Developmental Neurobiology - Cortical Development Week 3

Monday May 18th

Lecture 3: Brain disease modelling for understanding neurodevelopmental disorders in humans.

14:00-16:00 - Lecture and questions

Tuesday May 19th

11:00-13:00 - Student presentation on novel technologies (5 groups - 2-3 per group \rightarrow 15-20' per group + questions)

> *Task for students:* Work on the fellowship proposal

Brain disease modelling for understanding neurodevelopmental disorders

Michèle Studer

Neurodevelopmental disorders (or Intellectual Developmental Disorders -IDD) are impairments of the growth and development of the brain:

- affects emotion, learning ability and memory;
- communication, speech and language;
- unfolds in infancy and childhood.

Neurodevelopmental disorders are associated with mental, emotional, physical, and economic burden to individuals, families and society in general.

Chromosomal disorders: Down syndrome, etc.

Genetic disorders: autism spectrum disorders (ASD), microcephaly, lissencephaly, etc

- > Traumatic brain injury
- Fetal alcohol spectrum disorder
- Viral infections, etc

Neurodevelopmental disorders result from the disruption of normal cortical development processes.

Different steps in mammalian corticogenesis (radial organization)

Human cortical development and stages of malformation

Human cortical malformations and their phenotypic manifestations

Normal	Microcephaly	Lissencephaly		
SUNO DUS		(2282
Polymicrogyria				
Cold Marines	MALFORMATION	SIZE	FOLDING	ECTOPIA
	Microcephaly	Reduced	Mild – Normal Severe – Altered	No Yes
VCIORADS	Megalencephaly	Increased	Mild – Normal Severe – Altered	No No
Subcortical band heterotopia	Dysplasia	Altered	Increased	Abnormal layers
	Lissencephaly type I	Normal Reduced	Reduced	Abnormal layers
CANBAD'	Lissencephaly type II Cobblestone	Normal	Increased	Cortical surface
Periventricular nodular heterotopia	Polymicrogyria	Increased Reduced	Increased	Abnormal layers
	Subcortical band heterotopia Double cortex	Reduced	Normal	White matter
CARRAN S	Periventricular heterotopia	Normal Reduced	Normal Normal	Periventricular

Defects affecting different steps of neurodevelopment

Modified from Hu WF et al., 2014

Congenital Microcephaly

ASPM, CK5RAP2, MCPH1, CENPJ, WDR62, STIL, KNL1, CEP135, CDK6, CEP152, CEP63, KIF2A, TUBB, TUBB3, DYNC1H1, RTTN, EOMES, PAX6, RAB3GAP1, RAB3GAP2, RAB18

Cell cycle, proliferation and/or survival

 \rightarrow plane of division, aRG vs bRG

→ cell growth, cell cycle progression, proliferation, decreased apoptosis in oRG

Different morphological aspects of polymicrogyria

Thick and overfolded brain (small gyri and sulci)

 GPR56 (adhesion G-protein-coupled receptor) regulates pial basement membrane integrity and cortical lamination
Growth factor signaling pathways (PTEN-AKT cascade)

Guerrini & Dobyns, Lancet Neurol, 2014

Neuronal migration malformations

Heterogeneity of neuronal migration disorders at the genetic, cellular and clinical levels

Buchsbaum & Cappello, 2019

Radial-directed cortical neuronal migration

Leading process extension

Actin regulation: Rac1, Vav3, WAVE1, Drebrin, Fascin

Microtubule organization: Cdk5, Dcx

Swelling formation and centrosome migration

Swelling formation: RhoA, Gmip Centrosomal migration: RhoA, mDia

Somal translocation

Actomyosin contraction: RhoA Microtubule regulation: Dcx

Reelin signalling pathway in neuronal migration

Defects in neuronal migration lead to altered lamination

Goffinet, 2001

How do we study cell migration in experimental models?

Acute (somatic) manipulation of cell identity and cell behavior

In utero electroporation

Cell migration Cell morphology Cell specification Genetic interactions Single cell recording Connectivity

Radial migration and morphological transition

Electroporation of a GFP-expressing vector at E14.5 + 4 DIV in culture

Restored cell migration rescues axonal elongation

Restored cell migration rescues neuronal maturation

The appearance of glia-guided migration, unique to mammals, is linked to axonal growth and maturation of late-born pyramidal neocortical neurons.

