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Abstract

The initial discovery that ob/ob mice become obese because of a recessive mutation

of the leptin gene has been crucial to discover the melanocortin pathway to control
appetite. In the melanocortin pathway, the fed state is signaled by abundance of
circulating hormones such as leptin and insulin, which bind to receptors expressed at
the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to
the mature hormone a-melanocyte-stimulating hormone («-MSH). The a-MSH released
by POMC neurons then signals to decrease energy intake by binding to melanocortin-4
receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN).
Conversely, in the ‘starved state’ activity of agouti-related neuropeptide (AgRP) and of
neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating
leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This
initial understanding of the melanocortin pathway has recently been implemented

by the description of the complex neuronal circuit that controls the activity of POMC,
AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review
summarizes the progress done on the melanocortin pathway and describes how obesity
alters this pathway to disrupt energy homeostasis. We also describe progress on how
leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered
expression and traffic of MC4R change the acute signaling and desensitization properties
of the receptor. We also describe how the discovery of the melanocortin pathway has led
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to the use of melanocortin agonists to treat obesity derived from genetic disorders.

Introduction

In the melanocortin system, hormones of the ‘fed state’
such as leptin and insulin, released in the bloodstream by
adipocytes and by the p-cells of the pancreas, respectively,
cross the blood-brain barrier to bind to leptin and
insulin receptors on the surface of pro-opiomelanocortin
(POMC) neurons to promote processing of POMC to the
mature hormone a-melanocyte-stimulating hormone
(a-MSH), which signals to decrease energy intake (Cone
2006, Ghamari-Langroudi et al. 2011, Morton et al.
2014, Gautron et al. 2015, Andermann & Lowell 2017).
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In the fed state, leptin also binds to leptin receptors to
inhibit secretion of AgRP and of neuropeptide Y (NPY)
expressed by AgRP/NPY neurons. Conversely, in the
‘starved state’ AgRP/NPY neuron activity is increased by
decreased circulation of leptin and insulin and by the
orexigenic hormone ghrelin. Both POMC and AgRP/NPY
neurons have their cell bodies in the arcuate nucleus of
the hypothalamus and their axons project to the PVN.
In the melanocortin pathway to regulate feeding,
hypothalamic POMC neurons receive inhibitory signals
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from cholinergic neurons localized to the dorsomedial
hypothalamus (DMH) that project to the arcuate
nucleus (Jeong et al. 2017), as well as from excitatory
glutamatergic signals from steroidogenic factor (SF-1)-
expressing neurons localized to the ventromedial
hypothalamus (VMH) (Konner & Bruning 2012). To
control feeding, AgRP/NPY neurons project in addition
to the PVN to other brain regions such as the stria
terminalis (BNST), the paraventricular nucleus of the
thalamus (PVT) and the lateral hypothalamus (LH)
(Betley et al. 2013). In the PVN, a-MSH released by
POMC neurons interacts with melanocortin-4 receptor
(MC4R) expressed by MC4R neurons to stabilize the
receptor in an active conformation, with Gaq-mediated
increase of intracellular calcium and decrease in food
intake. AgRP antagonizes effects by a-MSH and also acts
as inverse agonist to inhibit the constitutive activity
of MC4R taking place in the absence of agonist. MC4R
neurons localized to the brainstem and to the spinal
cord signal by Gs-dependent increase of intracellular
cAMP to increase energy expenditure (Li et al. 2016).
MC4R neurons also signal by inducing, in a G-protein
independent manner, closure and opening of the
inwardly rectifying potassium channel, Kir7, in response
to alpha-MSH and AgRP, respectively, thus modulating
the firing activity of PVN neurons (Ghamari-Langroudi
et al. 2015). In this review, we will describe the role
of POMC, AgRP and MC4R/MC3R neurons in the
melanocortin system to control appetite and weight as
well therapeutic implications.
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POMC neurons localized in the hypothalamus
and hindbrain are essential for
energy homeostasis

POMC neurons localized to the hypothalamus and to the
hindbrain are essential for energy homeostasis (Mercer
et al. 2013, Gautron et al. 2015, Dores et al. 2016, Toda
et al. 2017, Caron et al. 2018) (Fig. 1). In POMC neurons,
the POMC gene encodes a precursor polypeptide that
undergoes cell-specific proteolytic cleavage to generate
a-MSH (Toda et al. 2017). Mutations of POMC gene in
both mice and humans lead to hyperphagia and obesity
(Yaswen et al. 1999, Challis et al. 2004, Muller et al. 2016).
Injury to POMC neurons such as that derived by ablation
of the mitochondrial protein mitofusin 2 or that by
increased secretion of tumor necrosis factor alpha (TNFa)
from microglia in obesity also leads to disrupted energy
balance with increased food intake (Schneeberger et al.
2013, Yi et al. 2017). Consistent with a role for POMC
neurons in energy balance, postnatal ablation of POMC
neurons in mice induces an obese phenotype. However,
in mice with postnatal ablation of POMC neurons,
obesity is unrelated to food intake and instead dependent
on decreased energy expenditure (Greenman et al. 2013).
POMC neuron activity is regulated by other neurons. In
this respect, under fasting conditions, POMC neurons
receive inhibitory inputs from AgRP/NPY neurons (Fig. 1)
(Horvath et al. 1992, Cowley et al. 2001, Pinto et al.
2004, Cone 2006). Other inhibitory inputs originate
from noradrenergic neurons localized to the locus

Figure 1
POMC neurons in the melanocortin system. In the
fed state, the signal to stop eating and to increase

- energy expenditure is conveyed by leptin and

insulin released in the bloodstream by adipocytes
and by the p-cells of the pancreas, respectively.
These hormones cross the blood-brain barrier to
reach the arcuate nucleus (ARC) of the
hypothalamus and promote firing (indicated by
glow around the cell perimeter) of distinct
populations of POMC neurons expressing the
LepR and insulin receptor. Other populations of
POMC neurons in the arcuate nucleus and in the
nucleus of the solitary tract (NTS) express the
serotonin receptor 5-HT,.R. POMC neurons
project to the paraventricular nucleus (PVN) to
increase activity of MC4R neurons to decrease
food intake and to increase energy expenditure.
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In the fasted state, POMC neurons in the arcuate
nucleus are inhibited by decreased circulating
leptin and insulin and by increased activation of

Feeding
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AgRP/NPY neurons, which send inhibitory signals
to reduce firing of POMC neurons and of MC4R
neurons. References are in the main text.
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coeruleus and the hindbrain that send projections to
the hypothalamus (Bouret & Richmond 2015, Varazzani
et al. 2015). Hypothalamic POMC neurons also receive
inhibitory signals from cholinergic neurons localized to
the dorsomedial hypothalamus (DMH) that project to
the arcuate nucleus (Jeong et al. 2017). The activity of
hypothalamic POMC neurons is also modulated by sex
hormones. In this respect, POMC neurons in the arcuate
nucleus are responsive to estradiol administration to
reduce food intake and body weight (Steyn et al. 2018).

POMC neurons and leptin signaling

POMC neurons are activated by leptin, a peptide
hormone secreted by adipocytes, and more efficiently so
by subcutaneous fat rather than by the omental fat and
in a manner proportional to adipocyte size (Masuzaki
et al. 1995, Van Harmelen et al. 1998). A pioneering
discovery in the control of energy balance was the
finding that mutations in the ob/ob mice and db/db mice
induce obesity (Coleman 1973, 1978). It was later found
that the ob/ob mice become obese because of a recessive
mutation of the leptin gene (Zhang et al. 1994). Also,
patients with leptin deficiency due to mutations of the
leptin gene are obese. Although such leptin deficiency
is rare in the population, it provides evidence that the
hormone is essential for energy homeostasis in humans
(Montague et al. 1997, Clement et al. 1998). Additional
evidence that leptin is essential for energy homeostasis is
the finding that delivery of leptin to mice and to humans
with leptin deficiency corrects obesity (Halaas et al.
1995, Pelleymounter et al. 1995, Farooqi et al. 1999). The
identification of the leptin receptor (LepR) stemmed from
the observation that iodinated leptin binds to the brain
choroid plexus (Devos et al. 1996). The LepR was cloned
from a cDNA expression library derived from the murine
choroid plexus and found to belong to the IL-6 receptor
family (Tartaglia et al. 1995). However, both obese db/db
mice and fatty Zucker rats, which have elevated circulating
leptin, have normal binding of leptin in the choroid
plexus, comparable to that of lean rodents (Halaas et al.
1995, Devos et al. 1996). It was later discovered that the
LepR has multiple splice forms and that the db/db mice
and fatty Zucker rats become obese because of mutations
which affects the intracellular domain of the long form of
receptor, LepR, which is expressed in the hypothalamus
including the POMC neurons (Chen et al. 1996, Chua
et al. 1996, Iida et al. 1996, Lee et al. 1996, Phillips et al.
1996, Takaya et al. 1996, Cheung et al. 1997). Conversely,

the short form of LepR, expressed in the choroid plexus,
can bind to leptin, but cannot signal (Bjorbaek et al. 1997,
Ghilardi & Skoda 1997).

