Forensic Genetics and Legal Medicine 2019-2020

4th May 2020

Kinship testing (standard paternity testing)

Probability of mutually exclusive events

Pr(X or Y) = Pr(X) + Pr(Y)

Probability of independent events

Pr(X and Y) = Pr(X) * Pr(Y)

Pr(5) * Pr(6) = 1/36

Conditional probability: events are dependent

Pr(A and B) = Pr(B/A) * Pr(A)

The frequency of individuals with a blue right eye is 25% Pr(dx)=0.25The frequency of individuals with a blue left eye is 25% Pr(sx)=0.25

Probability of having two blue eyes?

• 0.25 X 0.25 = 0.06

Pr(left eye is blue / right eye is blue) ~ 1

• Pr (both left and right eye are blue) = 1×0.25

Extractionarity entertaining res rines

Thomas Bayes

And now ladies and gentlemen, the Monty Hall problem*

BAYES THEOREM: revising a probability value based on additional information that is later obtained.

- \checkmark B1 and B2 are two mutually exclusive and exhaustive events
- \checkmark A is the conditioning element

Imagine you are blindfolded and then asked to pick a ball from a bag...

- \checkmark Pr(B1) = p of picking a black ball from the bag 1/3
- \checkmark Pr(B2) = p of picking a white ball from the bag 2/3
- ✓ Each ball carries a number (1 or 2)

• of black balls, ³/₄ carry number 1: **Pr(A/B1) = 3/4**

- of white balls, 1/4 carry number 1: Pr(A/B2) = 1/4
- \checkmark A = the ball you picked carries number 1!

*Pr(A) = p of picking a number 1 ball is the sum of ps of picking a black number 1 ball or a white number 1 ball

Pr(B1/A) = 3/5

- What would you bet, black or white?

And after this additional information?

For B2 we'll have:

Pr (A/B2) * Pr (B2) $Pr (B2/A) = \frac{Pr (A/B2) * Pr (B2)}{Pr (A/B2) * Pr (B2) + Pr (A/B1) * Pr (B1)}$ We can also calculate the ratio of Pr B1 and B2 given A: $\frac{Pr (B1/A)}{Pr (A/B1) * Pr (B1)} = \frac{Pr (A/B2) * Pr (B2) + Pr (A/B1) * Pr (B1)}{*}$

Pr (B2/A) Pr (A/B1)* Pr(B1) + Pr (A/B2)* Pr(B2) Pr (A/B2) * Pr (B2)

 Pr (B1/A)
 Pr (A/B1)
 Pr (B1)

 =
 *
 *

 Pr (B2/A)
 Pr (A/B2)
 Pr (B2)

In our "bag & balls" example, Pr(B1/A) / Pr(B2/A) = 3/2

In DNA identity testing the two mutually exclusive and exhaustive hypotheses are:

A: the tested subject is the donor of the stain;

D: the tested subject is not the donor of the stain.

Additional information comes from genetic data G.

In paternity testing the two mutually exclusive and exhaustive hypotheses are :

P: the tested subject is the biological father;

N: the tested subject is not the biological father.

Additional information comes from genetic data G.

(A) Mendelian Inheritance

Figure 23.2, J.M. Butler (2005) Forensic DNA Typing, 2nd Edition © 2005 Elsevier Academic Press

PATERNITY INDEX, PI

Consider a biallelic locus with alleles P and Q Let's assume the child is "PQ", mother "QQ" and alleged father "PQ"

 Pr (P / G)
 Pr (G / P)
 Pr (P)

 ----- =
 ----- X -----

 Pr (N / G)
 Pr (G / N)
 Pr (N)

Pr (G / P) = ???

Pr ($F_{PQ}/M_{QQ} \& P_{PQ}$) = Pr (F_{PQ} and $M_{QQ} \& P_{PQ}$) / Pr ($M_{QQ} \& P_{PQ}$)

Possibile couples	Freq. Possibile couples	Freq. of children PP	Freq. of children PQ	Freq. of children QQ
PPXPP	p ⁴	p ⁴	-	-
PPXPQ	2 ² p ³ q	2p ³ q	2p ³ q	-
PPXQQ	2p ² q ²	-	2p ² q ²	-
PQXPQ	2 ² p ² q ²	p²q²	2p ² q ²	p²q²
PQXQQ	2 ² pq ³	-	2pq ³	2pq ³
QQXQQ	q ⁴	-	-	q ⁴

Pr $(F_{PQ}/M_{QQ} \& P_{PQ}) = Pr (F_{PQ} and M_{QQ} \& P_{PQ}) / Pr (M_{QQ} \& P_{PQ})$

PATERNITY INDEX, PI

Consider a biallelic locus with alleles P and Q Let's assume the child is "PQ", mother "QQ" and alleged father "PQ"

 Pr (P / G)
 Pr (G / P)
 Pr (P)

 ----- =
 ----- X -----

 Pr (N / G)
 Pr (G / N)
 Pr (N)

Pr (G / P) = ???

