
The rapidly decreasing costs of high-throughput 
sequencing and other massively parallel technologies, 
such as mass spectrometry, are enabling their use in 
clinical research and clinical practice. Exome and 
genome sequencing are already being used to aid diag-
noses, particularly of rare diseases1–3, to inform cancer 
treatment and progression and, in early efforts, to create 
predictive models of disease in healthy individuals4–6. 
Numerous research efforts and companies are focusing 
on genome-wide profiles of genetic, gene expression 
and other omics data, such as the microbiome (BOX 1), 
as biomarkers for disease (see TABLE 1 for details). For 
instance, genome-wide association studies (GWAS) 
have been successful in identifying risk loci for disease. 
However, in many cases, the causal variant or gene is not 
identified7. Here, other omics technologies can provide 
a useful glimpse into the precise pathophysiology of 
the disease. Experiments generating data that are more 
proximal to an organismal phenotype, such as prote
omics, can be expensive and are often not comprehen-
sive, and a challenge remains to distinguish the causal 
origin of a disease. Thus, except in rare cases, no single 
technology can capture the complexity of the molecular 
events that lead to human disease.

Ideally, different technologies would be combined 
both to help diagnose disease and to create a holistic 
picture of human phenotypes and disease. However, 
implementation of multi-omics data introduces new 
informatics and interpretation challenges. Specifically, 
novel analytical and statistical methods are needed for 
combining disparate data sets, as well as standardized 

quality control metrics. Additionally, the field must 
address challenges in the interpretation of molecular 
events and, accordingly, their actionability and whether 
they can guide therapeutics and clinical care.

Below, we describe ways in which integrative omics 
can impact medicine by helping to manage health, as 
well as diagnose and treat disease. We discuss preclinical 
and clinical applications for rare Mendelian diseases, such 
as muscular dystrophy, and more common diseases, 
such as autism and Alzheimer disease. Furthermore, we 
investigate the use of multiple levels of omics technol-
ogies in cancer diagnosis and treatment. Throughout, 
we discuss the advantages of integrating multiple data 
sets, for instance, where one technology may address 
shortcomings of another to help provide insight into a 
mechanism of disease. Additionally, we discuss current 
methods as well as challenges in optimally combining 
and interpreting data from multiple sources, with some 
promising examples of their successful applications to 
elucidating mechanisms of human disease.

Dissecting Mendelian disease
In North America, approximately 10% of paediatric hos-
pital admissions and 20% of infant deaths are attribut
able to Mendelian diseases8–10. In many cases, clinicians 
and families affected by Mendelian diseases are turning 
to exome and genome sequencing to find the causative 
mutations of their disease, which, depending on the dis-
ease and study design, has proved successful in 25–50% of 
cases previously not solved by targeted gene panels3,11–13. 
For diseases that typically act via a recessive mechanism, 
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Actionability
The property of a molecular 
finding that would result in a 
specific medical 
recommendation that is 
expected to improve a disease 
outcome.

Mendelian diseases
Diseases caused by a single 
locus or gene and that follow 
Mendelian patterns of 
inheritance (for example, 
dominant or recessive).
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Abstract | Advances in omics technologies — such as genomics, transcriptomics, proteomics and 
metabolomics — have begun to enable personalized medicine at an extraordinarily detailed 
molecular level. Individually, these technologies have contributed medical advances that have 
begun to enter clinical practice. However, each technology individually cannot capture the entire 
biological complexity of most human diseases. Integration of multiple technologies has emerged 
as an approach to provide a more comprehensive view of biology and disease. In this Review, we 
discuss the potential for combining diverse types of data and the utility of this approach in human 
health and disease. We provide examples of data integration to understand, diagnose and inform 
treatment of diseases, including rare and common diseases as well as cancer and transplant 
biology. Finally, we discuss technical and other challenges to clinical implementation of 
integrative omics.
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Genetic aetiology
The genetic factors that cause 
a particular disease.

these investigations are most effective when the causal 
variant is either already in a variant–disease database, such 
as Clinvar, or a protein-truncating (for example, stop-gain, 
frameshift or essential splice site) variant in a known dis-
ease gene. However, in some cases, the effect of the variant 
may be more subtle (for example, an intronic variant cre-
ating a cryptic splice site), the variant may be difficult to 
detect owing to somatic mosaicism or several candidates 
are equally likely to be deemed causal. Furthermore, such 
diagnoses are additionally complicated when the genetic 
aetiology is not well known or when the candidate variants 
fall in genes that are less well described. Integrating addi-
tional information, such as RNA sequencing (RNA-seq) 
or network analyses, can be useful for detecting molecu-
lar events that prioritize among likely causal variants or 
provide additional evidence that a candidate mutation 
is causative. For instance, in a multi-omics analysis of 
patients with uncharacterized Fanconi anaemia, DNA 
sequencing and array comparative genomic hybridiza-
tion (aCGH) were effective in identifying the mutations 
that were eventually deemed causal, whereas RNA-seq 
provided evidence of pathogenicity for some unsuspect-
ing variants, including intronic and synonymous variants 
that affect splicing patterns, as well as a deletion of a non-
coding exon and upstream region that resulted in ablated 
expression of a transcript14.

