Public resources from Large Scale Omic Projects

Growth of DNA Sequencing

- Large amount of biological data are currently available for researchers
- How we can use this large amount of information in our research?
- We can use it easily?
- We can integrate these information with other biological knowledges?

From: *PLoS biology*, 13(7), 2015, e1002195. https://doi.org/10.1371/journal.pbio.1002195

- A biological phenotype is the result of the combination of multiple molecular layers
 - The contribution of these layers can be measured by high-throughput technologies
- Most of results of these experiments are largely available to researchers through web-based resources and data repositories

Main data types

- **Raw:** Sequencing reads (Fastq), microarray signals (CEL), proteomic spectra (mzML), ...
- Processed: Expression tables, ChIP-Seq peaks (BED), lists of genomic variants (VCF), ...

gene	ctrl_1	ctrl_2	exp_1	exp_1		id	treatment	sex
geneA	10	11	56	45		ctrl_1	control	male
geneB	0	0	128	54		ctrl_2	control	female
geneC	42	41	59	41		exp_1	treatment	male
geneD	103	122	1	23		exp_2	treatment	female
geneE	10	23	14	56				
geneF	0	1	2	0		Sa	ample nan	nes.
					C	trl 1. c	trl 2. exp	1. exp
							,	

• Integrated: Genome browsers, interactive web platforms, JAVA graphical interfaces, ...

1000 Genomes Project

A global reference for human genetic variation

The 1000 Genomes Project Consortium* OCTOBER 2015 | VOL 526 | NATURE

Phase III: 2,504 humans : 84.8 million SNPs

- Level: Genome
- Project: <u>1000 Genome Project</u>
- Aim: Creation of a catalog of human genetic variations
- Samples: primary lymphoblastoid cell lines
- Technologies: WGS, WES
- **Data**: Raw, processed, integrated

Nature Collection

Available data

1000 Genomes Project

1000 Genomes Release	Variants	Individuals	Populations	VCF	Alignments	Supporting Data	
Phase 3	84.4 million	2504	26	VCF	Alignments	Supporting Data	
Phase 1	37.9 million	1092	14	VCF	Alignments	Supporting Data	
Pilot	14.8 million	179	4	VCF	Alignments	Supporting Data	
							1

Sequence Alignment Map (SAM) Format

	@HD 1 @SQ 2	VN:1 SN:re	.3 Su ef Ll	D:c	ooro 5	linate						
	r001	163	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACTG	*	
-	r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*	
	r003	0	ref	9	30	5H6M	*	0	0	AGCTAA	*	NM:i:1
	r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*	
	r003	16	ref	29	30	6H5M	*	0	0	TAGGC	*	NM:i:0
	r001	83	ref	37	30	9M	=	7	-39	CAGCGCCAT	*	

#CI	HROM	POS	ID	REF /	ALT Q	UAL I	FILTER IN	F0 F	ORMAT	Ν
AO	0001		NA00002	1	NA00003					
20		14370	rs6054257	G	A	29	9 PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:D	P:
HQ	0 0:	48:1:51	,51 1 0:48	8:51	,51 1/1:	43:5	:.,.			
20		17330		Т	Α	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:D	P:
HQ	0 0:	49:3:58	,50 0 1:3:5	5:65,3	3 0/0:	41:3				
20		1110696	rs6040355	Α	G,T	6	7 PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;	DB GT:GQ:D	P:
HQ	1 2:	21:6:23	,27 2 1:2:0):18,2	2 2/2:	35:4				
20		1230237		Т		4	7 PASS	NS=3;DP=13;AA=T	GT:GQ:D	P:
HQ	0 0:	54:7:56	,60 0 0:48	4:51	,51 0/0:	61:2				
20		1234567	microsat1	GTCT	G,GTA	CT 5	0 PASS	NS=3; DP=9; AA=G	GT:GQ:D	P
	0/1:	35:4	0/2:17	2	1/1:	40:3				

Variant Call Format (VCF)

