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A B S T R A C T

Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or
unknown deceased (missing) persons, directly from biological materials found at the scene. “Biological
witness” outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown
persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of
DNA marks a substantially different forensic use of genetic material rather than that of current DNA
profiling presented in the courtroom. Currently, group-specific pigmentation traits are already
predictable from DNA with reasonably high accuracies, while several other externally visible
characteristics are under genetic investigation. Until individual-specific appearance becomes accurately
predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA
prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much)
smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the
crime scene stain or from the deceased person’s remains. Provided sufficient funding being made
available, future research to better understand the genetic basis of human appearance will expectedly
lead to a substantially more detailed description of an unknown person’s appearance from DNA,
delivering increased value for police investigations in criminal and missing person cases involving
unknowns.
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1. Forensic DNA Phenotyping: some general considerations

Forensic DNA analysis, i.e., the identification of persons via
short tandem repeat (STR) profile matching of unknown evidence
material with reference material from known persons, has been
considered the golden standard in forensic sciences [1]. However,
one of the major limitations of this comparative approach of DNA
identification, likewise applying to STRs and single nucleotide
polymorphisms (SNP), is that it typically fails to identify persons
whose STR or SNP profile is not already known to the
investigators. Persons may be unavailable for comparative DNA
profile matching because they have successfully escaped police
investigations and thus avoided becoming a known suspect.
Although this current approach becomes more effective when
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forensic DNA (profile) databases are in place [2], cases where the
evidence DNA profile does not match that of any known person
including all stored in the forensic DNA (profile) database are
routinely seen by investigators. In the absence of any other
information that provides leads for tracing unknown forensic
sample donors, cold cases can wait for various periods of time
(sometimes for very long), before the evidence STR profile is
matched with a known person subsequently added to the grown
forensic DNA database or delivered as suspect by police re-
investigation of the given case.

DNA mass screenings can be carried out in cases where no DNA
profile match is obtained and no other evidence is available [3]. In
such DNA dragnets, larger number of persons (hundreds to
thousands), usually those living in the geographic region where
the crime occurred, are invited to voluntarily provide a saliva
sample for STR profiling. Although the true perpetrator may not
participate voluntarily, due to awareness of the provided sample
leading to identification, non-participation may raise suspicion
and thus directing investigators towards additional leads. If the
true perpetrator does not participate but only close relatives do,
familial search is able to identify them, which provides investiga-
tive leads to find the unknown perpetrator. Using conventional
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autosomal STR profiling in the DNA dragnet limits the possibilities
of familial search to close relatives of the unknown,
non-participating perpetrator, which can be overcome by using
Y-chromosomal STRs instead (if the evidence DNA originates from
a male perpetrator) [4]. Since a Y-STR profile identifies a man
together with all his paternal male relatives, close and distant
ones, a Y-STR dragnet is more effective than dragnets based on
autosomal STRs (or SNPs). For instance, a large Y-STR dragnet
involving thousands of local volunteering men finally led to
solving a murder case in the Netherlands after 13 years of
investigation [5]. Still, in order to be potentially successful, close
and/or distant relatives of the true perpetrator (if not the
perpetrator himself) have to participate in the DNA mass test. The
local presence of relatives may be more likely in rural areas,
where relatives are less likely to migrate away, than in urban
areas. In general, however, such DNA dragnets without specific
cause and evidence to ask volunteers are often seen critically due
to ethical concerns, and in some countries are legally forbidden.
Furthermore, the economic burden to obtain STR profiles of
hundreds or even thousands of individuals in a single case is
high. Because of these reasons, DNA dragnets are not applied
often [3–5].

These limitations of comparative DNA profiling stimulated a
relatively new development within forensic genetics, i.e., Forensic
DNA Phenotyping (FDP) [6,7]. FDP aims to infer the unknown
stain or sample donor’s externally visible characteristics (EVCs)
from DNA (or other molecular biomarkers) directly from the
biological material left behind at the scene of crime, or obtained
from unknown bodies. In essence, FDP outcomes can serve as
“biological witness”, and may potentially provide even more
accurate information than human eyewitnesses do, who are
known to be unreliable [8]. As such, FDP is expected to provide
investigative leads allowing to trace unknown perpetrators, who
are not identifiable via conventional comparative DNA profiling.
FDP is also expected to be useful for missing persons identifica-
tion, i.e., in cases where reference DNA profile from putative
ante-mortem samples, or from putative relatives are unavailable.
The DNA inference of bio-geographic ancestry (see Philipps in
this issue) is sometimes considered part of FDP [7]; however,
genetic ancestry does not always portray an externally visible
characteristic, particularly in individuals of mixed genetic
ancestry.

Appearance prediction from DNA for forensic usage started in
the early 2000s and first progressed very slowly. The main
reason for the relatively late introduction of forensic appearance
prediction from DNA is the (still) limited knowledge about the
genetics of most human EVCs. Even though it takes the same
technological equipment and statistical methods to identify
disease genes as to find EVC genes, our knowledge about
inherited diseases is currently more advanced [9] than on how
we look. One of the reasons for limited appearance genetic
knowledge till today might be related to research funding
strategies that typically focus more on disease-related variation
than on normal human variation and its genetic exploration. Of
all EVCs, those that involve pigmentation i.e., variation in the
coloration of the human iris, head hair, and (less so) skin, are the
best and currently the only examples of practical FDP (see
below). Although all EVCs are considered complex traits, where
several to many genes are contributing to the phenotype
together with environmental factors, human pigmentation  traits
in general seem the least genetically complex of all EVCs, with a
few handful of genes providing most of the phenotypic
information, at least on a broad categorical level. Therefore,
understanding the genetic basis of pigmentation traits is
currently more advanced than for any other EVC, and thus is
DNA-based pigmentation prediction. All other EVCs are, based
on current knowledge or expectations developed from current
knowledge, genetically much more complex with dozens to
expectedly thousands of genes contributing, which complicates
the identification of responsible genes and predictive DNA
markers.

The problem with highly complex genetic traits, as realized
for many common diseases, is that every individual gene
contributes only a small proportion of the phenotypic variance,
and only the combination of a large number of genetic factors
may explain the overall inherited component [10]. Moreover, the
larger the environmental component, the less can be explained
by DNA, and – of course – any non-genetic contribution can
never be explained by a DNA test. According to anecdotal
knowledge, and based on previous findings from twin heritabil-
ity studies [11], human EVCs typically carry a large genetic
component, but environmental impacts also exist, for some
EVCs more so than others. If however a gene only has a small
individual effect on the phenotypic trait, it is difficult to be
identified with the current toolbox used by genetic epidemiol-
ogists, because the measurable statistical signal is minutely
small. Therefore it requires the use of large sets of individuals to
identify such small genetic effects with the needed level of
statistical significance. Since the genomic tools used for finding
genes, such as SNP microarrays, are still expensive (i.e., approx.
250 EUR per individual sample, and exome or whole genome
sequencing are by magnitudes more expensive), carrying out
genome-wide association studies (GWASs) on large numbers of
individuals (i.e., tens of thousands) with large numbers of single
nucleotide polymorphisms (SNPs) (i.e., hundreds of thousands
and more) quickly becomes unaffordable for the average single
laboratory. The formation of large international consortia, has
demonstrated to be highly successful in finding complex trait
genes, mostly common complex diseases, by combining
impressively large numbers of samples (up to hundreds of
thousands) [9]. Consequently, given the complex genetic nature
of EVCs, only large collaborative efforts will allow unveiling their
genetic basis as a prerequisite for developing predictive DNA
markers and tools for practical FDP.

2. DNA phenotyping of pigmentation traits: the first FDP success
story

In the following three sub-chapters I summarize the current
knowledge on DNA-based prediction of eye, hair, and skin color,
respectively. Due to space constrains, and because it is the
predictive value of a SNP that is relevant for FDP purposes, I mostly
leave out association and linkage studies on human pigmentation
traits. Table 1 lists all SNPs previously applied for eye and/or hair
and/or skin color prediction from DNA.

2.1. Eye color

The first two studies that performed DNA-based iris (eye)
color prediction were published in 2007. Frudakis et al. [12] used
33 SNPs from the OCA2 gene, which allowed them to classify 8%
of the eye colors observed among >1000 samples. Sulem et al.
[13], embedded in the first GWAS on human pigmentation traits,
used 9 SNPs from 6 genomic regions (SLC24A4, KITLG, 6p25.3, TYR,
OCA2–HERC2, and MC1R) which they identified with significant
eye color association among several thousand Europeans, for
categorical eye color prediction. Of the individuals DNA-predicted
with <0.2 probability for brown and <0.1 probability for green,
about 90% were indeed blue eyed, and of the individuals DNA-
predicted to be brown with >0.5 probability, about 60% were
indeed brown eyed. In 2008, three parallel studies [14–16]
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reported the HERC2 gene as the most important eye color gene.
Sturm et al. [14] and Eiberg et al. [15] highlighted HERC2
rs12913832 as a major eye color predictor, while Kayser et al. [16],
due to the SNP content of the microarrays used in their GWAS,
highlighted several other HERC2 SNPs such as rs916977. Sturm
et al. [14] reported an R2 value (see Box 1) of 0.68 for HERC2
rs12913832 alone. Eiberg et al. [15] noted a particular h-1
haplotype based on 13 SNPs from the OCA2–HERC2 region,
including HERC2 rs12913832, but also others such as HERC2
rs916977, being present in 97% of the analysed persons with blue
eyes. Kayser et al. [16], who singled-out the HERC2 gene via
GWAS, additionally performed formal DNA-based prediction of
eye color using 3 SNPs (HERC2 rs916977, OCA2 rs11855019, and
OCA2 rs7495174). The authors obtained prevalence-adjusted
average prediction accuracies expressed as area under the
receiver characteristic operating curve (AUC, see Box 1) of about
0.8 for brown and blue eye color, respectively (where 0.5 means
random prediction and 1.0 means completely accurate predic-
tion); most of the eye color predictive value was provided by the
HERC2 rs916977 alone.