More recently, two systematic studies of approxi-
mately 50 patients each have provided estimates of the 
additional gain in diagnosis rate using RNA-seq and 
other technologies (FIG. 1), ranging from 10% to 35%15,16. 
In one of these studies, a diagnostic investigation of 
patients with muscular dystrophy (MD), no causal vari
ants were identified through whole-exome sequencing 
(WES), but RNA-seq data identified splice anoma-
lies that revealed variants with cryptic splicing effects. 
Notably, even if whole-genome sequencing (WGS) 
were performed on these patients, these variants would 

have been identified but likely not flagged as causal, as 
many of them were intronic or otherwise not predicted 
to affect splicing. Given its rapidly decreasing costs 
and substantial information gain, RNA-seq is likely to 
become a powerful tool in characterizing disease patho-
physiology in clinical practice. Similarly, as proteomics 
technologies become cheaper and more accessible, they 
may be used to identify protein level changes brought 
about, for instance, by missense variants that affect  
protein stability or post-translational modifications.

Genetic architecture of common disease
Most common diseases such as diabetes17, obesity18, 
schizophrenia19,20 and autism21 are complex and a result 
of a combination of multiple genetic and environmen-
tal factors. Thus far, thousands of genomic loci have 
been significantly associated with human diseases (for 
a recent review, see REF. 22); however, once established 
as bona fide associations, the difficult task remains of 
characterizing the genes in the context of the molecular 
pathophysiology of the disease and its interacting genes 
and pathways. To this end, a number of methods have 
arisen to analyse multiple omics data sets, including  
network and enrichment analysis.

Network analyses. Integration of multiple orthogonal 
data types can be used to narrow the search space for 
disease genes and identify causal mechanisms of disease. 
Specifically, network models, including protein–protein 
interaction, regulatory and co‑expression networks, have 
proved to be a valuable resource for prioritizing and iden-
tifying disease genes and pathways (for recent reviews, 
see REFS 23–26). These networks can be used with any 
genome-scale data set, including single-nucleotide poly
morphism (SNP) or gene expression data, to investigate 
the topological properties of the most significantly 
disease-associated genes in a study, particularly when no 
or few hits reach genome-wide significance. In the case 
of genetic variation data, a challenge exists in mapping 
SNPs to the affected gene: in some cases, the effect of 
the variant is clear — such as a frameshift variant in an 
immune-response-related gene, NOD2, in Crohn’s dis-
ease27 — but more often, the affected gene for a variant 
may be ambiguous28. Additionally, SNPs may be grouped 
into genes to increase power, but patterns of linkage  
disequilibrium must be addressed29.

Despite these challenges, network methods have 
yielded successful insights into human disease. For 
instance, in patients with autism spectrum disorder 
(ASD), genes harbouring de novo missense or nonsense 
mutations are enriched for genes with high degrees of 
connectivity in protein–protein interaction networks 
to all other genes and particularly previously ASD-
implicated genes30. In this way, such approaches provide 
a mechanism to prioritize among putative disease genes, 
either by suggesting a greater functional impact due to 
their presence as a hub gene in a network or through 
guilt‑by‑association with previously associated genes.

Additionally, two recent studies from our laboratory 
integrating genomic, RNA-seq and proteomic data have 
identified new genes and complexes involved in autism 

Box 1 | Incorporating the microbiome into integrative omics

The microbiome has been associated with many common human diseases; however, an 
additional complication exists, as the direction of causality is not clear. Whereas causality 
is simple in genomic data, where (with the exception of cancer processes that cause 
mutations) DNA influences phenotypes, it is more difficult to disentangle whether 
microbiome composition is a cause or effect of disease, as these studies require expensive 
longitudinal or interventional experiments or mouse models that may not provide 
comprehensive insight into human biology. Nonetheless, it is very clear that patients with 
diseases, such as inflammatory bowel disease110,111, type 2 diabetes112 and obesity113,114, 
have different microbiome profiles from those of healthy controls. In addition, the 
microbiome has a strong influence on immune function, which in some cases has been 
putatively causally linked to disease in animal models (reviewed in REF. 115).

As our understanding of the microbiome progresses, integrative analysis of this and 
other omics technologies is certain to advance our understanding of human disease. 
Recently, human genetic profiles have been shown to influence overall gut microbiota 
composition116,117, which could suggest putative causal explanations for some 
disease-associated genetic loci118 (for recent reviews, see REFS 119,120). Additionally, 
interactions between human genetics and microbiomes have been shown to influence 
disease, highlighting the potential for simultaneous interrogation of the two profiles121. 
Likewise, metabolic signalling between hosts and their microbiomes has become an 
area of active research, and there is increasing evidence that metabolite influences 
from gut bacteria may play a role in human disease122. Thus, it is likely that integrated 
analysis across genome, metabolome, microbiome and other omics profiles will prove 
beneficial for managing health and disease.
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Expression quantitative 
trait loci
(eQTLs). Genetic variants that 
are statistically associated with 
gene expression.

Heritability
The fraction of phenotypic 
variability of a trait that can be 
attributed to additive genetic 
variation.

