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The development of the mammalian cerebral cortex depends on careful orchestration of

proliferation, maturation, and migration events, ultimately giving rise to a wide variety of

neuronal and non-neuronal cell types. To better understand cellular and molecular processes

that unfold during late corticogenesis, we perform single-cell RNA-seq on the mouse cerebral

cortex at a progenitor driven phase (embryonic day 14.5) and at birth—after neurons from all

six cortical layers are born. We identify numerous classes of neurons, progenitors, and glia,

their proliferative, migratory, and activation states, and their relatedness within and across

age. Using the cell-type-specific expression patterns of genes mutated in neurological and

psychiatric diseases, we identify putative disease subtypes that associate with clinical phe-

notypes. Our study reveals the cellular template of a complex neurodevelopmental process,

and provides a window into the cellular origins of brain diseases.
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The mammalian cerebral cortex develops via a complex
sequence of cell proliferation, differentiation, and migra-
tion events. In the mouse, cortical progenitors rapidly

divide between embryonic day 11.5 (E11.5) and birth (P0), giving
rise to six neocortical layers1. Neural stem cells in the ventricular
zone (VZ), intermediate progenitors of the subventricular zone
(SVZ), and radial glia (RG) in the cerebral cortex undergo a series
of symmetric or asymmetric divisions to produce more inter-
mediate progenitors or pyramidal neurons2. Terminally differ-
entiated neurons migrate radially to their final destination,
forming cortical lamina in an inside-out manner. Dynamic
expression of transcription factors such as COUP-TF-interacting
protein 2 (CTIP2; also known as BCL11B), zinc-finger tran-
scription factor FEZF2 and special AT-rich sequence binding
protein 2 (SATB2), tightly regulate this laminating process and
confer specific axonal projection characteristics to subcerebral
(SCPN), corticothalamic (CThPN), and callosal projection neu-
rons (CPN), while diffusible factors such as FGF8 and WNT
control the relative size and position of cortical areas1.

During this time, GABAergic interneurons differentiate from
progenitor cells in the VZs of subpallial ganglionic eminences and
migrate tangentially into the cortex. Instead of extending a single
leading process in the direction of migration, interneurons can
extend multiple processes to adjust their polarity in response to
chemotactic cues and eventually populate all layers of the
cortex3,4. The final cortical location of interneurons is defined by
expression of genes such as Dlx1/2, Nkx2.1, and Lhx65. This
process gives rise to cardinal classes of parvalbumin (PV),
somatostatin (SST) and vasointestinal peptide (VIP) expressing
interneurons.

Genetic and environmental factors that perturb processes
described above can impair intellect and increase the risk for
neurodevelopmental disorders such as autism spectrum disorder
(ASD)6. It is postulated that common convergent pathways are
affected in neurodevelopmental disorders, resulting in improper
lamination, expansion or reduction in certain cortical layers, and
excitatory-inhibitory imbalances6. While mice are routinely used
to study neurodevelopmental processes and to model brain dis-
orders, there is currently no comprehensive catalog of cells that
make up the normally developing mouse cerebral cortex.

Transcriptomics have deepened our understanding of the
genetic programming underlying cortical development in various
species7–9. Unlike bulk transcriptomics, which interrogates
average gene expression in a heterogeneous tissue, single-cell
transcriptomics can be used to profile gene expression in indi-
vidual cells and uniquely classify neural cell types based on
combinatorial gene expression10. The recent advent of massively
parallel high-throughput droplet-based profiling techniques have
further hastened the adaptation of single-cell RNA-seq in cata-
loging cells in the central and peripheral nervous system of
adults11–15.

Here, we use Drop-seq to characterize the cellular composition
of the developing mouse cortex at two key times in development
—embryonic day 14.5 (E14.5), representing a progenitor-driven
stage, and birth (P0), when neurons corresponding to all six
cortical layers have been born and gliogenesis has begun. We
identify distinct cortical layer-specific cell types, which express
the longest genes16, multiple progenitor-like cell types, including
Eomes+ (Tbr2+) progenitors, GABAergic interneurons, and non-
neuronal cells, such as endothelial cells and microglia.

Results
Single-cell transcriptomics of the E14.5 and P0 cortex. We
transcriptionally profiled a total of 18,545 mouse neocortical cells
at two key times of corticogenesis using Drop-seq: 10,931 cells at

embryonic day 14.5 (E14.5) from six biological replicates, and
7614 cells at birth (P0) from three biological replicates (Fig. 1a,
Supplementary Table 1)11,17. Single-cell libraries were sequenced
to a median depth of ~12,000 reads/cell, detected a median of
~2500 transcripts per cell, and represented a median of ~1600 of
genes per cell (Fig. 1a, Supplementary Figures 1, 2). This depth is
on par with or exceeds similar studies11,12,14. To increase the
precision of unbiased clustering, we developed an iterative cell
type refinement method (Fig. 1a, Supplementary Figure 3, see
Methods) and identified 22 principal cell types at each age
(Fig. 1b, c, Supplementary Data 1). Using t-Distributed Stochastic
Neighbor Embedding (t-SNE18) overlaid with expression levels of
the broad cell-type markers Neurod6 (excitatory neurons), Gad2
(inhibitory neurons), Eomes (Tbr2, neuronal progenitor), and
Mki67 (proliferating and glial), we observed separation of these
broad cell-type markers and their constituent cell types
(Fig. 1b–e).

