Forensic Genetics and Legal Medicine 2019-2020

4th May 2020

Kinship testing (standard paternity testing)

Probability of mutually exclusive events

Probability of independent events

$$
\operatorname{Pr}(5) * \operatorname{Pr}(6)=1 / 36
$$

Conditional probabilty: events are dependent

or

The frequency of individuals with a blue right eye is
 $25 \% \operatorname{Pr}(\mathrm{dx})=0.25$
The frequency of individuals with a blue left eye is $25 \% \operatorname{Pr}(s x)=0.25$

Probability of having two blue eyes?

- $0.25 \times 0.25=0.06$
$\operatorname{Pr}(l e f t$ eye is blue / right eye is blue) ~ 1
- Pr (both left and right eye are blue) $=1 \times 0.25$

Thomas Bayes

And now ladies and gentlemen, the Monty Hall problem*

*Go to last two slides for solution information that is later obtained.
\checkmark B1 and B2 are two mutually exclusive and exhaustive events
\checkmark A is the conditioning element

	$\operatorname{Pr}\left(\mathrm{B} 1_{\text {and }} \mathrm{A}\right)$	$\operatorname{Pr}\left(\mathrm{B} 1{ }_{\text {and }} \mathrm{A}\right)$
$\operatorname{Pr}(\mathrm{Bl} 1 / \mathrm{A})=$	$\operatorname{Pr}(\mathrm{A})^{*}$	ndA) $+\operatorname{Pr}(\mathrm{B} 2$

Imagine you are blindfolded and then asked to pick a ball from a bag...
$\left.\begin{array}{ll}\checkmark & =\text { p of picking a black ball from the bag } \\ \checkmark & =p \text { of picking a white ball from the bag }\end{array}\right\}$
\checkmark Each ball carries a number (1 or 2)

- of black balls, $3 / 4$ carry number 1 :
- of white balls, $1 / 4$ carry number 1 :
$\checkmark \quad=$ the ball you picked carries number 1!
* \quad = p of picking a number 1 ball is the sum of ps of picking a black number 1 ball or a white number 1 ball

For B2 we'll have:

$$
\operatorname{Pr}(\mathrm{B} 2 / \mathrm{A})=\frac{\operatorname{Pr}(\mathrm{A} / \mathrm{B} 2)}{*} \operatorname{Pr}(\mathrm{~B} 2)
$$

We can also calculate the ratio of $\operatorname{Pr} \mathrm{B} 1$ and B 2 given A :

| $\operatorname{Pr}(\mathrm{B} 1 / \mathrm{A})$ | $\operatorname{Pr}(\mathrm{A} / \mathrm{B} 1) * \operatorname{Pr}(\mathrm{~B} 1)$ |
| :--- | :--- | $\operatorname{Pr}(\mathrm{A} / \mathrm{B} 2)^{*} \operatorname{Pr}(\mathrm{~B} 2)+\operatorname{Pr}(\mathrm{A} / \mathrm{B} 1) * \operatorname{Pr}(\mathrm{~B} 1)$

In our "bag \& balls" example,

In DNA identity testing the two mutually exclusive and exhaustive hypotheses are:
the tested subject is the donor of the stain; the tested subject is not the donor of the stain.

Additional information comes from genetic data

In paternity testing the two mutually exclusive and exhaustive hypotheses are :
the tested subject is the biological father; the tested subject is not the biological father.

Additional information comes from genetic data

(A) Mendelian Inheritance

(B) Example

PATERNITY INDEX, PI

Consider a biallelic locus with alleles P and Q Let's assume the child is "PQ", mother "QQ" and alleged father "PQ"

$$
=\begin{aligned}
& \operatorname{Pr}(\mathbf{G} / \mathbf{P}) \quad \operatorname{Pr}(\mathrm{P}) \\
= & \operatorname{Pr}(\mathbf{G} / \mathbf{N}) \quad \operatorname{Pr}(\mathrm{N})
\end{aligned}
$$

$\operatorname{Pr}(G / P)=? ? ?$
$\operatorname{Pr}\left(F_{P Q} / M_{Q Q} \& P_{P Q}\right)=\operatorname{Pr}\left(F_{P Q}\right.$ and $\left.M_{Q Q} \& P_{P Q}\right) / \operatorname{Pr}\left(M_{Q Q} \& P_{P Q}\right)$

