone. We selected NeuroD1 for in vivo astrocyte-neuron

conversion because NeuroD1 has been reported to be essential

for adult neurogenesis (Gao et al., 2009; Kuwabara et al., 2009).

NeuroD1 has also been shown to induce terminal neuronal differ-

entiation (Boutin et al., 2010) and help reprogram human fibro-

blast cells into induced neurons when combined with Brn2,

Ascl1, and Myt1l (Pang et al., 2011). Other transcription factors

such as neurogenin-2 and Dlx2 have been shown to reprogram

cultured mouse astrocytes into neurons (Heinrich et al., 2010).

Therefore, it only takes a single neural transcription factor to

change glial fate into neuronal fate both in vitro and in vivo.

Reactive astrocytes activated under different pathological

conditions seem to have different proliferation rates. In partic-

ular, stab-injury- and ischemic-stroke-induced reactive astro-

cytes can be highly proliferative, whereas reactive astrocytes

in APPPS1 or CK/p25 mice have lower rates of proliferation

(Sirko et al., 2013). Sonic hedgehog (SHH) also plays a critical

role in regulating the proliferative rate (Sirko et al., 2013).

Although stab-injury-induced reactive astrocytes were found to

express nestin, they were not reported to express Sox2 orMusa-

shi. Therefore, it is possible that SHH alone can promote the pro-
(G) Phase contrast images showing NeuroD1-induced morphological change fro

(H) Human astrocyte-converted neurons were immunopositive for VGluT1.

(I–K) Cortical layer neuronal markers revealed that human astrocyte-converted n

(L) Quantitative analysis of human astrocyte-converted neurons labeled by supe

Scale bars: 50 mm for (A) and (E); 20 mm for panels (C), (D), and (G–K); 40 mm for

Ce
liferation of reactive astrocytes, but it may not be sufficient to

reverse reactive astrocytes into genuine neuroprogenitor cells.

Interestingly, forced expression of Sox2 has been shown to

dedifferentiate astrocytes into neuroblast cells (Niu et al.,

2013). Sox2 is a critical marker for neural stem cells, and expres-

sion of Sox2 in fibroblast cells has been shown to induce neural

stem cells (Ring et al., 2012). It is important to note that after

Sox2-induced astrocyte-neuroblast conversion, addition of

BDNF and noggin is required to further induce differentiation of

neuroblasts into neurons (Niu et al., 2013). In contrast, our

NeuroD1 expression reprograms reactive astrocytes directly

into functional neurons in vivo without them going through a neu-

roprogenitor stage. Thus, our NeuroD1 reprogramming strategy

can produce functional neurons rapidly after injury. Furthermore,

our application of retroviral vectors targets proliferative glial cells

that are typically activated by injury or diseases in the adult brain

without affecting quiescent glial cells. Thus, NeuroD1-induced

reprogramming may be particularly well-suited for therapeutic

intervention andmay not interfere significantly with normal astro-

cyte functions. Moreover, we demonstrate that NeuroD1-

induced reactive glia-neuron conversion can occur in very old

animals and even old animals with a model of AD. Therefore,

NeuroD1-induced in vivo reactive astrocyte-neuron conversion

could potentially be useful for regeneration of new neurons in

the aging brain. In addition, the reprogramming of human astro-

cytes into functional neurons suggests that such a reactive

glia-neuron conversion approach is potentially applicable to

human patients.

NeuroD1 Reprograms NG2 Cells into Glutamatergic and
GABAergic Neurons
NG2 cells are the major proliferative glial cells in the adult brain

under normal physiological conditions (Buffo et al., 2008; Kang

et al., 2010). NG2 cells can receive synaptic inputs from neurons

although the function of such neuron-glia synapses is not well

understood (Bergles et al., 2010). In our stab injury model, we

found that our CAG-GFP retrovirus-infected cells are mainly

GFAP positive cells, and NG2 cells only account for about

20% of total infected cells. This bias might be due to the prefer-

ential infection of astrocytes by the retrovirus we used or the

higher proliferation rate of reactive astrocytes than NG2 cells in

our stab injury model. An unexpected finding in our study is

that NeuroD1 not only reprograms astrocytes into functional

neurons, but also reprograms NG2 cells into functional neurons.

More interestingly, NeuroD1 reprograms astrocytes into gluta-

matergic neurons but reprograms NG2 cells into both glutama-

tergic and GABAergic neurons, suggesting that different glial

cells may be associated with different neuronal fate in terms of

lineage differentiation. Since glutamatergic and GABAergic neu-

rons are the two major subtypes of neurons in the cortex, our

finding that NeuroD1 can reprogram astrocytes and NG2 cells

into glutamatergic and GABAergic neurons may have important

functional implications. The simultaneous generation of both
m astrocytes (left) to neurons (right, 45 DPI).

eurons were immunopositive for Tbr1 (I), Ctip2 (J), and Otx1 (K).

rficial (Cux1 and Lhx2) or deep layer (Ctip2 and Otx1) neuronal markers.

panel (B). See also Figures S5 and S6.
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Figure 6. Functional Characterization of Human Astrocyte-Converted Neurons

(A) Synaptic puncta (SV2, red) on the dendrites (MAP2, blue) of human astrocyte-converted neurons (green, 45 DPI) after NeuroD1 infection.

