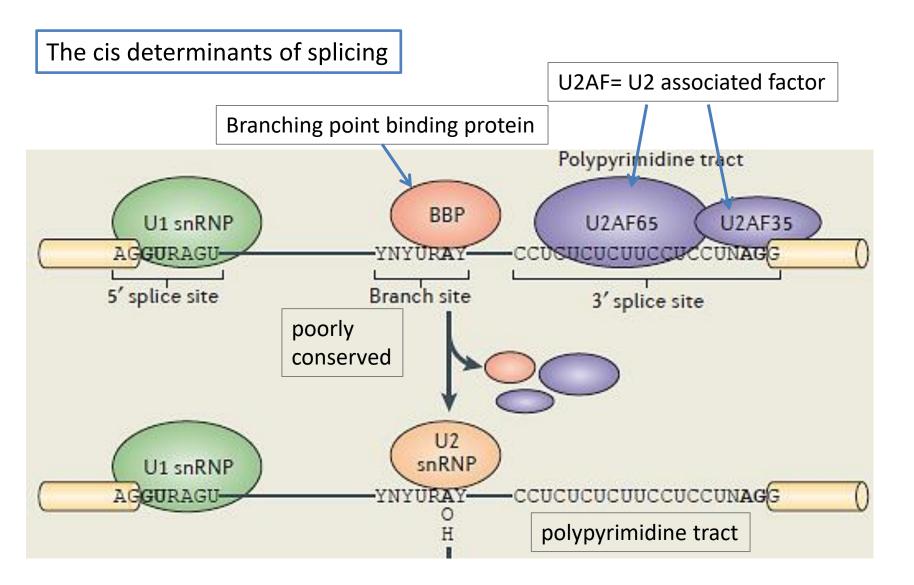

Ch 4 – Lesson 2.1

Alternative splicing regulation

Alternative splicing: a pivotal step between eukaryotic transcription and translation

Alberto R. Kornblihtt, Ignacio E. Schor, Mariano Alló, Gwendal Dujardin, Ezequiel Petrillo and Manuel J. Muñoz


Abstract | Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.

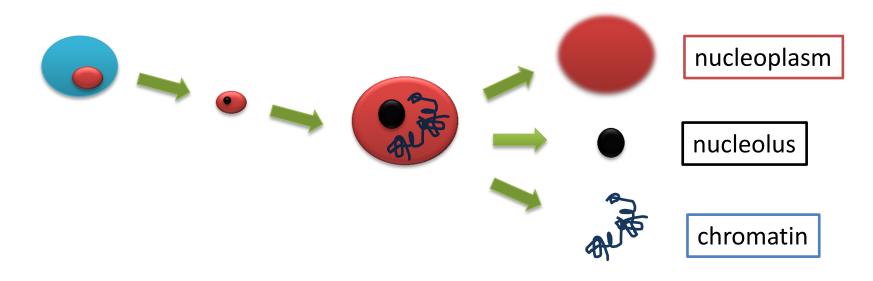
Spliceosome: snRNPs and associated proteins

