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SUMMARY

Fragile X syndrome (FXS), the most common genetic | BACKGROUND:
form of intellectual disability in males, is caused by || Fragile X syndrome

silencing of the FMR 1 gene associated with hyperme- FMR1 5°UTR hypermethylation

thylation of the CGG expansion mutationinthe 5 UTR
of FMR1 in FXS patients. Here, we applied recently
developed DNA methylation editing tools to reverse
this hypermethylation event. Targeted demethylation
of the CGG expansion by dCas9-Tet1/single guide
RNA (sgRNA) switched the heterochromatin status
of the upstream FMR1 promoter to an active chro-
matin state, restoring a persistent expression of
FMR1 in FXS iPSCs. Neurons derived from methyl-l

DNA editing to reverse
hypermethylation

dCas9-TET1 induces
active chromatin
at FMR1 promoter

ation-edited FXS iPSCs rescued the electrophysio-
logical abnormalities and restored a wild-type pheno-
type upon the mutant neurons. FMR1 expression in
edited neurons was maintained in vivo after engrafting
into the mouse brain. Finally, demethylation of the
CGG repeats in post-mitotic FXS neurons also reacti-
vated FMR1. Our data establish that demethylation of
the CGG expansionis sufficient for FMR 1 reactivation,
suggesting potential therapeutic strategies for FXS.
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FMR1 is a gene encoding for FRMP protein

C66 expansion is associated with genomic regions hypermethylation
and the inibition of FRMP protein
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Fragile X syndrome (FXS) is the most frequent form of intellectual
disability and autism spectrum disorder.

Most cases of FXS are caused by a C66 trinucleotide repeat expansion in
the promoter region of the FMR1 gene classified by the American College
of Medical Genetics guidelines as follows:

normal alleles have between 6 and 44 CGG repeats, gray zone alleles have
between 45 and 54 repeats, premutation alleles have between 55 and 200
repeats, and full mutation alleles have more than 200 repeats.

A CGG trinucleotide repeat (> 200) expansion mutation at the 5 UTR of
FMR1, accompanied by DNA hypermethylation, was thought fo result in
heterochromatin formation at the FMR1 promoter and subsequent
silencing of FMR1 expression in FXS, but the molecular mechanisms are

not fully understood.
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FMRP (fragile X mental retardation protein)
is a an RNA binding protein in neurons and has been shown to be a molecular
brake for local protein synthesis at developing synapses and, hence, is essential
for the maintenance of normal synaptic plasticity

Wild type Fraglle X Syndrome

A D Op -
3 Os aberrant
) transcriptiona
N, 2 o {Lj | JI on
o nucleus JQ1 \

= chromatin O

targets

, mMENA “
regulated transliation S ‘
of target mRNASs
> - - synaptic ()
\\.__ {\.-/ = FMRP () targets
\\~ -
‘convergent effect
on synaptic
J function
G \
synapse )
s ) @




? Methylation Q!

? Demethylation dCas9-Tet1

OFF

FVRT (Xq273) Sy [ 29900tY AI°

CpG Island (CGG)n

FUR1 qummﬁ L2227 AG

CpG Island (CGG)n

“_

Demethylation of the CpG Island

FXSIiPSC FXS neuron Brain




Highlights
e Targeted demethylation of CGG repeats by dCas9-Tet1
reactivates FMR1 in FXS cells

e Demethylation of CGG repeats induces an active chromatin
status for FMR1 promoter

e Methylation-edited FXS neurons behave similarly as wild-
type neurons

e FMRT1 reactivation by dCas9-Tet1 is sustainable in a human/
mouse chimeric model



Targeted demethylation of CGG repeats
by dCas9-Tetl reactivates FMR1 in FXS cells

FXS IPSCs
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Cycle of DNA methylation and demethylation.
Ten eleven translocation, TET dioxygenanses oxidize 5-
methylcytosines (bmCs) and promote locus-specific reversal of
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Active de- methylation is achieved
by iterative oxidation of the methyl
group of 5mC by Tet dioxygenases
and restoration of unmodified
cyto- sines (C). The latter is
thought to occur by either repli-
cation-dependent dilution (not
shown) or TDG glycosylase-
initiated base excision repair. Of
note, TDG can recognize and
excise both 5fC and 5caC. An
alternative direct mechanism is
feasible (grey arrow), but an
enzyme responsible for 5caC
decarboxylation remains to be
identified.
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All the FXS iPSC lines were derived from male patients.

The CGG repeat expansion mutations were verified by Claritas
Genomics Inc with Asuragen AmplideX mPCR approach and the
mycoplasma test was negative.

FXS iPSCs were cultured either with mTeSR1 medium
(STEMCELL, #85850) or on irradiated mouse embryonic
fibroblasts (MEFs) with standard hESCs medium.

dCas9-Tetl1-P2A-BFP, sgRNAs, and AcrITA4 were produced
by transfecting HEK293T cells with FUW constructs or pgRNA
constructs together with standard packaging vectors (pCMV-
dR8.74 and pCMV-VSVG) followed by ultra-centrifugation-
based concentration.