The first comprehensive DNA prediction study on eye color
was published in 2009 by Liu et al. [17], where the authors
selected from previous publications 37 SNPs from 8 pigmenta-
tion genes, and investigated their eye color predictive capacity
in a total of >6100 Dutch Europeans. They trained an eye color
prediction model based on 24 SNPs from 8 genes in >3800
samples, and validated the model in >2300 independent
samples (see Box 1). This model provided AUCs of 0.93 for
brown and 0.91 for blue eye color, while for intermediate eye
color the AUC was considerably smaller at 0.73. A single SNP,
HERC2 rs12913832 that was emphasized before to carry
substantial eye color information [14], expressed most of the
predictive effect, solely achieving AUC values of 0.899 for brown
and 0.877 for blue. Liu et al. [17] proposed 6 SNPs from 6
pigmentation genes (HERC2 rs12913832, OCA2 rs1800407,
SLC24A4 rs12896399, SLC45A2 rs16891982, TYR rs1393350, and
IRF4 rs12203592) as a minimal set of eye color DNA predictors.
This 6-SNP set achieved AUC values of 0.93 for brown, 0.91 for
blue, and 0.72 for intermediate eye color in the >2300 Dutch
Europeans used for model validation [17].

In a parallel study published in 2010, Valenzuela et al. [18]
tested 75 SNPs from 24 pigmentation candidate genes for their
predictive effect on pigmentation variation in eye, hair, and skin
using >780 Europeans and non-Europeans. Three SNPs from 3
pigmentation genes, HERC2 rs12913832, SLC45A2 rs16891982,
and SLC24A5 rs1426654 (the former two overlap with the best six
from Liu et al. [17]), provided an R2 from multiple linear
regression modelling (see Box 1) of categorical eye color of
76.45%; of this, the vast majority (74.8%) was achieved by HERC2
rs12913832 alone [18]. However, mixing Europeans and non-
Europeans in the ascertainment of eye color predictive SNPs poses
a challenge in separating ancestry from eye color effects, so that
the achieved prediction outcomes are difficult to interpret.
Indeed, additional data [19,20] suggested that SLC24A5
rs1426654 is unlikely to be directly involved in eye color (see
further explanation below for hair color). In 2010 too, Mengel-
From et al. [21] confirmed in almost 400 Danish Europeans the
eye color predictive value of HERC2 rs12913832, which together
with two other HERC2 SNPs rs1129038 and rs11636232 in strong
linkage disequilibrium (LD) with rs12913832 in Europeans, and
OCA2 rs1800407 provided likelihood ratios (see Box 1) from 4-SNP
diplotypes of up to 29.3 for dark and up to 10.7 for light eye color
(rs12913832 and rs1800407 overlap with the best 6 SNPs from Liu
et al. [17]).

Based on previous findings together with the SNP prediction
rankings observed by Liu et al. [17], the first DNA-based eye color
prediction system for forensic usage was developed by Walsh et al.
[22] and published in 2010/2011. This IrisPlex system includes a
sensitive assay for multiplex genotyping of the six most eye color
predicting SNPs from Liu et al. [17] (HERC2 rs12913832, OCA2
rs1800407, SLC24A4 rs12896399, SLC45A2 rs16891982, TYR
rs1393350, and IRF4 rs12203592) and implemented the predic-
tion model from Liu et al. [17] into an interactive and easy-to-use
Excel sheet that provides categorical eye color probabilities from
user input SNP genotypes. The forensic developmental validation
of the IrisPlex assay was published in the same year, demonstrat-
ing that the assay is fully compatible with all SWGDAM guidelines
[23]. The IrisPlex assay is highly sensitive, delivering complete 6-
SNP profiles down to about 30 pg input DNA [22,23]. The IrisPlex
system was further tested to predict eye color in 940 worldwide
DNA samples from HGDP-CEPH [22]. Although exact eye color
phenotypes were unavailable for these samples, different eye
colors were only predicted in European samples and less so in
those from neighboring regions, while in samples from distant
regions such as East Asia, Africa, Oceania and from Native
Americans, only brown eyes were predicted (except a single
Native American who was unpredicted) [22]. Therefore, the
distribution of the IrisPlex-predicted eye color is highly
concordant with the known global distribution of eye color
categories, which strongly suggests that IrisPlex performs well,
regardless to the bio-geographic origin of the sample under
testing [22].

Although the initially introduced IrisPlex eye color prediction
model was based on thousands of Europeans [17], they were all
from one population (Dutch); therefore, a subsequent validation
of the prediction model on >3800 Europeans from seven
countries was performed [24]. The model based on thousands
of samples from across Europe performed nearly identical to the
initial model based on thousands of Dutch Europeans, demon-
strating the robustness of the IrisPlex model [24]. The AUC values
achieved in this pan-European study were even higher than
established before [22] with the IrisPlex markers (0.96 for blue
and brown, respectively). The authors attributed the gain in
accuracy to the use of more accurate eye color phenotype data
they obtained from high-resolution digital images. In 2014, the
enhanced IrisPlex prediction model for eye color was introduced
based on >9100 individuals from eight parts of Europe, which
achieved AUCs of 0.95 for brown, 0.94 for blue, and 0.74 for
intermediate eye color [25]. When applied to an independent set
of about 120 Polish individuals, not included in model building or
validation, the enhanced IrisPlex model delivered on average eye
color prediction accuracies of 84%; or 93% when only brown and
blue prediction was assessed and the intermediate category was
not included [25].

Recently, the IrisPlex assay was tested by the European
DNA Profiling Group (EDNAP) of the International Society for
Forensic Genetics (ISFG) in a multi-center exercise involving >20
laboratories with various levels of specific experience (including
novices), and was found to be easy to implement and highly
reliable [26].

All 6 IrisPlex SNPs were included in a commercial tool, the
Identitas V1 Forensic Chip, allowing to infer biogeographic
ancestry, appearance, relatedness, and sex from genome-wide
SNPs, which had been tested in a large number of DNA samples
[27]. This tool (http://identitascorp.com/) provides among
other forensically relevant information (including hair color)
eye color prediction using the IrisPlex model [27]. However, as
with all SNP microarrays, the underlying hybridization technolo-
gy provides challenges to low quantity and/or low quality input
DNA [27].

Subsequent to the initial publication of IrisPlex, other SNP sets
with partially overlapping markers have been proposed for eye
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color prediction. In 2011, Spichenok et al. [28] introduced a 6-SNP
set including HERC2 rs12193832, IRF4 rs12203592, SLC45A2
rs16891982, OCA2 rs1545397, ASIP rs6119471, and MC1R
rs885479, of which the former three overlap with IrisPlex [22].
These SNPs were ascertained from, and prediction was
performed in >550 European and non-European samples. As
mentioned before, the across-ethnicity study design for select-
ing predictive SNPs applied to a regional trait such as European
eye (and hair) color variation is, however, unable to differentiate
between true eye color effects and ancestry effects. Most of the
previous studies could not show an effect of MC1R on eye color
variation, although this gene is well-known for having a strong
effect on light skin color, freckles, and red hair as seen in
Europeans.

Pneuman et al. [29] attempted to directly compare the
outcomes of the 6-SNP set from Spichenok et al. [28] with the
6-SNP IrisPlex set [22]. The authors reported that the IrisPlex set
and prediction approach (error rate 31% plus 26% inconclusive
outcomes) predicted eye color much less accurately than the
Spichenok set and prediction approach (2.8% error rate without
inconclusive outcome). Such a large discrepancy appears
unexpected given the overlap in the SNPs used, particularly
the top ranked eye color predictor HERC2 rs12193832 which
provides most of the predictive value, and may be explained by
multiple factors. However, it should be noted that for the
predicted outcomes there is a definitional difference between the
two approaches used. The prediction outcomes from IrisPlex are
specific in that they are probabilities for having blue, brown, or
intermediate eye color. On the other hand, the outcomes of the
Spichenok prediction approach [28] include “non-blue” and “non-
brown” predictions, which are expected at higher accuracies. Such
a “non-color” prediction approach is conceptually prone to
argument, and, in the very least, makes a direct comparison
with a color prediction approach difficult. Furthermore, IrisPlex
eye color prediction [22,23] is based on a statistical model using
underlying phenotypic and genotypic data (see Box 1), while the
Spichenok approach [28] is based on an ad hoc classification
procedure not using statistics. Of the 135 errors reported for
IrisPlex by Pneuman et al. [29] 130 (96.3%) were seen with
individuals of intermediate eye color. Notably, however, the
IrisPlex test was introduced for accurate blue and brown eye color
prediction, while its value for predicting intermediate eye colors
has always been highlighted as its greatest limitation [22–25].
Recently, the Spichenok 6-SNP set for eye color prediction was
updated to a 5-SNP set by excluding the MC1R and the OCA2 SNPs
and including an additional IrisPlex SNP (SLC24A4 rs12896399)
[30], so that both sets now overlap in 4 SNPs.

Allwood and Harbison [31] tested 19 SNPs from 10 pigmenta-
tion genes in a small sample of 101 New Zealanders of European
and non-European origin, and proposed a set of 4 SNPs i.e., SLC24A4
rs12896399, OCA2 rs1800407, TYR rs1393350, and HERC2
rs1129038 for eye color prediction, of which the former three
overlap with IrisPlex and the latter one is in strong linkage
disequilibrium (LD) with HERC2 rs12913832 (R2 > 0.99 in Euro-
peans) included in both sets. These 4 SNPs achieved prediction
accuracies of 89% for blue and 94% for brown eye color using a
classification tree model approach (see Box 1).