Table 1. Core Subunits of Human U snRNPs

U snRNP	subunit gene	common subunit name(s)#	molecular mass (kDa) ^b	% U snR.NP	recognizable domain/ functional site ^e
U1 (248.1 kDa)	RNU1	U1 snRNA	53.5	21.6	
	SNRPB, -B2, -D1, -D2, -D3, -E, -F, -G	seven Sm proteins	94.3	38.0	Sm
	SNRNPA	UI-A	31.3	12.6	RRM
	SNRNP70	U1-70k	51.6	20.8	RRM; SR repeat
	SNRNPC	U1-C	17.4	7.0	Znf
U2 (987.4 kDa)	RNU2	U2 snRNA	61.2	6.2	
	SNRPB, -B2, -D1, -D2, -D3, -E, -F, -G	seven Sm proteins	94.3	9.6	Sm
	SNRPA1	U2A'	28.4	2.9	LRR
	SNRPB2	U2B"	25.4	2.6	RRM
	SF3A1	SF3al 20	88.9	9.0	SWAP; UBQ domain
	SF3A2	SF3a66	49.3	5.0	Znf
	SF3A3	SF3a60	58.6	5.9	Znf; SAP
	SF3B1	SF3b155	145.8	14.8	HEAT repeat
	SF3B2	SF3b145	100.2	10.1	SAP
	SF3B3	SF3b130	135.5	13.7	DExH/D
	SF3B4	SF3b49	44.4	4.5	RRM
	SF3B5	SF3b10	10.1	1.0	
	SF3B14	SF3b14a; p14	14.6	1.5	RRM
	PHF5A	SF3b14b; Rds3	12.4	1.3	PHD-like
	DDX46	DDX46; hPrp5p	117.4	11.9	DExH/D; SR repeat
	SMNDC1	SPF30/SMNrp	26.7	2.7	Tudor domain
U5 (1055.7 kDa)	RNU5	U5 snRNA	37.6	3.6	
16 SE	SNRPB, -B2, -D1, -D2, -D3, -E, -F, -G	seven Sm proteins	94.3	8.9	Sm
	TXNL4A	US-15K	16.9	1.6	TRX
	SNRNP40	U5-40K	39.3	3.7	WD40
	CD2BP2	U5-52K	37.6	3.6	GYF
	DDX23	U5-100K; hPrp28	95.6	9.1	DExH/D; SR repeat
	PRPF6	U5-102K; hPrp6	106.9	10.1	HAT/TPR repeats
	EFTUD2	U5-116K; hSnu114	109.4	10.4	EF2-like fold; GTPase
	SNRNP20	U5-200K; hBm2	244.5	23.2	DExH/D
	PRPF8	U5-220k; hPrp8	273.6	25.9	RNase H-fold; RRM; Jab1/MP
U4/U6 (589.1 kDa)	RNU4	U4 snRNA	46.9	8.0	10
	RNU6	U6 snRNA	34.6	5.9	
	SNRPB, -B2, -D1, -D2, -D3, -E, -F, -G	seven Sm proteins	94.3	16.0	Sm
	LSM2, -3, -4, -5, -6, -7, -8	seven LSm proteins	78.9	13.4	Sm
	NHP2L1	15.5K	14.2	2.4	
	PPIH	U4/U6-20K; SnuCyp-20	19.2	3.3	cyclophilin-like
	PRPF31	U4/U6-61K; hPrp31	55.5	9.4	Nop
	PRPF4	U4/U6-60K; hPrp4	58.4	9.9	WD40
	PRPF3	U4/U6-90K; hPrp3	77.5	13.1	PWI
	SART3	p110; SART3; hPrp24	109.6	18.6	HAT repeats; RRM

This is GT-AG introns (by far the most frequent) A secondary type exist (xx-xx), requiring U11 and U12 snRNP

Code	Represents	Complement
Α	A Adenine	
G	Guanine	С
С	Cytosine	G
Т	Thymine	А
Y	Pyrimidine (C or T)	R
R	Purine (A or G)	Y
W	weak (A or T)	W
S	strong (G or C)	S
К	keto (T or G)	М
М	amino (C or A)	K
D	A, G, T (not C)	Н
V	A, C, G (not T)	В
Н	A, C, T (not G)	D
B C, G, T (not A)		V
X/N any base		X/N
-	Gap	-


DNA base code

splicing news

When, where ?

