\square William A. Alaynick ${ }^{1}$, Thomas M. Jessell${ }^{2}$, and Samuel L. Pfaff ${ }^{\prime}$
${ }^{1}$ HHMI, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; ${ }^{2}$ HHMI, Columbia University, New York, NY 10032, USA
\square
-

SnapShot: Spinal Cord Development

William A. Alaynick ${ }^{1}$, Thomas M. Jessell ${ }^{2}$, and Samuel L. Pfaff ${ }^{1}$
${ }^{1}$ HHMI, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
${ }^{2}$ HHMI, Columbia University, New York, NY 10032, USA

This SnapShot outlines the sequential genetic steps that generate neuronal diversity within an idealized spinal segment of the mouse. The progression from neural progenitor cells to postmitotic neurons spanning embryonic day 9.5 (e9.5) to e18.5 is shown from left to right, although some events are not strictly linear. Diverse combinations of Hox transcription factor expression along the rostrocaudal (i.e., head-to-tail) axis further subdivide motor neurons, but for clarity, these patterns are not reflected in this idealized segment. Recent studies have begun to define the functions of the cardinal cell types in the spinal cord, particularly those that relate to locomotor behaviors.

Precursor Generation

Cellular identities are defined by the influence of a two-dimensional coordinate system of morphogen gradients that act on the neuroepithelial cells occupying the ventricular zone of the ~e9.5 neural tube. A Sonic hedgehog (Shh) gradient produced by the notochord and the floor plate establishes the identity of five ventral progenitor cell domains (p0, p1, p2, pMN, and p3), marked by the expression transcription factors with a basic-helix-loop-helix (bHLH) domain and a homeodomain. Genes repressed by Shh are categorized as class I (e.g., Irx3), and genes induced by Shh are termed class II (e.g., Olig2). Typically, the transcription factors in adjacent progenitor domains repress expression of factors in neighboring domains, preventing cells from developing with hybrid identities. Transforming growth factor β (TGF β) family proteins from the overlying ectoderm (e.g., Bmp4) and roof plate (e.g., Gdnf7) produces dorsalizing signals. The dorsal-most progenitor domains, pd1-pd3, depend on TGF β, whereas pd4-pd6 and pdIL are independent of TGF β. The somite produces retinoic acid (RA) that controls subtype and dorsoventral identity through Pax6. Within this idealized segment of spinal cord, these morphogen gradients establish 12 progenitor domains that grossly give rise to seven dorsal interneuron progenitor divisions, pd1-6 and pdIL; four ventral interneuron progenitor divisions, p0-3; and one motor neuron progenitor domain, pMN. Ventral progenitor domains (e.g., pMN) produce one cell type early (e.g., motor neurons) followed by another cell type later (e.g., oligodendrocytes).

Refinement and Subdivision of Classes

As cells mature within their respective progenitor zones and begin to exit the cell cycle, an abrupt transition occurs in the transcriptional profile of cells. The postmitotic cells from some progenitor domains (e.g., p2) become further diversified through intercellular signaling interactions (e.g., Notch-Delta), which leads to the generation of excitatory V2a and inhibitory V2b neurons from common ancestral progenitor cells. As neuron development progresses, the neurotransmitter properties of the cells emerge, and they express phenotypic markers, such as neurotransmitter biosynthetic enzymes (e.g., choline acetyltransferase [ChAT] or glutamic acid decarboxylase [GAD]) and vesicular transport proteins (e.g., vGluT2). Many progenitor domains tend to give rise to neurons with similar initial axonal growth trajectories; however, the pd1, p1, and p0 domains produce interneuron subtypes with diverse axonal projections, which are clear exceptions to this trend. The diversification of a single neuronal class is best exemplified by motor neurons.

Motor Neurons

Motor neurons are subdivided by their cell body positions within motor columns. Each motor column consists of multiple motor pools that innervate individual muscles. Generic postmitotic motor neurons become subdivided into the medial and hypaxial motor columns (MMC and HMC), which innervate the back (epaxial) and trunk (hypaxial) musculature, respectively. At limb levels, the medial and lateral portions of the lateral motor column (LMCm and LMCI) innervate the ventral and dorsal portions of the limb, respectively. Additional motor neurons form the autonomic nervous system as preganglionic (PGC) cholinergic neurons of sympathetic and parasympathetic targets. Pools of motor neurons innervating the same muscle can be defined by unique combinations of transcription factors (e.g., Nkx6 and Ets classes).