Data visualization and integration (e.g. Ensembl Genome Browser)

Variant: rs1333049

rs1333049 SNP

Most severe consequence	downstream gene variant See all predicted consequences
Alleles	G/C Ancestral: C MAF: 0.42 (C) Highest population MAF: 0.50
Location	Chromosome 9:22125504 (forward strand) VCF: 9 22125504 rs1333049 G C
Evidence status ()	3m 🕘 💭 🚱 🐾
HGVS name	NC_000009.12:g.22125504G>C
Synonyms	This variant has 4 synonyms - Show
Genotyping chips	This variant has assays on 6 chips - Show ⊡
Original source	Variants (including SNPs and indels) imported from dbSNP (release 150) View in dbSNP &
About this variant	This variant overlaps 13 transcripts, has 4039 sample genotypes, is associated with 9 phenotypes and is mentioned in 250

Explore this variant @

Population	Allele: 1	requency (count)	
ALL	G: 0.58	2 (2914) C: 0.418 (20	94)
AFR	G: 0.78	7 (1040) C: 0.213 (28	2)
ACB	G: 0.76	C: 0.240 (46)
ASW	G: 0.73) (89) C: 0.270 (33)
ESN	G: 0.78	3 (155) C: 0.217 (43)
GWD	G: 0.87	6 (198) C: 0.124 (28)
LWK	G: 0.73	7 (146) C: 0.263 (52)
MSL	G: 0.80	0 (136) C: 0.200 (34)
YRI	G: 0.78	7 (170) C: 0.213 (46)
AMR	G: 0.54	5 (378) C: 0.455 (31	6)
CLM	G: 0.55	3 (104) C: 0.447 (84)
MXL	G: 0.50	65) C: 0.492 (63)
PEL	G: 0.63	5 (108) C: 0.365 (62)
PUR	G: 0.48	δ (101) C: 0.514 (10	7)
EAS	G: 0.46	3 (467) C: 0.537 (54	1)
CDX	G: 0.42	5 (79) C: 0.575 (10	7)
СНВ	G: 0.524	4 (108) C: 0.476 (98)
CHS	G: 0.48	δ (102) C: 0.514 (10	8)
JPT	G: 0.48	1 (100) C: 0.519 (10)	8)
KHV	G: 0.394	4 (78) C: 0.606 (12)	0)
EUR	G: 0.52	8 (531) C: 0.472 (47	5)
CEU	G: 0.55	δ (110) C: 0.444 (88)
FIN	G: 0.60	1 (119) C: 0.399 (79)
GBR	G: 0.50	5 (92) C: 0.495 (90)
IBS	G: 0.50) (107) C: 0.500 (10	7)
TSI	G: 0.48	I (103) C: 0.519 (11	1)
SAS	G: 0.50	9 (498) C: 0.491 (48	0)

Applications of the 1000 Genomes Project resources d

Xiangqun Zheng-Bradley, Paul Flicek

Briefings in Functional Genomics, Volume 16, Issue 3, 1 May 2017, Pages 163–170, https://doi.org/10.1093/bfgp/elw027

Abstract

The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering nonpathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies.

Published: 19 July 2016

Brief. in Functional Genomics, 16(3), 2017, 163-70, https://doi.org/10.1093/bfgp/elw027

What else?

- Exome Aggregation Consortium (ExAC)
- European Genome-phenome Archive (EGA)
- The database of Genotypes and Phenotypes (dbGaP)
- 10K Genomes project (Non human)
- 1000 Plant Genomes Project (Non human)

What's next?

