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MicroRNAs (miBNAs) are ~22 nt RNAs that direct posttranscriptional repression of mRNAtargets in
diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the
expression of most mRNAs. This article reviews advances in our understanding of the defining fea-
tures of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how
metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and
the biological functions of this repression, with a compilation of knockout phenotypes that shows
that important biological functions have been identified for most of the broadly conserved miRNAs

of mammals.
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Metazoan miRNA gene
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Features defining a canonical pre-miRNA
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The structure of five pri-miRNAs. (This figure is not to scale)
a | Exonic miRNAs in non-coding transcripts

b | Intronic miRNAs in non-coding transcripts.

¢ | Intronic miRNAs in protein-coding transcripts.




miRNA biogenesis
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Genomic organization and transcription of miRNA genes

miRNAs are encoded in diverse regions of the genome including both
protein coding and non-coding transcription units.

Approximately 50% of miRNAs are derived from noncoding RNA
transcripts, while an additional ~40% are located within the introns of
protein coding genes.

The majority of miRNAs are transcribed by RNA polymerase (RNA pol) Il
and bear a 7-methyl guanylate cap at the 5' end and poly (A) tail at the 3'
end.

RNA pol lll has also been demonstrated to generate the transcripts of a
subset of miRNAs.
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Drosha-independent
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How is the micro-RNA recognized by AGO proteins ?

Which strand is choosen as guide ?
Apparently depends on two factors:
1. an «A» or «U» is preferred as first base (5’-phospho-)

2. the 5’-end with the lowest thermodynamic stability preferred (pA,pU)
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How do miRNAs direct target recognition ?




How do micro-RNAs direct target recognition ?

Examples from first discovered miRNA-mRNA pairs.
The 5’-end sequence of miRNA is the main determinant of targeting:
Continuous Watson-Crick pairing is required here (6-8 nt).

Target sequences mainly in mRNA 3’-UTR.

seed

(—A—\
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As a rule of thumb, miRNA recognize their targets using 6-8 nt at their 5’-end,

followed by variable loop and some additional complementarity towards 3’-end.

Due to this variable recognition mode, each miRNA recognizes multiple mRNA
(or other RNAs) with variable affinity (can calculate from duplex stability).

The union of possible RNA targets of a specific miRNA is called «regulome».

Several algorithms were developed to predict miRNA targets, and are available
on websites. However, due to uncertainty of recognition modes, these

algorithms work clearly in sub-optimal way.
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Canonical sites of mammalian miRNAs. These canonical sites each have 6—-7
contiguous Watson—Crick pairs (vertical lines) to the seed region of the miRNA
(miRNA positions 2—8). Two of these sites also include an A at position 1. Relative
site efficacy in mammalian cells is graphed to the right (log scale). The most
effective canonical sites are 7—8 nt sites that include a perfect match to the
miRNA seed (positions 2—7, red), whereas the 6 nt sites are the least effective.




Atypical canonical sites
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How is post-transcriptional silencing performed ?

The Dominant Mechanisms of miRNA-Guided Repression in Bilaterian Animals




Slicing is determined only when maximal pairing
between the micro-RNA and target RNA is present
(unusual for miRNA)

This is the condition we see with siRNA (natural or
laboratory)



miRNA nomenclature

Names/identifiers in database: hsa-mir-121 (first letter=species; numbering: sequential)
Gene: mir-121
Mature miRNA: miR-121

If there are distinct precursors / genes expressing the same miRNA, add suffix number:
hsa-mir-121-1
hsa-mir-121-2 ,

Mature miRNAs with closely related sequences: 5 \, MIHNA"
hsa-miR-121a W\
hsa-miR-121b L Irl".lF’. NA

In some case, two functional miRNAs derive from the two arms of the same precursor.

If mature forms unbalanced quantitatively: miR-56 the major form (guide)
miR-56* the minor form (passenger)
If no data or no difference: miR-142-5p (from the 5’ arm)

miR-142-3p (from the 3’ arm)

(from MiRBase database - http://www.mirbase.org/help/nomenclature.shtml



http://www.mirbase.org/help/nomenclature.shtml
http://www.mirbase.org/help/nomenclature.shtml

500 to 600 verified miRNAs in Humans. Low % of total predicted.
Some are conserved down to Fish. Conservation very important to

predict functional miRNAs.

miRNA divided in Families
— same or similar target recognition.