DNase hypersensitivity
A measure of openness of 
chromatin, as measured by its 
sensitivity to cleavage by 
DNase I.

and characterized their function31,32. Specifically, analysis 
of protein–protein interaction networks revealed a mod-
ule (or coherent community of interacting genes) that 
was enriched for known genes involved in autism, as well 
as genes harbouring copy number mutations and rare 
mutations in autism cases. This module was enriched for 
genes involved in synaptic transmission, and RNA-seq 
revealed that many of the genes in a submodule were dif-
ferentially expressed in the corpus callosum in patients 
with ASD, providing a putative molecular explanation 
for the observation that many individuals with ASD 
have a smaller corpus callosum than controls32. Similarly, 
mapping of rare variants in patients with autism onto 
protein complexes revealed both novel proteins and 
novel molecular machinery involved in autism, includ-
ing the histone deacetylase (HDAC) chromatin remod-
elling complexes and other protein complexes31. Thus, 
integrating protein interaction data with WGS and WES 
data can provide new insights into important diseases, 
including autism, type 2 diabetes33 and heart disease34 
(additionally reviewed in REF. 35).

Enrichment analysis. Recently, numerous large-scale 
enrichment analyses have been performed in order to 
understand the global mechanisms of information flow 
from DNA to physiology. Protein-coding variation is 
fundamental to many traits and, as such, associated 
loci from GWAS for many traits are enriched for pro-
tein-sequence-disrupting (non-synonymous) varia-
tion36. However, only a small fraction of associations 
fall into this category and, therefore, integration of 
non-coding regulatory annotations with disease associ-
ation data can be valuable for identifying disease genes 
and disease aetiology (reviewed in REF. 37). In particu-
lar, assays for measuring gene expression (RNA-seq) as 
well as regulatory activity in regions that control gene 
expression (such as chromatin immunoprecipitation 
followed by sequencing (ChIP–seq) for transcription 
factor binding sites or DNase-seq for detecting regions 
of open chromatin) have been valuable in identify-
ing tissue-specific signatures of genomic regulation. 

Accordingly, disease-associated variants are enriched 
among expression quantitative trait loci (eQTLs) as well 
as in transcription factor binding sites38–41 and, thus, it 
is likely that many disease aetiologies may act through 
regulatory mechanisms. Indeed, a recent study of 108 
loci associated with schizophrenia provided evidence for 
20 of these loci having changes in gene expression that 
could at least partially explain their associations20.

Recently, partitioning heritability methods using 
GWAS summary statistics and functional annotation 
data elucidated the relative contribution of coding and 
regulatory variants, suggesting that the bulk of heritabil-
ity of many common traits stems from variants in regu
latory regions (regions of open chromatin as measured 
by DNase hypersensitivity)42, as well as many cell type-
specific enhancers43. Additionally, such enrichment 
information can be used to discern causal variation as 
well as to identify novel genes for diseases and traits by 
increasing the weight of annotations that are specific to 
each trait36. As of this writing, such methods are not yet 
in clinical practice but have been invaluable in revealing 
the aetiology of many common diseases.

Narrowing causal mechanisms in common disease
As previously mentioned, GWAS have been successful in 
identifying loci that are statistically associated with dis-
ease, but they rarely identify causal variation. Integration 
of multiple data types, such as functional annotation 
data, can also provide insight into the potential function 
of specific disease-associated variants.

Indirect integration across individuals. Currently, a 
cost-effective method to ascertain the causality of vari-
ants associated with a trait is using multiple independent 
data sets to pinpoint causal mechanisms from a set of 
candidate loci with biological evidence44. Such a process 
may begin with a GWAS, after which, a set of genome-
wide significant loci are assayed for functional follow‑up; 
the specific experiment may depend on the types of loci 
identified or the genetic architecture of the disease. For 
coding variants, follow‑up experiments that ascertain 

Table 1 | Data types for integrative omics

Data type Large-scale research efforts Utility and advantages Major caveats

Genetic variation Many GWAS consortia, 1000 
Genomes, gnomAD and UK 
Biobank

Unbiased source of genetic basis 
of disease and direct inference of 
causality

At least one step removed from the 
phenotype

Epigenetics ENCODE and Roadmap 
Epigenomics Project

Functional impact and typically easy 
to infer causality

Not applicable for all phenotypes

Gene expression GTEx and GEUVADIS Inexpensive assay for an intermediate 
step towards the phenotype

Not applicable for all phenotypes

Proteomics and metabolomics CPTAC, EDRN and Common 
Fund

Likely to be very close to the 
phenotype

Expensive and difficult to scale 
(proteomics)

Microbiome Human Microbiome Project Likely to be very close to the 
phenotype and measures a 
combination of genetic and 
environmental influences

Combination of genetic and 
environmental influences makes 
it difficult to infer the direction of 
causality

In this table, ‘phenotype’ refers to an organismal phenotype. CPTAC, Clinical Proteomic Tumour Analysis Consortium; EDRN, Early Detection Research Network; 
ENCODE, Encyclopedia of DNA Elements; GEUVADIS, Genetic European Variation in Health and Disease; gnomAD, Genome Aggregation Database; GTEx, 
Genotype–Tissue Expression; GWAS, genome-wide association study.
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the effect of the variant on protein structure or function 
are ideally performed to demonstrate causality45. For 
non-coding variants, the effects are often more difficult 
to interpret, but recent large-scale epigenetic studies, such 
as the Encyclopedia of DNA elements (ENCODE)46 and 
the Roadmap Epigenomics47 projects, can suggest possible 
mechanisms for regulatory control, as well as transcription 
factors to target for follow‑up experiments. For instance, a 
detailed study on a variant associated with systemic lupus 
erythematosus (SLE) showed that the variant also affects 
nuclear factor‑κB (NF‑κB) binding and is associated with 
expression of tumour necrosis factor‑α induced protein 3 
(TNFAIP3) at both the mRNA and protein level48.