Characterization and validation of cortical cell types. To assign
biological labels to each of these cell types, we first identified
cluster-specific marker genes, similar to other single-cell tran-
scriptomic studies11,12 (Fig. 1b, c, Fig. 2, Supplementary Figure 4).
Each cell type exhibited similar overall transcript levels and cell
proportions among biological replicates, suggesting that none of
the clusters were skewed by residual batch effects (Supplementary
Figure 2 and 5). For each identified marker gene, we next vali-
dated that those genes were expressed in the correct cell types, in
the correct cortical regions/layers, and at the correct age using
in situ hybridization data (Eurexpress, Allen Institute of Brain
Science, GENSAT) (Supplementary Figure 6–13). We assembled
these annotations, along with additional references confirming
the identity of these cell types and their marker genes, as well as
pathway-level enrichment analyses that describe the predominant
transcriptional signatures of each cell type in Supplementary
Data 2.

We identified Layer I (Cluster 17-E and 19-P) cells at both time
points, which expressed canonical Cajal-Retzius cell markers
Reln, Trp73, Lhx1, and Lhx5 (Supplementary Figures 4, 6, and 10,
Supplementary Data 2). Five excitatory neuron clusters were also
present at both time points. Lower-layer neurons were present at
E14.5 and were similar to their P0 counterparts, as expected given
the timing of cortical layer formation17. All E14.5 excitatory
neuron clusters (5-E, 13-E, 3-E, 7-E, and 2-E) broadly expressed
Bcl11b, a deep layer marker (Supplementary Figures 4 and 6,
Supplementary Data 2). Layer V–VI neurons could be further
distinguished by genes characteristic of their function or that
demonstrated regional specificity. For example, Clusters 5-E and
13-E both expressed Fezf2, which is normally expressed at high
levels in Layer V SCPN and at lower levels in Layer VI CThPN19.
These two clusters could be further segregated spatially by
expression of Crym, which is expressed more caudally20, and
Mc4r, which is expressed more rostrally20 (Supplementary
Figures 4, 6, and 14 and Supplementary Data 2). Cluster 7-E
also showed regional specificity, given its expression of Tfap2d,
which is expressed more rostrally21 (Supplementary Figures 4 and
6). We also identified three classes of Layer II–IV (upper-layer)
neurons in the P0, but not E14.5, cortex, consistent with the later
birthdate of upper-layer neurons. Each of these clusters (Clusters
1-P, 4-P, 15-P) expressed Satb2 and Pou3f1, and 4-P was further
specified by expression of Nrgn, Inhba, and Pvrl3 (Supplementary
Figure 10).

Newly generated interneurons migrate tangentially from the
ganglionic eminences and populate all layers of the cerebral
cortex3. We identified two interneuron types, Int1 (Clusters 1-E
and 5-P) and Int2 (Clusters 12-E and 14-P), that were present at
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E14.5 and P0 and expressed high levels of Lhx6, a transcription
factor associated with PV and SST interneurons22 (Supplemen-
tary Figures 4, 7, and 11). Sst, but not Pv, was detected in Int1 and
Int2 at these ages, as expected23. We also identified two
interneuron classes unique to the P0 cortex, namely Int3 and
Int4. Int3 (Cluster 11-P) expressed canonical markers of
vasoactive intestinal peptide (VIP) cells, including Htr3a, Npas1,
and Adarb222. Int4 (Cluster 6-P) expressed Cdca7, a marker of
some SST+ and PV+ interneurons22, but did not express Sst at
this stage. Int4 expressed high levels of Sp9, Tiam2, and Dlx5—
general transcriptional and migratory markers24,25—suggesting
that Int4 is an immature/migrating interneuron cluster (Supple-
mentary Figure 11).

We also identified three SVZ clusters—SVZ1, SVZ2, and SVZ3
(Clusters 4-E, 11-E, and 15-E)—that were marked by strong
expression of Eomes (Tbr2)26 at E14.5 (Supplementary Figures 4
and 8). Two similar clusters were identified at P0—Clusters 2-P
and 8-P (SVZ1 and SVZ2)—that, in addition to Eomes, expressed
markers for newborn and migrating neurons (Sema3c and
Neurod1)24,27 (Supplementary Figures 4 and 12). Cells in Cluster
8-P expressed SVZ markers as well as markers of both excitatory
(Neurod6) and inhibitory (Calb2) neurons. To confirm that this
cell type exists, we performed immunofluorescence staining in P0
Neurod6:CRE mice; the expression of CRE faithfully recapitulates
endogenous Neurod6 promoter activity28. We observed a
migratory stream of CRE+CALB2+ cells in the corpus callosum
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as well as some similarly labeled cells in the cortical plate
(Supplementary Figure 15). These cells exhibit similar localization
and expression patterns to the Rostral Migratory Stream, a
population of cells that migrate to the cortex and olfactory bulb
postnatally29,30.