Each miRNA (family) recognizes hundreds of target mRNA (regulon)

The target sets typically show specifically enriched GO terms




Functions of miRNA

The typical mode of target recognition by miRNA, which is limited to few
base pairs, suggests that each miRNA may recognize several mRNAs.

This is exactly what experimentally was seen. Each miRNA down-
regulates the expression of a set of mRNAs (regulon).

Strikingly, these targets are enriched by one to several GO terms that are
coherent with the physiological action of that miRNA.



Micro RNA have been intensively studied during last ten years.

v’ Several miRNAs expressed in each cell

v’ Strong tissue- and cell-specificity

v Developmentally and signal transduction regulated

v" Individual miRNA deletion or overexpression: severe effects on cell physiology
v" miRNA expression profile severely altered in pathologies

v" miRNAs quite stable in serum: possible biomarkers for diseases.

Note: in Humans, 96 miRNA genes (88 families) are conserved among
placental mammals but not in Vertebrates. A third of these families are in two
paternally imprinted clusters.




Functions of miRNA

miRNA are involved in the control of the expression of virtually all genes
involved in most biological phenomena and processes
important in regulatory circuits for feed-forward and feed-back actions.

Many simple circuits involving one miRNA and one mRNA in cell fate decision
processes



Many studies attribute the phenotype of KD/KO to a single miRNA/mRNA
interaction

Quite unlikely unless proven

Main proof: remove or mutate MRE from target mRNA and see whether this will
phenocopy the miRNA.

miRNAs and mRNAs (and most likely also a nuber of IncRNAs) constitute a network

while it is possible that individual deletion phenotype can be attributed to one
prevalen target (as also in the case of overexpression, e.g. cancer) their
physiological role has to be seen in the context of a complex network



How is expression of micro-RNA regulated ?

mMiRNA and regulatory networks



Regulation of miRNA expression: Transcription

A recent large scale mapping of 175 human miRNA promoters through
nucleosome positioning and chromatin immunoprecipitationon-genomic
DNA microarray chip (or ChlP-onchip) analysis suggests that

the promoter structure of miRNA genes, including the relative frequencies
of CpG islands, TATA box, TFIIB recognition, initiator elements, and histone
modifications, is indistinguishable between the promoters of miRNA and
MRNA.

Furthermore, DNA binding factors that regulate miRNA transcription largely
overlap with those that control protein coding genes.

As a further proof, the expression of specific miRNA is also controlled by
signal transduction pathways, in analogy to protein-coding genes.
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Experimental:

Suppression of miRNA can be achieved by antisense technologies, especially
using nonhydrolyzable oligos (anti-miR).

Over-expression: minigenes expressing pri-miRNA or pre-miRNA in constitutive or
inducible vectors. Also synthetic miRNA mimics in transient transfection.

Today: CRISPR-mediated deletion
Expression analysis:
RT-PCR methods available (problem: they are very short!)

Microarrays carrying probes for all known miRNAs available, also made of LNA
oligos instead of normal oligos to increase hybridization specificity

Specific protocol and application for short RNA-seq NGS.



Experimental approaches
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Biochemical isolation
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Bioinformatics
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that of Ligase-mediated HITS-CLIP ( Your Research Paper No. 4 !)



Example of the RNA-Protein immunoprecipitation
methods (RIP, CLIP, HITS-CLIP and further methods)

Vol 460|23 July 2009|dei:10.1038/ nature0 8170 namre

ARTICLES

Argonaute HITS-CLIP decodes
microRNA-mRNA interaction maps

Sung Wook Chi', Julie B. Eang', Aldo Mele' & Robert B. Darnell’

MicroRNAs (miRNAs) have critical roles in the regulation of gene expression; however, as miRNA activity requires base
pairing with only 6—8 nucleotides of messenger RNA, predicting target mRNAs is a major challenge. Recently,
high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional
protein-RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native argonaute (Ago, also called Eif2c)
protein-RN A complexes in mouse brain. This produced two simultaneous data sets—Ago-miRNA and Ago-mRNA binding
sites—that were combined with bioinformatic analysis to identify interaction sites between miRNA and target mRNA. We
validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs
present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA
action in vivo, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions.



IP using the anti-AGO 2AB antibody reveals different complexes
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Mapping of targets

Three replicates from brain
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Main problems associated with CLIP and derivatives:

1. cross-linking requires intense, short-wavelength irradiation and this yields
quite high non-specific results, due to AGO occasional «touch» with
flanking mRNA sequences or completely unrelated RNAs.

2. two separate libraries must be generated, and the lists matched
bioinformatically (guess level).