Recently, two investigations from Manolis Kellis 
and colleagues integrating multiple data types have 
yielded fruitful insights into the molecular pathology 
of Alzheimer disease and obesity. First, combining gene 
expression and epigenomic data, the group showed 
that genes that are upregulated in an Alzheimer disease 
mouse model show immune cell enhancer signatures49. 
Crucially, whereas a link between immune system genes 
and Alzheimer disease had long been previously estab-
lished, multiple omics data types proved useful in this 
scenario to establish a direction of effect, showing that 
there is a concerted increase in expression and regulatory 
activity at immune system genes in Alzheimer disease. 
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Figure 1 | Identifying a causal variant to diagnose a patient with a rare disease. In Kremer et al.15 and Cummings 
et al.16, multi-omics approaches were used to aid in the diagnosis of patients with undiagnosed disease. Although exome 
and genome sequencing can be effective in identifying causal genetic variation between 20% and 50% of the time, 
depending on the mode of inheritance and phenotype, the majority of cases cannot be solved by these technologies 
alone. a,b | Using RNA sequencing (RNA-seq) data from patient tissue, these approaches were able to make a molecular 
diagnosis for many patients, identifying genes with aberrant expression, splicing or allele-specific expression, which 
would suggest a molecular mechanism for the disease progression. c | In some cases, functional validation, such as 
proteomics, can lend additional support to these diagnoses. Figure is adapted from REF. 15, Macmillan Publishers Limited.
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Similarly, integrating epigenome and chromosomal 
conformation data, as well as expression information 
from patients with an FTO obesity allele and a number 
of other data types, provided a mechanistic explanation 
for the risk allele50 (FIG. 2). Genome editing of the risk 
allele using CRISPR–Cas9 restored aberrant expression 
and thermogenesis, suggesting a potential therapeutic 
avenue for obesity phenotypes.

Direct integration within an individual. Whereas syn-
thesizing data from multiple disparate technologies can 
create a link between layers of biological mechanism, 
characterizing multiple omics profiles in a single indi-
vidual will be a powerful tool for creating a holistic view 
of the molecular effects that lead to physiological pheno
types. However, these approaches can be expensive, as 
they require multiple interventions and technologies on 
the same individual and, as such, thus far have had lim-
ited sample sizes. The first such study was performed 
in our laboratory and followed a single individual for 
over 7 years6 (and M.P.S., unpublished observations), 
whereas a similar study followed another individual for 
1 year51. In Chen et al.6, genomic analyses predicted an 
elevated risk of type 2 diabetes, which was subsequently 
revealed through detailed omics analyses, including 
transcriptomics, proteomics, metabolomics and other 
measurements. In particular, genes involved in insulin 
signalling and response were found to be downregulated 
by RNA-seq and by liquid chromatography–tandem 
mass spectrometry (LC–MS/MS) proteomics during a 
respiratory syncytial virus infection, which coincided 
with increased blood glucose concentration to diabetic 
levels. These approaches are advantageous in their  
ability to track a mechanistic link across a shared genetic 
and individual background, as one can follow a pro-
gression of molecular events, such as the differential  
expression of a GWAS-identified disease-associated gene 
leading to differences in RNA and protein levels and their  
corresponding metabolites.

However, as omics profiling experiments have a 
high multiple hypothesis testing burden (for example, 
across all genes in the genome or thousands of meta
bolites), larger sample sizes will be useful to determine 
the generality of such correlations. A recent study moni-
toring various omics profiles across 23 individuals iden-
tified inflammatory signatures during weight gain, and 
found that certain metabolic pathways did not return 
to baseline after subsequent weight loss52. This analysis 
highlights the extent of similarities in longitudinal omics 
profiles across individuals, as well as individual-specific 
signatures at steady state and under experimental pertur
bations. To further qunatify these differences, projects 
have been initiated to extend such analyses to thousands 
of individuals, characterizing preterm births, inflam-
matory bowel disease and type 2 diabetes53. In a similar 
vein, two separate groups recently profiled genetic and 
metabolomics data: one of these calculated polygenic 
risk scores for over 100 individuals and correlated these 
with measurements of metabolites54, whereas the other 
identified rare deleterious variants in healthy volunteers 
that correlated with outliers of individual metabolites 

and metabolic pathways55. Additionally, as reference 
databases of omics data for healthy individuals become 
available (as are already available for exome56, genome 
(for example, the Genome Aggregation Database 
(gnomAD)) and RNA-seq57 data), it will become easier 
to interpret individual-level data in the context of these 
control cohorts.

Other efforts include the Framingham Heart Study 
and genome characterization  studies, such as the 
Genotype–Tissue Expression (GTEx)57 project, with its 
proposed extension to analyses beyond gene expression 
in the enhanced GTEx (eGTEx) project58. These projects 
have adopted a breadth-first strategy for omics profiling, 
in which a high number of individuals are characterized 
with a limited panel of technologies that assay a single 
set of molecular markers (for example, whole-genome 
DNA methylation assays).