The four RG clusters (8-E, 13-E, 21-E, and 10-E) at E14.5
expressed RG markers Hes1, Hes5, Pax6, and Ednrb, and
proliferation markersMki67 and Top2a (Supplementary Figures 4
and 8, Supplementary Data 2). At P0, Hes5 was expressed in two
immature astrocyte cell clusters (10-P and 13-P), which also
expressed mature astrocyte markers—Aqp4 and Aldh1l131

(Supplementary Figures 4 and 12). These two mature astrocyte
markers were undetected in any cell type at E14.5.

We detected oligodendrocytes (Cluster 16-P), marked by Olig2
expression, in the P0 cortex only (Supplementary Figures 4, 9,
and 13). Non-neuronal cells such as choroid plexus (22-E and 20-
P, Otx2+), microglia (20-E and 22-P, Trem2+), and endothelial
cells (18-E, 17-P and 21-P, Igfbp7+)32 were also detected. We also
identified other cell types from adjacent non-cortical tissues—
ganglionic eminences (Gad2+, Mki67+), striatal inhibitory
neurons (Isl1+, Gpr88+, Rxrg+) and thalamus (Tcf7l2+, Syt13+)

(Supplementary Figures 4, 7, 8, 11, and 12, Supplementary
Data 2).

Transcriptional similarity of cell types across ages and species.
To assess the overall proportions of cellular classes at each age, we
first grouped the cortical cells into four broad categories (layer-
specific, interneurons, progenitor-like, and non-neuronal)
(Fig. 2). Nearly 40% of cells at E14.5 were progenitor-like,
including multiple classes of RG and intermediate progenitors
localized to the VZ and sub-ventricular zone, but represented
only 28% of cells by P0, as expected33. The ratio of excitatory to
inhibitory neurons was in line with previous estimates that range
from 2:1 to 5:134,35. Additionally, the P0 cerebral cortex con-
tained a greater proportion of non-neuronal cells relative to the
E14.5 cortex, which is consistent with the known timing of glial
proliferation33.

Next, we assessed the specific cellular composition as well as
the transcriptional similarity of these identified cell types across
ages using hierarchical clustering with correlation-based distances
(Fig. 2). These relative correlations permit the side-by-side
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comparison of cell types within and across ages. Many of the
identified cell types were more similar to one another at E14.5
and P0 ages than they were to other related cell types. For
example, Layer I cells of the E14.5 cortex correlated best to that of
the P0 cortex, and similar correlated pairs were observed for Int1
and Int2 interneurons as well as several glial cell types. We also
observed novel correlations that, when combined with the
underlying expression patterns, are suggestive of early fate
specification. For example, Cluster 3-E expressed an upper-layer
CPN marker (Satb2), a lower-layer marker (Bcl11b), a migratory
marker Tiam2, and Pou3f1, a transcription factor that is
expressed in Layer II–III neurons during their migration and
differentiation (Supplementary Figures 4, 6, and 10)17,36. This
cluster was most similar to an upper-layer CPN at P0 (Layer
II–IV; Cluster 1-P). These cells may therefore be destined to
become upper-layer CPN, some of which are known to be born
around E14.537.

We next sought to identify relationships between the cell types
we identified to previously described excitatory neuron popula-
tions in the developing cortex7 and to single cell studies of the
adult cortex22,35. Using correlation analyses (Supplementary
Figure 16a), we found that E14.5 deep-layer pyramidal clusters
(Clusters 3-E, 5-E, 7-E, 13-E) and P0 upper and deeper layer
pyramidal neurons clusters (Clusters 1-P, 4-P, 12-P, 18-P)
correlated with the developing pyramidal neuron populations
from all ages sampled by Molyneaux et al.7 P0 Layer V–VI
neurons (Cluster 18-P) correlated with S1PyrL5 (Zeisel35) and
with multiple clusters of Layer VI neurons (Tasic L6b-Serpinb11,
L6b-Rgs12, L6a-Sla, and L6a-Mgp22). We observed similar
correlations for certain classes of interneurons, in addition to
microglia, endothelial cells, oligodendrocytes (only with oligo-
dendrocyte precursor cells, Tasic OPCs10), choroid plexus, and
astrocytes.

Human cortical development and composition are very similar
to that of the mouse, though primates have an additional form of
RG known as outer radial glia (oRG)38. We performed a
correlation analysis with a recently published catalog of human
fetal cortical cell types39. We focused on a range of 7–11.5 post-
conception weeks (pcw) and 20–23 pcw, as these human ages are
analogous to E14.5 and P0 mouse ages, respectively40,41. In the
younger cortex, we primarily observed concordance among
progenitors from multiple RG subclasses, ganglionic eminences,
as well as developing excitatory neuron populations and some
non-neuronal cell types (endothelial and choroid plexus)
(Supplementary Figure 16b). In the older cortex, there was far
more correlation between the layer-specific excitatory neuron
populations, precursor pools, and glia. Additionally, two classes of
interneurons correlated with multiple human interneuron types,
including Int1 (SST/Lhx6+) and Int3 (likely VIP interneurons),
indicating that these factors and their transcriptional programs
are likely conserved across species. We also observed a correlation
between each of our immature astrocytes and human oRG. To
examine this correlation further, we looked specifically at the
expression of human oRG and other RG markers across all of our
cell types (Supplementary Figure 17). We found that markers of
human oRG and ventricular radial glia (vRG) were expressed in
multiple E14.5 and P0 cell types, suggesting that these cells do not
form a cell type that is distinct from other RG in the mouse38.