(B) High-power image showing VGluT1 puncta (red) colocalized with dendritic spines on NeuroD1-converted neurons. Scale bars: 20 mm for panel (A); 10 mm for

panel (B).

(C–D) Representative traces (C) and quantitative analysis (D) of the receptor currents induced by bath application of glutamate (100 mM), GABA (100 mM), and

NMDA (100 mM).

(E and F) Representative traces of Na+ and K+ currents (E) and their I-V curve (F) recorded from NeuroD1-converted neurons.

(G) Representative trace of repetitive action potentials in NeuroD1-converted neurons (20 DPI).

(H) Representative traces of spontaneous synaptic events in NeuroD1-converted human neurons (40 DPI). Note that all synaptic events were blocked by CNQX

(10 mM) but not by BIC (20 mM), suggesting that human astrocyte-converted neurons induced by NeuroD1 expression were glutamatergic neurons.
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excitatory and inhibitory neurons by NeuroD1 alone could poten-

tially make it possible to balance excitation and inhibition in the

cortex after reprogramming.

Conclusion
Our findings suggest that in situ reprogramming of reactive

astrocytes and NG2 cells into functional neurons may offer a

new approach to use internally reprogrammed neurons for brain

repair. One outstanding question is whether it is possible to use a

virus-free or small-molecule strategy to effect the reprogram-

ming in vivo (Bayart and Cohen-Haguenauer, 2013; Chambers

et al., 2012; Hou et al., 2013; Kaji et al., 2009; Li et al., 2013;

Shi et al., 2008). An equally challenging question is whether the

in vivo reprogramming can ultimately rescue behavioral deficits,

such as cognitive impairment, in a diseased brain. Nevertheless,

our in situ reprogramming of reactive glial cells into functional

neurons suggests that it may be possible to replace neurons

lost after nerve injury or diseases by direct reprogramming as a

first step toward brain repair.

EXPERIMENTAL PROCEDURES

Animals and In Vivo Assays

In vivo experiments were conducted on wild-type C57/BL6 and AD transgenic

mice (5xFAD). AD transgenic mice were purchased from The Jackson

Laboratory (B6SJL-Tg (APPSwFlLon,PSEN1*M146L*L286V) 6799Vas/Mmjax)

(Oakley et al., 2006) and mated with C57/BL6 mice. Mice were housed in a

12 hr light/dark cycle and supplied with enough food and water. Experimental

protocols were approved by The Pennsylvania State University IACUC and in

accordance with guidelines of the National Institutes of Health.

Stereotaxic Viral Injection

Surgeries were performed on 1- to 14-month-old WT and AD mice for virus

injection. The mice were anesthetized by being injected with 20 ml/kg 2.5%

Avertin (a mixture of 25 mg/ml of Tribromoethylethanol and 25 ml/ml T-amyl-

alcohol) into the peritoneum and then placed in a stereotaxic setup. Artificial

eye ointment was applied to cover and protect the eye. The animals were

operated upon with a midline scalp incision and a drilling hole on the skulls

above somatosensory cortex. Each mouse received an injection (position:

AP �1.25 mm, ML 1.4 mm, DV �1.5 mm) of virus with a 5 ml syringe and a

34G needle. The injection volume and flow rate were controlled as 3 ml at

0.2 ml/min, and the needle was moved up during the injection at a speed of

0.1 mm/min. After injection, the needle was kept in place for at least 5 addi-

tional minutes and then slowly withdrawn. The needle injection itself was

used as a stab injury model.

Mouse Cortical Astrocyte and NG2 Culture

For astrocyte culture, postnatal (P3–P5) mouse cortical tissue was dissociated

and plated onto 25 cm2 flasks (Wu et al., 2012). Cells were cultured for 5–

6 days, and flasks were rigorously shaken daily to remove neurons and nonas-

trocytic cells. After reaching confluence, astrocytes were centrifuged for 5 min

at 1,000 rpm, resuspended, and plated on poly-D-lysine (Sigma) -coated

coverslips (12 mm). Astrocyte culture medium contained DMEM/F12 (GIBCO),

10% fetal bovine serum (GIBCO), penicillin/streptomycin (GIBCO), and 3.5mM

glucose (Sigma), supplemented with B27 (GIBCO), 10 ng/ml epidermal growth

factor (EGF, Invitrogen), and 10 ng/ml fibroblast growth factor 2 (FGF2, Invitro-