Ruiz et al. [32] described an eye color prediction test based
on 23 SNPs out of 37 that were tested via two multiplex
genotyping assays in >410 Europeans, and obtained eye color
phenotypes from SNP genotypes via an Bayesian classifier (i.e.,
Snipper) (see Box 1). The authors particularly emphasized that
adding HERC2 and OCA2 SNPs that are in LD (partly in strong LD)
with HERC2 and OCA2 SNPs included in the IrisPlex, leads to
increased prediction accuracies, particularly for intermediate eye
color [32]. For a subset of 13 SNPs i.e., the 6 IrisPlex SNPs plus 4
HERC2 SNPs (rs1129038, rs11636232, rs7183877, and rs1667394),
and 3 OCA2 SNPs (rs4778241, rs4778232, and rs8024968) they
reported AUC values of 0.999 for blue, 0.990 for brown, and 0.816
for intermediate eyes [32]. This is compared to 0.986, 0.978, and
0.756, respectively, obtained by the authors with the 6 IrisPlex
SNPs in the same samples. Previous studies [16,17,21,33] had
already noted beneficial predictive values when considering LD
SNPs, including those from HERC2 and OCA2, but the observed
effects were smaller than those reported by Ruiz et al. [32].
Possible explanations are the use of more accurate phenotypes
and/or accuracy over-estimations, for instance due to sample
size limitations (see Box 1). Freire-Aradas et al. [34] recently
showed that the inclusion of HERC2 rs1129038, as advocated by
Ruiz et al. [32] to improve intermediate (green-hazel) eye color
prediction, revealed higher than expected green-hazel predictions
in people from the Americas, Middle East, and West Asia for
which IrisPlex predicted brown eyes as is expected in such
regions (no eye color phenotypes were available in these
samples). As emphasized by Ruiz et al. [32], additional studies
are needed to better understand the additive values of SNPs in LD
with each other, such as those from the HERC2–OCA2 region, to
the prediction of eye color.

Recently, Yun et al. [35] compared two eye color prediction
algorithms, the IrisPlex model they implemented in FROG-kb
(http://frog.med.yale.edu/FrogKB/) and Snipper (http://mathgene.
usc.es/snipper/) as used by Ruiz et al. [32], in data from the 6
IrisPlex SNPs obtained in >900 samples from 12 Eurasian
populations. Out of >700 individuals with complete IrisPlex
profiles, 22% inconsistent predictions were observed between
both approaches, demonstrating that the differences in the
underlying logic and supporting data of both approaches can
yield different prediction outcomes [35]. Overall, the authors
reported fewer blue eye predictions and more inconclusive results
obtained with Snipper versus with the IrisPlex prediction model,
whereas IrisPlex revealed no intermediate eye color predictions
while Snipper did in 29 instances [35]. Due to the lack of eye color
phenotypes in the samples used in this study, it cannot be said,
which prediction approach was more accurate. Both methods,
however, performed similarly well in predicting brown eye color in
all individuals from the 4 East Asian populations used [35], one of
the geographic region where only brown eye color is expected to
exist.

Lately, non-European populations that have experienced
European admixture in their population history, such as those
from the Americas, are starting to be explored for DNA-based eye
color prediction [34,36]. For instance, Dembinski et al. [36]
analysed the 6 IrisPlex SNPs in 200 U.S. Americans; using the
initial IrisPlex model, they obtained high rates of correct
predictions for blue eye color (95% using an 0.7 and 0.5
probability threshold), while for brown eyes less correct
predictions where obtained (76% and 88% with the 0.7 and
0.5 threshold, respectively), and no correct intermediate
predictions were found. The authors reported more inconclusive
results than seen in the initial IrisPlex data, which they
explained by the greater number of intermediate eye color
individuals used as a result of the hypothesized admixture effect
in U.S. Americans studied [36]. Notably, most incorrect and
inconclusive eye color predictions were found in individuals
that were heterozygote for HERC2 rs12931382 (which were 30%
of the samples they analysed). Clearly, more data on European-
admixed populations are needed to better understand the
relationship between genetic admixture, eye color, and DNA-
based eye color prediction accuracy using existing or newly
developed SNP sets.

Although some groups e.g., Ref. [32] favor the increase of SNP
predictors for eye color over the 6-SNPs used with IrisPlex, Pietroni
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et al. [37] recently suggested the opposite strategy. Referring to the
tradition of “conservative statistical weight calculation” in the
field of forensic genetics, and given the by far strongest eye color
prediction effect known for HERC2 rs12913832 relative to all
other current known SNP predictors for eye color, the authors
suggested to limit DNA-based eye color prediction solely to
HERC2 rs12913832 [37]. Without any statistical help (see Box 1),
such ad hoc approach concludes blue eyes when the homozygote
GG(CC) genotype is observed, brown eyes when the homozygote
TT(AA) genotype is found, while all heterozygote individuals
remain inconclusive [37]. Although this approach was already
applied earlier in the bone DNA identification of Nicolaus
Copernicus and his HERC2-predicted blue eye color [38],
further discussion in the field will show, if this rather simplistic
view on DNA-based eye color prediction will be followed more
widely.

A different issue with DNA-based eye color prediction that
was controversially discussed recently is whether or not gender
provides a considerable influence on the prediction accuracies.
In 2013, Martinez-Cadenas et al. [39] claimed that gender is a
major factor explaining discrepancies in eye color prediction
based on HERC2/OCA2 genotypes and the IrisPlex model. Initially,
their conclusion was based on blue eye prediction for which
considerably lower prediction sensitivity was observed in males
versus females, and intermediate eye color prediction where
females displayed a considerably lower sensitivity than males.
However, in the Spanish sample used, the sample size for blue
(N = 55) and intermediate (N = 69) eye color, for which they
observed a gender effect, was markedly lower than for brown
eyes (N = 369), for which no gender effect was noted. In a reply
letter, Liu et al. [40] suggested that these findings may rather be
explained by stochastic effects due to the small sample size used;
their much larger pan-European EUREYE and Dutch European
datasets did not show such effect. However, Martinez-Cardenas
et al. [41], in their reply to Liu et al. [40], presented a second and
enlarged dataset (N = 1170 Spanish melanoma cases and controls)
for which they showed a strong and statistically significant
difference in blue eye color frequency among males (22%) and
females (13%). The authors re-emphasized that in their samples
females tended to present darker eye colors than predicted by
IrisPlex in a significantly higher proportion than males [41]. In a
subsequent study, Pietroni et al. [37] found gender to be
significantly associated with quantitative eye color measurements
in an Italian population sample, but not in a Danish and a Swedish
sample. Notably, a gender effect on quantitative eye color was
observed before by Liu et al. [33], but in this study it only
explained 0.04% of hue and 0.09% of saturation in the Dutch
population studied, while in the Italian population analysed by
Pietrone et al. [37], gender explained 4.9% of the PIR-score
that is based on saturation. Pietrone et al. [37] concluded that the
gender effect on eye color may be a population specific
phenomenon.

However, there is currently no evidence for the existence of a
X-chromosomal gene contributing to human eye color variation,
which – if existing – could in principle explain gender
differences in eye color, and – when used for DNA-based eye
color prediction – in prediction accuracies. Moreover, it is
completely unclear how the eye color effect of such a
hypothetical X-chromosomal gene – if existing – would be
population dependent. If population-specificity is indeed
involved, this would consequently mean that the sexual
selection, which is assumed to have shaped human eye color
phenotypic and genotypic variation in and across Europe [42]
towards the frequencies we observe today, would have acted
differently on men and women in different parts of Europe, for
which there currently is no evidence. Clearly, more and
reasonably large datasets from different parts of Europe are
needed to further explore this issue and its relevance for
practical FDP. Liu et al. [40] showed in two large datasets that
taking gender into account in the IrisPlex prediction modeling
did not improve eye color prediction accuracy to any noticeable
degree. If however, future work will indeed demonstrate that
including gender information in DNA-based eye color prediction
significantly improves the prediction accuracy, the will typically
not oppose a problem to practical forensic work. Typically FDP
such as eye color DNA prediction is performed after conven-
tional DNA profiling (without obtaining a match), which
includes the AMELY/AMELX system for sex determination, so
that DNA-derived gender information would be available (or
could be established from additional DNA typing) for consider-
ation in the model-based eye color prediction, if indeed proven
to be beneficial.

An area in human pigmentation (or other appearance) genetics
that has started to be explored, but needs further attention, are
epistasis effects and how they contribute to pigmentation (or other
appearance) phenotypes and their DNA-based prediction. Such
interaction between SNPs from the same and/or different
pigmentation genes has been found already, particularly for eye
color [32,33,43,44]. Recently, Pospiech et al. [45] in a systematic
study using >1000 Polish Europeans, identified new and previously
noted SNP–SNP interactions contributing to pigmentation traits.
Some of these interactions increased eye color prediction
accuracies, albeit not to a large degree. For instance, considering
interaction between HERC2 rs12913832 and OCA2 rs1800407 as
well as between TYRP1 rs1408799 raised the AUC for green eyes
from 0.667 to 0.697 [45].

Future research activities shall particularly concentrate on
solving the limitation of all currently available eye color DNA test
systems in being least accurate to predict non-blue, non-brown eye
colors. The nature of non-blue, non-brown eyes representing the
continuum between the two extremes of blue and brown eyes
makes it expectable that DNA prediction of the intermediate eye
color category is more difficult than for blue and brown, which all
currently available DNA tests show. More studies need to be
performed to find out if additional, previously unrecognized DNA
variants exist that particularly contribute to these intermediate
colors. Or instead, if these intermediate eye colors can be explained
by increasing numbers of genetic loci with small individual effects
also seen for blue and brown. In the future, it would also be
beneficial to expand DNA prediction of eye color, as available on the
categorical level with the current tools, to continuous eye color. A
quantitative approach to eye color DNA prediction would increase
the level of detail eye color information can be achieved. Such an
approach, which would finally hand-out to investigators a specific
color chart, is expected to minimize final interpretation problems
that may exist with current categorical verbal outcomes provided
to the investigators. For example, different investigators may have
different shades of color in mind (e.g., blue, light blue, light gray)
when searching for an unknown suspect after being told by
forensic DNA experts that the suspect has blue eyes with a
probability of 95%. Although to date accurate DNA prediction of
continuous eye (as well as hair and skin) color is far from reality,
because the necessary DNA markers are not yet available,
achieving this goal may eventually be possible as indicated by
the first studies that identified DNA predictors of quantitative eye
color. Liu et al. [33] exemplified that a GWAS on continuous eye
color obtained from high-resolution digital eye images in
thousands of Europeans allows the identification of additional
genes and predictive SNPs that remained elusive in previous gene
search studies using categorical eye color phenotypes. Some other
studies too have been conducted to investigate quantitative eye
color [37,46].