Cancer
One area where multiple omics analyses have had and 
will continue to have enormous impact is in cancer 
profiling, diagnosis and treatment. Indeed, many of 
the previously discussed strategies (for example, net-
work methods) will be effective in identifying genetic 
mechanisms of cancers. However, there are conceptual 
differences in cancers that complicate their analyses and 
require special handling. In addition to the technical 
challenges of calling somatic variants (see the ‘Accuracy 
and validation’ subsection in the ‘Challenges’ section 
below), the majority of genetic changes evident in cancer 
cases are benign and do not drive cancerous cell growth; 
therefore, determining which mutations are drivers or 
which pathways are involved remains a considerable 
challenge. Additionally, although some cancers share 
genetic signatures across individuals, there is still a high 
level of diversity among driver mutations, which can lead 
to differences in prognosis and therapeutics.

Identifying driver mutations. A typical process to iden-
tify driver mutations involves WGS of multiple tumours 
to identify recurrently mutated genes59. Overlaying func-
tional data can help to prioritize this information, as 
driver mutations are more likely to be in genes that are 
expressed in a given cancer. For instance, in an analysis 
of driver mutations identified using WES coupled with 
copy number variation (CNV) microarray data, RNA-
seq data were used to identify an expressed gene fusion 
of EGFR–SEPT14, which was functionally validated to 
affect glioma growth60. In a different analysis using sim-
ilar technologies, the driver mutations and processes 
underlying multiple metastases within an individual 
were shown to be largely similar across metastases, sug-
gesting that a single metastasis is sufficient for down-
stream analysis61. In this way, using additional omics 
data complements genetic data, providing a mechanism 
to filter the deluge of genetic variation to functionally 
relevant causal variants.

Molecular signatures of cancer. In addition to iden-
tifying driver mutations, multiple types of omics data 
can reveal general biochemical pathways that are active 
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in individual cancers and classify them into subtypes.  
As such, this can be a valuable tool for ascertain-
ing which pathways to target within a patient, even if 
strong candidate mutations are not detected in those 
pathways — for example, owing to difficult to char-
acterize non-coding mutations or indirect effects. For 
instance, clusters of transcriptomics and DNA methy
lation patterns have been used to identify subtypes of 
cancers, which have varying survival prognoses59,62.  

More recently, three studies of the Clinical Proteomic 
Tumour Analysis Consortium (CPTAC) have used 
proteomic approaches to identify cancer subtypes for 
colorectal, ovarian and breast cancer based on protein 
expression signatures63–65. Importantly, the proteomics 
data revealed overlapping but not identical correlation 
with the transcriptome and genetic data, indicating 
that the different data types expose different types of 
information. These studies demonstrated the distinct 
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genetic and transcriptional processes that translate into 
proteomic alterations. Finally, integration of imaging 
information with omics information is expected to be 
valuable in cancer diagnosis and prognosis66,67.

Recent developments in characterizing the non-
coding regions that regulate gene expression have 
become increasingly valuable for understanding the 
regulatory landscape of cancer. Studies integrating ref-
erence data sets of regulatory information46,47 with WGS 
data from The Cancer Genome Atlas (TCGA) revealed a 
number of regulatory regions that are enriched for muta-
tions in patients with cancer68–71. In these cases, causal 
genetic variation in these non-coding regions is still dif-
ficult to pinpoint, highlighting the continuing need for 
research into prioritizing such variation; nevertheless, 
shared network topology across individuals with the 
same cancer can inform cancer subtypes that may have 
different prognoses and therapeutic strategies. Finally, 
given the strong dependence of cancerous growth on 
metabolic changes, it is likely that metabolomics will also 
play an important role in cancer diagnostics or prognosis 
in the future.

Challenges
Until now, most integrative models have been reported 
and published in research settings. However, the adop-
tion of clinical genomics has expanded rapidly over the 
past few years from the first successful diagnosis1 to 
multi-institutional and international adoption72. In the 
same vein, longitudinal multi-omics profiling, with its 
first recent research examples6,54, may similarly emerge 
as a clinical tool.

However, for clinical adoption of any technology 
to occur, high specificity and sensitivity are required, 
both in detection and interpretation. At present, aside 
from the use of WES or WGS in exceptional cases, 
such technologies are not regularly used across clini-
cal practices because for many diseases, they have not 
been proved superior to current tests. Going forward, 
clinical guidelines must be established to ensure accu-
racy and efficacy, and tests to show non-inferiority and 
cost-effectiveness must be performed.

Nonetheless, omics profiling can be an effective 
way of detecting large-scale or pathway-level altera-
tions — cheaper and often more comprehensive than 
performing thousands of individual tests — and lon-
gitudinal profiling can show patient-specific trends 
and add statistical support through repeated measure-
ments6. Although challenges remain in establishing 
clinical guidelines, many of the concepts surrounding 
the interpretation of genetic variants (particularly rare 
or novel variants) may apply to a general molecular 
event (such as a differentially expressed gene, novel 
protein phosphorylation or unique metabolome signa-
ture) as our understanding of the biology and reference 
databases mature.