Sub-clustering reveals closely related cell types and states. To
explore the identified cell types further and assess whether any
clusters harbored underlying cell sub-types or states, we devel-
oped an analytical methodology that focuses on heterogeneously
expressed genes within each cluster. We identified sub-clusters in
seven of the 22 cell types at E14.5 and in five of the 22 cell types at

P0 (Fig. 2, Supplementary Figures 18, 19). These sub-clusters
included: (1) cells in various phases of the cell cycle (RG4 [10-E],
SVZ3 (proliferating) [15-E], ganglionic eminences [6-E, 9-P]), (2)
highly related but functionally distinct cell types (e.g., pericyte,
and meningeal sub-classes of endothelial cells [18-E, 21-P]), and
(3) putative activation states (e.g., among microglia [20-E], oli-
godendrocytes [16-P], and ganglionic eminences [9-P]). We
found no evidence for neuronal activation, as marked by Fos and
other immediate early genes. Our use of ion channel inhibitors
during cell dissociation thus appears to provide a novel way to
block dissociation-induced neuronal immediate early gene
induction42.

Interestingly, we also identified four sub-clusters of cells among
those identified as Layer I in the E14.5 cortex (Cluster 17-E). In
addition to classic mature Reln+ Cajal-Retzius cells, we also
detected Ntm+ cells that were mostly Reln-43, as well as a
population of precursor-like cells that expressed Rspo1–3, Dkk3,
and Vim. These genes were also highly expressed in RG of the
cortical hem (RG3, Cluster 21-E, Supplementary Figure 4), where
some Cajal-Retzius cells are known to originate44,45. Transcripts
of Rspo1–3 and Dkk3 could be detected by in situ hybridization in
the cortical hem and Layer I as early as E11.5 through mid-
embryogenesis46. We therefore performed pseudotiming, focus-
ing on the gene expression profiles of cortical hem cells (RG3,
Cluster 21-E), Reln+ Layer I cells (Cluster 17-E Reln+), and this
precursor-like sub-cluster (Cluster 17-E Precursors) to explore
the differentiation trajectory that may link them. We determined
that the precursor-like cells of Cluster 17-E represent an
intermediate population between immature progenitors of the
cortical hem and mature Reln+ Cajal-Retzius cells of Layer I
(Fig. 3a). Many of these cells expressed Sox2, a marker of
multipotent neural stem cells, Dkk3, Eomes (Tbr2, marker of
intermediate progenitors), and some also expressed Reln (Fig. 3b).
We validated the cellular distribution of DKK3, SOX2, EOMES
(TBR2), and RELN using immunofluorescence. We found that
DKK3+ cells were present in both the cortical hem and Layer I
(Fig. 3c–h, Supplementary Figure 20). Further, a gradient of
DKK3 protein was apparent in the cortical hem, delineating a
differentiation trajectory from cortical hem progenitors to mature
Cajal-Retzius cells. We identified many cells that expressed a
mixture of DKK3, EOMES, and RELN, strongly suggesting a
transition between these two states, and corroborating the
transcript-level expression patterns described above (Fig. 3a, b).
Given that Cajal-Retzius cells can originate from the cortical
hem44,45 our data suggest that the Cluster 17-E precursor-like
sub-cluster of cells originated from the cortical hem and are
destined to give rise to mature Cajal-Retzius cells of Layer I.

Putative disease subtypes based on expression profiles. Cortical
dysfunction is implicated in neurological and neuropsychiatric
diseases, including amyotrophic lateral sclerosis (ALS), Alzhei-
mer’s disease (ALZ), ASD, ciliopathies (CIL), and schizophrenia
(SCZ). Genes that increase the risk for these diseases were
recently identified47–52. To determine if these disease-associated
genes are expressed broadly or specifically in developing cortical
cell types, we hierarchically clustered the cellular expression
profiles of these genes. We defined classes of disease-linked genes
with shared cellular expression at the individual cell type level and
summarized across broader cellular classes (Figs. 4, 5, Supple-
mentary Figures 21–24, see Methods).