Samples

Primary
cell lines

Preparation
of viral
particles



oll Cultur 5% PEG-it™

{~~~|n| ontaining

bt Solution
Lentrvector ;
Construct .ﬁm ’
. » i‘ G
293TN .
. Producer Cells Pseudoviral Particles -
: ’;":‘:‘i’"‘?g | Concentrate Virus
pPACK™ - Dux™ Mix virus with
Packaging Mix o FanIoux TransDux - add
Transduction Mix directly to cells
Human quan embryonic
LentiStarter Kit (cat# LV050A-1) RETOCYLes (SEF) ""’“e"e""“"”
Component
1 pPACKH1-Plamid Packaging Mix 40 pl
2 PEGAt 5mil
3 TransDux (200x) 50 pi
Animal Models Primary Cells

Phase co ntrast

Mouse Carotid Human Primary Human Embryonic H9 Cells
Artery (GFP) Neurons (GFP)




CONTRUCTS USED IN THE EXPERIMENT

dCas9-Tetl-P2A-BFP  (dC-T) with an
mCherry-expressing sgRNA targeting the E

CGG repeats oA T/ﬂ“
GGCGGCGGCGGCGGCGGCGGNGG (CGG ® :
sgRNA)

dCas9 fused with a catalytically dead Tetl E O
(dC-dT) with the same sgRNA.
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FMR1 and dCas9-TET1 expression
the expression level of FMR1 mRNA in cells with dC-T/CGG sgRNA was restored

to 90% of the one in wild-type WIBR1 human embryonic stem cells (hESCSs)
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FMRP expression was restored in dC-T/CGG sgRNA-expressing FX52 iPSCs
to 73% of the wild-type level in WIBR1 cells,
as shown by |mmunofluorescence stalnlng
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dCas9-TET1 reduced methylation at CpG island
Methylation levels of the CGG repeats in the FMR1 locus by bisulfite sequencing
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https://www.jove.com/video/3170/dna-methylation-bisulphite-modification-and-analysis
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dCas9-TET1 reduced methylation at CpG island
Methylation levels of the CGG repeats in the FMR1 locus
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Off-Target Effects of dCas9-Tet1l/C66 sgRNA

The presence of the CGG SgRNA targeting sequence
GGCGGCGGCGGCGGCGGCGGNGG in other genomic loci raises concerns
regarding off-target effects of the dCas9-Tet1/sgRNA system used.



gRT-PCR analysis of three FX52 iPSC lines with different expression levels
of dCas9-Tetl and different restoration levels of FMR1 normalized to
wild-type WIBR1 hESCs.
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ChIP-Seq against dCas9-TET1
To identify the aspecific binding in three cell lines
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Methylation analysis of genes with dCas9-TET1 binding
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BS-seq showed a 20% and 30% reduction of methylation levels for SHCBPIL
with one CGG sgRNA targeting site and RGPD1 with 6 targeting sites,
respectively, but no detectable methylation changes for the other four genes.



Chromatin Conformation of the Reactivated FMR1 Promoter
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The Kinetics and Persistence of Methylation Editing
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Phenotypical Rescue of FXS-Related Cellular Deficits



FMR1 reactivation on the rescue of FXS-related cellular phenotypes
post-mitotic neurons were derived from the methylation-edited FX52 iPSCs
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Gene expression analysis of lineage-specific markers
suggested comparable differentiation states
between wild-type and mutant neural cultures
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FMR1 Reactivation in Edited FXS Neurons
Is Sustained after Engrafting into Mouse Brains



To test whether the reactivation of FMR1 in methylation-edited FXS cells
is sustainable in vivo, FX52 mock- or methylation-edited neuronal precursor
cells (NPCs) were labeled with GFP or red fluorescent protein (RFP)
lentiviruses (dC-T+C66sgRNA), respectively, and then the mixture of these
two types of NPCs was injected into the P1 mouse brain for subsequent
analysis 1 or 3 months after transplantation

Mixture 1:1 of
mock NPC (GFP)
dC-T+CGG sgRNA NPC (RFP)




Edited FX52 neurons are positive for RFP neuron marker and FMRP
expression -positive FX52 mock neurons (GFP-positive) were negative for
FMRP expression (white arrow)




Deletion of C6G Repeats to Rescue FXS Phenotypes
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Reactivation of FMR1 expression with dCas9-Tet1/C66 sgRNA in
post-mitotic neurons derived from FXS iPSCs
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BS-seq of the FMR1 promoter in these neurons showed a 20% decrease
of the methylation level in the edited FXS neurons
compared with FXS mock neurons
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Spontaneous hyperactivity associated with FXS neurons was reversed
after reactivation of FMR1 in these neurons.
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CONCLUSION
Demethylation of the CGG repeats is sufficient to reactivate FMRL.

Methylation editing is a valid strategy to reactivate FMR1 and to rescue
the FXS-related cellular phenotypes

APPLICATION

Epigenome editing can be easily applied to examine the causality of
disease-associated DNA methylation events and evaluate the
consequences after targeted reversal of the DNA methylation status.



