# Ch 3 – L 4.3

Corepressors

What about NEGATIVE control?

It is known that TFs can be either activators or repressors (even more: the same TF may behave as A or R depnding on the E/P context)

Example from the Nuclear Receptor (NR) superfamily (*includes steroid hormone receptors*)

In **Human most of the** the genes responding primarily (protein synthesis- - independent) to steroid hormones are of this kind. Let's consider the Nuclear Receptor Superfamily of Transcription Factors



Nuclear Receptor activity, Type I and Type II, orphan receptors

Dysfunction of nuclear receptor signalling leads to proliferative, reproductive and metabolic diseases such as cancer, infertility, obesity and diabetes. Therefore:

Nuclear receptors are very important as drug targets

Pharmaceutical nuclear receptor **agonists** or **antagonists** are used in human therapy. Most known examples:

tamoxifen for oestrogen receptors (targeted in breast cancer),

♦ flutamide-bicalutamide for androgen receptor (prostate cancer)

thiazolidinediones for peroxisome proliferator-activated receptor-γ
(PPARγ) (targeted in type II diabetes)

dexamethasone for the glucocorticoid receptor (targeted in inflammatory diseases)

| NUCLEAR RECEPTOR TYPE                 | NUCLEAR RECEPTOR MEMBERS                             |  |
|---------------------------------------|------------------------------------------------------|--|
|                                       | Progestins receptor (PR)                             |  |
| l<br>(classical or steroid receptors) | Estrogens receptor (ER $\alpha$ , ER $\beta$ )       |  |
|                                       | Androgens receptor (AR)                              |  |
|                                       | Glucocorticoids receptor (GR)                        |  |
|                                       | Mineralcorticoids receptor (MR)                      |  |
| ll<br>(RXR-heterodimeric receptors)   | Thyroid hormone receptor (TR $\alpha$ , TR $\beta$ ) |  |
|                                       | All- <i>trans</i> retinoic acid receptor (RAR)       |  |
|                                       | 9- <i>cis</i> retinoic acid receptor (RXR)           |  |
|                                       | Vitamin D₃ receptor (VDR)                            |  |
|                                       | Peroxisome proliferator receptor- $\gamma$           |  |
|                                       | (PPAR-γ)                                             |  |
| III<br>(Orphan nuclear receptors)     | COUP-TFs                                             |  |
|                                       | X-linked orphan receptor (DAX-1)                     |  |
|                                       | Rev-Erb                                              |  |

In H. sapiens there are 48 known nuclear receptor genes.

24 have known ligands 24 are orphan receptors

## **Structural Organization of Nuclear Receptors**





Figure 15-14c Molecular Biology of the Cell (© Garland Science 2008)

The most interaction of the Steroid Receptors with Co-Activators is mapped to the **ligand-binding domain** (LBD)



The Ligand-binding domain (LBD)

#### the conformational change induced by ligand binding to the C-terminal domain of NR

NR C-terminal helix (AF2) is re-positioned upon ligand binding, serving as a sort of "lid" on the ligand binding pocket



Transcriptional Co-Repressors (CoR)

| Name               | Interactors                                 | enzyme                  |
|--------------------|---------------------------------------------|-------------------------|
| NCoR1-NCoR2 (SMRT) | NRs, Nf-kB, MYOD, AP-1,                     | HDAC                    |
| CTBP1/2            | ER, CoREST, p21, PTEN, Noxa                 | HDAC                    |
| RUNX1/2/3          | SMAD1/3, AP-1,                              |                         |
| CoREST             | Rest, CTBP                                  | HDAC                    |
| NURD               | ER, AP-1, Twist, SNAIL, MYC<br>(also Chrome | HDAC<br>atin remodelers |



### A number of responses are mediated by **co-repressor / co-activator** exchange



Perissi et al., Nat. Rev. Gentics 2010, 11:100-112.

#### Co-repressor dismissal depends on signalling pathways



Perissi et al., Nat. Rev. Gentics 2010, 11:100-112.