Administration of leptin to brain slices induces
depolarization of POMC neurons and reduces inhibition
of POMC neurons by the AgRP/NPY neurons (Cowley et al.
2001). Deletion of LepR specifically in POMC neurons by
using the Cre/Lox system finds that expression of LepR
in these neurons is essential to body weight homeostasis
(Balthasar et al. 2004). Interestingly, it has been recently
found that POMC neurons expressing LepR are required
for the fasting-induced fall in leptin levels (Caron et al.
2018). LepR signals through multiple pathways (Fig. 2A
and B) (Flak & Myers 2016, Toda et al. 2017, Wauman et al.
2017). During leptin signaling, LepR, expressed at the
plasma membrane as a dimer, activates receptor-associated
Janus kinase 2 (JAK2) to phosphorylate LepR at Tyr,, 33,
which then binds to signal transducer and activator of
transcription 3 (Stat3). Stat3 is then phosphorylated by
JAK2 to function as transcription factor (Bjorbaek et al.
1997, Ghilardi & Skoda 1997, Li & Friedman 1999, Banks
et al. 2000, Bahrenberg et al. 2002). Activation of Stat3
by LepR is essential to control food intake (Bates et al.
2003, Cui et al. 2004, Gao et al. 2004, Buettner et al. 2006,
Zhang & Scarpace 2009). Binding of leptin to LepR also
leads to downstream activation of Rho-kinase 1 (ROCK1),
which phosphorylates and activates JAK2 in a pathway
that is essential for leptin signaling to maintain energy
homeostasis (Huang et al. 2012). Binding of leptin to
LepR also leads to JAK2 interaction with SH2-Bp, which
in turn promotes insulin receptor substrate 1 (IRS1)- and
IRS2-mediated activation of the phosphatidylinositol
3-kinase (PI3K) pathway (Kellerer et al. 1997, Kim et al.
2000, Anderwald et al. 2002, Carvalheira et al. 2003,
Duan et al. 2004, Li et al. 2007, Wauman et al. 2017). The
PI3K signaling pathway is essential for leptin-induced
depolarization and firing of POMC neurons (Hill et al.
2008, Kwon et al. 2016). PI3K pathway also promotes
phosphorylation and translocation of forkhead box
protein O1 (FOXO1) from the nucleus to the cytosol, an
effect that promotes transcription of POMC and increased
expression of carboxypeptidase E (CPE) with increased
processing of POMC to o-MSH, and suppression of food
intake (Kim et al. 2006, Plum et al. 2009, Kwon et al.
2016). The PI3K signaling pathway to control food intake
and weight gain includes the atypical protein kinase C
A (@PKC ) (Dorfman et al. 2017b). An effect by leptin is
to induce POMC neuron depolarization through a cation
channel (Cowley et al. 2001). In this respect, leptin-
dependent signaling through the PI3K pathway activates
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POMC neurons express leptin, insulin and serotonin receptors. (A) In the fed state, leptin bound to LepR expressed by POMC neurons in the arcuate
nucleus and release of a-MSH hormone by multiple pathways initiated by activation of JAK2, a process that involves LepR-dependent activation of ROCK1.
In one pathway initiated by JAK2, the kinase phosphorylates STAT3 to function as transcription factor. STAT3 promotes expression of the polypeptide
POMC and processing of the pro-hormone to «-MSH. Binding of leptin to LepR induces another JAK2-dependent pathway where SH2-Bp and IRS1 are
recruited to activate the PI3K pathway. PI3K generates PIP; from PIP, at the plasma membrane. PIP; recruits and activates of PKC including the atypical
PKCA. PI3K signaling leads to opening of TrpC5 to allow inward flux of Na* and neuronal firing. PI3K pathway also promotes phosphorylation and
translocation of FOXO1 from the nucleus to the cytosol to promote transcription of POMC, increased processing of POMC to a-MSH and suppression of
food intake. (B) Stat3 induces expression of factors involved in feedback inhibitory pathways, such as that of Socs3, which binds to LepR to inhibit
receptor signaling. Stat 3 also induces expression of protein phosphatases such as TCPTP to terminate LepR to inhibit receptor signaling. (C) In other
populations of POMC neurons, the insulin receptor signals through PI3 kinase pathway to induce flux of Na* into the cell through TrpC5 and neuronal
firing. (D) A population of POMC neurons expresses the GPCR 5-HT,R. Binding of serotonin to HT,R induces Gg-dependent activation of PLC, generation
of increased intracellular IP; and Ca2+, and opening of TrpC5 to allow Na* into the cell and neuronal firing. Heterogeneity of POMC neurons expressing
insulin, leptin and serotonin receptor is indicated by drawing cells expressing these receptors with different colors. References are in the main text.

the transient receptor potential cation 5 (TrpCS5) and this
effect is essential to decrease food intake and increase
energy expenditure (Qiu et al. 2014, Gao et al. 2017).
Thebinding of leptin to LepR induces phosphorylation
of the receptor also at Tyry,, which controls
phosphorylation of the protein tyrosine phosphatase
SHP-2, downstream activation of extracellular-regulated
kinases-1/2 (ERK1/2), and increased expression of cfos
(Li & Friedman 1999, Banks et al. 2000, Bjorbak et al.
2000). An effect of STAT3 activation by the occupied LepR
is to initiate the feedback inhibitory pathway to induce
expression of suppressor of cytokine signaling-3 (Socs3)

mRNA (Fig. 2B). Socs3 inhibits LepR signaling by binding
to LepR Tyrygs (Bjorbak et al. 2000, Eyckerman et al. 2000).
Socs3 expression may contribute to increased food intake
during pregnancy (Zampierietal. 2016). Other mechanisms
to inhibit leptin signaling in feedback inhibitory pathway
take place by dephosphorylation of LepR by the protein
tyrosine phosphatases 1B (PTP1B) and the STAT-1 and
STAT-3 phosphatase T-cell protein tyrosine phosphatase
(TCPTP) (Zabolotny et al. 2002, White et al. 2009, Loh et al.
2011, Tsou et al. 2012). It has been recently proposed that
leptin and insulin act on hypothalamic POMC neurons to
increase energy expenditure by a pathway that involves
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PTP1B and TCPTP, and leads to increased browning of
white adipose tissue (Dodd et al. 2015, Zhang et al. 2015).
While deletion of LepR in POMC neurons has mild
effects on body weight (Balthasar et al. 2004), deletion
of LepR in large populations of hypothalamic regions
produces profound obesity and metabolic dysfunction
(Rupp et al. 2018). It is likely that LepR expressed in other
neuronal populations outside of the arcuate nucleus
contribute to energy homeostasis. LepR is expressed by
neurons localized to the hindbrain and to the brainstem
(Barnes et al. 2010). LepR expressed in these brain regions
contributes to energy homeostasis by controlling meal
size (Kanoski et al. 2012) and mediates counter-regulatory
responses to hypoglycemia during starvation (Flak et al.
2014, Flak & Myers 2016). POMC neurons in the LH,
brainstem and hindbrain express glucose transporter type
2 (Glut2). In these POMC neurons outside of the arcuate
nucleus, Glut2-dependent glucose sensing functions to
control thermoregulation by increasing leptin sensitivity
(Mounien et al. 2010). LepR expressed by non-neuronal
cells such as the microglia is also implicated in control of
energy homeostasis (Gao et al. 2018).

POMC neuron and signaling in response to
feeding, insulin and serotonin

Insulin functions to regulate energy homeostasis in
POMC neurons by signaling through receptors expressed
in a different population of hypothalamic POMC
neurons than that expressing LepR (Williams et al. 2010)
(Fig. 2A and C). In the hypothalamus, insulin induces
the association of PI3K with IRS-2, to promote Ser473
phosphorylation of Akt (Torsoni et al. 2003, Dodd &
Tiganis 2017, Haeusler et al. 2018). Brain IRS-2 signaling
functions in energy homeostasis (Taguchi et al. 2007) and
IRS-2 signaling in POMC neurons controls blood pressure
and heart rate (do Carmo et al. 2016). Insulin signal in
POMC neurons suppresses appetite by a pathway that is
similar to that of leptin because it also involves activation
of PI3K (Xu et al. 2005b) (Hill et al. 2008) (Al-Qassab et al.
2009) and opening of TrpCS with inward flow of Na+ (Qiu
et al. 2018b).

Feeding modulates termination of insulin signaling
in POMC neurons. The protein phosphatase TCPTP
dephosphorylates the insulin receptor and attenuates
insulin signaling (Tiganis 2013). Feeding, by decreasing
abundance of TCPTP, suppresses termination of insulin
signal in POMC neurons. Conversely, fasting, by increasing
TCPTP, promotes the termination of insulin signaling in

POMC neurons (Dodd et al. 2018b). Thus, nutritional
status modulates responsiveness in POMC
neurons. With this respect, hypothalamic POMC neurons
are glucose sensitive and increase their firing rate in
response to increased extracellular glucose concentration
by a mechanism that involves increased ATP/ADP ratio,
closure of K+ ATP channels and cell depolarization (Ibrahim
et al. 2003, Parton et al. 2007). Feeding is associated
with firing of POMC neurons, an effect paralleled by
increased generation of reactive oxygen species (ROS) in
these neurons (Andrews et al. 2008, Horvath et al. 2009,
Diano et al. 2011). Moreover, central delivery of ROS
promotes firing by POMC neurons, and suppression of
ROS formation in POMC neurons inhibits their activity
(Diano et al. 2011). Therefore, nutrient sensing in POMC
neurons appears to be mediated by the changes in ROS
generation. Generation of ROS takes place prevalently
in mitochondria, which undergo fission/fusion cycles in
POMC neurons, depending on availability of nutrients
(Dietrich et al. 2013, Schneeberger et al. 2013, Toda
et al. 2016). Dynamin-related protein (Drpl) functions
in mitochondrial fission (Nasrallah & Horvath 2014). In
response to feeding, the activation of Drp1 is decreased,
resulting in increased mitochondrial size, increased
generation of ROS and neuronal activation (Santoro et al.
2017). These data indicate that changes in mitochondrial
size in POMC neurons modulate neuronal activation
by altering generation of ROS. Another population of
hypothalamic POMC neurons that regulates both energy
and glucose homeostasis has been found to express the
serotonin (5-HT) receptor 2C receptor (5-HT2CR), which
signals toinduce activation of TrpCS5 and of the mammalian
target of rapamycin (mTOR) pathway (Fig. 2D) (Churruca
et al. 2008, Lam et al. 2008, 2010, 2011, Sohn et al. 2011,
Sohn & Williams 2012, Berglund et al. 2013, Gao et al.
2017, Barone et al. 2018). Consistent with the concept
that different POMC neuron populations express LepR,
insulin receptor and 5-HT2CR, single cell RNA sequencing
analysis indicates that the population of POMC neurons
residing in the arcuate nucleus is highly heterogeneous
(Lam et al. 2017). Interestingly, estradiol increases the
excitability of POMC neurons by increasing the efficacy
by which insulin activates canonical TrpC5 channels (Qiu
et al. 2018a). In the face of insulin and leptin affecting
only a subpopulation of POMC neurons, noradrenaline
instead decreases the activity of the POMC neurons
through signaling by the a,, adrenergic receptor in a
large population of POMC neurons, perhaps to promote
food intake in response to challenges that require energy
(Paeger et al. 2017a). In addition to the POMC neurons

insulin
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of the hypothalamus, other POMC neurons expressing
5-HT2CR may contribute to regulate appetite. In this
respect, POMC neurons responsive to 5-HT2CR agonist
localized to the nucleus of the solitary tract (NTS) control
food intake (D’Agostino et al. 2018).