Genes mutated in ciliopathies segregated into four subtypes
(Fig. 4). The largest class of genes exhibited expression almost
exclusively in the choroid plexus (Subtype 1), whereas the other
subtypes contained genes expressed primarily in proliferative cells
(Subtype 2), neurons (Subtype 3), and glia (Subtype 4). We
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hypothesized that these subtypes might therefore exhibit
differences in the prevalence of certain clinical phenotypes,
including microcephaly, hydrocephaly, axonal tract defects, or
intellectual disability. We tabulated the number of genes in each
expression subtype that were associated with each clinical
phenotype, and indeed found a statistically significant association
suggesting that these clinical phenotypes were distributed non-
randomly among the four subtypes identified (Fisher’s exact test,
p= 0.0406). We then inspected other disorders where genotype-
phenotype associations are less well understood (Fig. 5). Ten of
the ALS-associated genes (e.g., C9ORF72, Optn, Sod1) were
expressed much more highly in non-neuronal cells thereby
defining Subtype 2. The majority of the 14 genes linked to
Alzheimer’s disease (e.g., Apoe, Trem2, Picalm, Cr1l, Cd2ap) were
expressed predominantly in non-neuronal cells, especially
microglia. Recent studies suggest that microglia contribute to
neurodegeneration in Alzheimer’s disease53,54. ASD Subtype 1
contained numerous synaptic transmission genes (e.g., Grin2b,
Scn2a1) expressed most highly in neuronal populations, con-
sistent with the previous subtyping based on gene ontology and
molecular pathway analyses55. The remaining five ASD subtypes
contained chromatin modifiers and transcriptional regulators,
which gene ontology-based methods generally collapse into a
smaller number of groups, but whose expression patterns differed
across cell types and age. Genes linked to SCZ segregated into six
subtypes, each with a unique pattern of cell- and age-specific
expression. Together, these data demonstrate that cell-specific
expression patterns but also age (and likely other factors,

including sex) are important in determining the effects of these
mutations on the brain and cellular vulnerabilities associated with
expressing disease-linked gene mutations.

Web-based tools for data visualization and exploration. Lastly,
we created a web-based tool for exploration and visualization of
our data from each age, accessible from http://zylkalab.org/data.
Users can search for individual genes and explore cell type and
age-specific expression patterns (Fig. 6).

Discussion
We assembled a catalog of cell types in the developing mouse
cerebral cortex, described the spatial and temporal expression
patterns of hallmark genes, and uncovered underlying cellular
states and sub-clusters using a novel iterative analytical frame-
work. Our study enables the direct molecular comparison of all
cell types of the developing cortex under the same experimental
scheme. Further, our identification of cellular sub-clusters as well
as proliferative, migratory, and activation states demonstrates not
only the power of single-cell transcriptomics, but also the ability
to leverage intra-cluster heterogeneity to extract new or additional
information about cell states. Indeed, our sub-clustering analysis
identified a small class of cells that linked mature Cajal-Retzius
cells in Layer I to their immature progenitors, which we were able
to confirm via in silico pseudotiming and immunofluorescence
staining. This does, however, complicate the emerging discussion
of what constitutes a “cell type” or “cell state,” and underscores
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how scientific technology has surpassed what we currently can
describe semantically. Cellular categorization is often hierarchical
in nature, such as in the fully developed adult brain22,35. How-
ever, cellular differentiation occurs along a continuum rather than
in discrete steps, causing cell nomenclature to blur, as we found in
transitioning and immature cell types.

We also performed extensive gene expression correlation
analyses between the cell types we identified in the developing
cortex and cell types identified in the fetal and adult brains of
mice and humans. We identified expected parallels and some
unexpected discrepancies. For example, we did not observe sig-
nificant overlap among all interneuron populations across
developmental time. Whether this is attributed to differences in
how interneurons change their transcriptional program over their
developmental trajectory relative to other cell types, or disparity
in the number of interneurons sampled would require further
study. It is well known that many of the commonly used inter-
neuron markers are induced by neuronal activity and are gen-
erally not detectable at the protein level in newborn mice23. These
analyses also suggest that some, but not all of the cellular com-
plexity of the adult brain, particularly among neurons, is estab-
lished early in development. Emerging methodologies to
simultaneously trace cellular lineages and changes in gene
expression over developmental time56,57 might be best suited to
study when these neurons are born, how and where they pro-
liferate and migrate, and where they ultimately reside.

Our data also suggest that disease-linked gene mutations might
form robust groupings based on their cell-type- and age-specific
expression profiles. While single-cell transcriptomic studies have
identified cell types that are affected in Alzheimer’s disease or

conditions such as food deprivation54,58, whether these putative
disease subtypes exhibit differences in patient phenotypes is an
important question that warrants further exploration. Our data
on genes mutated in ciliopathies suggest that expression-based
genetic subtyping may have prognostic power. The pathogenesis
of neurodevelopmental disorders such as ASD is thought to
initiate during early to mid-fetal brain development59,60, corre-
sponding to ~E14.5 in mice40,41, therefore understanding how
cell types in this developmental window differ in their vulner-
ability to mutation may be crucial to determining disease etiology.
Other diseases and disorders with a less clear link to neurode-
velopmental defects, such as Alzheimer’s disease and schizo-
phrenia, may require integration with cell-type-specific gene
expression data from fetal to aged brains in order to better link
genotypes and phenotypes. Other factors, including sex and
individual- or population-level genetic differences, will likely also
influence the cellular environment within which these mutations
manifest. In conclusion, our single-cell data provide an essential
resource for future studies directed at understanding how genetic
and environmental factors affect cell composition, cell states, and
cell fates during early mouse brain development.