Possibile couples	Freq. Possibile couples	Freq. of children PP	Freq. of children PQ	Freq. of children QQ
PPXPP	p^{4}	p^{4}	-	-
PPXPQ	$2^{2} p^{3} q$	$2 p^{3} q$	$2 p^{3} q$	-
PPXQQ	$2 p^{2} q^{2}$	-	$2 p^{2} q^{2}$	-
PQXPQ	$2^{2} p^{2} q^{2}$	$p^{2} q^{2}$	$2 p^{2} q^{2}$	$p^{2} q^{2}$
PQXQQ	2	-	$2 p q^{3}$	$2 p q^{3}$
QQXQQ	q^{4}	-	-	q^{4}

$\operatorname{Pr}\left(F_{P Q} / M_{Q Q} \& P_{P Q}\right)=\operatorname{Pr}\left(F_{P Q}\right.$ and $\left.M_{Q Q} \& P_{P Q}\right) /$

PATERNITY INDEX, PI

Consider a biallelic locus with alleles P and Q Let's assume the child is "PQ", mother " $Q Q$ " and alleged father "PQ"

$\operatorname{Pr}(\mathbf{G} / \mathbf{N}) \quad \operatorname{Pr}(\mathbf{N})$
$\operatorname{Pr}(G / P)=? ? ?$
$\operatorname{Pr}\left(F_{P Q} / M_{Q Q} \& P_{P Q}\right)=\operatorname{Pr}\left(F_{P Q}\right.$ and $\left.M_{Q Q} \& P_{P Q}\right) / \operatorname{Pr}\left(M_{Q Q} \& P_{P Q}\right)$
$\operatorname{Pr}(G / N)=? ? ?$
$\operatorname{Pr}\left(F_{P Q} / M_{Q Q}\right)=\operatorname{Pr}\left(F_{P Q}\right.$ and $\left.M_{Q Q}\right) / \operatorname{Pr}\left(M_{Q Q}\right)$

Possibile couples	Freq. Possibile couples	Freq. of children PP	Freq. of children PQ	Freq. of children QQ
PPXPP	p^{4}	p^{4}	-	-
PPXPQ	$4 p^{3} q$	$2 p^{3} q$	$2 p^{3} q$	-
PPXQQ	$2 p^{2} q^{2}$	-	2	-
PQXPQ	$4 p^{2} q^{2}$	$p^{2} q^{2}$	$2 p^{2} q^{2}$	$p^{2} q^{2}$
PQXQQ	$4 p q^{3}$	-	2	$2 p q^{3}$
QQXQQ	q^{4}	-	-	q^{4}

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{G} / \mathrm{P}) \quad \operatorname{Pr}(\mathrm{P}) \quad 1 / 2 \quad \operatorname{Pr}(\mathrm{P}) \\
& \text { = ------------- X ------------------------ } \\
& \operatorname{Pr}(\mathbf{G} / \mathbf{N}) \quad \operatorname{Pr}(\mathrm{N}) \quad \mathrm{p} \quad \operatorname{Pr}(\mathrm{~N})
\end{aligned}
$$

$\operatorname{Pr}(G / P)=\operatorname{Pr}\left(F_{P Q} / M_{Q Q} \& P_{P Q}\right)=\operatorname{Pr}\left(F_{P Q}\right.$ and $\left.M_{Q Q} \& P_{P Q}\right) / \operatorname{Pr}\left(M_{Q Q} \& P_{P Q}\right)=$ $p q^{3} / 2 \mathrm{pq}^{3}=1 / 2$
$\operatorname{Pr}(G / N)=\operatorname{Pr}\left(F_{P Q} / M_{Q Q}\right)=\operatorname{Pr}\left(F_{P Q}\right.$ and $\left.M_{Q Q}\right) / \operatorname{Pr}\left(M_{Q Q}\right)=\left(p^{2} q^{2}+p q^{3}\right) / q^{2}=$ $p^{2} X(p+q) / q^{2}=p$

If $\mathrm{p}=0.2(1 / 5)$ then $\mathrm{PI}=5 / 2=2.5$. The observed genotypes are 2.5 times more likely according to the hypothesis of paternity.
PI values obtained with a standard set of 16 independent STRs can be freely multiplied, reaching, on average, PI combined values of $\sim 5 \times 10^{10}$

It is reasonable to assume that, a priori, the probability of paternity and non paternity are equal (Essen-Moeller transformation), consequently:

```
1/2
--- * }
```

p

If $\mathrm{p}=0.2, \mathrm{PI}=5 / 2$ given the observed genotypes: it means that in 5 cases out of 7 (71%) paternity is true, whereas in 2 cases out of 7 the observed genetic compatibility is adventitiuos. 5/7 = 5/2 / (5/2+1)

W is then calculated according to the general formula:

What PI/W to enough paternity?