AgRP/NPY neurons promote feeding and
function in adapted behavior
under starvation

AgRP was originally identified as a peptide expressed by
neurons in the mediobasal hypothalamus, which acts
as antagonist of MC4R and of another member of the
melanocortin receptor family expressed in brain, MC3R
(Ellacott & Cone 2004). Ubiquitous expression of AgRP in
transgenic mice induces obesity (Ollmann et al. 1997). In
the hypothalamus, AgRP-expressing neurons co-express
NPY and respond to orexigenic and anorexigenic signals
from the periphery to regulate feeding (Broberger
et al. 1998, Hahn et al. 1998, Cowley et al. 1999, van
den Top et al. 2004). Central delivery of AgRP induces
increased feeding (Joppa et al. 2007). Food deprivation
induces increased expression of NPY and AgRP mRNA
in the AgRP/NPY neurons, while refeeding restores
levels of these peptides (Swart et al. 2002). In humans,
abundance of AgRP and NPY correlates with body mass
index (Alkemade et al. 2012). Food deprivation increases

POMC A®
neuron

feeding, leptin,
serotonin, CCK, PYY, etc

activity of AgRP/NPY neurons (Takahashi & Cone 2005).
Nutrients are necessary and sufficient for the reduction of
AgRP/NPY neuron activity and this effect is proportional
to the amount of calories being obtained (Betley et al. 2013,
Mandelblat-Cerf et al. 2015, Chen et al. 2015b, Su et al.
2017). AgRP/NPY neurons can also control feeding under
conditions of appetite suppression (Padilla et al. 2016).
The activity of AgRP/NPY neurons is modulated within
the brain by excitatory neurons that originate from the
PVN and express thyrotropin-releasing hormone (TRH)
(Krashes et al. 2014), by excitatory glutamatergic inputs
(Liu et al. 2012), and by postsynaptic AMPK-dependent
synaptogenesis and spinogenesis (Kong et al. 2016).
Projections from the AgRP/NPY neurons converge
with those from POMC neurons to MC4R neurons in
the PVN to integrate control food intake and energy
expenditure (Fig. 3) (Cowley et al. 1999, 2001, Aponte
et al. 2011, Atasoy et al. 2012, 2014). AgRP/NPY neurons
project also to POMC neurons of the arcuate nucleus and
to neurons localized to the dorsomedial nucleus of the
hypothalamus and to the rostral telencephalon and to
the pons to control feeding (Broberger et al. 1998, Bagnol
et al. 1999, Haskell-Luevano et al. 1999, Legradi & Lechan
1999, Singru et al. 2007). AgRP/NPY neurons also project
to BNST and to the lateral hypothalamic area to control,
in addition to feeding, also insulin sensitivity in brown
adipose tissue (Steculorum et al. 2016) (Fig. 3). Under
starvation, projections of AGRP/NPY neuron to the BNST,

LH ;}

BAT insulin
sensitivity

WLfeedine

N\ BAT insulin

Figure 3

AgRP/NPY neurons drive food intake. Fasting and
circulating hormones released by the stomach
induce activity of AgRP/NPY neurons localized to
the arcuate nucleus (ARC) of the hypothalamus.
To promote feeding, subpopulations of AgRP/NPY
neurons send projections to: the paraventricular
nucleus of hypothalamus (PVN), to synapse with
MCA4R neurons; and to neurons in the lateral
hypothalamus (LH), bed nucleus of the stria
terminalis (BNST) and the paraventricular nucleus
of the thalamus (PVT). Other projections to
neurons in LH, medial amygdala (MeA), LH and
parabrachial nuclei control insulin sensitivity in
brown adipose tissue (BAT) and suppress
inflammatory pain in hunger condition. ‘Behavior’
refers to the behavior induced by the nutritional
status of the organism such as modulation of
aggression, fear and exploration to find food.
References are in the main text.
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to the medial nucleus of the amygdala (MeA), control
adapted behavior such as modulation of aggression, fear
and exploration to find food by releasing NPY (Betley
et al. 2013, Dietrich et al. 2015, Burnett et al. 2016, Padilla
et al. 2016). During hunger, AgRP neuron projections to
the PBN inhibit inflammatory pain by signaling through
NPY (Alhadeff et al. 2018). During satiety, activation
of AgRP neurons mimics hunger by a pathway to the
insular cortex via the paraventricular thalamus (PVT) and
basolateral amygdala (Livneh et al. 2017).

Fast and slow signals to induce feeding
originate from subpopulations of arcuate
nucleus AgRP/NPY neurons and by GABAergic
neurons of the LH

Specific activation of AgRP/NPY neurons by photostim-
ulation of channelrhodopsin-2 evokes
feeding response within minutes (Aponte et al. 2011).
Subpopulations of AgRP/NPY neurons appear to be
sufficient to promote food intake and do so by redundant
pathways (Betley et al. 2013). In addition to AgRP and
NPY, AgRP/NPY neurons release GABA, which is essential
to energy homeostasis (Tong et al. 2008, Wu & Palmiter
2011, Krashes et al. 2013). Feeding responses evoked by
designer receptors exclusively activated by designer drugs
(DREADD) technology activation indicate that NPY and
GABA released by AgRP/NPY neurons, convey fast signals
to induce feeding, while AgRP instead induces feeding with
effects that are delayed and more prolonged as compared
to those by NPY and GABA (Krashes et al. 2011, 2013,
2016). Ablation of AgRP neurons results in starvation
and activation of neurons in brain regions innervated by
AgRP neurons (Wu et al. 2008). Conversely, experiments
where the AgRP/NPY neurons were ablated by making
them selectively sensitive to diphtheria toxin or by
expression of a neurotoxic form of ataxin-3, indicate that
AgRP/NPY neurons are essential to control feeding in the
adult mice, but not in neonatal mice, and thus suggesting
compensatory pathways to promote food intake (Bewick
et al. 2005, Gropp et al. 2005, Luquet et al. 2005, Tan
et al. 2014). Similarly, mice where a Cre-lox strategy was
used to induce progressive degeneration of hypothalamic
neurons that express AgRP are normal, again suggesting
existence of compensatory pathways (Xu et al. 2005a).
AgRP-null mice instead have normal food intake, body
weight and energy expenditure with reduced body weight
after 6 months of age (Wortley et al. 2005). Also transgenic
mice with AgRP and NPY double-knockout have

a voracious

normal body weight and feeding response to starvation
(Qianetal. 2002), suggesting the existence of compensatory
mechanisms to regulate energy homeostasis. In the
hypothalamus other GABAergic neurons, besides the
AgRP/NPY neurons, contribute to food intake. In this
respect, feeding can also be induced by the GABAergic
neurons localized to the LH and projecting to the PVN
(Mangieri et al. 2018).

Different roles of AGRP/NPY neurons in
homeostatic and hedonic feeding

In the brain, multiple pathways function to control food
intake, of which one is homeostatic feeding and the
other is non-homeostatic, hedonic feeding (Pandit et al.
2013, Sternson 2016). The brain reward circuit includes
many brain areas, such as the ventral tegmental area
(VTA), the nucleus accumbens, the LH, the amygdala,
the striatum and the prefrontal cortex (Pandit et al. 2011,
2013). In mice, AgRP/NPY neurons transmit negative
valence signals (Betley et al. 2015). When mice are fed
normal chow, food caloric intake is the main parameter
to decrease the activity of AgGRP/NPY neuron activity and
limit food intake (Su et al. 2017). Conversely, when mice
are instead fed a highly palatable diet, AGRP/NPY neurons
become dispensable for feeding and other neural circuits
sensitive to emotion and stress take place to control food
intake (Denis et al. 2015).

Signaling in AGRP/NPY neurons

It is well established that AgGRP/NPY neurons are activated
by fasting and by ghrelin and are inhibited by leptin and
by feeding (Pinto et al. 2004, van den Top et al. 2004,
Yang et al. 2011, Hashiguchi et al. 2017, Mani et al. 2018).
However, the mechanism by which fasting promotes
AgRP/NPY activation is yet to be completely understood.
Ghrelin is a peptide hormone secreted by the stomach
under conditions of food deprivation that stimulates
food intake and adiposity (Tschop et al. 2000, Wren et al.
2000, Nakazato et al. 2001, Toshinai et al. 2001, Wren
et al. 2001, Kim et al. 2003, Shaw et al. 2005, Yang et al.
2011). AgRP neurons express the ghrelin receptor, also
named growth hormone secretagogue receptor (GHsr),
to mediate orexigenic as well as glucoregulatory actions
of ghrelin (Zigman et al. 2006, Wang et al. 2014, Mani
et al. 2017). Experiments using brain slices indicate that
GHsr is essential for ghrelin response to increase firing
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activity of AgRP/NPY neurons (Chen et al. 2017b). Ghrelin
induces activation of AgRP neurons by a mechanism
that is dependent on mitochondrial uncoupling protein
2 (UCP2) and involves proliferation of mitochondria
and increased mitochondrial respiration (Andrews et al.
2008, Horvath et al. 2009, Diano 2013). Such ghrelin-
dependent activation of AgRP/NPY neurons is driven
by increased p-oxidation of fatty acids, which takes
place by a mechanism that involves activation of 5’
AMP-activated protein kinase (AMPK). Active AMPK
inhibits of acetyl-CoA carboxylase (ACC) activity resulting
in decreased production of malonyl-CoA and increased
fatty acid transport into the mitochondrial matrix by
brain-specific carnitine palmitoyltransferase-1c (CPT-1c)
(Price et al. 2002, Obici et al. 2003, Obici & Rossetti 2003,
Horvath et al. 2009). Increased fatty acid oxidation is
paralleled by increased mitochondrial respiration, with
increased generation of ROS and ROS quenching by
UCP2 (Andrews et al. 2008). These data indicate that
mitochondrial function is essential for ghrelin signaling
to reduce appetite. However, the function mitochondrial
CPT-1c appears more complex than to promote food
intake by ghrelin signaling in the AgRP/NPY neurons.
This is because CPT-1¢ KO mice, while leaner than control
mice, gain more weight upon exposure to high-fat diet
than control mice, without increasing their food intake
(Wolfgang et al. 2006, Wolfgang et al. 2008). The role of
ghrelin to control energy homeostasis is not yet completely
understood because mice with loss of function mutations
of the ghrelin system do not have altered body weight but,
instead, altered glucose metabolism and insulin sensitivity
(Sun et al. 2003, 2008, De Smet et al. 2006, McFarlane
et al. 2014, Mani & Zigman 2017). Other hormones, such
as leptin and insulin, may control activity of AgRP/NPY
neurons in feeding and metabolism. In this respect,
leptin signals to reduce food intake by inducing exclusion
of Foxol from the nucleus of AgRP/NPY neurons and
downstream expression of a purinergic G-protein-coupled
receptors (GPCR), Gprl7 (Kitamura et al. 2006, Ren et al.
2012, Ren et al. 2015). Insulin signaling also takes place in
AgRP/NPY neurons to decrease their activity by inducing
neuronal hyperpolarization. These effects control hepatic
glucose production (Konner et al. 2007). Insulin signaling
in AgRP/NPY neurons is suppressed by TCPTP. Fasting
induces TCPTP in AgRP/NPY neurons (Dodd et al. 2018a).
Feeding instead promotes the degradation of TCPTP.
Reduced TCPTP enhances AgRP/NPY neuron insulin
sensitivity and promotes downstream effects such as
repression of hepatic gluconeogenesis (Dodd et al. 2018a).
In addition to ghrelin, leptin and insulin, other factors