Methods
Mouse handling and timed matings. All procedures used in this study were
approved by the Institutional Animal Care and Use Committee at the University of
North Carolina at Chapel Hill. Mice were maintained on a 12 h:12 h light:dark
cycle and given food and water ad libitum. Timed matings were set up in the
evening, using one male and two female C57BL/6J mice (Jackson Labs) per
breeding cage. The male mouse was separated from female mice the next morning.
14 days after separation, pregnant female mice were euthanized and embryonic day
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14.5 (E14.5) embryos were collected for dissections. For P0 pups, cages were
monitored daily from E18.5 to postnatal day 0 (P0) for newborn pups.

Cortical dissections and single cell suspension preparation. Cerebral cortices
(both halves) from E14.5 and P0 mice were dissected in neurobasal medium and
rinsed with Hank’s Balanced Salt Solution (HBSS; 14175095 Gibco)61. All proce-
dures were done at room temperature, unless otherwise stated. Cortices were then
incubated for 30 min at 37 °C in papain (1 vial diluted with 2.5 mL of HBSS; Pierce
88285) with DNase I (20 mgmL−1; D4513 Sigma) in Ca2+ and Mg2+ free HBSS.
Next, 1 mL of neurobasal medium containing 5% FBS was added to the cortical
mixture and triturated to deactivate the papain. The cells were centrifuged for 2
min at 4600 × g, washed twice, and resuspended in Ca2+ and Mg2+ free HBSS with
ion channel inhibitors (5 µM TTX ab120054 Abcam, 25 µM DL-AP5 ab120004
Abcam, 5 µM DNQX 2312 Tocris). Cells were kept on ice until the microfluidics
run. A total of nine replicates were prepared from two developmental time points
(6 replicates for E14.5 embryos and 3 replicates for P0 pups). Each replicate
contained cortical cells from male and female littermates.

Drop-seq procedure. Drop-seq was performed largely as described11. Briefly,
cortical cells were diluted to an estimated concentration of 400 cells µL−1 in Ca2+

and Mg2+ free HBSS with ion channel inhibitors and HEK293T cells were spiked
in at a concentration of 3% of total cells (12 cells µL−1) while barcoded beads
(ChemGenes Corporation, catalogue number Macosko201110) were resuspended
in lysis buffer to an estimated concentration of 400 beads µL−1. Cells and beads
were co-encapsulated with oil (QX200™ Droplet Generation Oil for EvaGreen,
Biorad) using a microfluidics chip (Part number 3200455, Dolomite). Droplets of
around 3mL of aqueous volume (1.5 mL of cells and beads) were broken with
perfluorooctanol in 30 mL of 6× SSC. The harvested beads were then washed twice
with 6× SSC and hybridized RNA was reverse transcribed using Maxima H minus
Reverse Transcriptase (ThermoFisher). Populations of 2500 reverse-transcribed
beads (~100 cells) were separately amplified with 13 cycles of PCR (primers,
chemistry, and cycle conditions identical to those previously described) and PCR
products were purified with 0.6× AMPure XP beads (Agencourt).

cDNA from an estimated 12,000 E14.5 cells and 8000 P0 cells were pooled,
purified and tagmented with Nextera XT DNA Library Preparation kit (Illumina).
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Fig. 6 Snapshots of the web-based data visualization tool. a, b. Normalized expression (mean of all cells within cluster) of query genes illustrated as a live
and exportable barplot
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Input cDNA (1 ng) from each replicate was amplified with custom primer
P5_TSO_Hybrid and Nextera index primers (N701, N702, N703, N704, N711,
N712, N715, N716, and N718). Tagmented samples were purified twice with 0.6×
and 1× AMPure XP beads. All replicates were pooled and sequenced on one
Illumina HiSeq 4000 flowcell (eight lanes) to avoid sequencing bias. Read 1 was 20
bp; bases 1–12 represent the cell barcode, bases 13–20 represent the UMI. Read 2
was 50 bp and Read 3 (sample index) was 8 bp. Samples were de-multiplexed using
bcl2fastq version 2.18.0.12. Primer sequences used can be found in Table 1.

Processing of Drop-seq data. FASTQ files were converted to BAM format, tagged
with cell and molecular barcodes, quality-filtered, trimmed, polyA-trimmed, and
converted back to FASTQ as previously described11,12. Reads were aligned to a
mouse-human hybrid genome (mm10-hg19) using STAR62, then sorted, merged,
and exon-tagged as described11,12. Bead synthesis errors were corrected as
described12, and BAM files were separated into those containing mouse or human
reads. UMIs were determined to be species-specific if >90% of the transcripts came
from that species, or considered a doublet if neither species achieved 90% speci-
ficity. UMIs were not considered if the transcript count sum (mouse+ human) was
less than 500. Gene expression matrices were then created using only the mouse-
specific UMIs, as described11,12. Gene expression matrices were combined from
multiple biological replicates; data values for one or more replicates that did not
detect a given gene were assigned to zero. Processing steps utilized the Drop-seq
Toolkit v1.12 where possible.