Co-transcriptional or post-transcriptional ?

let's see how ENCODE has approached it

The transcriptome of nuclear subcompartments

(reading Djebali et al, 2012 ENCODE series)

•••••

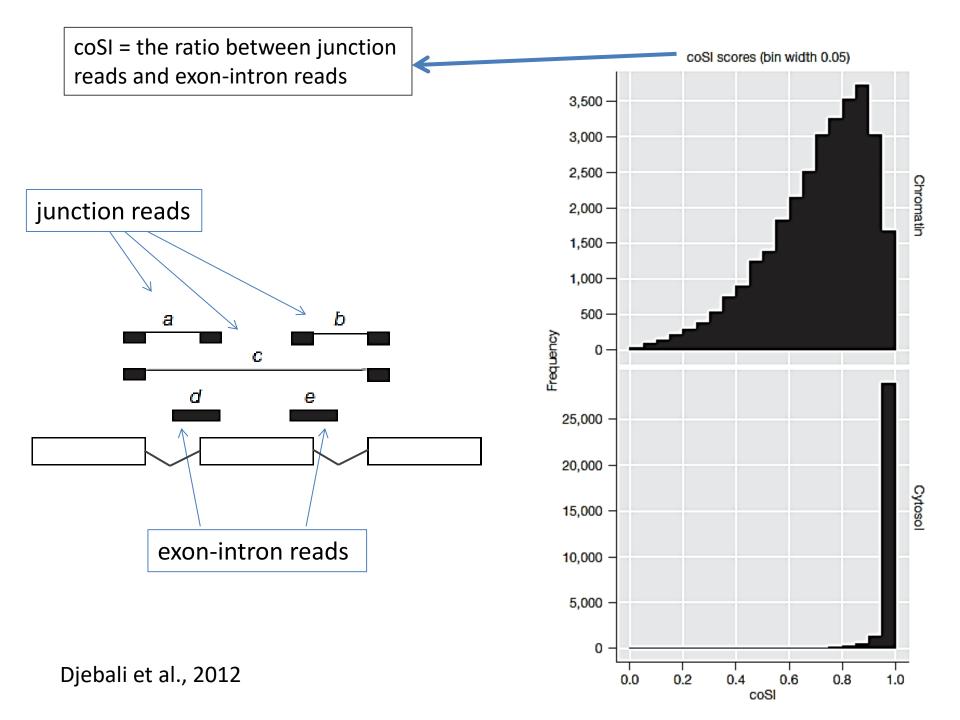
.

For the K562 cell line, we also analysed RNA isolated from three subnuclear compartments (chromatin, nucleolus and nucleoplasm).

Almost half (18,330) of the GENCODE (v7) annotated genes detected for all 15 cell lines (35,494) were identified in the analysis of just these three nuclear subcompartments. In addition, there were as many novel unannotated genes found in K562 subcompartments as there were in all other data sets combined.

enormous variety of transcripts

The interrogation of different subcellular RNA fractions provides snapshots of the status of the RNA population along the RNA processing pathway.


Djebali et al., 2012

...we confirm that splicing predominantly occurs during transcription.

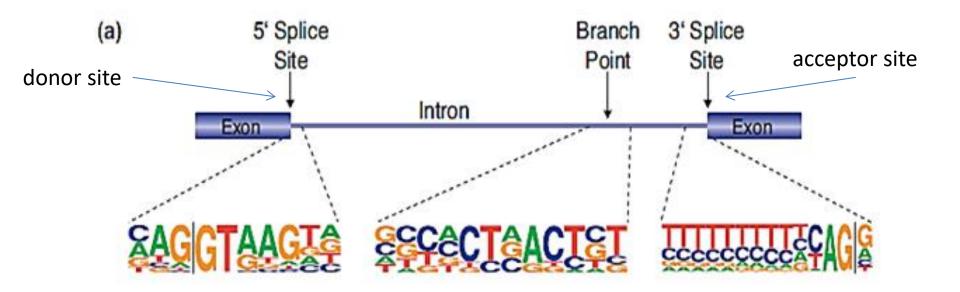
...introns are already being spliced in chromatin-associated RNA—the fraction that includes RNAs in the process of being transcribed

....we found strong enrichment specifically of spliceosomal small nuclear RNAs in this RNA fraction

..... we have observed that **exons in the process of being spliced are enriched in a number of chromatin marks**

Alternative splicing

Sequences at the borders of exon-intron and within the intron are similar but can vary.