such as serotonin, cholecystokinin (CCK) and peptide YY
(PYY), released by the gastrointestinal tract in the general
circulation, mediate effects of feeding to inhibit AGRP/NPY
neurons (Beutler et al. 2017). It has been found that
asprosin, a hormone released by adipocytes under fasting
conditions, in addition to stimulating glucose output
from the liver (Romere et al. 2016), also crosses the blood-
brain-barrier to activate the AgRP/NPY neurons via a
cAMP-dependent pathway and to inhibit POMC neuron
activity by a pathway that involves the release of GABA
by the AgRP/NPY neurons (Duerrschmid et al. 2017). It
has been recently discovered that, during fasting, plasma
levels of the pyrimidine nucleoside uridine is increased,
and that such elevated plasma uridine is required for the
changes in thermoregulation and glucose metabolism
that occur during fasting (Deng et al. 2017). In the brain,
extracellular uridine is converted to UTP (Ipata et al.
2010). Interestingly, UDP activates AgRP/NPY neurons
by a pathway that is initiated by purinergic receptor
6 (P2Y6) signaling (Steculorum et al. 2015). Thus the
uridine and uridine nucleotides may be novel regulators
of body metabolism and function of AgRP/NPY neurons.
In addition to AgRP/NpY neurons, ghrelin promotes
activation of somatostatin neurons in the hypothalamic
tuberal nucleus to promote feeding by inhibiting
downstream neurons in the PVN and to the BNST
(Luo et al. 2018).

MC4R neurons

MCA4R is a member of a family of melanocortin GPCRs
cloned in 1992 that also include MC1R, MC2R, MC3R and
MCSR (Chhajlani & Wikberg 1992, Mountjoy et al. 1992,
Gantz et al. 1993a,b, Cone 2005). MC4R is predominantly
expressed in the brain, where it localizes to many areas
(Gantz et al. 1993b, Mountjoy et al. 1994, Williams et al.
2000, Liu et al. 2003, Gautron et al. 2010, Rossi et al. 2011,
Cui et al. 2012, Sohn et al. 2013, Shah et al. 2014) (Fig. 4)
and in neuroendocrine cells of the intestine (Panaro et al.
2014). MC4R is essential for appetite control as knockout
mice lacking MC4R have hyperphagia and obesity
(Fan et al. 1997, Huszar et al. 1997). MC4R mutations
are associated with human obesity (Vaisse et al. 1998,
Yeo et al. 1998, Farooqi et al. 2000, Vaisse et al. 2000,
Lubrano-Berthelier et al. 2006, Farooqi & O’Rahilly 2008,
Stutzmann et al. 2008) this association is controversial
in the case of MC3R mutations (Tao 2010b). The MC4R
expressed in single-minded 1 (Siml) and in MC4R
glutamatergic neurons of the PVN of hypothalamus and
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Localization and function of MC4R and MC3R in the central nervous system. Amy, amygdala; DMH, dorsomedial nucleus of the hypothalamus; DMV,
dorsal motor nucleus of the vagus; IML, intermediolateral nucleus of the spinal cord; LH, lateral hypothalamus; NA, nucleus accumbens; PVN,
paraventricular nucleus of hypothalamus; VMH, ventromedial nucleus of the hypothalamus; VTA, ventral tegmental area. References are in the main text.

the amygdala functions to control food intake (Balthasar
et al. 2005, Shah et al. 2014, Garfield et al. 2015) (Fig. 4).
In the pathway to control appetite, populations of POMC
neurons residing in the arcuate nucleus activate MC4R
neurons in the PVN (Mercer et al. 2013, Gautron et al.
2015, Dores et al. 2016, Toda et al. 2017, Caron et al. 2018).
Also activation of glutamate-releasing neurons that reside
in the arcuate nucleus and co-express oxytocin receptor
rapidly cause satiety (Fenselau et al. 2017). These oxytocin
receptor-expressing neurons engage MC4R neurons in
the PVN through a fast glutamatergic transmission that is
potentiated by a-MSH released from the POMC neurons.
Other neurons, localized to the NTS and expressing CCK
directly stimulate the activity of MC4R neurons in the
PVN to signal (D’Agostino et al. 2016). It has been recently
proposed that the bone specific hormone lipocalin-2
(LCN2) suppresses appetite by crossing the blood-brain
barrier and binding to MC4R in the PVN and VMH
(Mosialou et al. 2017, Mera et al. 2018). MC4R neurons
are inhibited by the AgRP/NPY neurons residing in the
arcuate nucleus (Bagnol et al. 1999, Cowley et al. 1999,
Legradi & Lechan 1999, Cowley et al. 2001, Aponte et al.
2011, Atasoy et al. 2012, 2014). In genetic rodent models
of obesity with elevated leptin levels, abundance of
melanocortin receptors is reduced in the NA and in VTA,

which are areas of the brain involved in the reward circuit
(Lindblom et al. 2000) (Fig. 4). In the VTA, dopaminergic
neurons that regulate palatable feeding are responsive to
a-MSH and project to neurons of the NA (Lindblom et al.
2000, Szczypka et al. 2000, Lindblom et al. 2002, Roseberry
2013, Panaro et al. 2014, Pandit et al. 2015, Roseberry
et al. 2015, Yen & Roseberry 2015). MC4R regulates other
functions in addition to appetite. Administration of the
MC4R and MC3R agonist melanotan II (MTII) to the CNS
of rats activates the hypothalamic melanocortin system
and increases sympathoexcitation in the kidney and
brown adipose tissue (Haynes et al. 1999). Specifically,
MCA4R expressed in neurons of the dorsomedial nucleus
of the hypothalamus (DMH) and MC4R expressed in
preganglionic cholinergic sympathetic neurons of the
CNS localized in the intermediolateral nucleus (IML)
of the spinal cord control both sympathetic outflow to
adipose tissue and energy expenditure (Haynes et al. 1999,
Chen et al. 2004, Shrestha et al. 2010, Enriori et al. 2011,
Rossi et al. 2011, Berglund et al. 2014, Rezai-Zadeh et al.
2014, Andermann & Lowell 2017) (Fig. 4). MC4R neurons
are also implicated in glucose homeostasis. In this
respect, preganglionic cholinergic sympathetic neurons
of the intermediolateral nucleus of the spinal cord
(IML) that express MC4R control glucose output from
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liver (Rossi et al. 2011, Berglund et al. 2014). Lorcaserin,
a 5-HT2CR agonist used as anti-obesity drug, decreases
glycemia by acting on MC4R cholinergic neurons (Burke
et al. 2017). Interestingly, an association has been found
between MC4R genotype and postpartum glycemic
changes in humans, thus highlighting the relevance of
MCA4R in glucose metabolism in humans (de Carvalho
et al. 2017). Cholinergic parasympathetic MC4R neurons,
such as those localized in the dorsal motor nucleus of the
vagus (DMV) control insulin levels and gastric motility
(Rossi et al. 2011, Richardson et al. 2013, Sohn et al. 2013).
In the PVN of the hypothalamus, in addition to food
intake, melanocortin receptors modulate sympathetic
outflow, blood pressure and heart rate (Kuo et al. 2003,
Tallam et al. 2005, Li et al. 2006, 2013, Skibicka & Grill
2009). In the PVN, MC4R also appears essential for
hypertension in the offspring of obese rats (Samuelsson
et al. 2016). MC4R agonists increase blood pressure by
targeting cholinergic neurons, including the sympathetic
preganglionic neurons of the IML (Sohn et al. 2013). In
the IML, MC4R neurons also control heart rate (Iwasa
et al. 2013) (Fig. 4). In the hindbrain, MC4R neurons
control heart rate, but not blood pressure (do Carmo et al.
2015) (2017).

MC3R neurons

In the brain, MC3R is abundantly expressed in the
arcuate nucleus, VMH, central linear nucleus of raphe
and dopaminergic neurons of the VTA; MC3R is instead
moderately expressed in the lateral hypothalamic area and
in the PVN (Roselli-Rehfuss et al. 1993, Gantz et al. 1993b,
Xia & Wikberg 1997, Jegouetal. 2000, Lippertetal. 2014).In
the arcuate nucleus, MC3R is expressed in subpopulations
of both POMC and AgRP/NPY neurons (Bagnol et al. 1999,
Jegou et al. 2000). The obesity induced by MC3R knockout
in mice is less profound than that by knockout of MC4R
and mice lacking both MC3R and MC4R are heavier than
mice lacking only MC4R, suggesting distinct roles to
control food intake (Butler et al. 2000, Chen et al. 2000,
Butler & Cone 2003, Butler et al. 2017). Moreover, MC3R
knockout mice do not develop fatty liver disease or severe
insulin resistance like the MC4R mice (Ellacott et al. 2007,
You et al. 2016). MC3R regulates normal fasting response
(Marks et al. 2003, Renquist et al. 2012), adaptation
to restricted feeding (Sutton et al. 2010, Girardet et al.
2017), food anticipatory activity (Girardet et al. 2014,
Vaanholt et al. 2015) and enhanced motivation to acquire
food during nutrient scarcity (Mavrikaki et al. 2016).

MC3R also functions to regulate nutrient partitioning in
fat and liver tissues under conditions of fasting (Renquist
et al. 2012). MC3R expressed in AgRP/NPY neurons
functions to regulate inhibitory GABA release onto MC4R
neurons in a pathway to tune energy balance from one set
point to another (Bagnol et al. 1999, Cowley et al. 2001,
Ghamari-Langroudi et al. 2018).