Basic analysis of Drop-seq data. Cells with fewer than 500 detectable genes or
whose mitochondrial contribution exceeded 10% of transcripts were removed, then
only genes present in at least 10 cells and having at least 60 transcripts summed
across all cells were considered. We then performed batch correction using
ComBat63 where each independent replicate was considered a batch, thus mini-
mizing any technical variation. To reduce the complexity of the data, we performed
principal components analysis (PCA) and eigenvalue permutation (500 shufflings)
to determine how many principal components (PCs) to use, as described pre-
viously12. This yielded 89 PCs for E14.5 and 78 PCs for P0. These data were
visualized using t-SNE;18 we iterated both perplexity and learning_rate parameters
to optimize the visualization, ultimately setting these to 50 and 750, respectively.
Code made available12 was used where possible.

Cluster identification and refinement. We found that the Louvain-Jaccard
clustering method utilized by Shekhar et al.12 produced highly variable results for
our data depending on the number of specified nearest neighbors. We therefore
devised an iterative procedure that picks the optimal number of nearest neighbors
to use for the given dataset. To do this, we iterate from 10 to 100 nearest neighbors,
and for each iteration, repeat the Louvain-Jaccard clustering method. Then, we
assess how many clusters formed and how robust they were using silhouette
widths64 based on Spearman correlation distances. After the iteration was com-
plete, we utilized the number of nearest neighbors that produced the maximal
average silhouette width across all clusters as a starting point for cell clustering. The
silhouette width analysis also allowed us to assess the overall performance of each
cluster and demonstrated that the basic clustering method published previously12

inappropriately assigned many cells to clusters. To refine these cluster assignments,
we devised a second iterative approach that attempts to reassign extreme outliers
(silhouette width <−0.1) to a better grouping. Over five iterations, these outlier
cells of each cluster were given a chance to form their own novel cluster (if its own
silhouette width was >0 and there were at least 10 cells) or join the next-best
cluster. If a cell was reassigned to the next-best and remained an outlier there, it
would be sent back to its original assignment and flagged such that it would not be
considered for reassignment in subsequent iterations. This process improved the
overall cluster assignments (Fig. 1a) and resulted in the creation of two novel
clusters for E14.5, such that the final number of clusters for both E14.5 and P0 was
22. The final cell type assignments were visualized using t-SNE18 and compared to
one another semi-quantitatively using hierarchical clustering with Pearson
correlation-based distances.

Identification of cell type markers and enriched pathways. Marker genes for
each refined cluster were identified as described previously11,12, and expression
summaries were created using the code provided where possible. To identify bio-
logical pathways enriched in each cluster, markers whose expression fold-change
relative to other clusters exceeding 0 were mapped to human gene symbols and
assessed using a hypergeometric test in Piano65 with MSigDB C2 classifications
plus additional neurological gene sets as we described previously66. Pathways with
an FDR <0.1 and among the top 50 for a given cluster were considered for
inclusion in the cell type annotation table.

Validation by in situ hybridization and immunofluorescence. Marker genes
were validated with in situ hybridization data available on Eurexpress (www.
eurexpress.org), Allen Brain Institute (www.developingmouse.brain-map.org) and
GENSAT (www.gensat.org). Images were cropped to representative sections of the
neocortex, ganglionic eminences, striatum, thalamus and choroid plexus. Marker
annotations are provided in Supplementary Data 2.

For immunofluorescence staining, E14.5 and P0 mouse brain were dissected in
ice-cold phosphate buffered saline (PBS). After meninges were carefully removed,
brains were drop-fixed in 4% PFA overnight at 4 °C. Sagittal brain sections (75 µm)
of E14.5 brain were obtained using a Leica VT 1200 vibrotome and stored in PBS at
4 °C. P0 brains were preserved in 30% sucrose and crop-sectioned at 24 µm and
stored at −20 °C. E14.5 brain sections were subjected to heat-induced epitope
retrieval by steaming in 10 mM citrate buffer for 15 min to achieve robust TBR2
detection. Brain sections were washed briefly in PBS and incubated in blocking
buffer (PBS with 2% DMSO, 0.3% Triton-X 100, 2% normal donkey serum and 2%
normal goat serum) at room temperature for 1 h. Primary antibodies were diluted
in blocking buffer and incubated at room temperature overnight with constant
agitation. After three washes with PBS/0.1% Triton X-100, brain sections were
incubated with fluorophore-conjugated secondary antibodies at room temperature
for 2 h. After three washes with PBS/0.1% Triton X-100, sections were mounted on
glass slides using polyvinyl alcohol-based mounting medium supplemented with
0.1% propyl-gallate and DAPI. Primary antibodies used were mouse anti-Reelin
(Millipore, MAB5364; IgG1) at 1:1000 dilution, rabbit anti-DKK3 (Abcam, ab2459)
at 1:500 dilution, mouse anti-SOX2 (R&D System, MAB2018; IgG2a) at 1:500
dilution, rat anti-TBR2 (eBioscience, 14-4879-12) at 1:500 dilution), rabbit anti-
CRE (#13056S, Cell Signaling) at 1:500 dilution and goat anti-CALB2 (Swant, CG1)
at 1:500 dilution. Secondary antibodies used were goat anti-mouse IgG1 (Alexa 488
or 647; Thermo Scientific), goat anti-mouse IgG2a (Alexa 488, Thermo Scientific),
donkey anti-rabbit IgG (Alexa 488, 568 or 647, Thermo Scientific), donkey anti-
goat IgG (Alexa 568, Thermo Scientific) and donkey anti-Rat IgG (Cy3, Jackson
ImmunoResearch). All secondary antibodies were diluted 1:1000 in blocking buffer.
Images were acquired using a Zeiss LSM 780 laser scanning confocal microscope
with a Plan-Apochromat 40 ×/1.4 Oil DIC objective.