100,000 Genomes Project

AstraZeneca 2 million genomes

- Level: Epigenome
- Project: <u>Roadmap Epigenomics</u>
- Aim: Characterization of healthy human tissue epigenomes
- Samples: tissues / cell types
- **Technologies**: DNA methylation, Histone modification ChIP-Seq, DNase-Seq, and RNA-Seq
- **Data**: Raw, processed, integrated

Nature Collection

Data access: <u>http://egg2.wustl.edu/roadmap/web_portal/</u>

27		roadmap Digenor	NICS Int PROJECT Int	tegrative an uman epige	alysis of 11 nomes	1 reference			
	Home / Grid	Metadata	Processed Data -	Imputed Data -	Chromatin State	Epigenomes Clustering -	DNasel-accessible Regulatory	Predicting Regulators	Disease Variant
					Learning •		Regions +	and Motifs -	Interpretation -

Processed data for single dataset:

- Cell line, dataset Metadata
- Quality control results
- Read Alignments
- Signal peaks
- Genome-wide signal coverage
- Expression quantification

Integrated data from multiple datasets

- Chromatin states
- Comparison between epigenomes
- Predicted promoters and enhancers
- Tissue-specific regulators
- Prediction of disease variant functional effect

Data visualization and integration

Processed data for single dataset / tissue

Integrated data from multiple datasets / tissues

WashU Genome Browser

ARTICLE

OPEN doi:10.1038/nature14248

Integrative analysis of 111 reference human epigenomes

Roadmap Epigenomics Consortium[†], Anshul Kundaje^{1,2,3}*, Wouter Meuleman^{1,2}*, Jason Ernst^{1,2,4}*, Misha Bilenky⁵*, Angela Yen^{1,2}, Alireza Heravi-Moussavi⁵, Pouya Kheradpou^{1,2}, Zhizhuo Zhang^{1,2}, Jianrong Wang^{1,2}, Michael J. Ziller^{2,6}, Viren Amin⁷, John W. Whitaker⁸, Matthew D. Schultz⁹, Lucas D. Ward^{1,2}, Abhishek Sarkar^{1,2}, Gerald Quon^{1,2}, Richard S. Sandstrom¹⁰, Matthew L. Eaton^{1,2}, Yi-Chieh Wu^{1,2}, Andreas R. Pfenning^{1,2}, Xinchen Wang^{1,2,11}, Melina Claussnitzer^{1,2}, Yaping Liu^{1,2}, Cristian Coarfa⁷, R. Alan Harris⁷, Noam Shoresh², Charles B. Epstein², Elizabeta Gjoneska^{2,12}, Danny Leung^{8,13}, Wei Xie^{8,13}, R. David Hawkins^{8,13}, Ryan Lister⁹, Chibo Hong¹⁴, Philippe Gascard¹⁵, Andrew J. Mungall⁶, Richard Moore⁵, Eric Chuah⁵, Angela Tam⁵, Theresa K. Canfield¹⁰, R. Scott Hansen¹⁶, Rajinder Kaul¹⁶, Peter J. Sabo¹⁰, Mukul S. Bansal^{1,2,17}, Annaick Carles¹⁶, Jesse R. Dixon^{8,13}, Kai-How Farh², Sohell Feizi^{1,2}, Rosa Karlic¹⁹, Ah-Ram Kim^{1,2}, Ashwinikumar Kulkarni²⁰, Daofeng Li²¹, Rebecca Lowdon²¹, GiNell Elliott²¹, Tim R. Mercer²², Shane J. Neph¹⁰, Vitor Onuchic⁷, Paz Polak^{2,23}, Michael Stevers^{21,42}, Robert E. Thurman¹⁰, Jie Wu^{24,25}, Bo Zhang²¹, Xin Zhou²¹, Arthur E. Beaudet²⁶. Laurie A. Boyer¹¹, Philip L. De Jager^{2,23,27}, Peggy J. Farnham²⁸, Susan J. Fisher²⁹, David Haussler³⁰, Steven J. M. Jones^{5,31,32}, Wei Li³³, Marco A. Marra^{5,32}, Michael T. McManus³⁴, Shamil Sunyaev^{2,23,27}, James A. Thomson^{3,5,41}, Thea D. Tlsty¹⁵, Li-Huei Tsai^{2,1,2}, Wei Wang⁸, Robert A. Waterland³⁶, Michael Q. Zhang^{20,37}, Lisa H. Chadwick³⁸, Bradley E. Bernstein^{2,3,9,46}, Joseph F. Costello¹⁴s, Joseph R. Ecker⁹s, Martin Hirs^{5,1,8}s, Alexander Meissner^{2,6}s, Aleksandar Milosavljevic⁷s, Bing Ren^{8,13}s, John A. Stamatoyanopoulos¹⁰s, Ting Wang²¹s & Manolis Kellis^{1,2}s

The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

Nature, 518, 2015, 317-330, http://doi.org/10.1038/nature14248 What else?