3. target (m)RNA sequence protected by AGO footprint is quite long and gives
uncertainty to the possible target sequence.

Trying to bypass this problem, researchers developed PAR-CLIP (next slide)



Transcriptome-wide Identification
of RNA-Binding Protein and
MicroRNA Target Sites by PAR-CLIP

Markus Hafner,~ Markus Landthaler,"*5 Lukas Burger,® Mohsen Khorshid,? Jean Hausser,? Philipp Berninger,®
Andrea Rothballer, Manuel Ascano, Jr.,' Anna-Carina Jungkamp,'* Mathias Munschauer,! Alexander Ulrich,?
Greg S. Wardle,! Scott Dewell,? Mihaela Zavolan,®* and Thomas Tuschl'*

"Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186,
Mew York, MY 10065, USA

“Biozentrum der Universitdt Basel and Swiss Institute of Bioinformatics (SIB), Klinge lbergstr. 50-70, CH-4056 Basel, Switzerland
HEenomics Resource Center, The Rockefeller University, 1230 York Avenue, Box 241, Mew York, NY 10065, USA

“Present address: Berin Institute for Medical Systems Biology, Max-Delbriick-Center for Molecular Medicine, 13125 Berlin, Germany
5These authors contributed egually to this work

*Correspondence: mihaslazavolan@unibas.ch (M.Z2.), ttuschl@rockefeller.edu (T.T) RNA transcripts are subject to posttranscriptional
gene regulation involving hundreds of RNA-binding
proteins (RBPs) and microRMNA-containing ribonu-
cleoprotein complexes (miRNPs) expressed in a
cell-type dependent fashion. We developed a cell-
based crosslinking approach to determine at high
resolution and transcriptome-wide the binding sites
of cellular RBPs and miRNPs. The crosslinked sites
are revealed by thymidine to cytidine transitions
in the cDNAs prepared from immunopurified RNPs
of 4-thiouridine-treated cells. We determined the
binding sites and regulatory consequences for sev-
eral intensely studied RBPs and miRNPs, includ-
ing PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and
TNRCBA-C. Our study revealed that these factors
bind thousands of sites containing defined sequence
motifs and have distinct preferences for exonic
versus intronic or coding versus untranslated tran-
script regions. The precise mapping of binding sites
across the transcriptome will be critical to the inter-
pretation of the rapidly emerging data on genetic
Cell 141, 129-141, April 2, 2010 ©2010 Elsevier Inc. 129 variation between individuals and how these varia-
tions contribute to complex genetic diseases.
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2p U on
cDNA library preparation,
PCR amplification
e

Solexa sequencing ( lllumina)

The «U» that was directly cross-linked to the RBP is identified since it is
converted to «C» and consequently the targets are univocally identified.



Major problems for these approaches is that they are indirect, i.e. they
are based on the generation of separate libraries, one for miRNAs and
the other for targets (MRNA, IncRNAs, etc). Matching is always based on
complementarity searches.

For this reason, Darnell’s group developed a strategy to ligate miRNAs
and targets and sequence them together, called CLEAR-CLIP
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miRNA-target chimeras reveal miRNA 3’-end
pairing as a major determinant of Argonaute
target specificity

Michael J. Moore!, Troels K.H. Scheel?:34, Joseph M. Lunal?, Christopher Y. Park'-, John J. Fak’, Eiko Nishiuchi?,
Charles M. Rice? & Robert B. Darnell

Here we report a modified AGO HITS-CLIP strategy termed CLEAR (covalent ligation of
endogenous Argonaute-bound RNAs)-CLIP, which enriches miRNAs ligated to their
endogenous mRNA targets. CLEAR-CLIP mapped ca. 130,000 endogenous miRNA-target
interactions in mouse brain and B40,000 in human hepatoma cells. Motif and structural
analysis define expanded pairing rules for over 200 mammalian miRNAs. Most interactions
combine seed-based pairing with distinct, miRNA-specific patterns of auxiliary pairing. At
some regulatory sites, this specificity confers distinct silencing functions to miRNA family
members with shared seed sequences but divergent 30-ends. This work provides a means
for explicit biochemical identification of miRNA sites in vivo, leading to the discovery that
miRNA 3’-end pairing is a general determinant of AGO binding specificity.
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circuits involving miRNAs



miRNA regulatory circuits

A. Intronic miR circuit
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B-MHC a-MHC
cardiac hypertrophy

The cardiac specific miR-208 family is encoded within the introns of myosin

heavy chain (MHC) genes. miR-208a targets THARP1, and will reduce its
level, thus increasing expression of B-MHC.