Table 1
SNPs previously applied for DNA prediction of human pigmentation traits.a

Gene SNP-ID Chr. Predicted phenotype References

Eye color Hair color Skin color

LYST rs3768056G 1 U [33]
SLC45A2 rs13289 5 U [57]
SLC45A2 rs16891982 5 U U U [17–19,22–36,45,50–52,57]
SLC45A2 rs26722 5 U [17,31,32,34]
SLC45A2 rs28777 5 U U [19,25,27,45,50–52]
EXOC2 rs4959270 6 U [19,25,50,52]
IRF4 rs12203592 6 U U U [17,19,22–36,45,50–52]
IRF4-EXOC2 rs1540771 6 U U [13]
TYRP1 rs1325127 9 U [33]
TYRP1 rs1408799 9 U U [17,32,34,45,57]
TYRP1 rs2733832 9 U [31]
TYRP1 rs683 9 U U [17,19,25,27,32,34,50–52]
TPCN2 rs35264875 11 U [45]
TPCN2 rs3829241 11 U [57]
TYR rs1042602 11 U U U [13,19,25,27,31,45,50–52]
TYR rs1393350 11 U U U [13,17,22–27,29,31–36,45,50–52]
KITLG rs10777129 12 U [57]
KITLG rs12821256 12 U U [13,19,25,27,45,50–52]
SLC24A4 rs12896399 14 U U [13,17,22–27,29–36,45,50–52]
SLC24A4 rs2402130 14 U U [19,25,27,45,50,52,57]
HERC2 rs1129038 15 U [21,31–34]
HERC2 rs1667394 15 U U [13,17,32,34]
HERC2 rs12592730 15 U [17,32,34]
HERC2 rs12913832 15 U U U [17–19,21–38,45,50–52]
HERC2 rs3935591 15 U [17]
HERC2 rs7183877 15 U [17,32,34]
HERC2 rs916977 15 U [16,31,32,34]
HERC2 rs11636232 15 U [21,32,34]
MYO5A rs1724630 15 U [31]
OCA2 rs1004611 15 U [12]
OCA2 rs1037208 15 U [12]
OCA2 rs10852218 15 U [12]
OCA2 rs11855019 15 U [12,16]
OCA2 rs123439067 15 U [12]
OCA2 rs1375170 15 U [12]
OCA2 rs1375164 15 U [32,34]
OCA2 rs1448484 15 U [57]
OCA2 rs1448485 15 U [17]
OCA2 rs1448490 15 U [12]
OCA2 rs1498519 15 U [12]
OCA2 rs1545397 15 U U [12,28–30]
OCA2 rs1597196 15 U [17]
OCA2 rs1800401 15 U [31]
OCA2 rs1800404 15 U [12]
OCA2 rs1800407 15 U U U [12,17,19,21–27,29,31–36,45,50–52]
OCA2 rs180041 15 U [12]
OCA2 rs1874835 15 U [12]
OCA2 rs1900758 15 U [12]
OCA2 rs2036213 15 U [12]
OCA2 rs2305252 15 U [12]
OCA2 rs2311470 15 U [12]
OCA2 rs2594935 15 U [17]
OCA2 rs2871886 15 U [12]
OCA2 rs3099645 15 U [12]
OCA2 rs3794606 15 U [12]
OCA2 rs4778137 15 U [12]
OCA2 rs4778138 15 U [17,31,32,34]
OCA2 rs4778177 15 U [12]
OCA2 rs4778190 15 U [12]
OCA2 rs4778232 15 U [17,32,34]
OCA2 rs4778241 15 U [17,32,34]
OCA2 rs6497268 15 U [12]
OCA2 rs7179994 15 U [17]
OCA2 rs728405 15 U [17,33]
OCA2 rs735066 15 U [12]
OCA2 rs7495174 15 U U U [13,16,17,31,32,34]
OCA2 rs749846 15 U [12]
OCA2 rs8023340 15 U [12]
OCA2 rs8024968 15 U [17,32,34]
OCA2 rs895828 15 U [12]
OCA2 rs895829 15 U [12]
OCA2 rs924312 15 U [12]
OCA2 rs924314 15 U [12]
OCA2 rs977588 15 U [12]
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Table 1 (Continued)

Gene SNP-ID Chr. Predicted phenotype References

Eye color Hair color Skin color

OCA2 rs977589 15 U [12]
SLC24A5 rs1426654 15 U U U [18,28,30,31,57]
MC1R 179insC 16 U [47]
MC1R N29insA 16 U U [19,25,45,47,50–52]
MC1R rs1110400 16 U U [19,25,27,45,47,50–52]
MC1R rs11547464 16 U U [19,25,27,45,47,48,50–52]
MC1R rs1805005 16 U U [19,25,27,45,47,50–52]
MC1R rs1805006 16 U U [19,25,27,45,47,48,50–52]
MC1R rs1805007 16 U U U [13,18,19,25,31,45,47,48,50–52]
MC1R rs1805008 16 U U U [13,19,25,27,31,45,47,48,50–52]
MC1R rs1805009 16 U U [19,25,45,47,48,50–52]
MC1R rs2228479 16 U U U [19,25,27,31,45,47,50–52]
MC1R rs885479 16 U U U [19,25,27–30,45,47,50–52]
MC1R Y152OCH 16 U U [19,25,45,47,50–52]
NPLOC4 rs9894429 17 U [33]
ASIP rs1015362 20 U U [32,34,45]
ASIP rs2424984 20 U [18]
ASIP rs4911414 20 U U [45]
ASIP rs6058017 20 U U [17,32,34,57]
ASIP rs6119471 20 U U [28–30,57]
ASIP/PIGU rs2378249 20 U [19,25,50–52]
DSCR9 rs7277820 21 U [33]

a Genetic association studies on human pigmentation traits serving as prerequisite for subsequent developments of pigmentation predictive DNA markers are not cited
here, but can be found in the reference lists of the cited articles.
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2.2. Hair color

The first DNA test allowing to predict hair color was restricted to
red hair and published in 2001 by Grimes et al. [47]. The authors
demonstrated in a small sample that by using their DNA test based
on 12 MC1R DNA variants developed from previous knowledge of
MC1R determining red hair color, 96% of individuals identified with
two red hair causing mutations indeed had red hair [47]. The two
non-red haired individuals in the study (one blond haired, the
other light brown haired) who had two red hair causing mutations
described themselves as red haired in youth. In 2007, Branicki et al.
[48] sequenced the entire MC1R gene in >180 individuals of various
hair colors including 40 with red hair and additional 36 with
blond-red hair, and developed a DNA test for red hair color
prediction based on 5 MC1R DNA variants. The first DNA prediction
attempt for all categorical hair colors was published in 2007 as part
of the Sulem et al. pigmentation GWAS [13]. Using 2 MC1R SNPs,
rs1805008 and rs1805007, the authors first predicted red hair. Of
the individuals whose hair color was predicted red with a >0.5
probability, about 70% indeed had red hair [13]. In a subsequent
approach excluding red hair individuals, they predicted other hair
colors based on 9 associated SNPs from 6 genes/regions; however,
the prediction of the non-red categorical hair colors were much
less accurate [13]. In 2010, Valenzuela et al. [18] reported 3 SNPs
i.e., SLC45A2 rs16891982, SLC24A5 rs1426654, and HERC2
rs12913832 to achieve an R2 for total hair melanin of 76.3%. In
2011, Branicki et al. [19] in their systematic hair color prediction
study used 46 SNPs from 13 genes previously associated with hair
color and tested them for their predictive value in 385 Europeans
from Poland. The authors presented a model including 22 SNPs
from 11 genes that achieved AUC values of 0.93 for red hair, 0.87 for
black, 0.82 for brown, and 0.81 for blond [19]. They could not
confirm a hair color prediction effect for SLC24A5 rs1426654 as
previously reported by Valenzuela et al. [18] as 98.7% of the Polish
samples tested were homozygote for the derived allele and the 5
heterozygote carriers had different hair colors [19]. Together with
previous data [20,49], it appears that the hair (and eye) color effect
reported by Valenzuela et al. [18] for SLC24A5 rs1426654 is likely a
European ancestry effect picked-up due to the multi-ethnic study
design applied [19], and because of its involvement in skin color
variation (see below).

Based on previous findings together with the SNP prediction
rankings observed by Branicki et al. [19], the first DNA test system
for predicting all categorical hair colors in combination with
categorical eye color prediction, was developed and published in
2013 [50]. This HIrisPlex system [50] includes a single multiplex
genotyping assay for 24 eye and hair color predicting SNPs,
including all 6 from IrisPlex, as well as two prediction models, one
for hair color and the previous IrisPlex model for eye color. Of the
24 SNPs included, 11 were from MC1R including one indel,
Y152OCH, N29insA, rs1805006, rs11547464, rs1805007,
rs1805008, rs1805009, rs1805005, rs2228479, rs1110400, and
rs885479; two from SLC45A2, rs28777 and rs16891982; one from
KITLG, rs12821256; one from EXOC2, rs4959270; one from IRF4,
rs12203592; two from TYR, rs1042602 and rs1393350; one from
OCA2, rs1800407; two from SLC24A4, rs2402130 and rs12896399;
one from HERC2, rs12913832; one from ASIP/PIGU, rs2378249; and
one from TYRP1, rs683. All but 2 SNPs (TYR rs1393350 and SLC24A4
rs12896399) were used for model-based hair color prediction, and
the 6 IrisPlex SNP included were used for model-based eye color
prediction. Tested in >1500 individuals from three parts of Europe,
80% of the samples (n = 1243) were used for hair color model
building and 20% (N = 308) for model validation. Using a hair color
prediction guide based on probability thresholds, correct pre-
dictions were obtained in 80% of red, 87.5% black, 78.5% brown, and
69.5% blond hair individuals [50]. In 2014, the forensic develop-
mental validation study of the HIrisPlex assay was published [25],
demonstrating that it is fully compatible with all SWGDAM
guidelines. The HIrisPlex assay delivered complete 24-SNP profiles
down to about 60 pg input DNA [25]. Also included in this
publication was the enhanced hair color prediction model based on
>1600 individuals. With this model, AUC values of 0.92 were
obtained for red, 0.85 for black, 0.81 for blond, and 0.75 for brown
hair color [25]. When applied to an independent set of about 120
Polish individuals not used for model building or validation, the
enhanced HIrisPlex hair color prediction model delivered on an
average hair color prediction accuracy of 73%, mostly caused by
inaccurate predictions of several blonds and browns [25].
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Furthermore in this paper, a freely accessible online prediction tool
was introduced and is online available at http://www.erasmusmc.
nl/fmb/resources/Irisplex_HIrisPlex/ which allows eye and hair
color probabilities to be estimated from complete and partial
HIrisPlex profiles [25]. Fig. 1 shows outcomes from HIrisPlex based
eye and hair color DNA prediction in 12 individuals with varying
eye and hair colors together with their eye and hair images for
visual phenotype inspection. The prediction probabilities in these
example individuals were obtained from complete HIrisPlex SNP
profiles via the enhanced IrisPlex eye color model and the
enhanced HIrisPlex hair color prediction model [25].