Pr ($F_{PQ}/M_{QQ} \& P_{PQ}$) = Pr (F_{PQ} and $M_{QQ} \& P_{PQ}$) / Pr ($M_{QQ} \& P_{PQ}$)

Pr (G / N) = ???

Pr (F_{PQ}/M_{QQ}) = Pr (F_{PQ} and M_{QQ}) / Pr (M_{QQ})

Possibile couples	Freq. Possibile couples	Freq. of children PP	Freq. of children PQ	Freq. of children QQ
PPXPP	p ⁴	p ⁴	-	-
PPXPQ	4 p ³ q	2p ³ q	2p ³ q	-
PPXQQ	2p ² q ²	-	2p ² q ²	-
PQXPQ	4p ² q ²	p²q²	2p ² q ²	p ² q ²
PQXQQ	4pq ³	-	2pq ³	2pq ³
QQXQQ	q ⁴	-	-	q ⁴

Pr (F_{PQ}/M_{QQ}) = Pr (F_{PQ} and M_{QQ}) / Pr (M_{QQ})

Pr (P / G)Pr (G / P)Pr (P)1/2Pr (P)------=------X=-----XPr (N / G)Pr (G / N)Pr (N)Pr (N)

Pr (G / P) = Pr ($F_{PQ}/M_{QQ} \& P_{PQ}$) = Pr (F_{PQ} and $M_{QQ} \& P_{PQ}$) / Pr ($M_{QQ} \& P_{PQ}$) = pq³ / 2pq³ = 1/2 Pr (G / N) = Pr (F_{PQ}/M_{QQ}) = Pr (F_{PQ} and M_{QQ}) / Pr (M_{QQ}) = (p²q² + pq³) / q² = pq² X (p + q) / q² = p

If p = 0.2 (1/5) then PI = 5/2 = 2.5. The observed genotypes are 2.5 times more likely according to the hypothesis of paternity.

PI values obtained with a standard set of 16 independent STRs can be freely multiplied, reaching, on average, PI combined values of ~ 5×10^{10}

PROBABILITY OF PATERNITY (W)

It is reasonable to assume that, a priori, the probability of paternity and non paternity are equal (Essen-Moeller transformation), consequently:

Pr (P / G) ½

If p = 0.2, PI = 5/2 given the observed genotypes: it means that in 5 cases out of 7 (71%) paternity is true, whereas in 2 cases out of 7 the observed genetic compatibility is adventitiuos. 5/7 = 5/2 / (5/2+1)

W is then calculated according to the general formula:

What PI/W to enough paternity?

- Gendiagnostikgesetz (new German law regulating human genetics as well as paternity analyses, 2013): W > 99.9% (PI > 1000)
- Italian Society for Human Genetics (SIGU, 2013): PI > 10000
- Italian working group of the International Society for Forensic Genetics (GeFl, 2018): W > 99.99% (Pl > 10000)

#	Gc	G _M	G _{TM}	Numerator Denominator (X) (Y)		Paternity Index (PI)	
1	PP	PP	PP	1	р	1/p	
2			PQ	1/2	р	1/2p	
3			QR	0	р	0	
4		PQ	PP	1/2	p/2	1/p	
5			PQ	1/4	p/2	1/2p	
6			PR	1/4	p/2	1/2p	
7			QR	0	p/2	0	
8	PQ	PP	QQ	1	q	1/q	
9			PQ	1/2	q	1/2q	
10			QR	1/2	q	1/2q	
11			RS	0	q	0	
12		PQ	PP	1/2	(p+q)/2	1/(p+q)	
13			PQ	1/2	(p+q)/2	1/(p+q)	
14			PR	1/4	(p+q)/2	1/[2(p+q)]	
15			QR	1/4	(p+q)/2	1/[2(p+q)]	
16			RS	0	(p+q)/2	0	
17		QR	QQ	0	p/2	2 0	
18			PQ	1/4	p/2 1/2p		
19			QR	0	p/2		
20		ing ret	<u>OS</u>	0	p/2 0		
21			RS	0	p/2 0		

$$Pr(PP|PP) = \frac{[p(1-\theta) + 2\theta] [p(1-\theta) + 3\theta]}{(1+\theta)(1+2\theta)}$$
$$Pr(PQ|PQ) = \frac{2[p(1-\theta) + \theta] [q(1-\theta) + \theta]}{(1+\theta)(1+2\theta)}$$

 Θ / F_{ST} = the probability that two alleles, one taaken at random from each of two individuals are identical by descent (0.01-0.03) Formulas can be modified in order to accomodate:

•Coancestry

Mutations

Mutation rate of standard forensic STRs (μ) is on average 2 out of 1000 meiosis (i.e. 3% chance of mutation whit a 15 STRs panel).