gen). For mouse NG2 culture, the cortical tissue of postnatal mice (P3–P5) was

dissociated and plated in 25 cm2 flasks coated with poly-D-lysine (Sigma). The

cells were maintained in DMEM/F12 (GIBCO) with 10% fetal bovine serum

(GIBCO) for 9 days, with a medium change every 3 days. On the ninth day,

the flasks were shaken rigorously and the supernatant was collected and

centrifuged to enable the harvest of NG2 cells with a small number of neurons

and microglia cells. After centrifuge, cells were resuspended and seeded on

poly-D-lysine (Sigma) -coated coverslips (12 mm). The cells were cultured in

serum-free DMEM medium (GIBCO) with N2 supplements (STEMCELL) and
Ce
10 ng/ml platelet-derived growth factor (PDGF, Invitrogen), 10 ng/ml EGF

(Invitrogen), and 10 ng/ml FGF2 (Invitrogen) for 3 days. Cells were maintained

at 37�C in humidified air with 5% CO2.

Human Cortical Astrocyte and Microglia Culture

Human cortical astrocytes (HA1800) were purchased from ScienCell

(California). Cells were subcultured when they were over 90% confluent. For

subculture, cells were trypsinized by TrypLE Select (Invitrogen),

centrifuged for 5 min at 1,000 rpm, resuspended, and plated in a medium

consisting of DMEM/F12 (GIBCO), 10% fetal bovine serum (GIBCO),

penicillin/streptomycin (GIBCO), and 3.5 mM glucose (Sigma),

supplemented with B27 (GIBCO), 10 ng/ml EGF (Invitrogen), and 10 ng/ml

FGF2 (Invitrogen). The astrocytes were cultured on poly-D-lysine

(Sigma) -coated coverslips (12 mm) at a density of 50,000 cells per coverslip

in 24-well plates (BD Biosciences). Human primary microglial cells were

obtained from Clonexpress, Inc. (MD). The cells were cultured in DMEM/

F12 (GIBCO) supplemented with 5% FBS, 10 ng/ml of macrophage colony-

stimulating factor (M-CSF, Invitrogen), 10 ng/ml EGF (Invitrogen), and

10 ng/ml FGF2 (Invitrogen). Cells were maintained at 37�C in humidified air

with 5% CO2.

Retrovirus Production

The mouse NeuroD1 plasmid was constructed from our PCR product

according to a template of the pAd NeuroD-I-nGFP (Zhou et al., 2008) (Addg-

ene) and inserted into a pCAG-GFP-IRES-GFP retroviral vector (Zhao et al.,

2006) (gift of Dr. Fred Gage) to generate pCAG-NeuroD1-IRES-GFP. The hu-

man GFAP promoter gene was subcloned from hGFAP Promoter-Cre-MP-1

(Addgene) and replaced the CAG promoter to generate pGFAP-NeuroD1-

IRES-GFP or pGFAP-GFP-IRES-GFP retroviral vector. The human NG2

promoter gene was subcloned from hNG2 Promoter-GLuc (GeneCopoeia)

and replaced the CAG promoter to generate pNG2-NeuroD1-IRES-GFP or

pNG2-GFP-IRES-GFP retroviral vector. Viral particles were packaged in gpg

helperfree human embryonic kidney (HEK) cells to generate vesicular stomati-

tis virus glycoprotein (VSV-G)-pseudotyped retroviruses encoding neurogenic

factors in CellMax hollow fiber cell culture system (Spectrum Laboratories).

The titer of viral particles was about 108 particles/ml, determined after trans-

duction of HEK cells.

Transdifferentiation of Glial Cells into Neurons

Twenty-four hours after infection of astrocytes, NG2 cells, or microglia with

GFP or NeuroD1 retrovirus, the culture medium was completely replaced by

a differentiation medium that included DMEM/F12 (GIBCO), 0.5% FBS

(GIBCO), 3.5 mM glucose (Sigma), penicillin/streptomycin (GIBCO), and N2

supplement (GIBCO). Brain-derived neurotrophic factor (BDNF, 20 ng/ml,

Invitrogen) was added to the cultures every 4 days during the differentiation

to promote synaptic maturation (Song et al., 2002). Due to the morphological

change from astrocytes or NG2 cells to neurons during conversion, we filled

the empty space with additional human or mouse astrocytes to support the

functional development of converted neurons.

Immunocytochemistry

For brain section staining, the mice were anesthetized with 2.5% Avertin and

then sequentially perfused, first with saline solution (0.9% NaCl) to wash the

blood off and then with 4% paraformaldehyde (PFA) to fix the brain. The

brains were removed and postfixed in 4% PFA overnight at 4�C, and then

cut at 45 mm sections by a vibratome (Leica). Coronal brain sections were

first pretreated in 0.3% Triton X-100 in phosphate-buffered saline (PBS,

pH 7.4) for 1 hr, followed by incubation in 3% normal goat serum, 2% normal

donkey serum, and 0.1% Triton X-100 in PBS for 1 hr.