Moreover, by performing HIrisPlex hair color prediction in the
worldwide HGDP-CEPH samples it was demonstrated that HIrisPlex
performs independent of bio-geographic ancestry in predicting hair
color [50]. Although hair color phenotypes are unavailable in the
HGDP samples tested, different hair colors were only predicted in
samples from Europe and less so neighboring regions, while in
samples from East Asia, Africa, Oceania and from Native Americans
Fig. 1. Individual examples of HIrisPlex-based eye and hair color DNA prediction. Prob
complete HIrisPlex SNP profiles [50] using the enhanced IrisPlex eye color and the enh
resources/Irisplex_HIrisPlex/) for 12 individuals chosen with varying eye and hair colors
comparison with DNA predicted conclusions. Those probabilities that led to the eye and h
eye color and by using the HIrisiPlex hair color prediction guide described elsewhere [25
based prediction conclusions are as follows 1: black hair and brown eyes, 2: dark brown
brown hair and blue eyes, 5: brown/medium brown hair and brown eyes, 6: brown hair an
8: blond hair and blue eyes, 9: blond/dark blond hair and blue eyes, 10: red hair and blue e
blue eyes.
i.e., regions where only black hair color is expected, only black hair
was predicted [50]. The HIrisPlex system was also applied to DNA
samples extracted from old and ancient bones and teeth, demon-
strating its suitability in degraded DNA analysis [51]. Of the 26 DNA
extracts frombonesandteeth between 1 andabout800yearsofpost-
mortem age, 23 yielded complete 24-SNP HIrisPlex profiles [51].
More recently, the HIrisPlex DNA markers (not the genotyping assay)
were successfully used to obtain eye and hair color information of
King Richard III of England (1452–1485) from skeleton remains that
were DNA-identified to be those of King Richard III via mitochondrial
DNA matching with living relatives(amongothermeans of evidence)
[52]. By using the IrisPlex and HIrisPlex models the authors revealed
for the skeleton a 96% probability of having blue eyes together with a
77% probability of having blond hair. The DNA-predicted hair and eye
colors are consistent with Richard’s appearance in an early portrait
[52].

Kenny et al. found that R93C, a functional SNP in TYRP1, is highly
associated with blond hair in Oceanians accounting for 46.4% of
ability outcomes are provided for eye and hair color categories as obtained from
ance HIrisPlex hair color prediction models [25] (http://www.erasmusmc.nl/fmb/
. Eye and hair photographs are provided to allow visual phenotype inspection and
air color conclusions are highlighted in grey based on the highest probability rule for
,50]. Individual numbering is 1–6 on the left side and 7–12 on the right side. DNA-
/black hair and brown eyes, 3: dark brown/black hair and blue eyes, 4: brown/dark
d brown eyes (likely with non-brown parts), 7: blond/dark blond hair and blue eyes,
yes, 11: red hair and brown eyes (likely with non-brown parts), and 12: red hair and

http://www.erasmusmc.nl/fmb/resources/Irisplex_HIrisPlex/
http://www.erasmusmc.nl/fmb/resources/Irisplex_HIrisPlex/
http://www.erasmusmc.nl/fmb/resources/Irisplex_HIrisPlex/
http://www.erasmusmc.nl/fmb/resources/Irisplex_HIrisPlex/
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blond hair color [53]. However, overall, blond hair color is rare in
this part of the world. R93C, marks an independent mutation in the
TYRP1 gene that is not involved in European blond hair, however,
the gene is with a different SNP justifying the inclusion of rs683 but
not R93C in the HIrisPlex system.

The likely reason for the least accurate predictability of blond
and brown hair with the HIrisPlex system (and likely any other
system developed based on currently known DNA markers) is
grounded in those individuals that were blond as children but
turned brown (rarely darker) during adolescence (note, that all
current hair color genetic studies used adult individuals). This is
supported by hair color prediction data obtained from individuals
for which information on age-depended hair color change was
collected via interview and non-dyed, non-greyed hair images
were available [50]. Of the 157 Irish individuals used in this study, 8
were classified as blond from the images and all of them were
correctly predicted as being blond with HIrisPlex [50]. For 14
individuals classified as light brown to black, the HIrisPlex model
revealed a high (p > 0.7) probability for blond, eight of them noted
that they had been blond during childhood [50]. The molecular
mechanism of age-dependent hair darkening, and why it occurs in
some but not all blonds, is currently unknown. Time-dependent
changes in the expression of hair color genes during childhood
until around puberty, when typically adult hair color is reached, are
expected to be involved, but data evidence is lacking thus far. Also
why this effect is hair color dependent and also shows individual
variation remains to be identified. Obviously, this mechanism
needs to be understood first before it may eventually be usable to
improve blond/brown hair color prediction accuracies. Another
age-dependent hair color feature currently not considered in the
HIrisPlex model, or any other current models, is hair graying or
whitening i.e., the loss of hair color with advanced age. This hair
color effect also needs to be understood on the molecular level
before predictive biomarkers for hair graying or whitening may be
developed in the future (i.e., at best in combination with DNA
prediction of chronological age, see below).

Eighteen of the 22 SNPs used in the HIrisPlex system for hair
color prediction were included in the commercial Identitas V1
Forensic Chip tested in a large number of samples [27]. This tool
(http://identitascorp.com/) provides among other forensically
relevant information (including eye color) hair color prediction
using an adjusted HIrisPlex model excluding the 4 MC1R SNPs
(N29insA, Y152OCH, rs1805007, and rs1805009) that are not
present on this chip due to technical reasons. Consequently, the
hair color prediction accuracies obtainable from DNA by using this
tool, particularly (but not only) for red hair, are lowered relative to
the complete HIrisPlex profile and prediction model. As with all
SNP microarrays, the underlying hybridization technology pro-
vides challenges to low quantity and/or low quality input DNA [27].

As already emphasized before for eye color prediction, in the
future, categorical hair color DNA prediction shall also move
towards quantitative hair color prediction to increase the level of
detail hair color can be predicted from DNA, and to avoid putative
interpretation issues of the prediction outcomes during police
investigation. However, genetic studies on quantitative hair color
are yet scarce [18,54].

2.3. Skin color

Compared to eye and hair color prediction, much less genetic
knowledge is currently available for skin color variation. Our
knowledge about the genes that determine skin color variation is
far less complete than it is for eye and hair color. This mostly is
because of the global distribution of skin color variation versus the
mostly European distribution of eye and hair color variation, which
allows the use of a rather homogenous European population for
eye and hair color gene mapping, while for skin color a
heterogeneous global population would need to be considered.
However, classical approaches for gene mapping, such as GWAS,
are unsuitable when using genetically heterogeneous study
populations. Therefore, previous GWAS on skin color were
performed within Europeans [13,55] or within Asians [56], but
the considered skin color variation within continental groups is
limited, because most skin color variation is expressed between
continental groups, limiting the success of such studies in
completing the list of skin color genes. This is illustrated for
instance by the Valenzuela et al. [18] pigmentation prediction
study. Using the same multi-ethnic study group achieved R2 values
of 76.4% for eye color and 76.3% for hair color (see above), while
only 45.7% for skin reflectance based on 3 SNPs (SLC45A2
rs16891982, SLC24A5 rs1426654, and ASIP rs2424984) [18].

Spichenok et al. [28] used a 7-SNP set (the 6 SNPs described
above for eye color plus SLC24A5 rs1426654), including 2 SNPs
previously described for skin color prediction by Valenzuela et al.
[18], to predict not-white and not-dark skin color (see problem
with a no-color prediction approach as mentioned above) and
reported three errors among 398 predictions; for the remaining
28% of the tested samples no prediction was obtained due to
inconclusive test outcomes. Pneuman et al. [29] verified this 7-SNP
set in >250 independent samples, reported 1% error and 19%
inconclusive outcomes. Hart et al. [30] used 6 SNPs (the Spichenok
et al. [28] 7-SNP set without IRF4 rs12203592), and reported no
error in an >200 additional test set, while 38% were reported
inconclusive. However, the extremely small error rates reported by
these three studies [28–30], which all used the same ad hoc
prediction approach and the same no-color prediction outcomes,
must be considered with care considering the approach and
outcomes used, as well as the lack of specific detail on the
Europeans tested, who were all defined as white thus ignoring skin
color variation existing among Europeans.