Splice sites can be **strong** or **weak** depending on how far their sequences diverge from the consensus sequence.

This determines their affinities for cognate splicing factors

In general, strong splice sites lead to constitutive splicing and full usage of the site

Pay attention to this concept, it will ground the discussion on PolII elongation rate as determinant of AS

The first chance to obtain regulation derives from how exons are recognized

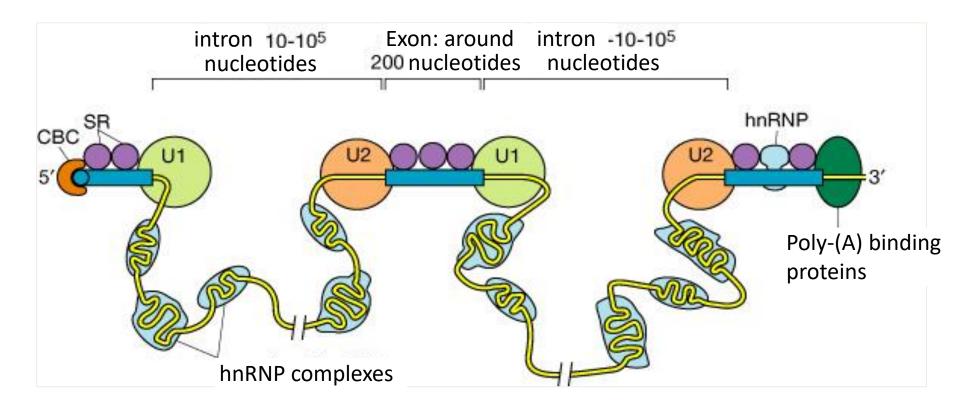
Variations of these sequences can give «stronger» and «weaker» splicing sites

genomic view

From: McManus & Graveley, COGD, 2011

Indeed, **in addition** to the sequences directly regulating binding of spliceosome components, in both Exons and Introns sequence motifs exist that regulate the use of splice sites.

Named after their location and effect:


ESE: exonic splicing enhancers ESS: exonic splicing silencers ISE: intronic splicing enhancers ISS: intronic splicing silencers

They are therefore *cis*-elements for splicing regulation

Trans-acting factors of splicing are proteins binding to these elements. They belong to the general class of RNA Binding Proteins (**RBP**)

Three categories:

- 1. SR proteins and SR-like
- 2. hnRNP
- 3. tissue-specific and context-specific factors

SR proteins = splicing regulators

Domains:

The most typical domain is an alternating Arginine-Serine-rich domain, called "RS domain": it is a protein-protein interaction domain.

Regulation:

SR are phosphorylated at Ser by several kinases \rightarrow regulates interaction with each other and with other proteins.

Other interactants:

SR proteins also interact with the CAP-binding protein and with poly-A binding proteins.

Binding sites:

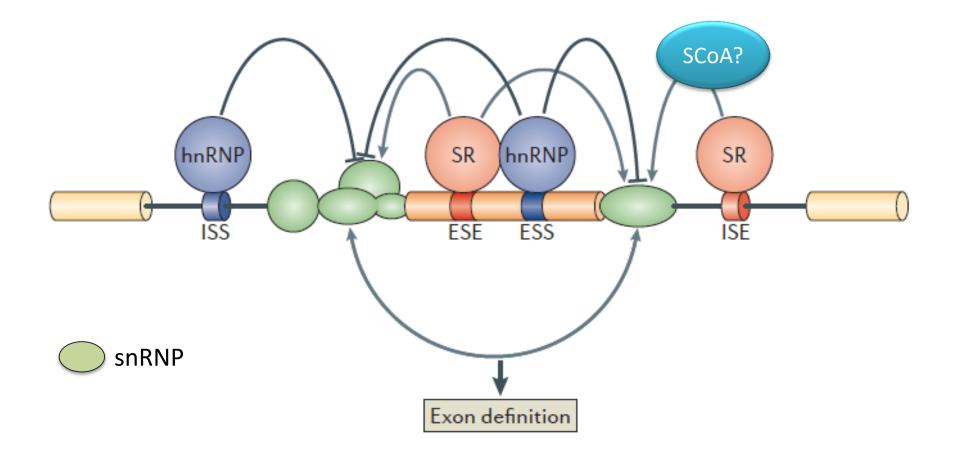
Mostly at Exons, sometimes also to ISE (intronic splicing enhancers)