This is an auto-boosting circuit that is found altered in cardiac hypertrophy.



B. Enforced expression
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The expression of miR-124 is negatively regulated by the binding of the RE1
silencing transcription (REST) factor to the promoter in non-neuronal cells

In neurons, miR-124 represses translation of SCP1 that is one component of the
REST complex.



C. Transcription factor regulatory circuits
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Examples of feed-back regulation of microRNA transcription through the repression

of transcription factors.



MRNAs that encode for Transcription Factors are very often
controlled by miRNA.

This suggests a model where feed-forward and feed-back

control loops exist.
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Friard et al. BMC Bicinformatics 2010, 11:435
httpe/fwwrw biomedeentral.com/1471-2106/11/435

BMC
Bioinformatics

DATABASE Open Access

CircuitsDB: a database of mixed microRNA/
transcription factor feed-forward regulatory
circuits in human and mouse

Olivier Friard', Angela Re?, Daniela Tavema'**, Michele De Bortoli™”, Davide Cora'™

Abstract

Background: Transcription Factors (TFs) and microRMAs (miRMAs) are key players for gene expression regulation in
higher eukaryotes. In the last years, a large amount of bicinformatic studies were devoted to the elucidation of
transcriptional and post-transcriptional (mostly miRNA-mediated) regulatory interactions, but little is known about
the interplay between them.

Description: Here we describe a dynamic web-accessible database, CircuitsDB, supporting a genome-wide
transcriptional and post-transcriptional regulatory network integration, for the human and mouse genomes, based
on a bicinformatic sequence-analysis approach. In particular, CircuitsDB is currently focused on the study of
mixed miRNA/TF Feed-Forward regulatory Loops (FFLs), i.e. elementary circuits in which a master TF regulates an
miRMNA and together with it a set of Joint Target protein-coding genes. The database was constructed using an
ab-initio oligo analysis procedure for the identification of the transcriptional and post-transcriptional interactions.
Several external sources of information were then pooled together to obtain the functional annotation of the
proposed interactions. Results for human and mouse genomes are presented in an integrated web tool, that

allows users to explore the circuits, investigate their sequence and functional properties and thus suggest possible
biological experimenits.

Conclusions: We present CirouitsDR, a web-server devoted to the study of human and mouse mixed miRMA/S
TF Feed-Forward regulatory circuits, freely available at: httpe//biocluster di.unito.it/circuits/




ceRNAs (competing endogenous RNA)
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Base pairing is the mode of action of competing endogenous RNAs. In this case,
however, the complementarity is between microRNAs (miRNAs) and different targets
(including circular RNAs (circRNAs), IncRNAs, pseudogene transcripts and mRNAs).

Fatica & Bozzoni 2014



Another layer of regulation.....

A Long Noncoding RNA Controls
Muscle Differentiation by Functioning
as a Competing Endogenous RNA

Marcella Cesana,1-® Davide Cacchiarelli,!-® Ilvano Legnini,! Tiziana Santini,? Olga Sthandier,’ Mauro Chinappi,2

Anna Tramontano,234 and Irene Bozzoni! 245"
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Recently, a new regulatory circuitry has been identi-
fied in which RNAs can crosstalk with each other by
competing for shared microRNAs. Such competing
endogenous RNAs (ceRNAs) regulate the distribution
of miIBRNA molecules on their targets and thereby
impose an additional level of post-transcriptional
regulation. Here we identify a muscle-specific long
noncoding RNA, linc-MD1, which governs the time
of muscle differentiation by acting as a ceRNA in
mouse and human myoblasts. Downregulation or
overexpression of linc-MD1 correlate with retardation
or anticipation of the muscle differentiation program,
respectively. We show that linc-MD1 “sponges”
miR-133 and miR-135 to regulate the expression of
MAML1 and MEF2C, transcription factors that acti-
vate muscle-specific gene expression. Finally, we
demonstrate that linc-MD1 exerts the same control
over differentiation timing in human myoblasts, and
that its levels are strongly reduced in Duchenne
muscle cells. We conclude that the ceRNA network
plays an important role in muscle differentiation.
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Figure 7. linc-MD1 Is Conserved in Humans,

m"_‘_fﬂf\ & and It Improves Differentiation of Duchenne
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(C) Schematic representation of the circuitry
linking linc-MD1, miR-135, miR-133, and
muscle differentiation. (Cesana et al., 2011)
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