MC4R and MC3R signaling

MC4R and MC3R are GPCR that, in the presence of the
natural agonist a-MSH, couple to Gs and AgRP antagonizes
this effect (Tao 2010a). In cells expressing exogenous
MCA4R, exposure to the natural agonist, a-MSH, induces
activation of adenylate cyclase and increased production
of cAMP (Gantz et al. 1993a) (Fig. 5). The increased
concentration of cAMP induced by MC4R is thought to
activate exchange protein directly activated by cAMP
(EPAC), leading to ERK1/2-dependent phosphorylation
of the transcription factor cAMP response element (CRE)
binding protein (CREB), increased transcription of cFos
and reduced phosphorylation and activity of AMPK
(Glas et al. 2016, Yang & Tao 2016). In this respect,
intracerebroventricular delivery of the MC3R/MC4R
synthetic agonists induces anorexia as well as activation
of transcription by CREB and expression of cFos in the
PVN (Thiele et al. 1998, Benoit et al. 2000, Harris et al.
2001, Lee et al. 2001, Sarkar et al. 2002, Lu et al. 2003,
Rowland et al. 2010). On the other hand, other factors
in addition to MC4R may modulate CREB-dependent
control of energy homeostasis in the PVN. In this respect,
it has been reported that, while lack of CREB in the Sim1
neurons of the PVN causes murine obesity, such effect
can also take place in the absence of MC4R signaling
(Chiappini et al. 2011).

In addition to agonist-dependent coupling to Gs and
generation of cAMP, MC4R can couple constitutively
to both Gs and Gi. Constitutive coupling of MC4R to
Gs in cells can be detected by exposure to the natural
antagonist AgRP, thus indicating that the hormone is
also an inverse agonist (Nijenhuis et al. 2001, Oosterom
et al. 2001). Importantly, mutations that modulate the
constitutive activity of MC4R to increase Gs signaling
are linked with obesity in humans, thus suggesting that
MCA4R constitutive signaling is physiologically relevant
(Vaisse et al. 2000, Srinivasan et al. 2004, Proneth et al.
2006). Interestingly, for some MC4R mutants with altered
constitutive activity, AgRP can act as a biased agonist to
promote ERK1/2 activation (Wang & Tao 2011, Mo &
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MC4R signaling. Binding of a-MSH to MC4R promotes receptor signal through Gs with activation of adenylate cyclase (AC) and increased generation of
intracellular cAMP, followed by activation of PKA, EPAC, ERK1/2, CREB and increased transcription of c-Fos as well as decreased AMPK activity. AGRP
antagonizes these effects. The Gs signal induced by MC4R likely takes place in the dorsomedial hypothalamus (DMH) to control energy expenditure. AgRP
can also act a biased agonist to promote MC4R signal by Gi. MC4R can couple constitutively to both Gs and Gi, and AgRP blocks such signal, acting as an
inverse agonist. MC4R in a complex with a-MSH also couples to Gg and induces activation of phospholipase C and increased intracellular cytosolic
calcium. The Gq signal likely takes place in the paraventricular nucleus (PVN) of the hypothalamus to control food intake. MC4R in a complex with a-MSH
closes the Kir7.1 channel to induce depolarization of MC4R neurons in a G-protein independent manner. AgRP acts as a biased agonist by opening the
Kir7.1 channel to induce hyperpolarization of MC4R neurons. References are in the main text.

Tao 2013). It has been found that, in hypothalamic cells,
MCA4R can also couple to Gi and that MC4R constitutive
activity through Gs and Gi/o can inhibit L-type voltage-
gated calcium channels in neurons (Buch et al. 2009,
Agosti et al. 2017). Moreover, MC4R activation by the
synthetic agonist MTII inhibits presynaptic N-type
calcium channels in amygdaloid complex neurons (Agosti
etal. 2014). Thus, signaling of MC4R by Gs and Gi controls
calcium channel activity in neurons. In addition to Gs
and Gi, MC4R couples to Gq (Peters & Scott 2009) and
induces increased intracellular cytosolic calcium (Nickolls
et al. 2005, Newman et al. 2006, Li & Lytton 2014). In
this respect, it appears that peptide MC4R agonists induce
both cAMP accumulation and calcium mobilization,
while non-peptide agonists have blunted ability to induce
calcium mobilization, thus indicating biased agonism
(Nickolls et al. 2005). The ability of MC4R to signal
through a specific pathway likely depends on the cell type
where the receptor is being expressed. In this respect, it
appears that Gsa signaling in the dorsomedial nucleus of
the hypothalamus (DMH) and, to a lesser degree, in the
PVN is important for regulation of energy expenditure

(Chen et al. 2009, 2012, 2017a). It also appears that, in
mice, Gs expressed in MC4R cells regulates in addition to
energy expenditure, also food intake, insulin sensitivity
and cold-induced thermogenesis. Such effect may take
place by mechanisms that include release of PYY from
enteroendocrine cells of the intestine expressing MC4R
(Panaro et al. 2014, Podyma et al. 2018). Mice with
PVN-specific loss of Gqa and G1lla have hyperphagia
and obesity and are relatively insensitive to delivery of
MCA4R agonist in the PVN, which would normally reduce
food intake (Li et al. 2016). These findings indicate that
signaling by MC4R to regulate appetite in the PVN is
dependent upon Gqa and G11la. Mutations of adult type
3 adenylyl cyclase (Adcy3), a member of the adenylyl
cyclase family that mediates Gs signaling, leads to obesity
in mice (Wang et al. 2009). Humans with variants of
Adcy3 are also obese (Stergiakouli et al. 2014, Wu et al.
2016). Interestingly, tagged MC4R-GFP co-localizes
with Adcy3 at the primary cilia of PVN neurons, while
obesity-associated MC4R variants impair localization of
the receptor to cilia (Siljee et al. 2018, Tian et al. 2018).
These observations suggest that MC4R signaling though
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Adcy3 at cilia of hypothalamic neurons is essential for
energy homeostasis (Varela & Horvath 2018). It also
appears that a-MSH increases firing in MC4R neurons of
the PVN in a G-protein independent manner by
inducing depolarization through closure of the inwardly
rectifying potassium channel, Kir7.1. Moreover, AgRP
can act as a biased agonist by opening the Kir7.1
channel to induce hyperpolarization of MC4R neurons
(Ghamari-Langroudi et al. 2015, Litt et al. 2018). These
data indicate that different MC4R signals may control
food intake and energy expenditure at specific brain
locations and that MC4R-dependent control of ion
channel activity may contribute to receptor signal.
MCA4R activity can also be modulated by accessory
factors. MRAP2 is a MC4R-interacting factor that is
co-expressed with the receptor in the hypothalamus,
localizes to the plasma membrane and endoplasmic
reticulum (ER) and potentiates MC4R function.
Deficiency of MRAP2 leads to obesity (Chan et al.
2009, Agulleiro et al. 2013, Asai et al. 2013, Sebag et al.
2013). Experiments where MRAP2 was overexpressed
postnatally in MC4R neurons also indicate that MRAP2
functions to potentiate MC4R neurons (Bruschetta et al.
2018). It has recently been found that MRAP2 affects
other hypothalamic functions in addition to MC4R
signaling, thus implicating multiple pathways to obesity
by MRAP2 deficiency (Chaly et al. 2016, Novoselova
et al. 2016). Nevertheless, the data offer evidence that
interactions of MC4R with accessory factors along the
secretory pathway modulate receptor function.

Intracellular traffic of MC4R and response to
melanocortin receptor agonists

Studies based on undifferentiated cells, neuronal cells
and immortalized hypothalamic cells indicate that
desensitization of MC4R takes place by a process where,
upon prolonged agonist exposure, the receptor routes
to the lysosomes, instead of being made available at the
cell membrane (Gao et al. 2003, Shinyama et al. 2003,
Mohammad et al. 2007, Granell et al. 2013). MC4R is
internalized at the same rate in the presence or absence of
a-MSH agonist (Mohammad et al. 2007). This constitutive
endocytosis of MC4R is fast, by taking place with a t;,
of approximately 3min, is dependent on clathrin and
membrane cholesterol and is necessary to maintain
receptor function (McDaniel et al. 2012, Molden et al.
2015). The rapid constitutive internalization and cycling
back to the cell surface of MC4R is a specific feature of

MCA4R, as most other GPCRs, including the archetypal
B,-adrenergic receptor, are endocytosed more efficiently
in the presence of agonist (McDaniel et al. 2012). Agonist
exposure induces binding of p-arrestin to the p,-adrenergic
receptor, receptor internalization and desensitization
(Drake et al. 2006). In the case of MC4R, desensitization
instead takes place because, in the presence of agonist, a
population of constitutively recycling receptor is retained
in the intracellular localization and routes to lysosomes
(McDaniel et al. 2012, Granell et al. 2013). A factor
implicated in MC4R intracellular traffic to lysosomes is
Mahogunin Ring Finger-1, a RING domain-containing
ubiquitin ligase, which also competes with Gsa to bind
to MC4R (Perez-Oliva et al. 2009, Overton & Leibel 2011).
Desensitization of MC4R may also take place in vivo and
manifest itself as ‘tachyphylaxis’ to chronic, continuous
MCA4R treatment with cessation of weight loss (Pierroz
et al. 2002, Bluher et al. 2004). Such loss of receptor
function upon chronic exposure to MC4R agonists could
limit their effects to reduce food intake and body weight.
The unselective MC4R agonist peptide MTII, the selective
MCA4R agonist peptides BIM-22511 and LY2112688, as
well as the selective MC4R agonist THIQ, a small molecule,
regulate food intake, energy expenditure, weight loss,
sexual function and cardiovascular function (Adan et al.
1999, Kuo et al. 2002, Martin et al. 2002, Van der Ploeg
etal. 2002, Greenfield et al. 2009, Kumar et al. 2009, Kievit
etal. 2013). In response to exposure to all of these agonists,
MCA4R desensitizes to the same extent as in response
to the natural agonist, a-MSH (Molden et al. 2015).
Interestingly, by using intermittent, rather than constant,
delivery of MTII in rodents, it is possible to prolong the
effects of MC4R agonists to reduce food intake, even if
this treatment does not prevent tachyphylaxis (Zhang
et al. 2010, Cote et al. 2017). It is also becoming evident
that, in the face of common desensitization properties by
different melanocortin receptor agonists, temporal effects
induced by such agonists vary. With respect to MCI1R, it
has been found that, unlike o-MSH, MTII and another
non-selective agonist active toward MCIR, 4-norleucine,
7-p-phenylalanine-a-MSH, have prolonged biological
activity to darken frog skin (Sawyer et al. 1980). With
respect to MC4R, chronic treatment of obese primates
with the selective MC4R agonist setmelanotide (also
called RM-493), but not with another selective agonist
LY2112688, results in persistent weight loss in nonhuman
primates (Kievit et al. 2013). In neuronal cells and in
immortalized hypothalamic neurons where fluctuation of
intracellular cAMP are measured by a temporally resolved
Forster resonance energy transfer assay MTII, BIM-22511
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and THIQ can induce prolonged MC4R cAMP signaling
after agonist withdrawal, while other MC4R agonists,
such as a-MSH and LY2112688, do not have such property
(Molden et al. 2015). It is possible that more persistent
effects induced by some MC4R agonists to modulate
energy homeostasis in vivo are linked to their biological
property to induce prolonged receptor signal, rather
than differences in the extent by which MC4R would
desensitize.