Analytical challenges. There are various analytical chal-
lenges that must be addressed to enable the widespread 
adoption of integrative omics in clinical practice, par-
ticularly those of statistical methods for data aggregation, 
scalability and integration into electronic health records 
(EHRs). Most importantly, a robust and reproducible 
statistical framework is needed to properly analyse mul-
tiple disparate data sets, each with their own variances 
and biases. Multi-omics data can be analysed in a multi-
stage or meta-dimensional fashion (reviewed in REF. 73). 
Briefly, one option for drawing inferences from these 
data involves pairwise analyses of data sets, mounting 
evidence to support a signal. However, analysing three 
or more data sets simultaneously requires more sophis-
ticated multi-dimensional methods, such as Bayesian 
models74, neural networks75 or dimensionality reduc-
tion76. This is further complicated by the fact that various 
omics data types are fundamentally different: for instance, 
genetic variation data are discrete and static, whereas 
RNA-seq measurements are continuous and can provide  
longitudinal information.

Although the data analysis methods described above 
are effective for learning about biology and disease,  
they are not specifically designed to apply this informa-
tion to individual-level data for clinical purposes. In the 
genomics space, with an individual’s genotype and a data-
base of results from GWAS, one can compute a polygenic 
risk score to assess an individual’s risk of disease4,77 (for 
recent reviews on methodology, see REFS 22,78). A major 
obstacle remains in building such frameworks for mul-
tiple omics profiles, which is likely to face some of the 
same challenges, such as the difficulty in applying results  
discovered in one population to individuals in another79,80.

In addition to challenges with analytical approaches, 
these analyses and the storage of all associated data will 
require tremendous computational resources: although 

Figure 2 | From genome-wide association studies to mechanism. In a recent study, 
Claussnitzer and colleagues present a comprehensive approach50 to identifying a causal 
mechanism for an obesity-associated variant in the FTO gene. Part a shows an overview 
of the deciphered biological mechanisms and the numbered steps of the strategy 
referred to below. From the initial genome-wide association study (GWAS), the 
significant association of the FTO region with obesity is shown in the Manhattan plot 
(part b). First, the researchers established the relevant tissue or cell type (step 1) as well as 
the downstream target genes using regulatory genomics, including chromatin state 
information and chromosomal conformation (Hi‑C) data. Here, they established the 
variant as an expression quantitative trait locus (eQTL) for the developmental genes 
iroquois homeobox 3 (IRX3) and IRX5 (step 2), where the risk allele shows increased 
expression of these genes but not others in the vicinity (part c). They demonstrate that 
expression of IRX3 and IRX5 is anti-correlated and correlated with genes involved in 
mitochondrial function and adipocyte size, respectively (part d). Next, they established 
the causal nucleotide variant (step 3) in an AT‑rich interactive domain-containing protein 
5B (ARID5B) motif (step 4) using CRISPR–Cas9 to show its molecular effects, including 
altered signatures of expression and phenotypic effects on the regulation of energy 
balance (step 5). Finally, they establish causality of the variant on an organismal level 
using mouse models (step 6). AKTIP, AKT interacting protein; CEU, Utah residents (CEPH) 
with northern and western European ancestry; CHD9, chromodomain helicase DNA 
binding protein 9; CRNDE, colorectal neoplasia differentially expressed; FXR, farnesoid 
X-activated receptor; LD, linkage disequilibrium; PGC1α, peroxisome proliferator-
activated receptor‑γ co-activator 1‑α; PRDM16, PR domain zinc-finger protein 16;  
RBL2, RB transcriptional co-repressor like 2; RXR, retinoid X receptor; SNPs, 
single-nucleotide polymorphisms; TF, transcription factor; TSS, transcription start site; 
UCP1, mitochondrial brown fat uncoupling protein 1. Figure is adapted from The New 
England Journal of Medicine, Claussnitzer, M. et al., FTO obesity variant circuitry and 
adipocyte browning in humans, 373, 895–907, Copyright© (2015) Massachusetts Medical 
Society, REF. 50. Reprinted with permission from Massachusetts Medical Society.
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Structural variants
A class of genetic variation that 
is typically 1 kb or larger, which 
includes copy number 
duplications, insertions or 
deletions, as well as 
translocations and inversions.

the amount of data for multiple omics technologies on 
a single individual may be manageable (for example, 
terabyte-scale (1012 bytes)), these data must be put into 
a larger context to understand deviations from the back-
ground distribution, which requires data from thousands 
of samples (exabyte-scale (1018 bytes)). Fortunately, 
cloud-computing-based options have begun to allevi-
ate these concerns81, providing elastic computation and 
storage facilities based on specific requirements from 
each hospital or healthcare provider system while simul-
taneously promoting reproducibility in computational 
processes82.

At present, such integrative data sets often do 
not have a standard format for research use, let alone 
for use in a structured clinical system; therefore, the 
infrastructure to house and manage these data will be 
required, which introduces financial and administra-
tive burdens. In particular, health informaticians will be 
tasked with building a robust infrastructure for storing 
genetic and transcriptomic data in the EHR. Moreover, 
determining which information will be reported back 
to a patient and incorporated into an EHR will require 
concerted efforts from clinicians and researchers.

Accuracy and validation. Individually, genome-wide 
data sets carry inherent error rates83, and structural var-
iants are still difficult to detect and, as such, are rarely 
called. The accuracy of more continuous and longitu-
dinal data, such as mRNA expression and proteomic 
data, may be more difficult to assess depending on the 
specific tissue assayed, but these technologies are highly 
reproducible for technical and biological replicates84,85. 
In some situations, these technologies independently 
identify different aspects of the same biological process 
and thus can validate each other: for instance, RNA-
seq can internally replicate exonic variants identified 
through WES or WGS, whereas proteomic expression 
can validate expression from RNA-seq. However, in a 
clinical setting, where high confidence is required, these 
tests are currently validated by independent technolo-
gies, potentially including established clinical tests, such 
as enzymatic or single-assay tests.