In 2014, Maronas et al. [57] published the first comprehensive
skin color prediction study investigating 59 SNPs previously
associated with skin, eye, and hair color (including the SNPs used
by Ruiz et al. [32] for eye color prediction) in a small set of �280
samples from European and non-European individuals, for which
questionnaire-based skin color information was collected and skin
reflectance was measured. The authors identified a subset of 29
SNPs that were most correlated with skin color variation in their
samples. These 29 SNPs provided a separation of most white skin
colored individuals from most intermediate/black skin colored
individuals in a principal component analysis (PCA), while
intermediate and black overlapped considerable [57]. The authors
suggested 6 SNPs, SLC45A2 rs16891982, SLC24A5 rs1426654, KITLG
rs10777129, ASIP rs6058017, TYRP1 rs1408799, and OCA2
rs1448484 (the former two suggested for skin color prediction
by previous studies [18,28,30]), for which they reported classifica-
tion success in iterative naïve Bayes analysis (see Box 1) of 98.3%
for white, 92.7% for black, and 83.7% for intermediate skin color
versus rest in comparison. An enlarged 10-SNP set, additionally
including SLC45A2 rs13289, SLC24A4 rs2402130, TPCN2 rs3829241,
and ASIP rs6119471 (the latter one previously suggested for skin
color prediction [28,30]) was also emphasized, for which AUC
values of 0.999 for white, 0.966 for black and 0.803 for
intermediate skin color were reported from a small validation
set of 118 individuals [57]. Given the relatively small sample size
used in this study (see Box 1), additional data from many more
individuals are needed to better judge how accurate these and
other SNPs can predict skin color categories. As emphasized before
for eye and hair color, also skin color DNA prediction should
eventually be moved towards quantitative prediction in the future;
the first genes involved in quantitative skin color variation have
already been identified [58].

http://identitascorp.com/


Box 1. How to get from genotypes to phenotypes

A systematic (model-based) prediction analysis typically consists of three steps. The most critical concern about the validity of a

prediction model is that the observations of each step, i.e., the samples used in each step, must be independent. Discovery step: the

identification of the genotype–phenotype relationship is often achieved through GWAS, where a large number of SNPs are

iteratively tested in a large number of individuals for their phenotype relationship. Typically, SNPs identified with genome-wide

significant association (p < 5 � 10�8) are considered as candidate markers for model-building. Model-building step: a functional

form (for example linear) is hypothesized for the genotype–phenotype relationship, and the parameters of the function are

estimated as to optimize the fit of the function. Selecting a prediction model is a matter of choice, typically within two fields:

statistics (for example regression models) or machine-learning techniques (for example classification tree or naive Bayes

classifiers). Model-validation step: explanatory variable values are input to the parameterized function to generate predictions for

the outcome. The predicted outcome values are then compared with the truly observed values to estimate the prediction accuracy

via different parameters. For categorical prediction outcomes, the most frequently used accuracy parameters are the area under

the receiver-operating-characteristic curves (AUC), sensitivity, and specificity; for quantitative prediction outcomes (mostly

Gaussian), prediction accuracy is often expressed as correlation (R or R2), and mean squared error (MSE).

Multinomial logistic regression (MLR)
MLR is a statistical classification method that generalizes logistic regression (LR) to multiclass problems, i.e., an outcome

consisting of more than two possible discrete categories. The model can provide predicted probabilities, inside the probability

space (sum equal to 1.0), for all categories of the response variable without additional assumptions. MLR was for instance used for

DNA prediction of eye and hair color [17,19].

Gaussian naïve Bayes (GNB) classifier
In machine learning, naïve Bayes classifiers are a family of simple probabilistic classifiers based on Bayes’ rule assuming

conditional independence between all predictors. Since the form implied by the assumptions of a GNB classifier is precisely the

parametric form used by LR, GNB classifier is a closely related alternative to MLR. In fact, if the GNB assumptions of independence

fully hold, then asymptotically the GNB and LR converge toward identical classifiers. Indeed, a naïve Bayes classifier for eye color

prediction (such as available with Snipper) could provide similar accuracy estimates as MLR when the same set of SNP predictors

are used [32]. However, when the GNB modeling assumptions of independence are violated, the asymptotic classification accuracy

for LR is often better than that of GNB. On the other hand, GNB converges toward its’ asymptotic accuracy at a much faster rate than

LR; consequently, GNB may outperform LR when the sample size is highly limited. Naïve Bayes classifier i.e., Snipper was for

instance used for DNA prediction of eye and skin color [32,57].

AUC
A receiver operating characteristic (ROC) curve is a visual presentation of the performance of a binary classifier by plotting the true

positive prediction rate against the false positive prediction rate at all possible thresholds. The area under the ROC curve (AUC) is

the integral of the ROC curve, ranging from 0.5 (random prediction) to 1.0 (perfect prediction). An AUC value can be interpreted as

the probability that the prediction model will assign a higher score to a randomly chosen positive instance (e.g., blue eye color)

than a randomly chosen negative one (e.g., non-blue eye color). Thus, it represents an overall but highly condensed measure of the

accuracy from a binary classifier. AUC was for instance used for DNA prediction of eye/hair color, age, and body height

[17,19,62,68].

Likelihood ratio (LR)
The accuracy of a binary classifier can also be expressed as positive likelihood ratio (LR+), which can be derived from sensitivity and

specificity values: LR+ = sensitivity/(1 � specificity). For interpretation, an obtained LR+ value of 10 for e.g., blue eyes means that the

likelihood of a blue eye DNA prediction for a blue eye person is 10� higher than the likelihood of a blue eye DNA prediction for a

non-blue eye person. LR was for instance used for DNA prediction of eye color [21].

Correlation coefficient (R or R2)

When predicting quantitative (not categorical) traits, the prediction accuracy can be expressed as the correlation (R) between the

predicted and the truly observed outcome values. R2 is simply the square of the correlation coefficient R, and can be interpreted as

the fraction of trait variance explained by the prediction model. Both R and R2 range from 0 (random prediction) to 1 (perfect

prediction). R2 was for instance used for DNA prediction of pigmentation traits and age [18,68,75].

Cross-validation
If the sample-size is limited, cross-validation can be used to guard the required independency. A cross-validation involves splitting

the whole sample set into complementary subsets, building the prediction model in some subsets, and evaluating the model

performance in the remaining sets. Typically, multiple rounds of cross-validation are performed using different partitions, and the

averaged accuracy and 95% quantile values are reported. If carried out properly, cross-validation is nearly unbiased; however,

additional validation studies are always necessary for generalization of the model parameters in different population samples.

Cross-validation was used for instance for hair color DNA prediction [19].
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3. Forensic DNA Phenotyping: current progress and future
perspectives

Besides pigmentation traits, no molecular prediction tests are
currently available for any other EVCs (perhaps with the exception
of age if considered as an EVC, see below) due to limited knowledge
on genes and predictive DNA markers. Below, a brief knowledge
summary of EVCs for which the first genetic data are available
appearing promising for near and distant future FDP develop-
ments, is provided.
3.1. Body height/stature

The by far, largest genetic dataset of any EVC is available for
body height with several large genome-wide association studies
published over the last few years. Body height was used as a model
for complex traits from the beginning of the GWAS era. This was
possible because height is one of the few traits measured in many
cohort studies for which genome-wide SNP data were obtained for
disease genetic purposes, allowing the combination of large
datasets for GWAS on height. The success however, in explaining
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the inherited height variation with DNA, is still limited, illustrating
the problem in identifying the genetic make-up of complex
common traits in general, and body height in particular. A previous
large height GWAS carried out by the international Genetics of
Anthropomorphic Traits (GIANT) consortium including >183,000
individuals, identified hundreds of SNPs at 180 genetic loci with
genome-wide significant height association, including more than
100 that were never identified before [59]. However, these 180
significantly associated SNPs only explain 10% of the height
variation of the study population [59], while the heritability of
body height was estimated from twin studies to be about 80%. The
most recent height GWAS published by the GIANT consortium
carried out on >250,000 individuals identified 697 SNPs with
genome-wide significant association, which together explain 16%
of height variance in their study population [60]. The authors also
showed that increasing the number of SNPs below the genome-
wide significant threshold allows explaining more height variance,
as may generally be expected, with �2000, �3700 and �9500 SNPs
explaining �21%, �24% and �29% height variance, respectively
[60]. Notably, using large numbers of SNPs for FDP purposes likely
provides no technical challenges to practical forensic DNA analysis
in the near future due to massive parallel sequencing technologies
(see below).

The first formal DNA prediction study on body height was
published in 2009 by Aulchenko et al. [61] and achieved an AUC of
0.65 in predicting the tallest top 5% of individuals from thousands
of Dutch Europeans used via all 54 height-associated SNPs known
from the GWAS at the time. Thus, with 54 SNPs, height was
predicted only slightly better than at random, or the toss of a coin
(equalling an AUC of 0.5). Liu et al. [62] investigated the power of
the 180 genetic loci identified by GIANT in 2010 with significant
association to normal height variation [59], to predict extremely
tall stature. By examining 770 extremely tall and >9500 Dutch
Europeans of normal height, the authors reported an AUC for
predicting tall stature of 0.75 based on these 180 SNPs [62],
marking a considerable improvement of prediction accuracy
compared with the previously used 54 SNPs [61]. It will be
interesting to see how much the DNA prediction accuracy for
extremely tall individuals can be further increased when using the
697 (or larger sets) identified by the 2014 GIANT GWAS [60] for
formal prediction, which may be done soon.

The currently available genetic knowledge on body height
clearly illustrates on one hand just how much genetic information
on height is still missing, and on the other hand that accurate DNA
prediction of normal height is not around the corner, and if ever
possible will likely involve many thousands of SNPs (see below).

3.2. Hair loss/baldness

Currently, there are 12 genes and genomic regions known with
genome-wide significant association with early-onset androge-
netic alopecia (male pattern baldness, AGA), the most common
form of hair loss in humans: AR/EDA2R, TARDBP, HDAC9, AUTS2,
SETBP1, PAX1/FOXA2,WNT10A, 17q21.31, 3q25, 5q33.3, and 12p12.1
[63–65]. The by far strongest association is seen for SNPs located in
the AR/EDA2R region on the X-chromosome. This explains why
baldness is typically a male phenomenon and it means that a man
inherits some of his genetic risk for baldness from his maternal
grandfather. Based on 8 genetic loci, Li et al. [64] calculated a
genetic risk score for AGA and established that individuals
belonging to the highest risk quantile of the genotypic risk score
had about six-fold increase in risk for early-onset male pattern
baldness. Early-onset female pattern hair loss (FPHL), which is
much more rare than male pattern baldness, seem to share some
genetic basis with the male form, such as the X-chromosomal
region containing the AR and EDA2R genes [66]. However, various
other genes associated with AGA do not seem to be involved in
FPHL [67], leaving the etiology of female hair loss largely unknown
as of yet.