Pharmacological chaperones and folding
of MC4R

Recently, it has been discovered that it is possible to
change the conformation of GPCRs by intracellular
delivery of agonists and antagonists (Conn & Ulloa-
Aguirre 2011). Many MCA4R variants linked to obesity in
humans have defective function because they are retained
intracellularly (Ho & MacKenzie 1999, Lubrano-Berthelier
et al. 2003, Nijenhuis et al. 2003, Tao & Segaloff 2003,
Ju et al. 2018). Intracellular retention of obesity-linked
MCA4R variants is dependent on their localization to the
ER as misfolded, ubiquitinated proteins (Granell et al.
2010, Rene et al. 2010). Such misfolded MC4R mutants
can be rescued by (a) pharmacological chaperones,
namely lipophilic compounds that can enter cells and
serve as a molecular scaffold to assist proper folding of
misfolded proteins; (b) by chemical chaperones, which
likely modulate the folding capacity of the ER; (c) by
inhibitors of ubiquitination, which inhibit protein
degradation by the proteasome (Rene et al. 2010,
Meimaridou et al. 2011, Granell et al. 2012, Huang &
Tao 2014, Tao & Conn 2014, 2018, Tao & Huang 2014).
Interestingly, setmelanotide promotes weight loss in
obese individuals expressing MC4R variants (Collet et al.
2017) (Table 1). Setmelanotide, when tested in cells, also
acts as a pharmacological chaperone to promote receptor
expression and function at the cell surface (Collet et al.
2017) (Table 1). Changing conformation of newly
synthesized MC4R along the secretory pathway may
also affect the receptor properties not only to signal, but
also to desensitize. In this respect, co-expressing a-MSH
together with MC4R in the ER can rescue an obesity-
linked variant retained in the ER and stabilize the wild-
type receptor in an active conformation that does not
route to lysosomes nor desensitizes (Granell et al. 2013).
These observations indicate that MC4R conformation
and ability to signal can be modulated by interactions
with agonist in the ER.

The influence of diet-induced obesity on the
melanocortin signaling

Obesity by high-fat feeding induces damage to
several regions of the hypothalamus implicated in
energy homeostasis

In male mice, exposure to high-fat diet induces
hypothalamic injury with inflammation, gliosis and
neuronal loss in the arcuate nucleus, medial eminence
and LH (De Souza et al. 2005, Moraes et al. 2009, Velloso
et al. 2009, Thaler et al. 2012, Dorfman & Thaler 2015,
Dorfman et al. 2017a, Yi et al. 2017). Female rodents
exposed to HF diet, while having less severe hypothalamic
injury and adverse metabolic consequences than male
mice, nevertheless develop obesity (Hong et al. 2009,
Atamni et al. 2016, Dorfman et al. 2017a, Chowen et al.
2018, Qiu et al. 2018a). In the PVN of the hypothalamus,
Sim1 neurons are essential to control energy homeostasis
and include the population of MC4R neurons that regulate
appetite (Balthasar et al. 2005). In mice exposed to HF
diet, while injury to POMC neurons and microgliosis in
arcuate nucleus is specific to male mice, injury to Sim1
neurons of the PVN is a shared feature, taking place
both in male and female mice (Nyamugenda et al. 2019).
Differently than in other regions of the hypothalamus,
damage to Sim1 neurons by exposure to high-fat diet is
not paralleled by microgliosis (Nyamugenda et al. 2019).
These contributions indicate, within the hypothalamus,
region-specific mechanisms of neuronal damage by
exposure to high-fat diet.

Obesity by high-fat feeding induces local activation
and expansion of resident glia in the mediobasal
hypothalamus, as well as recruitment of bone-
marrow-derived myeloid cells

Obesity induces activation of the innate immune system
and inflammation, which impacts many organs including
adipose tissue, pancreas, liver, skeletal muscle and the
brain (Saltiel & Olefsky 2017). Feeding rodents a high-
fat diet induces, in hypothalamus, increased activation
of c-Jun N-terminal kinase (JNK) and of nuclear factor-
kappaB (NFxB) and expression of proinflammatory
cytokines such as interleukin (IL)-1f, IL-6, and tumor
necrosis factor-a (TNF-a) (De Souza et al. 2005). Already
within the first week of high-fat diet exposure, reactive
gliosis and neuronal injury is detectable in the arcuate
nucleus of the hypothalamus (Thaler et al. 2012, Morari
et al. 2014). Obesity induced by exposure to high-fat diet
is associated with increased entry into the central nervous
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Table 1 Natural and synthetic agonists of MC4R.

hMC4R EC50
in vitro (nM)

MC4R desensitizes
(MC4R 1)

MC4R does not
desensitize (MC4R &)
After agonist
withdrawal:

MC4R able to signal
(MC4R %)

MC4R unable to
signal (MC4R X)
Increased expression
of MC4R at cell
surface (MC4R @)

Decreased body weight
vBW)

Decreased food intake
VF)

Increased blood pressure
(MNBP)

Increased blood glucose
(MBG)

Improved glucose
metabolism (GMx)
Increased heart rate (1NHR)

Increased energy
expenditure (NEE)
Increased insulin
sensitivity (ANS)
Increased lipolysis in
white adipose tissue
(ANWATL)

Decreased fat (*Fat)

Increased
neurogenesis
(NNeuro)
Anti-inflammatory
effects (@Inf)

a-MSH

NDP-a-MSH (MTI)

MTII

LY2112688

Setmelanotide
(BIM-22493)

Setmelanotide
and
glibencamide

a-MSH-ER
(intracellular
a-MSH)

MC4-NN2-0453
(peptide 19)

MC4-NN1-0182
(peptide 11)

RO27-3225

4.69
(Kievit et al. 2013)

0.0752
(Kievit et al. 2013)

0.0542
(Kievit et al. 2013)

0.0857
(Kievit et al. 2013)

0.27
(Kievit et al. 2013)
(Kumar et al. 2009)

NT

88

(Conde-Frieboes et al. 2012)
62

(Conde-Frieboes et al. 2012)

NT

MC4R t; MC4R X
(in vitro)
(Molden et al. 2015)

NT

MC4R 1; MC4R %
(in vitro)
(Molden et al. 2015)

MC4R t; MC4R X
(in vitro)
(Molden et al. 2015)

MC4R @ (in vitro)
(Collet et al. 2017)

MC4R &; MC4R %
(in vitro)
(Granell et al. 2013)
NT
NT

VBW (h, only normal weight
humans) intranasal delivery
(Hallschmid et al. 2008)

VBW (1)

ICV delivery
(McMinn et al. 2000)

VFI

ICV delivery
(Koegler et al. 2001)

VBW: VFI (1)

ICV and IP delivery
(Fan et al. 1997)

(Bluher et al. 2004;
Cote et al. 2018)

ABP; AHR (h)

(Greenfield et al. 2009)

ABP ; AHR (nhp)

(Kievit et al. 2013)

WBW ; no ABP (h)

s.c. delivery, obese humans
with LepR deficiency
(Clement et al. 2018)

s.c. delivery obese humans
with MC4R deficiency
(Collet et al. 2017)

WBW ; WFI; no AABP;
GMx% (nhp)

(Kievit et al. 2013)

WBW ; WFI; GM* (1)

(Clemmensen et al. 2015)

No WBW ; no ABP (h)

s.c. delivery, obese humans
(Royalty et al. 2014)

VBW; GM*(r)
(Fosgerau et al. 2014)

W ()

ICV and IP delivery
(Benoit et al. 2000)

AWATL (h)
intranasal delivery
(Wellhoner et al. 2012)

ANS (r) in hypothalamus
ICV delivery
(Chai et al. 2009)

ANEE (1)
IP delivery
(Podyma et al. 2018)

AWATL
In vitro human explants
(Moller et al. 2015)

ANEE (h)

s.c. delivery, obese
humans
(Chen et al. 2015a,b)

AEE VFat (nhp)
(Kievit et al. 2013)

ANEE ; YFat (1)

(Clemmensen et al. 2015)

ANS (r)
(Fosgerau et al. 2014)

Vinf (in vitro)
(Carniglia et al. 2016)
ANeuro (r)
(Giuliani et al. 2015)

Vinf (r)
IP delivery
(Chenetal. 2018)