Tubulinopathies affect multiple processes in cortical development and cause heterogeneous MCDs

TUBA1A-R402C/H mutants dominantly disrupt neuronal migration in the mouse cortex

Aiken et al., 2019

Abnormal cell migration and neur DCHS1 &FAT4: protocadherins Mouse IUE Human organoids Dchs1 mutant forms DCHS1 FAT4

Fat4 mutant forms

Cappello et al., 2013

IUE E13-E16

Cellular mechanisms of abnormal cortical development leading to malformations

Manzini & Walsh, 2011

Different categories of Malformations of Cortical Develeopment (MCD)

	MCD group	MCD type	Morphologies	Related pathways
•	Disorders of proliferation, apoptosis, and/or differentiation	Microcephalies	Microcephaly, microlissencephaly Alobar, lobar, and variant holoprosencephaly	Tubulinopathies, microtubule-associated proteins Decreased RTK → PI3K → AKT → mTOR signaling Sonic hedgehog pathway Midline differentiation
		Cortical overgrowth disorders (focal and diffuse)	Megalencephaly, hemimegalencephaly, polymicrogyria, FCD-II	Overactive RTK \rightarrow PI3K \rightarrow AKT \rightarrow mTOR signaling
-	Disorders of neuronal migration	Classic lissencephaly spectrum	Smooth lissencephaly, microlissencephaly, subcortical band heterotopia	Tubulinopathies, microtubule-associated proteins Variant lissencephalies (noncytoskeletal)
		Cobblestone malformations	Rough lissencephaly, polymicrogyria, leptomeningeal glioneuronal heterotopia	Dystroglycanopathies Other basement membrane–glia limitans interaction disorders
		Periventricular heterotopia	Nodular or linear periventricular heterotopia	Microtubule-associated proteins
		Dyslamination without cytologic dysplasia or growth abnormality	FCD-I	Overactive RTK → PI3K → AKT → mTOR signaling Other rare forms (e.g., variant Rett syndrome)
-	Disorders of axon pathway formation	Isolated callosal defects	Agenesis, hypogenesis, dysgenesis of corpus callosum	Axon growth and guidance Midline differentiation
		Other isolated axon defects (putative)	Unknown	Axon growth and guidance

Abbreviations: FCD-I, focal cortical dysplasia type I; FCD-II, focal cortical dysplasia type II; MCD, malformation of cortical development.

Cortical commissures - axonal connections between the two hemispheres

✓ Vertebrate evolution resulted in increased brain complexity;

- ✓ additional commissures to provide interhemispheric connections between pallial territories;
- ✓ increase in cortical volume is positively correlated with increase in CC area and number of callosal fibers

Agenesis of the corpus callosum in humans

- Behavioural and cognitive impairments:
- ✓ deficiency in bimanually coordinated motor activity;
- \checkmark deficits in cognitive processing time, arithmetic,

abstract reasoning and short-term memory;

- ✓ Social and language deficits.
- Single gene MENDELIAN mutation, sporadic mutations and complex genetics.
- Environmental factors: fetal alcohol syndrome (FAS).
- 75% of the cases with complete AgCC have recognizable genetic syndromes

Postmitotic specification of callosal projection neurons

Fishell & Hanashima, 2008 Britanova et al., 2008 Alcamo et al., 2008

Corpus callosum development in the mouse

Postnatal neuron activity is essential for connecting the two halves of the brain

Balanced activity between the 2 hemispheres establish contralateral connectivity

Suarez et al., 2014

Cux1 controls contralateral innervation by regulating callosal intrinsic excitability

Function

✓CC present in placental mammals;

✓ largest fiber tract in the brain, connecting the two cerebral hemispheres;

 \checkmark facilitates the integration of motor and sensory information from the two sides of the body;

 ✓ influences higher cognition associated with executive function, social interaction and language.

Development

✓ Pioneers of the CC originate reach the midline around E15;
✓ neocortical callosal axons grow along the pathway defined by the pioneers by E17;

 ✓ midline cellular populations and extracellular cues assist in the turning and channeling of callosal axons across the midline;
✓ proper contralateral innervation is a postnatal activity-dependent process. Cortical Projection neurons (PNs) and Interneurons (INs) are born from different D/V regions of the telencephalon

GABAergic cortical interneurons

Ventral (subpallium)

Dorsal

(pallium)

The cerebral cortex is controlled by a delicate balance of:

altered balance between excitation and inhibition leads to epilepsy, autism or schizophrenia

Petilla Interneuron Nomenclature (2008)

Morphological features (axon, soma, dendrite properties):

<u>Physiological features</u> (action potential, firing pattern, postsynaptic responses).

<u>Neurochemical features</u> (Ca-binding proteins, neuropeptides):

Parvalbumin (PV) Calretinin (CR) Somatostatin (SST) Neuropeptide Y (NPY) Vasointestinal Peptide (VIP) Cholecystokinin (CCK)

Subpallial origin of different subtypes of cortical interneurons

From Brandau et al., 2015

Tangential and radial migration of GE-derived interneurons

Marin et al., 2013

Self-organized organoids versus directed spheroids

Birey et al., Nature, 2017

Milestones in the Development of Cortical Interneurons

Lim et al., Neuron, 2018

GE-specific molecular codes to specify distinct interneuron subtypes

From Cauli et al., 2014 Lim et al., Neuron, 2018

Inhibitory control of cortical pyramidal neurons by GABAergic interneurons

Balancing Neuronal Excitation and Inhibition for Functional Behavior

Balance of Neuronal Excitation and Inhibition for Proper Behavior

Changes in circuit excitability due to shifts in excitation/inhibition (E/I) balance

Can we reproduce E/I imbalance in cerebral organoids?