- Gendiagnostikgesetz (new German law regulating human genetics as well as paternity analyses, 2013): W > 99.9\% (PI > 1000)
- Italian Society for Human Genetics (SIGU, 2013): PI > 10000
- Italian working group of the International Society for Forensic Genetics (GeFI, 2018): W > 99.99\% (PI > 10000)

Gc = child Gm = mother Gtm = alleged father

$$
\operatorname{Pr}(\mathrm{PP} \mid \mathrm{PP})=\frac{[p(1-\theta)+2 \theta][p(1-\theta)+3 \theta]}{(1+\theta)(1+2 \theta)}
$$

$$
\operatorname{Pr}(\mathrm{PQ} \mid \mathrm{PQ})=\frac{2[p(1-\theta)+\theta][q(1-\theta)+\theta]}{(1+\theta)(1+2 \theta)}
$$

$\theta / F_{S T}=$ the probability that two alleles, one taaken at random from each of two individuals are identical by descent (0.01-0.03)

\#	Gc	G_{M}	$\mathrm{G}_{\text {tM }}$	Numerator (X)	Denominator (Y)	Paternity Index (PI)
1	PP	PP	PP	1	p	1/p
2			PQ	1/2	p	1/2p
3			QR	0	p	0
4		PQ	PP	1/2	$\mathrm{p} / 2$	1/p
5			PO	1/4	$\mathrm{p} / 2$	1/2p
6			PR	1/4	$\mathrm{p} / 2$	1/2p
7			QR	0	$\mathrm{p} / 2$	0
8	PQ	pp	00	1	,	1/q
9			PO	1/2	q	1/2q
10			QR	1/2	q	1/2q
11			RS	0	q	0
12		PQ	PP	1/2	(p+q)/2	1/(p+q)
13			PQ	1/2	(p+q)/2	1/(p+q)
14			PR	1/4	(p+q)/2	1/[2(p+q)]
15			QR	1/4	(p+q)/2	1/[2(p+q)]
16			RS	0	(p+q)/2	0
17		QR	Q0	0	$\mathrm{p} / 2$	0
18			PQ	1/4	$\mathrm{p} / 2$	1/2p
19			QR	0	$\mathrm{p} / 2$	0
20			QS	0	$\mathrm{p} / 2$	0
21			RS	0	$\mathrm{p} / 2$	0

Formulas can be modified in order to accomodate:

- Coancestry

Mutations

Mutation rate of standard forensic STRs (μ) is on average 2 out of 1000 meiosis (i.e. 3% chance of mutation whit a 15 STRs panel).
μ varies according to:

- parent's sex (higher in males than females depending on gametogeneis)
- Father's age (higher in older fathers)
-STR molecular structure (higher for more complex STRs)
Dedicated software treat mutation according to mutation models of different complexity. Easiest way:
$\mathrm{PI}_{\mu}=\mathrm{Pl}$ at a locus showing a mismatch
$\mu=$ locus specific mutation rate
$P E_{x}=$ locus specific average probability
of exclusion

$$
\begin{aligned}
\mathrm{PI}_{\mu}= & \mu / P \mathrm{PE}_{\mathrm{X}} \\
& H^{2}\left(1-2 \mathrm{H}^{\left.(1-H)^{2}\right)}\right.
\end{aligned}
$$

H = locus heterozygosity
$H=1-\Sigma p^{2}$
$p=$ frequency of each allele for that STR