Locomotor Circuitry

 isolated cords, called fictive locomotion. Molecular genetic studies have defined roles for several classes of interneurons found in the ventral cord. Mutant mice lacking contralaterally projecting inhibitory $D b x 1^{+}$V0 class interneurons display a disorganized left-right alternation. Use of diphtheria toxin to ablate ipsilaterally projecting excitatory Chx10 ${ }^{+}$V2a cells also disturbs right-left alternation and, notably, at higher speeds, animals transition to a left-right synchronous gallop that is not seen in wild-type mice. Loss or inactivation of ipsilateral inhibitory En1+ V1 neurons results in a marked slowing of locomotion, whereas inactivation of contralaterally projecting excitatory Sim1+ V3 interneuron class disrupts the regularity of the rhythm. Inactivation of the Pitx2 ${ }^{+} \mathrm{VO}_{\mathrm{C}}$ class disrupts locomotion during swimming due to altered integration of sensory feedback. The ipsilaterally projecting glutamatergic $\mathrm{Hb9}^{+} \mathrm{V}_{\mathrm{x}}$ class is rhythmically active during locomotion. The Ptf1a+ dl4 class forms inhibitory presynaptic contacts on glutamatergic proprioceptive sensory neurons in the ventral spinal cord. The dl6 and dl3 interneuron classes make direct connections onto motor neurons; however, their roles have not been determined.

Abbreviations

Ascl1, achaete-scute complex homolog 1 (Drosophila); BarH1, BarH-like homeobox; Bhlhb5, basic-helix-loop-helix family, member e22; Bmp2, bone morphogenetic protein 2; Bmp4, bone morphogenetic protein 4; Bmp5, bone morphogenetic protein 5 ; Bmp6, bone morphogenetic protein 6; Bmp7, bone morphogenetic protein 7; Bmpr1a, bone morphogenetic protein receptor, type 1a; Bmpr1b, bone morphogenetic protein receptor, type 1b; Brn3a, POU domain, class 4, transcription factor 1; Chx10, visual system homeobox; Dbx1, developing brain homeobox; Dbx2, developing brain homeobox; IsI1, ISL1 transcription factor, LIM homeodomain; IsI2, ISL2 transcription factor, LIM homeodomain; Lbx1, ladybird homeobox homolog 1; Lhx1, LIM homeobox protein 1; Lhx2, LIM homeobox protein 2; Lhx4, LIM homeobox protein 4; Lhx5, LIM homeobox protein 5; Lhx9, LIM homeobox protein 9; Lmo4, LIM domain only 4; Lmx1b, LIM homeobox transcription factor 1 beta; Math1, atonal homolog 1 (Drosophila); Msx1, homeobox, msh-like 1; Ngn1, neurogenin 1; Ngn2, neurogenin 2; Ngn3, neurogenin 3; Notch, Notch gene homolog 1 (Drosophila); Nkx2.2, NK2 transcription factor related locus 2; Nkx2.9, NK2 transcription factor related, locus 9; Nkx6.1, NK6 homeobox 1; Nkx6.2, NK6 homeobox 2; Olig2, oligodendrocyte transcription factor 2; Olig3, oligodendrocyte transcription factor 3; Pax2, paired box gene 2; Pax3, paired box gene 3; Pax6, paired box gene 6; Pax7, paired box gene 7; PLCgamma, phospholipase C, gamma 1; Ptf1a, pancreas-specific transcription factor 1a; Pitx2, paired-like homeodomain transcription factor 2; RA, retinoic acid; Scl, T cell acute lymphocytic leukemia 1; Shh, Sonic hedgehog; Sim1, single-minded homolog 1; Sox1, SRY box-containing gene 1; Sox14, SRY box-containing gene 14; Sox21, SRY box-containing 21; Tlx1/3, T cell leukemia, homeobox $1 / 3$; Wt1, Wilms tumor homolog 1 .

REFERENCES

Dasen, J.S., and Jessell, T.M. (2009). Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 88, 169-200.
Goulding, M. (2009). Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507-518.
Goulding, M., and Pfaff, S.L. (2005). Development of circuits that generate simple rhythmic behaviors in vertebrates. Curr. Opin. Neurobiol. 15, 14-20.
Grillner, S., and Jessell, T.M. (2009). Measured motion: searching for simplicity in spinal locomotor networks. Curr. Opin. Neurobiol. 19, 572-586.
Helms, A.W., and Johnson, J.E. (2003). Specification of dorsal spinal cord interneurons. Curr. Opin. Neurobiol. 13, 42-49.
Jankowska, E. (2001). Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J. Physiol. 533, 31-40.
Jessell, T.M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29.
Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29, 279-306.
Ladle, D.R., Pecho-Vrieseling, E., and Arber, S. (2007). Assembly of motor circuits in the spinal cord: driven to function by genetic and experience-dependent mechanisms. Neuron 56, 270-283.

Lee, S.K., and Pfaff, S.L. (2001). Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat. Neurosci. 4 (Supp/), $1183-1191$.