<u>Activity:</u> Mostly activatory toward the most proximal exon. Exon definition.

Canonical SR proteins

SR-like (other protein containing an RS domain

Name*	Domains	Binding sequence	Target genes
Canonical SR pro	teins		
SRp20 (SFRS3)	RRM and RS	GCUCCUCUUC	SRP20, CALCA and INSR
SC35 (SFRS2)	RRM and RS	UGCUGUU	ACHE and GRIA1–GRIA4
ASF/SF2 (SFRS1)	RRM, RRMH and RS	RGAAGAAC	HIPK3, CAMK2D, HIV RNAs and GRIA1–GRIA4
SRp40 (SFRS5)	RRM, RRMH and RS	AGGAGAAGGGA	HIPK3, PRKCB and FN1
SRp55 (SFRS6)	RRM, RRMH and RS	GGCAGCACCUG	TNNT2 and CD44
SRp75 (SFRS4)	RRM, RRMH and RS	GAAGGA	FN1, E1A and CD45
9G8 (SFRS7)	RRM, zinc finger and RS	(GAC)n	TAU, GNRH and SFRS7
SRp30c (SFRS9)	RRM, RRMH and RS	CUGGAUU	BCL2L1, TAU and HNRNPA1
SRp38 (FUSIP1)	RRM and RS	AAAGACAAA	GRIA2 and TRD
Other SR proteins			
SRp54	RRM and RS	ND	TAU
SRp46 (SFRS2B)	RRM and RS	ND	NA
RNPS1	RRM and Ser-rich	ND	TRA2B
SRrp35	RRM and RS	ND	NA
SRrp86 (SRrp508 and SFRS12)	RRM and RS	ND	NA
TRA2a	RRM and two Arg-rich	GAAARGARR	dsx
TRA2β	RRM and two RS	(GAA)n	SMN1, CD44 and TAU
RBM5	RRM and RS	ND	CD95
CAPER (RBM39)	RRM and RS	ND	VEGF


hnRNP proteins (heterogeneous nuclear Ribo Nucleic Protein)

- Many different families
- Usually bind intronic sites
- Intron definition
- Several other roles have been ascribed to individual members, e.g. cytoplasmic localization.

Name	Other names	Domains*	Binding sequences	Target genes
hnRNP A1	NA	RRM, RGG and G	UAGGGA/U	SMN2 and RAS
hnRNP A2	NA	RRM, RGG and G	(UUAGGG)n	HIV tat and IKBKAP
hnRNP B1				
hnRNP C1	AUF1	RRM	Urich	APP
hnRNP C2				
hnRNP F	NA	RRM, RGG and GY	GGGA and G rich	PLP, SRC and BCL2L2
hnRNP G	NA	RRM and SRGY	CC(A/C) and AAGU	SMN2 and TMP1
hnRNP H	DSEF1	RRM, RGG, GYR and GY	GGGA and G rich	PLP, HIV tat and BCL2L1
hnRNP H'				
hnRNP1	PTB	RRM	UCUU and CUCUCU	PTB, nPTB, SRC, CD95, TNTT2, CALCA and GRIN3B
hnRNP L	NA	RRM	C and A rich	NOS and CD45
hnRNP LL	SRRF	RRM	C and A rich	CD45
hnRNP M	NA	RRM and GY	ND	FGFR2
hnRNP Q	NA	RRM and RGG	ND	SMN2