Although the genetics data for male pattern baldness look
promising for DNA prediction, it should be kept in mind that all
previous studies were performed on early-onset patients. When
applied to the general population, including more typical
late-onset forms, the noticeable genetic effects may be less
pronounced. However, no dedicated genetic prediction study of
baldness in general populations has been carried out as of yet, but
is expected in the near future.

3.3. Age

Practical FDP of age-dependant EVCs, such as baldness,
wrinkles etc., would strongly benefit from DNA prediction of
chronological age. Furthermore, age itself may be seen as an EVC
because it is visible to a certain extent. Knowing the approximate
age of an unknown person certainly can provide investigative
leads. In 2010, Zubakov et al. [68], based on former knowledge of
the decrease in T-cells and a particular T-cell DNA rearrangement
(sjTREC) with increased age, introduced a DNA test for chronologi-
cal age estimation based on sjTREC DNA quantification as proxy for
T-cell number. This normalized quantitative DNA test system
achieved AUCs of 0.88–0.97 for age groups separated by 20 years
(i.e., the generation time that typically can be concluded from
appearance) [68]. Its value to predict point age was more limited,
as may be expected, with an achieved R2 of 0.835 (SE � 8.9 years),
which for a single DNA marker is remarkable high [68]. An
independent study reported a slightly lower R2 of 0.6686 and a
highly significant alteration of sjTREC levels among three age
groups [69]. Previously proposed genetic methods for human age
estimation such as the age-dependent accumulation of particular
mtDNA deletions or telomere shortening showed low accuracies
and various technical problems, and are therefore regarded as not
being suitable for forensic applications [70].

Recent improvements in understanding human variation in
DNA methylation (i.e., the field of epigenetics), including its age
dependency, has delivered a number of highly promising CpG
candidate markers for age prediction. For instance, Bockland et al.
[71] highlighted three sites, the promotors of EDARADD, TOM1L1,
and NPTX2; two CpG markers explained 73% of age variance and
predicted individual age with an average accuracy of about 5 years.
Garagnani et al. [72] focussed on CpG sites in 3 genes ELOVL2, FHL2,
and PENK of which ELOVL2 appeared most promising as age
prediction marker with a Spearman’s correlation coefficient of
0.92. Weidner et al. [73], using >100 CpG sites, correlated DNA
methylation with chronological age and reported a mean absolute
deviation from age of only 3.34 years and an R2 of 0.98; they also
introduced a freely available online calculator for epigenetic aging
signature. However, it had been suggested that age-dependent
DNA methylation changes are associated more with biological than
with chronological age [73], and the chronological and biological
age of a person can be quite different, depending on, for instance,
the disease status. Therefore, careful validation of DNA methyla-
tion age candidate markers, including the understanding of their
biological role, will be crucial before they can be used in forensic
practice.

Based on the accumulating knowledge, forensic DNA tests for
age prediction based on DNA methylation are expected in the near
future, and the first studies appeared already. Yi et al. [74] reported
a correlation between predicted age from eight loci and observed
age of R = 0.91 (i.e., R2 = 0.828), albeit on a very small sample set of
only 65 individuals, while the marker identification was performed
on an even smaller set of 10 young and 10 old individuals and no
validation of the markers’ involvement in biological age was
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performed. Based on better data evidence, Zbiec-Piekarska et al.
focussed on the ELOVL2 gene and reported age prediction using two
CpGs of R2 = 0.859 from blood samples of >300 individuals aged 2–
75 years [75]. Evaluating their model in 124 additional samples
revealed a very similar R2 of 0.866, and an average 68.5% correct
prediction when grouping individual samples into 4 age categories.
Notably, R2 values were higher in the three young and medium age
categories (73–85%) and lower in the advanced age category (30%).
The reduced age correlation observed in the advanced age group
(60–80 years) i.e., age when typically the disease load is increased,
may indicate a biological rather than chronological age effect of
ELOVL2 methylation. However, given that most crime perpetrators
are not of advanced age, the practical forensic consequence for age
prediction of perpetrators (but not necessarily victims) using this
marker may not be severe. The authors also provide preliminary
validation of their test assay [75]. The strong age correlation of
ELOVL2 methylation has now been reported in several independent
studies [72,75–78], suggesting ELOVL2 as one of the most
promising age prediction marker available to date.

3.4. Hair structure

Three genes have been involved in variation of human hair
morphology as of yet, two in Asians and one in Europeans. In 2008,
Fujimoto et al. [79] published a genome scan on hair morphology
in Asians and identified the EDAR gene to be associated with Asian
hair thickness, which has been confirmed by subsequent studies
[80] including functional work in mice [81]. In 2009, Fujimoto et al.
[82] provided evidence for another gene, FGFR2, to be involved in
hair thickness in Asians. However, because hair thickness in Asians
appears uniform across people from Asia, genes like EDAR and
FGFR2 are not useful for FDP purposes in Asia (or elsewhere). In
2009, Medland et al. [83] published a GWAS on hair morphology in
Australian Europeans and found the TCHH gene to be significantly
associated with straight hair, explaining 6% of phenotypic variance
in the study population. The derived minor T allele of one of the 4
most associated SNPs, rs11803731, which represents a coding, non-
synonymous variant in exon 3 of TCHH, was found to be absent
from East Asia, Oceania, Sub-Saharan Africa, and in Native
Americans, but widespread across Europe and neighbouring
regions such as North Africa, Middle East, and West Asia [83].
With more T-alleles, the proportion of straight hair increased. The
authors also investigated the 170 candidate genes suggested by
Fujimoto et al. [79], and reported a strong association for WNT10A,
a gene previously associated with odonto–onycho–dermal dyspla-
sia [83]. Although twin studies estimated a high heritability for
hair curliness in Europeans [84], the genes responsible have not
been identified as of yet. Given the diversity of hair morphology
among Europeans, DNA prediction of straight, wavy, or curly hair
would in principle be useful for FDP purposes, once enough
predictive DNA markers are available via future studies.

3.5. Face

Clearly, being able to predict individual-specific faces from DNA
would be the ultimate goal of FDP and the dream of police men and
women. However, direct information about the genes that
determine morphology of the human face is very scarce as of
yet. In 2012, Liu et al. [85] published a GWAS on facial shapes,
which together with a parallel GWAS by Paternoster et al. [86]
currently represent the only systematic studies in search for genes
involved in human facial shape variation. Liu et al. [85] using
almost 10,000 Europeans identified 5 candidate genes PAX3,
PRDM16, TP63, C5orf50, and COL17A1 with genome-wide significant
association to different facial distances measured from automated
facial landmarking of 3D magnetic resonance images (MRI) of the
head and of 2D portrait pictures. Three of the 5 genes (PAX3,
PRDM16, and TP63) have been implicated previously in vertebrate
craniofacial development and disease. Their finding of PAX3
influencing the position of the nasion replicated parallel findings
by Paternoster et al. [86], who used >3800 children; this was the
only gene identified with genome-wide significance by Paternoster
et al. Both studies demonstrate that, as expected for complex traits,
the identified genetic effects are small and that a large number of
DNA variants is likely involved in determining facial morphology.
Notably, the largest effect seen by Liu et al. [85] was for TP63
rs17447439, where in comparison to the wild-type carriers, the
heterozygote carriers had a 0.9 mm and the homozygote carriers a
1.8 mm reduced eye-to-eye distance. Further indirect support for
the involvement of these 5 genes in facial morphology comes from
a subsequent study [87] that explored the genomic regions
surrounding the previously identified face-associated SNPs [85,86]
for signals of positive selection, and found elevated diversity
consistent with frequency-dependent selection. Local adaptation
and/or sexual selection are assumed to have shaped facial
morphology during recent evolutionary history [88].

Claes et al. [89] employed a more complex approach to facial
phenotyping, and used SNPs from craniofacial candidate genes
with large frequency differences between three populations (US
Americans, Brazilians, and Cape Verdeans). With this specific
approach, the authors identified 24 SNPs from 20 genes with
nominal significant facial association (p < 0.1) of which three
(SLC35D1, FGFR1, and LRP6) were particularly highlighted by the
authors [89]. In a subsequent paper apparently using the same
data, Claes et al. [90] emphasized that sex and genetic ancestry
provided most of the DNA-based facial composites, while the effect
of the 24 “facial” SNPs was marginal (e.g., 1% accuracy increase).
The selection of candidate genes and the statistical genetic
approach applied by Claes et al. was criticized recently [91].

As can be seen from the very few currently available studies, we
are just at the beginning of understanding which genes determine
normal facial variation, and it will likely be a long way (and wait)
until enough predictive DNA markers are available for practical
FDP of the face. In terms of what lies in the future, if indeed
complete facial appearance will ever be predictable from crime
scene DNA with a high-enough accuracy to allow individual
identification in a non-comparative manner via facial FDP,
conventional DNA profiling including forensic DNA (profile)
databases will become gratuitous. Likely, this will not happen
anytime soon.

4. Burdens of forensic DNA Phenotyping

4.1. Artificially altered appearance

Obviously, EVCs can be altered artificially via cosmetic means
e.g., colored contact lenses, dyed hair color, self-tanning skin
lotions, artificial hairstyling, or even surgery e.g., hair trans-
plantations, facial and other plastic surgery etc. However, to avoid
being traced via police investigations, perpetrators would need to
fake their appearance not only during the criminal act but also
afterwards. Additionally, perpetrators would need to get their
feigned appearance registered in police documentations. ID cards,
drivers licenses, passports etc. all have portrait images, passports
in some countries have height and eye color records; all this
documented appearance information in principle could be used,
together with DNA-predicted appearance from evidence material,
for investigative purposes. Hence a good deal of activities and
planning are required to successfully avoid FDP-guided police
investigations via falsified appearance. However, even the very
simple act of largely hiding from crime scenes that does not involve
much planning, namely wearing gloves, is often not practised by
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criminals, so that human identification from physical fingerprints
remains effective to this day, even after more than 100 years of use.
Thus, although theoretically and practically possible, it seems
unlikely that artificially altered appearance will be a burden of
practical FDP in many cases.