For cancer genomics, disentangling heterogeneous 
data is a substantial challenge. As each tumour is a 
mosaic of cells with varying degrees of somatic muta-
tion, variant detection is difficult, even before attempting 
to discern driver mutations from passenger mutations. 
In particular, cancers display signatures of somatic 
mutations that are clonal or found in only a subset of 
cells in a tissue, complicating their discovery, and high-
coverage and high-quality data are necessary to distin-
guish these from sequencing errors (for a recent review 
on the computational methods to do so, see REF. 86). 
Ultra-deep sequencing of cell-free DNA to follow the 
presence of cancer mutations and single-cell sequencing 
to detect cancer heterogeneity are emerging as power-
ful methods. However, cell-free DNA for early cancer 
detection requires robust methods to distinguish gen-
uine low-frequency events from sequencing errors, and 
single-cell sequencing is still expensive. Nonetheless, 
such methods have already been used to disentangle 

tumour heterogeneity87 and identify a secondary finding 
of cancer in a prenatal test88. As additional omics data 
sets are integrated with ultra-deep sequencing, we expect 
the advantages of each of these methods to complement 
each other and provide a uniquely powerful method for 
molecular interrogation in the clinic.

Interpretation. Even with highly accurate data, another 
difficulty lies in the interpretation of genome-scale 
results, particularly rare and novel molecular events, 
which often vastly outnumber the number of events that 
can be reasonably functionally validated. Many variants 
in an individual genome, especially if they have not been 
seen before, do not have a clear functional effect and are 
known as ‘variants of uncertain significance’ (VUS)89. 
This problem is compounded for other data types, such 
as transcriptomic or proteomic data, and decisions for 
what constitutes a clinically significant molecular event, 
for example, an RNA expression threshold, are difficult 
to determine across disparate data types. Fortunately, 
large reference population data sets, which are already 
available for exome56 and genome sequencing (gnomAD) 
and gene expression57,90, will aid in the interpretation of 
rare events by providing a quantitative context as to their 
actual frequency in a population. In particular, a causal 
variant would be expected to have a significantly higher 
frequency in affected individuals than in a wider asymp-
tomatic population, which can lend support to or negate 
previous suggestions of pathogenicity91,92. Additionally, 
physicians may discover additional pathogenic molecu-
lar events for unrelated conditions, which are known as 
secondary or incidental findings93, over which there is 
still considerable debate as to the extent to which results 
should be returned to patients (for a recent review, see 
REF. 94).

When integrating multiple omics technologies, these 
problems are occasionally ameliorated, particularly for 
rare and novel molecular events for which statistical 
analysis is not feasible. In particular, direct integration 
of omics technologies that expose orthogonal informa-
tion may provide additional evidence for a molecular 
event: for instance, if a VUS is shown by RNA-seq to 
affect splicing of a key disease gene, this can corroborate 
a potential pathogenic mechanism16. This way, multiple 
technologies can establish a chain of causality that a  
single technology cannot.

Finding the relevant tissue. In order to maintain consist-
ency across samples, many large-scale research studies 
have been performed on readily available samples, such 
as blood or cell lines, including transformed lympho-
blastoid cell lines90,95. However, for clinical applications, 
it is ideal to study tissues that are relevant for a particu-
lar disease as gene expression varies considerably across 
tissues96,97 (FIG. 3). The GTEx, Roadmap Epigenomics 
and Functional Annotation of Mammalian Genome 5 
(FANTOM5) projects provide reference data sets for 
multi-tissue gene expression and epigenomics data47,57,98. 
In many cases, the disease-relevant tissue may be well 
described, such as muscle tissue for MD; however, if the 
disease is less well defined or the tissue is not available, 
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a tissue may be identified from a network analysis of 
the disease99. Indeed, using the disease-relevant tis-
sue has proved beneficial in diagnosis of patients with 
MD, where transcriptome analysis of the muscle tis-
sue resulted in diagnoses that would not have been 
made via easily accessible proxy tissue, such as blood 
or fibroblasts, owing to the relatively low expression of 
disease-relevant genes16. In using such data for clinical 
utility, care should be taken to ensure that data from 
patient samples are comparable to reference data sets, 
which will be crucial going forward for additional omics 
data, such as metabolomics and proteomics. Of course, 
such analyses are further complicated where there is 
substantial cellular heterogeneity in the tissue, such as 
the brain: in these cases, technologies with single-cell 
resolution will provide valuable insights into resolving 
each individual cell type. In cases where primary tissue 
is difficult to obtain or maintain in culture, introduc-
tion of a mutation into induced pluripotent stem (iPS) 
cells using CRISPR systems can provide a powerful  
framework for molecular validation100.