Table 1 | Ribonucleoproteins that are involved in pre-mRNA splicing

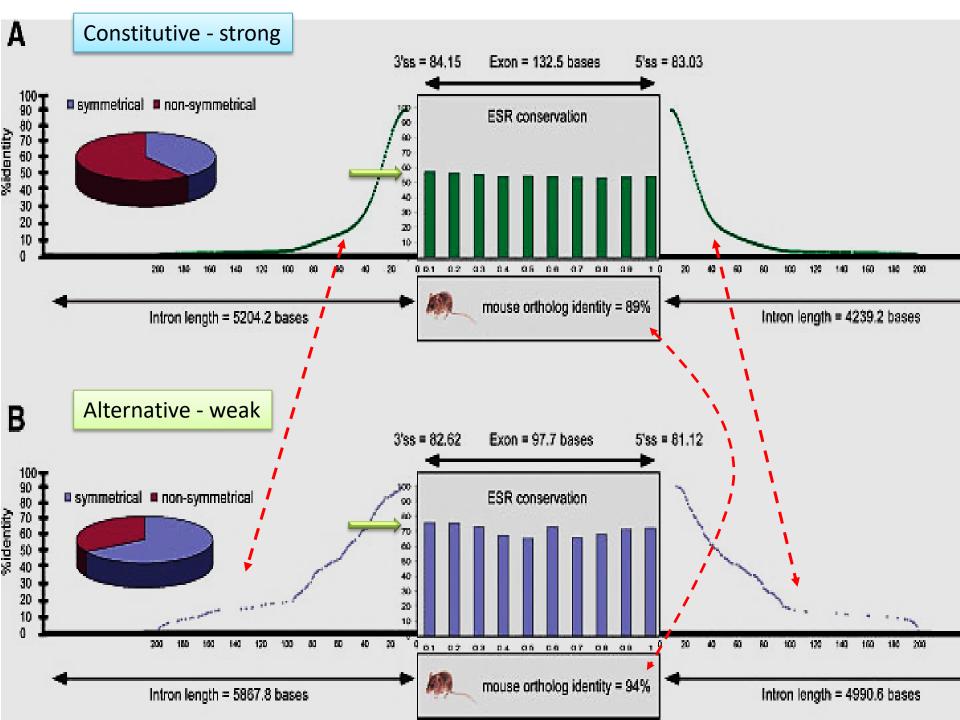
The effect of SR and hnRNP binding is either to stabilize or destabilize the interaction of basal splicing factors (snRNPs) with the splicing sites This action can be direct protein-protein contact, or mediated by splicing co-activators.

SRs and (some) hnRNPs can be regulated by signalling pathways (*e.g. by phosphorylation*);

most SRs and most hnRNPs have ubiquitous expression

tissue-specific AS (very frequent) requires additional tissue-specific factors

Hence, additional cis-elements sould be present in regulated pre-mRNAs.


One way to answer this question is to compare sequences around **alternative** exons to those of **constitutive** exons.

comparative genomics

Human and mouse transcriptomes are quite well characterized, making it possible to classify exons as **constitutive** or **alternative** based on real expression data (microarrays, RNA-seq).

Exons were normalized in lenght and flanking introns explored within 200 bp.

From Kim et al., BioEssays 30:38–47

2.1 Features of Alternative versus Constitutive Exons

More conserved

A-Exons in both human and mouse are more conserved than C-Exons

Conservation higher toward exon edges and extends farther in introns

<u>Weak splice sites</u> A-Exons have weak splice sites (especially *Cassette Exons*)

<u>Shorter</u>

A-Exons (esp. *cassette exons*) are **shorter** and flanked by longer introns.

<u>Symmetric</u> The percentage of **symmetrical** exon is definitely higher in A-Exons

Cassette exon: a symmetric exon that may undergo exon skipping

From Kim et al., 2007, BioEssays 30:38–47