For cell culture staining, the cultures were fixed in 4% PFA in PBS for

15 min at room temperature. Cells were first washed three times by PBS

and then pretreated in 0.1% Triton X-100 in PBS for 30 min, followed by in-

cubation in 3% normal goat serum, 2% normal donkey serum, and 0.1%

Triton X-100 in PBS for 1 hr. Primary antibodies were incubated with either

brain slices or cultures overnight at 4�C in 3% normal goat serum, 2%

normal donkey serum, and 0.1% Triton X-100 in PBS. After additional

washing in PBS, the samples were incubated with appropriate secondary

antibodies conjugated to Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor
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647 (1:300, Molecular Probes), or Dylight (1:500, Jackson ImmunoResearch)

for 1 hr at room temperature, followed by extensive washing in PBS. Cov-

erslips were finally mounted onto a glass slide with an antifading mounting

solution with DAPI (Invitrogen). Slides were first examined with an epi-

fluorescent microscope (Nikon TE-2000-S) and further analyzed with a

confocal microscope (Olympus FV1000). Z-stacks of digital images, which

can either release single confocal images or collapse as one resulting

picture, were acquired and analyzed using FV10-ASW 3.0 Viewer software

(Olympus). For a detailed antibodies list, please see the Supplemental

Information.

Patch-Clamp Recordings in Cell Cultures

For glial cell-converted neurons, whole-cell recordings were performed using

Multiclamp 700A patch-clamp amplifier (Molecular Devices, Palo Alto, CA) as

described before (Deng et al., 2007), and the chamber was constantly

perfused with a bath solution consisting of 128 mM NaCl, 30 mM glucose,

25 mM HEPES, 5 mM KCl, 2 mM CaCl2, and 1 mM MgCl2. The pH of bath

solution was adjusted to 7.3 with NaOH, and osmolarity was at 315–325

mOsm/l. Patch pipettes were pulled from borosilicate glass (3–5MU) and filled

with a pipette solution consisting of 135 mM KCl, 5 mM Na-phosphocreatine,

10 mM HEPES, 2 mM EGTA, 4 mM MgATP, and 0.5 mM Na2GTP (pH 7.3,

adjusted with KOH). The series resistance was typically 10–30 MU. For

voltage-clamp experiments, the membrane potential was typically held

at �70 or �80 mV. Drugs were applied through a gravity-driven drug delivery

system (VC-6, Warner Hamden, CT). NMDA currents were recorded in Mg2+

free bath solution (128 mM NaCl, 30 mM D-glucose, 25 mM HEPES, 5 mM

KCl, and 2 mM CaCl2 [pH 7.3, adjusted with NaOH]) plus 10 mM glycine,

0.5 mM TTX, and 20 mM BIC. Data were acquired using pClamp 9 software

(Molecular Devices, Palo Alto, CA), sampled at 10 kHz, and filtered at 1

kHz. Na+ and K+ currents and action potentials were analyzed using pClamp

9 Clampfit software. Spontaneous synaptic events were analyzed using

MiniAnalysis software (Synaptosoft, Decator, GA). All experiments were

conducted at room temperature.

Brain Slice Recordings

Cortical slices were prepared typically �1 month after virus injection and cut

at 300 mm thick coronal slices with a Leica vibratome in ice cold cutting

solution (containing 75 mM sucrose, 87 mM NaCl, 2.5 mM KCl, 0.5 mM

CaCl2, 7 mM MgCl2, 25 mM NaHCO3, 1.25 mM NaH2PO4 and 20 mM

glucose). Slices were maintained in artificial cerebral spinal fluid (ACSF)

containing 119 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3,

1.3 mM MgCl2, 2.5 mM CaCl2, and 10 mM glucose. Slices were incubated in

ACSF and continuously bubbled with 95% O2 and 5% CO2, first at 34
�C for

30 min, and then at room temperature. Whole-cell recordings were per-

formed using a pipette solution containing 135 mM K-Gluconate, 10 mM

KCl, 5 mM Na-phosphocreatine, 10 mM HEPES, 2 mM EGTA, 4 mM MgATP,

and 0.5 mM Na2GTP (pH 7.3, adjusted with KOH, 290 mOsm/l). Pipette

resistance was 3–5 MU, and series resistance was typically 20–40 MU. The

holding potential for voltage-clamp experiments was �70 mV. Data were

collected using pClamp 9 software (Molecular Devices, Palo Alto, CA),

sampled at 10 kHz, and filtered at 1 kHz, then analyzed with Clampfit and

Synaptosoft softwares.
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