ER, endoplasmic reticulum; h, humans; ICV, intracerebroventricular; IP, intraperitoneal; LepR, leptin receptor; nhp, nonhuman primates; NT, not tested, r,

rodents; s.c., subcutaneous; WAT, white adipose tissue.
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system of monocytes with the phenotype of activated
microglia/macrophage (Buckman et al. 2014). The
mediobasal hypothalamus includes the arcuate nucleus,
the medial eminence and the anterior part of the PVN
(Timper & Bruning 2017). In diet-induced obesity (DIO),
the recruitment of bone-marrow-derived myeloid cells in
the mediobasal hypothalamus follows the earlier stage
of hypothalamic inflammation, when hypothalamus-
resident microglia are activated (Valdearcos et al. 2017).
In mice exposed to high-fat diet, depletion of resident
microglia from the mediobasal hypothalamus abolishes
inflammation, reduces neuronal stress, suppresses food
intake, and decreases weight gain (Valdearcos et al.
2014). Moreover, inhibition of microglia expansion in
mice exposed to high-fat diet by central delivery of the
antimitotic drug arabinofuranosyl cytidine inhibits
hypothalamic and systemic inflammation and decreases
weight gain (Andre et al. 2017). Inhibition of nuclear
factor kappa-light-chain-enhancer of activated B cells
(NFxB)-dependent signaling in microglia reduces both
local microgliosis and recruitment of bone-marrow-
derived myeloid cells in the mediobasal hypothalamus
(Valdearcos et al. 2017). Moreover, even in mice that
are not exposed to high-fat diet, deletion of a negative
regulator of NFkB, A20, induces hypothalamic microgliosis
and increases food intake and weight gain (Valdearcos
et al. 2017). Thus, in the mediobasal hypothalamus of
mice treated with high-fat diet, expansion and activation
of resident microglia by the NFxB pathway promotes
recruitment of myeloid cells from the circulation and
neuronal injury. In DIO, upregulation of astrocytic
inhibitor of nuclear factor kappa-B kinasep (IKKB,
also called IKK2)/NFkB pathway in astrocytes impairs
astrocytic plasticity and promotes systemic adverse effects
such as glucose intolerance, increased blood pressure,
increased body weight and adiposity (Zhang et al. 2017).
Conversely, knockout of IKKp in astrocytes protects mice
on a high-fat diet from further weight gain by decreasing
food intake and increasing energy expenditure (Douglass
et al. 2017). It appears that male and female astrocytes
respond differently to exposure to high-fat diets (Chowen
et al. 2018). In addition to microglia and astrocytes,
the hypothalamus contains, especially the in median
eminence, other resident glial cells such as monocyte-
derived macrophages, which undergo expansion in mice
exposed to high-fat diet (Gao et al. 2014, Kalin et al. 2015,
Lee et al. 2018). Thus, under chronic exposure to high-fat
diet, activation of astrocytes, microglia, and macrophages
residing in the hypothalamus and recruitment of
activated bone-marrow-derived myeloid cells from the

periphery disrupts hypothalamic control of energy
homeostasis. Importantly, increased gliosis appears also
in the hypothalamus of obese humans (Thaler et al. 2012,
Dorfman & Thaler 2015).

Role of increased saturated fatty acids and
lipoproteins to induce microglia and astrocyte
activation

In the arcuate nucleus, toll-like receptor-4 (TLR4) is
predominantly expressed in microglia. In DIO, increased
levels of circulating saturated fatty acids, such as
palmitic acid, activate TLR4 and modulate activity of
neurons in the arcuate nucleus and feeding behavior
(Milanski et al. 2009, Reis et al. 2015). Palmitic acid-
induced activation of TLR4 in microglia has been found
to promote phosphorylation and nuclear translocation
NF-B, increased secretion of proinflammatory cytokines,
generation of nitric oxide (NO) and increased formation
of ROS (Wang et al. 2012). Conversely, knockdown of
TLR4 in the arcuate nucleus of obese rats fed high-fat
diet, improves glucose homeostasis, attenuates insulin
resistance, and reduces hepatic steatosis and adipocyte
hypertrophy (Zhao et al. 2017). Moreover, TAK-242, a
TLR4 signaling inhibitor, decreases microglial activation
and improves neurogenesis in mice fed fat diet (Moser
et al. 2018). These data indicate that, in the hypothalamus
of obese mice, activation of TLR4 in microglia by excess
circulating saturated fatty acids plays a major role to
regulate hypothalamic inflammation by initiating the
NF-xB pathway to alter glucose metabolism, to induce
insulin resistance and to promote feeding. In obese mice,
activation of GFAP-expressing glia promotes firing from
orexigenic AgRP/NPY, but not from anorexigenic POMC
neurons, and evokes feeding (Chen et al. 2016). Thus
activation of astrocytes mediated by IKKB/NF-kB signaling
has effects to alter activity of arcuate nucleus neurons
involved in appetite control. Changes in lipoprotein
abundance in DIO may also promote astrocytosis and
disrupt glucose metabolism and energy homeostasis. With
this respect, decreased circulating high-density lipoprotein
(HDL), a risk factor for cardiovascular disease, correlates
with obesity (Woudberg et al. 2016). When loss of HDL
is simulated in mice by knockout of Apolipoprotein Al
(apoA-I), there is hypothalamic astrogliosis paralleled by
disrupted hypothalamic mitochondrial function as well
as by increased hepatic triglyceride content and glucose
output (Gotz et al. 2018). These data indicate that, in
obesity, dyslipidemia with increased circulating saturated
fatty acids and loss of HDL promotes hypothalamic
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inflammation and altered mitochondrial function in the
hypothalamus.

Glial activation in DIO changes the architecture of
the hypothalamus

Gliaisinvolvedin theregulation of neuronal differentiation,
proliferation and synaptogenesis during development
(Nedergaard et al. 2003, Clarke & Barres 2013, Argente-
Arizon et al. 2015) (2017). In adult rodents exposed to
high-fat diet, reactive gliosis modifies the architecture of
the hypothalamus in the vicinity of POMC and AgRP/NPY
neurons. In rats that are obese by being exposed to high-fat
diet, but not in rats that are diet-resistant, reactive gliosis in
the arcuate nucleus reduces the accessibility of POMC and
AgRP/NPY neurons to blood vessels and decreases synapses
to the POMC neurons (Horvath et al. 2010). High-fat
feeding induces activation of hypothalamic macrophages,
which promotes nitric oxide synthase (iNOS)-dependent
changes in blood-brain barrier permeability, as well as
altered glucose metabolism (Lee et al. 2018). Therefore in
obesity, inflammation-induced changes in the properties
of blood-brain-barrier may contribute to neuronal injury.

In DIO, changes in the cyto-architecture of
the hypothalamus appear to include reduced adult
neurogenesis. With this respect, it has been reported
that murine adult astrocytes instruct stem cells to
adopt a neuronal fate (Song et al. 2002) and astrocytes
themselves are, at least in some regions of the brain such
as the ventricular-subventricular zone, precursors to
neural stem cells (Doetsch et al. 1999, Paul et al. 2017).
Neurogenesis has been found to take place in multiple
brain regions, including the adult hypothalamus and
hippocampus (Lindqvist et al. 2006, Migaud et al. 2010).
In the hypothalamus, tancytes residing in the median
eminence function to generate neurons (Lee et al. 2012). In
obesity, impaired neurogenesis affects multiple neuronal
populations including POMC and AgRP neurons (Park et al.
2010, Leeetal. 2012, Lietal. 2012, McNay et al. 2012). Thus,
in DIO, hypothalamic inflammation and neuronal injury
is paralleled by decreased renewal of neurons relevant to
energy homeostasis (Argente-Arizon et al. 2015).

Disrupted mitochondrial function in DIO impairs
activation of POMC neurons in response to feeding

Feeding controls mitochondrial function in hypothalamic
neurons (Jin & Diano 2018). Increased glucose, by
promoting increased ATP production in POMC neurons,
enhances neuronal activation. Conversely, the activity

of mitochondrial uncoupling protein 2 (UCP2) impairs
glucose-stimulated ATP production in POMC neurons
by promoting proton leak (Parton et al. 2007, Ma et al.
2012). In POMC neurons, glucose-dependent generation
of ROS is essential for neuronal firing (Andrews et al.
2008, Horvath et al. 2009, Diano et al. 2011). However,
in DIO, glucose sensing by POMC neurons is impaired
(Parton et al. 2007). With this respect, in hypothalamic
POMC neurons of mice exposed to high-fat diet,
expression of peroxisome proliferator-activated receptor
vy (PPAR-y) is increased and cell peroxisome population
is also increased, leading to decreased levels of ROS and
suppressed neuronal firing (Diano et al. 2011). Thus, it
appears that, in DIO, a mechanism of impaired glucose-
dependent activation of POMC neurons is reduced levels
of ROS. This is different than in AgRP/NPY neurons where
suppression of ROS instead promotes the activity of
AgRP/NPY neurons and feeding (Diano et al. 2011). Recently,
it has been found that, when mitochondrial respiration is
mildly impaired in POMC neurons of obese mice exposed
to high-fat diet, mitochondrial fatty acid utilization is
improved, ROS generation is maintained and neuronal
activation continues to take place (Timper et al. 2018).
Mitochondrial architecture regulates mitochondrial
function in POMC neurons. With this respect, lack
of mitofusin-1 (MFN1) in POMC neurons impairs
mitochondrial elongation induced by feeding and alters
mitochondrial respiration with excessive generation
of ROS (Ramirez et al. 2017). Exposure to high-fat
diet disrupts mitochondrial network with changes in
mitochondrial morphology and decreases contact sites
between mitochondria and ER in POMC neurons (Diano
2011, Schneeberger et al. 2013). In mice exposed to high-
fat diet, hypersecretion of tumor necrosis factor (TNF)-a
by activated glia changes mitochondrial morphology
and induces mitochondrial stress in POMC neurons (Yi
et al. 2017). Moreover, exposure to high-fat diet impairs,
in POMC neurons, calcium uptake in mitochondria,
resulting in an increased level of cytosolic calcium and
decreased excitability of these neurons (Paeger et al.
2017b). These data converge to indicate that, in DIO,
disrupted mitochondrial function with altered generation
of ROS and increased cytosolic calcium suppresses
nutrient-dependent excitability of POMC neurons.

Disrupted ER function in DIO impairs processing of
POMC to a-MSH

In the arcuate nucleus of the hypothalamus of mice
exposed to high-fat diet secretion of a-MSH from POMC
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neurons is impaired (Enriori et al. 2007). Moreover, in
POMC neurons of mice exposed to high-fat diet, there
is ER stress with defective processing of POMC precursor
protein to generate a-MSH (Cakir et al. 2013) as well as
decreased mitochondria-ER contact sites (Schneeberger
et al. 2013). Loss of a-MSH in POMC neurons of mice
exposed to high-fat diet impairs whole body glucose
homeostasis by inducing, even before the onset of weight
gain, increased hepatic gluconeogenesis (Schneeberger
et al. 2015). When ER stress takes place, induction
of the unfolded protein response with activation of
the transcription factor spliced XBP1S) branch of the
unfolded protein response (UPR) promotes restoration
of ER homeostasis (Fu et al. 2012). In mice that are
obese by high-fat diet feeding, induction of the UPR
by overexpression of transcription factor spliced X-box
binding protein 1 (Xbpls) in POMC neurons protects
against weight gain and suppresses hyperinsulinemia,
hyperleptinemia and glucose production (Williams et al.
2014). These studies indicate that, in DIO, resolution of
ER stress in POMC neurons is a target to reverse obesity
and altered metabolism.