Apparent Mutations Observed at STR Locl in the Couree of Paternity Teating*					
STR Systom	Maternal Maicses (\%)	Fatsomal Moicocs (\%)	N.mber from ather	Total Number of M.tations	Mutation Rata
C3F1PO	95304,307 (0.03)	9825643,118 (0.15)	410	1,487/947,425	0.19\%
FGA	$\begin{gathered} 205.408 .230 \\ (0.05) \end{gathered}$	$\begin{gathered} 2.210682,775 \\ (0.32) \end{gathered}$	710	3,1251,101,005	0.23\%
TH01	31,327,172 (0.009)	41452,392 (0.009)	28	100779,554	0.01\%
TPOX	18400,061 (0.004)	$\begin{aligned} & 54457,420 \\ & (0.012) \end{aligned}$	28	1001857,481	0.01\%
vwa	$\begin{gathered} 184554,398 \\ (0.03) \end{gathered}$	$\begin{gathered} 1,4228873,547 \\ (0.17) \end{gathered}$	814	2,4801,437,985	0.17\%
D381358	60405,452 (0.015)	$\begin{gathered} 71315588355 \\ (0.13) \end{gathered}$	379	1,152,964,288	0.12\%
D68813	111/451,736 (0.025)	$\begin{gathered} 763655,603 \\ (0.12) \end{gathered}$	385	1,25501,107,339	0.11\%
D73820	54,440,562 (0.013)	$\begin{gathered} 745644,743 \\ (0.12) \end{gathered}$	285	1,089 1, ,085,305	0.10\%
D881178	96/409,869 (0.02)	$\begin{gathered} 779499.968 \\ (0.16) \end{gathered}$	354	1,2391090,837	0.14\%
D133317	$\begin{gathered} 1924482,135 \\ (0.04) \end{gathered}$	$\begin{gathered} 881,621,145 \\ (0.14) \end{gathered}$	435	1,55811,103,282	0.14\%
D183638	$\begin{gathered} 1291467,774 \\ (0.03) \end{gathered}$	5401494,4E5 (0.11)	372	1,0411962,239	0.11\%
D18851	$\begin{gathered} 185 / 295.244 \\ (0.05) \end{gathered}$	$\begin{gathered} 1,094 / 494,098 \\ (0.22) \end{gathered}$	456	1,746/790,342	0.22\%
D21811	46,4435.388 (0.11)	7721526,708 (0.15)	550	1,816/962,096	0.19\%
Fonta D	12,18,701 (0.05)	2122.501 (0.09)	24	57741,202	0.14\%
Panta E	29144,311 (0.065)	75:55,719 (0.136)	5	163/400,030	0.19\%
D231383	1572,830 (0.021)	$\begin{gathered} 157 / 152.310 \\ (0.10) \end{gathered}$	90	252/225,140	0.12\%
D183433	3870,001 (0.05)	78/103,489 (0.075)	71	1877173,490	0.11\%
$\begin{gathered} 8 E 82 \\ (\mathrm{ACTEP2}) \end{gathered}$	20330 ($<$ D.30)	330151,610 (1.54)	None reportod	33051,940	0.84\%

Data usod with permission from Amarican Aasodation of Blood Barks (AMBS) 2003 Ann.al Roport.

How many mismatches are enough to exclude paternity?

- Gendiagnostikgesetz (new German law regulating human genetics as well as paternity analyses, 2013): at least 15 STR need to be typed and >3 mismatches need to be observed to declare paternity exclusion
- Italian Society for Human Genetics (SIGU, 2013): Formally regardless of the number of observed mismatches, it is \rightarrow always necessary to perform LR (PI) calculations and paternity can be excluded when Pl is <0.0001
- Italian working group of the International Society for Forensic Genetics (GeFI, 2018): at least 15 STR need to be typed and >2 mismatches need to be observed to declare paternity exclusion (PI calculation optional)

And now Iadies and gentlemen, the Monty Hall problem...solved

A priori
$\operatorname{Pr}(\mathrm{N})=\operatorname{Pr}($ car not changing door) $=\operatorname{Pr}(c a r)=$
$\operatorname{Pr}(\mathrm{C})=\operatorname{Pr}(c a r$ changing door) $=\operatorname{Pr}($ door chosen does not hide car) * Pr(new door picked doesn't hide goat) =
...to change or not to change is irrelevant
Additional information (A)
Monty (who knows where the car is) shows that, behind one of the doors which was not chosen, there's a goat

Conditional probability
$\operatorname{Pr}(\mathrm{A} / \mathrm{N})=\operatorname{Pr}($ Monty shows that goat, given that the door initially chosen hides the car) =
$\operatorname{Pr}(\mathrm{A} / \mathrm{C})=\operatorname{Pr}(\operatorname{Pr}($ Monty shows that goat, given that the door initially chosen hides a goat) =

A posteriori
$\frac{\operatorname{Pr}(\mathrm{N} / \mathrm{A})}{\operatorname{Pr}(\mathrm{C} / \mathrm{A})}=\frac{\operatorname{Pr}(\mathrm{A} / \mathrm{N})}{\operatorname{Pr}(\mathrm{A} / \mathrm{C})} * \frac{(\operatorname{Pr}(\mathrm{~N})}{\operatorname{Pr}(\mathrm{C})}=\frac{1 / 2}{1} * \frac{1 / 3}{1 / 3}=$
...twice more likely to win the car if changing door!!!