4.2. Multiplex genotyping issues

A serious technical burden for further expanding FDP, namely
missing multiplex genotyping technologies for in-parallel analyses
of large numbers of SNPs suitable for low quality and quantity
forensic DNA, is currently been lifted by the application of massive
parallel sequencing technologies. These so-called next generation
sequencing (NGS) or second generation sequencing (SGS) technolo-
gies (see Borsting & Morling in this issue), in principle allow the
targeted multiplex analysis of large numbers of SNPs, as would likely
be needed in the future for a more detailed appearance prediction,
once fundamental research into the genetic basis of various
appearance traits has successfully provided the necessary DNA
markers. Although studies showing the multiplexing analysis of
thousands of SNPs via targeted NGS are still pending, it has already
been demonstrated thatover 500 SNPs can be successfullycombined
in a single targeted sequencing run combining several individuals
using the Ion Torrent Personal Genome Machine (PGM) [92].

4.3. Ethical issues

Ethical burdens of practical FDP have been raised and can be
found elsewhere (e.g., Ref. [7] particularly Box 2 and references
cited therein). Not being an ethics professional myself, my opinion
is that when it comes to EVCs, privacy issues including the right-
not-to-know do not apply. This simply is because appearance traits
are not only known to the person itself, but to everybody who has
ever seen this person, including the police who have portrait
photographs in passports, ID cards, driver-licenses etc. Therefore,
EVCs in principle cannot be considered private data. Notably, this
can be different for bio-geographic ancestry and its inference from
DNA (see Philipps in this issue); while non-admixed ancestry on
the broad continental level is usually visible externally (hence
cannot be considered private information), mixed ancestry such as
between continents, may not necessarily be visible depending on
the number of generations back when it occurred and the
geographic origin of the ancestors involved since. If indeed not
externally visible, privacy issues including the right-not-to-know
can apply for genetic ancestry testing.

One ethical issue not touched previously (Ref. [7] Box 2) and
therefore mention here is disease-linked appearance. The use of
disease information obtained from DNA can be viewed not
appropriate for forensic purposes with the ethical argument that
patient discrimination is to be avoided. Such reasoning likely has
influenced the modification of the forensic DNA legislation in the
Netherlands in 2003, which generally allows the use of DNA
information on EVCs for forensic purposes, while excluding
disease-linked appearance. That this reasoning is not always
followed is indicated by the forensic DNA legislation of US state of
Texas that implicitly allows FDP, even for genetic diseases [7].

However, although it can be the same genes that cause
pathological and normal variation of a given trait including EVCs,
the mutations that determine disease are usually different from
those DNA variants involved in normal trait variation. For instance,
the OCA2 gene determines oculocutaneous albinism type 2 (hence
the gene name), a specific form of albinism, and the OCA2 gene is
also involved in normal variation of skin, eye, and hair coloration
(see above); however, the particular OCA2 mutations that cause
this disease [93] are different from those SNPs involved in normal
pigmentation (see above and Table 1). Therefore, DNA tests
developed for predicting normal appearance as applied for FDP
purposes are typically not informative for revealing disease-linked
appearance information.

Problems may arise for appearance traits where the disease
phenotype reflects the extreme of the normal phenotypic variation
together with associated non-causal DNA markers are used for
DNA prediction (because the causal ones are yet unknown). For
instance, SNPs associated with the disease cleft-lips (i.e., non-
syndromic cleft lip with or without cleft palate, NSCL/P) were also
shown to be associated with normal facial width – albeit less
strongly than with cleft-lips [85,94], perhaps because cleft has
been hypothesized to be the pathological extreme form of facial
width [95]. In such case, the same SNPs are informative for the
disease-linked and the normal form of an appearance trait, albeit
less so for the normal form; however, the currently known SNPs
are far away from allowing the DNA prediction of neither facial
width nor NSCL/P. Future research may identify the causal genetic
factors of cleft that likely allow differentiating between disease and
normal forms of facial width (as indeed these phenotypes are
clearly differentiated albeit related).

Furthermore, in the longer run one may commonly conclude (or
not) that the benefit for the society and its people i.e., to catch a
murderer who otherwise cannot be caught and thus continues
murdering, overwrites ethical concern on patient discrimination,
which could lead to using general disease information including
those obtained from DNA (with and without EVC manifestation)
for investigative purposes. Under such hypothetical scenario, FDP
would then not be restricted to DNA prediction of externally visible
traits, as it is currently understood (see all above), but would also
include DNA prediction of disease traits. Besides necessary broad
discussions by ethics professionals and other stakeholders on the
risks and benefits of forensic use of disease information including
from DNA, the medical genetic knowledge provides restrictions at
least for now. Currently, our genetic understanding of disease is
quite complete for many monogenic diseases (so called Mendelian
diseases) i.e., diseases determined by one or very few genes, which
therefore allows accurate DNA prediction as used in medical DNA
diagnostics. Arguably, monogenic diseases that run in families, are
of limited value for forensic investigation, because they are very
rare in the general population. In contrast, genetic knowledge is yet
largely incomplete for common diseases reflecting complex traits
with many genes and environmental factors determining the
disease outcome, which therefore does not (yet) allow accurate
DNA prediction [96], for the same reasons as discussed above for
complex appearance traits.

4.4. Legal issues

Legal burdens on practical FDP exist depending on the country
and its legislation, for more information I refer to the specialized
literature (e.g., Ref. [7] particularly Box 3 and references cited
therein). In brief, for many countries the legislation that regulates
the use of human DNA for forensic purposes comes from a time
when DNA fingerprinting or DNA profiling were introduced, and
therefore typically do not cover FDP without pending modifica-
tions. Some countries have already updated their forensic DNA
legislation to allow the forensic application of DNA-based
appearance (and ancestry) information such as the Netherlands.
Some countries, such as the UK, allow FDP without dedicated
legislation. However, I take the liberty here to draw direct parallels
between FDP i.e., a “biological witness” and a human eye witness.
In principle, FDP delivers the very same type of information as
human eye witnesses do i.e., what did/does the suspect look like.
To my knowledge however, there is no specific law that allows the
police to involve human eye witnesses, so in essence, why does one
need it for doing the same from DNA?



46 M. Kayser / Forensic Science International: Genetics 18 (2015) 33–48
In several countries (e.g., Germany), the use of DNA for forensic
purposes is currently restricted by law to non-coding markers.
Strictly speaking however, the allowance of non-coding DNA
markers for forensic purposes not necessarily excludes FDP, even
though this may violate the intention of such laws. Non-coding
DNA markers can carry the very same trait information as coding
ones, as long as the linkage disequilibrium between them is high
enough (e.g., because of close physical proximity with each other).
Indeed, many DNA markers used and suggested for FDP purposes
are intronic SNPs [22,50][e.g. 22,50] and thus by definition are
non-coding. Their FDP values comes from the EVC association
likely because of strong linkage disequilibrium with causal
(including coding) yet unknown SNPs. Furthermore, most regula-
tory DNA markers are either intronic or intergenetic; thus, strictly
speaking there are non-coding. Indeed, several DNA markers used
for FDP purposes are regulatory SNPs from intronic or inter-genetic
regions, such as the most eye color predictive SNP HERC2
rs12913832 [97] and other SNPs from human pigmentation genes
[98–100]. Because of the knowledge on the dynamic of the human
genome, including its haplotype block structure and regulatory
elements, which has severale advanced since such laws were
made, a distinction between coding and non-coding parts appears
outdated, and should therefore not be used any longer when
regulating the application of DNA via legislations such as for
forensic purposes. Instead the forensic use of DNA shall be
regulated on the particular forensic purpose (e.g., individual
identification, appearance prediction for investigative purpose
etc.) but not the type of markers that likely are changing over time
with increasing genetic knowledge.

4.5. Limited scientific knowledge and limited research funding

Besides the current legal burdens in many countries, the main
and most significant burden that currently holds-up further FDP
progress in the hopes of eventually allowing very detailed overall
appearance prediction, is the immense knowledge that is currently
missing on the genetic basis of human appearance. For many EVCs
that have the potential to be highly useful for FDP purposes due to
high heritability, the underlying genes have just not been found
yet. Or, the first genes identified only explain very little of the trait
variance, while most trait information remains genetically
unexplained. In my opinion, the needed fundamental research
to identify most, if not all, genetic information that determines
human appearance variation in its various forms, can only be
achieved by large international collaborations. Large genome-wide
studies will be needed to map EVC-underlying genes allowing the
generation of candidate markers for EVC prediction studies.
Furthermore, at best, an accumulative worldwide database shall
be established using standardized EVC phenotypes and genotypes.
Such a database will expectedly provide more directly comparable
DNA-based prediction accuracy estimates and robust model
parameters. This will eventually allow the conclusion of a final
set of most informative and robust predictive DNA markers for a
given EVC, together with the most suitable prediction approach.
From this knowledge, practical FDP tools can effectively be
developed at best together with specialized commercial compa-
nies.

Besides international research collaborations, what is also
strongly needed is the necessary research funding, which is
currently not sufficiently available. Here, I am not only calling upon
governmental and private research funding agencies around the
world to come-up with calls suitable for the respective research
projects, but additionally on law enforcement and police agencies
as well as forensic institutions to support scientific research in this
area. I think it is time to change the typical attitude in forensic
science to simply wait until fundamental sciences has discover
something with forensic potential, which is then picked-up for
further development into practical tools by the forensic commu-
nity. Many scientific discoveries, including those forensically as
important as classical DNA fingerprinting, were/are made by
chance reflecting the nature of curiosity-driven fundamental
science, and I consider it as ineffective strategy to base efforts for
improving the safety of the society on chance events. More
effective would it be to invest into specific areas of the
fundamental sciences, particularly within human molecular
biology and genetics, that bear great potentials to improve forensic
analyses to allow dedicated research into forensically-relevant
topics from the start in fundamental science all the way to forensic
validation of the tool developed from the fundamental knowledge
produced. Clearly, one of those areas is the genetics of human
appearance for developing FDP tools to solve cases that cannot be
solved via other means including conventional DNA profiling, and
perhaps eventually – strongly depending on the future progress in
the genetic understanding and DNA-prediction of individual-
specific facial morphology – replacing comparative forensic DNA
profiling including forensic DNA (profile) databases.
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