The onset of selective neuronal resistance to
insulin and leptin in obesity

In DIO, systemic inflammation with increased levels of
the inflammatory cytokines TNF-a and IL-6 parallels the
onset of insulin and leptin resistance (Fu et al. 2012). With
this respect, signaling by insulin and leptin is inhibited by
components of inflammatory pathways such as IKKf and
c-JNK (Haeusler et al. 2018). Expression of constitutively
active IKKB in hypothalamic neurons induces forced
activation of the IKKB/NF«xB pathway, increased expression
of SOCS3, and, thereby, resistance to insulin and leptin
signaling (Zhang et al. 2008). Conversely, inactivation
of SOCS3 in cells expressing the LepR restores leptin
and insulin sensitivity in mice exposed to high-fat diet
(Pedroso et al. 2014). Therefore, in DIO, systemic and local
inflammation induces increased expression of SOCS3 in
POMC neurons, resulting in leptin and insulin resistance.
Leptin signaling by STAT3 is required for leptin regulation
of energy balance (Bates ef al. 2003). When mice are fed
long-term a high-fat diet, there is region-specific onset
of leptin resistance in the arcuate nucleus with defective
STAT3 signaling and increased expression of SOCS3, which
functions in physiological termination of the leptin signal
(Munzberg et al. 2004) (Fig. 2). Interestingly, also chronic
activation of STAT3 in murine POMC neurons promotes,

even when mice are fed chow diet, inhibition of both leptin
and insulin signaling, upregulation of SOCS3 expression
and increased weight gain (Ernst et al. 2009). Together,
these findings indicate that, in obesity, disrupted insulin
signaling by inflammation disrupts the STAT3/SOCS3
signaling in POMC neurons, thereby resulting in insulin
and leptin resistance. In AgRP neurons, the activation
of the IKKB pathway increases action potential firing,
without causing leptin resistance or obesity. Differently,
inflammatory cytokines also activate another pathway,
initiated by JNK1. Activation of the JNK1 pathway results
in increased firing by AgRP neurons and results in leptin
and insulin resistance in these neurons as well as in
peripheral tissues (Tsaousidou et al. 2014). Thus, leptin
resistance in AgRP neurons by activation of JNK1 may
contribute to the onset of systemic insulin resistance in
obesity.

In DIO, changes in other factors than increased
SOCS3 levels may contribute to attenuation of the leptin
signal and, thereby, leptin resistance. With this respect,
the protein phosphatase PTP1B dephosphorylates JAK2
to terminate leptin signaling in POMC neurons, thereby
regulating energy homeostasis (Bence et al. 2006, Banno
et al. 2010). Also TCPTP attenuates leptin signaling by
dephosphorylating STAT3 (Loh et al. 2011) (Fig. 2B). In
DIO, levels of both PTP1B and TCPTP are elevated (Dodd
et al. 2015). Conversely, combined deficiency of PTP1B
and TCPTP in POMC neurons enhances insulin and leptin
signaling and prevents weight gain in mice fed high-fat
diet. Under these conditions, prevention of weight gain
takes place because browning of white fat is increased
and energy expenditure is enhanced (Dodd et al. 2015).
Thus, in DIO, alteration of mechanisms to terminate
leptin signaling results in hypothalamic resistance to
anorexigenic hormones. Atypical PKC: functions in the
PI3K signaling pathway induced by leptin (Fig. 2A). Male
mice exposed to high-fat diet have increased propensity to
develop obesity, glucose intolerance and insulin resistance
when lacking PKC)A in POMC neurons (Dorfman et al.
2017b). Together these data indicate that alterations of
leptin and insulin signaling at multiple steps including
both factors implicated in the onset of the signal and
signal termination may contribute to hypothalamic
resistance to these hormones in obesity.

Neurons in the VMH project excitatory synaptic
inputs to POMC neurons in the arcuate nucleus (Sternson
et al. 2005). SF-1-expressing neurons in the VMH regulate
feeding and anxiety (Klockener et al. 2011, Viskaitis
et al. 2017). In the SF-1 neurons, insulin activates the
PI3K signaling pathway with downstream activation of
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K+ATP channel, resulting in neuronal hyperpolarization
and neuronal silencing (Klockener et al. 2011). In mice
fed high-fat diet, but not in mice fed control low fat diet,
lack of insulin receptor signaling in SF-1 neurons protects
against weight gain and impaired glucose homeostasis,
and increases activation of POMC neurons. These data
indicate that, in DIO, increased insulin sensitivity of SF-1
neurons may contribute to loss of excitatory glutamatergic
inputs to POMC neuron with loss of POMC neuron
activity (Klockener et al. 2011, Timper & Bruning 2017).
These studies indicate that onset of insulin resistance
in populations of hypothalamic neurons outside of the
arcuate nucleus contribute to energy homeostasis and
glucose metabolism.

Mice with DIO are resistant to the anorectic
actions of leptin in POMC and AgRP neurons. Leptin
increases sympathetic nerve activity resulting in
increased thermogenesis taking place in interscapular
brown adipose tissue (Enriori ef al. 2011). This leptin-
dependent increase of sympathetic outflow to the brown
adipose tissue originates from neurons in dorsomedial
hypothalamus and is increased in DIO (Enriori et al.
2011). Thus, in obesity, selective leptin sensitivity, taking
place in neurons of the dorsomedial hypothalamus may
underlie other systemic features associated with excessive
weight gain, such as increased sympathetic outflow, blood
pressure and heart rate.

Lipid stress and MC4R desensitization

MCA4R constitutive traffic makes the receptor particularly
sensitive to changes in cell environment. For example,
depletion of membrane cholesterol, a condition that takes
place in the diabetic hypothalamus (Suzuki et al. 2010),
appears to inhibit constitutive traffic of MC4R when
modeled in cultured neuronal cells and immortalized
hypothalamic neurons. Under such conditions, MC4R
rapidly loses its ability to signal (McDaniel et al. 2012).
Moreover, lipid stress by obesity and high-fat feeding
induce injury to hypothalamic neurons and inflammation
(De Souza et al. 2005, Moraes et al. 2009, Thaler et al.
2012). Lipid stress modeled in cultured neuronal cells
and immortalized hypothalamic neurons by increasing
the concentration of extracellular palmitate induces
loss of MC4R protein abundance and function (Cragle
& Baldini 2014). However, in diet-induced obese mice,
the melanocortin system is instead over-responsive to
MCA4R agonists (Bluher et al. 2004, Enriori et al. 2007). An
unexpected consequence of lipid stress is the disruption

of endocytosis following MC4R localization to clathrin-
coated sites and inhibition of receptor desensitization.
Such effects may underlie increased effectiveness of MC4R
agonists in obesity (Cooney et al. 2017).

Melanocortin agonists and in vivo studies

MCA4R is considered as a target for anti-obesity therapy.
However the receptor controls multiple pathways that
include, in addition to energy homeostasis, also glucose
metabolism, blood pressure and heart rate. In this
respect, the first round of peptides being synthesized
were 4-norleucine, 7-p-phenylalanine-alpha-melanocyte-
stimulating hormone (NDP-a-MSH, also called melanotan
I) and MTII (Hadley & Dorr 2006). NDP-a-MSH and MTII
have superpotent activity as compared to that of a-MSH,
are resistant to proteases and have prolonged activity
(Sawyer et al. 1980, Al-Obeidi et al. 1989a,b, Hadley &
Dorr 2006) (Table 1). However, a-MSH and the relatively
non-selective synthetic agonists NDP-a-MSH and MTII
as well as the more selective agonist LY2112688, have
side effects of increasing blood pressure and heart rate
in rodents, nonhuman primates and humans (Dunbar &
Lu 2000, Hill & Dunbar 2002, Ni et al. 2006, Greenfield
et al. 2009, Greenfield 2011, Rinne et al. 2012, Kievit et al.
2013). These effects are likely to be the result of activation
of the sympathetic nervous system by the melanocortin
receptor agonists (Fig. 4 and related text) and therefore
preclude their use to treat obesity (Greenfield et al. 2009).
These compounds have been patented and clinical trials
have been carried out to study their effects to promote
skin tanning and to improve sexual function in male and
females (Hadley & Dorr 2006). However, potential risks
to develop melanoma related to the use of unlicensed
MTII have been reported (Hjuler & Lorentzen 2014).
Nevertheless, the first round of melanocortin receptor
agonists have been the starting point to synthesize many
other agonists and antagonists with elevated selectivity
toward MC4R and MC3R (Hruby 2016, Ericson et al. 2017).
In this respect, chronic treatment of obese nonhuman
primates with the selective MC4R agonist setmelanotide,
but not with LY2112688, results in persistent weight loss
without concomitant effects to increase blood pressure and
heart rate and, instead, improvement of cardiovascular
function (Kievit et al. 2013) (Table 1). Importantly,
setmelanotide, delivered to severely obese individuals
with leptin deficiency, induces durable decrease in
hyperphagia and body weight loss (Clement et al. 2018).
Moreover, obese patients with POMC deficiency have also
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durable decrease of hyperphagia and substantial weight
loss upon treatment with setmelanotide (Kuhnen et al.
2016, Muller et al. 2016, Collet et al. 2017). In this respect,
a phase 2 clinical trial is undergoing to study the use of
setmelanotide to treat patients with rare genetic disorders
of obesity (ClinicalTrials.gov Identifier: NCT03013543).
A phase 3 clinical trial is undergoing to study the use
of setmelanotide to treat patients with LepR deficiency
(ClinicalTrials.gov Identifier: NCT03287960). In obese
individuals, short-term administration of setmelanotide
increases resting energy expenditure and promotes fat
oxidation (Chen et al. 2015a). In mice with diet-induced
obesity, simultaneous agonism at the GLP-1 receptor and
MC4R induces body weight loss and improves glucose
tolerance and cholesterol metabolism (Clemmensen et al.
2015). Interestingly, some melanocortin agonists such
as NDP-a-MSH and RO27-3225 have effects to reduce
inflammation and promote neurogenesis, which may
prove relevant to counteract injury to the hypothalamus
in obesity (Giuliani et al. 2015, Carniglia et al. 2016, Chen
et al. 2018). These studies suggest that, in addition to
obesity due to POMC or leptin deficiency, setmelanotide,
in combination with GLP-1 agonists, may also be beneficial
for treatment of obesity and diabetes. In conclusion,
discoveries on the melanocortin system in the last two
decades have revealed an unexpected complexity by
which appetite control takes place and indicate possible
therapeutic targets to reduce obesity.
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