Actionability and therapeutics. Perhaps most impor-
tant to the discussion of the use of any technology in 
the clinic is that of actionability. Indeed, a piece of infor-
mation does not need to inform a course of action to be 
useful: having the knowledge of a diagnosis and ending 
a diagnostic odyssey can be invaluable to patients and 
families101 (for a thorough perspective on the purpose 
of genetic testing for diagnoses, see REF. 102). However, 
data that can inform an intervention are additionally 
beneficial, in a framework that has been termed ‘preci-
sion medicine’ or ‘personalized medicine’. In particular, 
classifying a patient’s subtype of a disease to recommend 
a specific drug, determining whether a potential trans-
plant is a good match on the basis of omics profiling 
(BOX 2) or identifying a causal mechanism for a novel 

disease (and developing a therapeutic that can target the 
direct molecular outcome) can improve outcomes and 
prolong the lives of patients. However, even non-causal 
molecular events that are statistically associated with 
an outcome can be actionable, particularly in the form 
of lifestyle change recommendations, including diet, 
monitoring and preventive treatments; indeed, indi-
viduals with high genetic risk of coronary heart disease  
experience greater benefits from statin treatment103,104.

Conclusions and future perspectives
At present, only in very few cases have omics technol-
ogies (particularly genome sequencing and, to a lesser 
extent, RNA-seq) been shown to outperform traditional 
clinical tests and, therefore, substantial technical and 
regulatory hurdles exist to incorporating these technol-
ogies into clinical practice. However, as the use of mul-
tiple technologies enables a clearer picture of health and 
disease, it is likely that integration of these technologies 
will become commonplace in future clinical practice. 
Additionally, as recent large biobank initiatives, such 
as the UK Biobank, Million Veterans Project and All 
of Us, collect biological data and perform multiple lay-
ers of omics assays on millions of individuals, they will 
yield profound insights into human disease and serve as 
valuable reference databases for additional studies and 
clinical applications.

Predictive models of disease risk for healthy individu-
als and early detection of disease. As with traditional 
clinical tests, molecular measurements from large-scale 
omics data can be integrated into models of disease risk. 
In particular, recently, a set of methods has been devel-
oped for calculating the genetic risk of a particular dis-
ease, known as a polygenic risk score (recently reviewed 
in REF. 105). These methods have been successful in 
stratifying patients into high-risk and low-risk categories 

Figure 3 | Finding the relevant tissue. Although blood (part a) is often the most convenient tissue to assay owing to its 
availability and ease of procurement, it is often not the ideal tissue for observing a molecular phenotype for a given 
disease, which may primarily affect other tissues such as brain (part b) or lung (part c). In particular, its transcriptional 
landscape, including expression levels, splicing patterns and enhancer usage, may not be amenable to detecting 
differential uses of these patterns compared with a tissue that is more proximally affected by a disease, such as muscle 
tissue in muscular dystrophy.
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for diseases such as cardiovascular disease77, as well as 
for predicting traits such as educational attainment106. 
Single-assay tests are often performed to follow up the 
results of predictions of disease risk, whether derived 
from genetics or family history. For example, if a patient 
is predicted to be at risk of type 2 diabetes, then assays 
for glucose and glycosylated haemoglobin (HbA1c) lev-
els and other tests, such as a glucose tolerance test, are 
performed. However, in the future, if a metabolomics 
panel could be performed simultaneously at high quality 
and low cost, this would obviate the need for the single 
follow‑up assay. In addition, data from wearable devices 
that continuously collect data are likely to be very pow-
erful in combination with omics data for early detection 
of disease before symptom onset107.

Disease management. In addition to prediction and 
early diagnosis, integrative omics is expected to become 
increasingly powerful for disease treatment and prog-
nosis. Information from the transcriptome, epigenome, 
microbiome, proteome and metabolome as well as imag-
ing and wearable data will all be used to help decipher dis-
ease to facilitate prognosis and thereby guide treatment. 
In cancer, DNA and RNA sequencing of tumour–normal 
pairs has identified translocation and gene expression 
signatures, which has suggested targeted therapies that 
resulted in disease regression108,109. In the future, as multi-
ple omics measurements are associated with prognosis in 
other diseases, it is likely that such data-driven paradigms 
will be powerful tools for medical research and also  
facilitate clinical diagnosis and treatment.
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Box 2 | Multiple omics profiling of transplant donors and recipients

Every year, thousands of patients are given organ and haematopoietic stem cell transplants. However, mortality among 
transplant patients remains very high. A standard practice for matching donors with recipients involves human leukocyte 
antigen (HLA) typing, for which methods have been recently developed using high-throughput sequencing 
technologies123,124. However, it is becoming increasingly clear that non-HLA factors can considerably affect prognosis and 
development of graft-versus-host disease (GVHD), as HLA-matched sibling donor transplants convey a lower risk of 
GVHD than HLA-matched but unrelated donor transplants125, and common non-HLA polymorphisms have been 
associated with GVHD126.

Accordingly, many omics applications may be used to determine optimal donor–recipient matches, as well as to 
monitor markers of rejection127. For instance, sequencing cell-free DNA can detect circulating donor DNA128, the 
levels of which are correlated with the severity of organ rejection129. Additionally, sequencing this cell-free DNA can 
simultaneously detect viral DNA to indicate a marker of infection130. Additional omics data, such as RNA or protein 
expression, may also be used to assess compatibility of donor–recipient pairs, as well as monitor for markers of 
rejection (for a recent review, see REF. 131). Integration across multiple omics technologies may well emerge as a 
useful tool for transplant biology.
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