Cell type sub-clustering method. To identify genes whose expression pattern was
heterogeneous within a cluster, we required that a given gene was detected in at
least 25% of cells but not more than 75% of cells within a cluster, then further
refined the heterogeneous gene list using a feature selection tool67 on the expres-
sion of all cells within the cluster. The expression of these genes in all cells for that
cluster were then clustered hierarchically and inspected manually for coherent
patterns representing sub-clusters. Genes within each sub-cluster were then
assessed for functional enrichments using ToppGene68.

Pseudotiming analysis. For cells from Cluster 21-E or the Reln+ or Precursor-like
sub-clusters of Cluster 17-E, we performed dimensionality reduction using PCA on
Z-scored gene expression data, for only those genes with abundance of at least 2
TPM in at least 10 cells. We then created a curvilinear trajectory and ordering of
these cells using Slingshot69, with Cluster 21-E and Reln+ sub-clusters constrained
as endpoints.

Comparisons to other published datasets. Gene expression data for Tasic et al.
adult mouse cortex22 was obtained from GEO (GSE71585) and collapsed within
cell types by taking the mean of all cells. Data were similarly obtained for Zeisel

Table 1 Primer sequences

Barcoded bead
sequence B

5’ -Bead–Linker-
TTTTTTTAAGCAGTGGTATCAACGCAGAGTACJJJJJJJJJJJJNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3’

Template switch
oligo

AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG

TSO_PCR AAGCAGTGGTATCAACGCAGAGT
P5_TSO_hybrid AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C
Read 1 custom
sequence B

GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC
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et al. adult mouse cortex35 from GSE60361 and collapsed using Level 2 cell type
labels. Data were similarly obtained and handled for Molyneaux et al. from
GSE634827. A common set of marker genes was defined based on the intersection
of published gene lists22,35 with our cell-type- (log-fold-change >1.5) and
subcluster-specific genes. Expression data for each dataset were then subsetted
based on this common gene list, and expression patterns were compared pairwise
for all cell types using Spearman correlation. These correlations were then illu-
strated as a circos plot, where lines were drawn only for comparisons between data
from this study and other studies, and when those correlations exceeded a mini-
mum threshold. Cross-species analyses were performed in a similar fashion using
recently published data from human fetal (7–11.5 pcw) tissue39. All human marker
genes were converted to mouse orthologs using HGNC approved conversions.

Cross-age comparisons and disease gene subtyping. Expression data for each
cell cluster was merged by taking the mean of all cells, and all clusters from both
ages were compared to each other using Pearson correlations. To focus on genes
most responsible for cell-type-specificity, we used genes that were identified either
as cell type markers (log-fold-change >1.5) or among those that were included in
the sub-cluster analysis. Lists of commonly mutated genes for each disease of the
cortex were downloaded as follows: ALS (ref. 47, Tables 1, 2), Alzheimer’s disease
(ref. 48, Table 1+APP, PSEN1, PSEN2), ASD (SFARI Gene classifications Syn-
dromic and Class 1, obtained August 22, 2017), ciliopathies51,52, and schizo-
phrenia50. For each disease gene set, we performed hierarchical clustering of
median-centered expression values across all 44 combined clusters (E14.5 and P0
included) using 1-Pearson correlation distance. We then cut the gene dendrograms
at a height of 1.5 to divide genes into subgroups (except ASD, where we instead
specified a height of 1.25). Then for each gene subgroup (#genes ≥3), we collapsed
expression across related cell types by taking the median across those cell types
within an age (e.g., median of all E14.5 interneurons) to obtain 15 total values per
gene subgroup (layer-specific, interneuron, progenitor-like, and each non-neuronal
cell type for each age). The statistical association between gene expression subtypes
and clinical phenotypes was determined using a two-sided Fisher’s Exact Test,
using Monte Carlo simulation of p-values (10,000 replicates).

Code availability. All code for data analysis, including cluster identification and
refinement, cellular sub-clustering analysis, as well as processed and unprocessed
gene expression matrices are available on GitHub at https://github.com/
jeremymsimon/MouseCortex.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The web-based visualization tool described above is available at http://zylkalab.org/
data. Raw and processed data were also deposited to the Gene Expression Omnibus
under accession ‘GSE123335’.
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