μ varies according to:

• parent's sex (higher in males than females depending on gametogeneis)

• Father's age (higher in older fathers)

•STR molecular structure (higher for more complex STRs)

Dedicated software treat mutation according to mutation models of different complexity. Easiest way:

 PI_{μ} = PI at a locus showing a mismatch μ = locus specific mutation rate PE_x = locus specific average probability of exclusion

 $PI_{\mu} = \mu / PE_{x}$

H = locus heterozygosity

 $H = 1 - \Sigma p^2$

p = frequency of each allele for that STR

Apparent Mutations Observed at STR Loci In the Course of Paternity Testing*							
STR System	Maternal Meioses (%)	Paternal Meloses (%)	Number from either	Total Number of Mutations	Mutation Rate		
C8F1PO	95/304,307 (0.03)	982/643,118 (0.15)	410	1,487/947,425	0.18%		
FGA	205/408,230 (0.05)	2,210/692,776 (0.32)	710	3,125/1,101,006	0.28%		
THO	31/327,172 (0.009)	41/452,382 (0.009)	28	100/779,554	0.01%		
TPOX	18/400,061 (0.004)	54/457,420 (0.012)	28	100/857,481	0.01%		
VWA	184/564,398 (0.03)	1,482/873,547 (0.17)	814	2,480/1,437,945	0.17%		
D381358	60/405,452 (0.015)	713/558,836 (0.13)	379	1,152/964,288	0.12%		
D68818	111/451,736 (0.025)	763/655,603 (0.12)	385	1,259/1,107,339	0.11%		
D7 8820	59/440,562 (0.013)	745/644,743 (0.12)	285	1,089/1,085,305	0.10%		
DS 81179	96/409,869 (0.02)	779/489,968 (0.16)	364	1,239/899,837	0.14%		
D138317	192/482,136 (0.04)	881/621,146 (0.14)	485	1,558/1,103,282	0.14%		
D16 8639	129/467,774 (0.03)	540/494,465 (0.11)	372	1,041/962,239	0.11%		
D18861	186/296,244 (0.06)	1,094/494,098 (0.22)	466	1,746/790,342	0.22%		
D21 811	454/435,388 (0.11)	772/526,708 (0.15)	580	1,816/962,096	0.19%		
Penta D	12/18,701 (0.06)	21/22,501 (0.09)	24	57/41,202	0.14%		
Penta E	29/44,311 (0.065)	75/55,719 (0.135)	59	163/100,030	0.18%		
D281838	15/72,830 (0.021)	157/152,310 (0.10)	90	262/225,140	0.12%		
D198433	38/70,001 (0.05)	78/103,489 (0.075)	71	187/173,490	0.11%		
8E33 (ACTBP2)	0/330 (<0.30)	330/51,610 (0.64)	None reported	330/51,940	0.84%		

How many mismatches are enough to exclude paternity?

- Gendiagnostikgesetz (new German law regulating human genetics as well as paternity analyses, 2013): at least 15 STR need to be typed and >3 mismatches need to be observed to declare paternity exclusion
- Italian Society for Human Genetics (SIGU, 2013): regardless of the number of observed mismatches, it is – always necessary to perform LR (PI) calculations and paternity can be excluded when PI is < 0.0001
- Italian working group of the International Society for Forensic Genetics (GeFI, 2018): at least 15 STR need to be typed and >2 mismatches need to be observed to declare paternity exclusion (PI calculation optional)

Formally correct, but possibly unpractical for Courts And now ladies and gentlemen, the Monty Hall problem...solved

A priori

Pr(N) = Pr(car not changing door) = Pr(car) = 1/3

Pr(C) = Pr(car changing door) = Pr(door chosen does not hide car) * Pr(new door picked doesn't hide goat) = 2/3 * 1/2 = 1/3

...to change or not to change is irrelevant

Additional information (A)

Monty (who knows where the car is) shows that, behind one of the doors which was not chosen, there's a goat

Conditional probability Pr(A/N) = Pr(Monty shows that goat, given that the door initiallychosen hides the car) =1/2<math>Pr(A/C) = Pr(Pr(Monty shows that goat, given that the door initiallychosen hides a goat) = 1

A posteriori $\frac{Pr(N/A)}{Pr(C/A)} = \frac{Pr(A/N)}{Pr(A/C)} * \frac{(Pr(N)}{Pr(C)} = \frac{1/2}{1} * \frac{1/3}{1/3} = 1/2$

...twice more likely to win the car if changing door!!!