- <u>Blueprint</u> > (<u>Cell special issue</u>)
- <u>modENCODE</u> (Non-human model organisms)

What's next?

- Level: Transcriptome
- Project: <u>GTEx</u>
- Aim: Large scale analysis of expression Quantitative Traits Loci (eQTL)
- **Samples**: Post-mortem tissues
- Technologies: WES, WGS, SNP microarray, RNA-Seq
- **Data**: Processed and integrated

Nature Collection

ARTICLE

OPEN doi:10.1038/nature24277

Genetic effects on gene expression across human tissues

GTEx Consortium*

Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype–Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects or 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

Nature, 550, 2017, 204-213. http://doi.org/10.1038/nature24277

What else?

- FANTOM5 (Nature Collection paper)
- <u>Human Developmental Biology Resource</u> (HDBR)

What's next?

Human Cell Atlas

THE HUMAN PROTEIN ATLAS

• Level: Proteome

- Project: <u>The Human Protein</u> <u>Atlas</u>
- **Aim**: Analysis of protein tissue expression and localization
- Samples: Tissues, cell lines
- Technologies: Protein array, IHC, Immunofluorescence, Western blot, RNA-Seq,
- **Data**: Processed and integrated

Data access

Publication Data

- Antibody response
- Protein array expression data Tissue
- Protein array expression data Cells
- Immunofluorescence expression data
- RNA isoform expression data

Downloadable Data

- Normal tissue data (level and reliability)
- Pathology data (level, reliability, correlation with survival)
- Subcellular localization data (reliability, level, between cell variations, cell cycle dependency)
- RNA-Seq data (gene/isoform level in TPM)

Data visualization and integration

nary ^l	Mainly localized to vesicles. In addition localized to the nucleus.								
cell category ¹	Group enriched (T-47d, MCF7)								
In evidence ¹	Evidence at protein level								
location	Localized to the Vesicles (approved)	View proteome in REACTOME							
lional location ¹	In addition localized to the Nucleus (approved) View proteome in REACTOME								

RESEARCH ARTICLE SUMMARY

PROTEOMICS

Tissue-based map of the human proteome

Mathias Uhlén,* Linn Fagerberg, Björn M. Hallström, Cecilia Lindskog, Per Oksvold, Adil Mardinoglu, Åsa Sivertsson, Caroline Kampf, Evelina Sjöstedt, Anna Asplund, IngMarie Olsson, Karolina Edlund, Emma Lundberg, Sanjay Navani, Cristina Al-Khalili Szigyarto, Jacob Odeberg, Dijana Djureinovic, Jenny Ottosson Takanen, Sophia Hober, Tove Alm, Per-Henrik Edqvist, Holger Berling, Hanna Tegel, Jan Mulder, Johan Rockberg, Peter Nilsson, Jochen M. Schwenk, Marica Hamsten, Kalle von Feilitzen, Mattias Forsberg, Lukas Persson, Fredric Johansson, Martin Zwahlen, Gunnar von Heijne, Jens Nielsen, Fredrik Pontén

Science. 2015, 347(6220), 1260419. http://doi.org/10.1038/nature24277

What else?

- Human Proteome Map
- Human Metabolome Project
- <u>Clinical Proteomic Tumor Analysis</u> <u>Consortium</u> (CPTAC)

What's next?

Chromosome-based Human Proteome Project (C-HPP) Biology/Disease Human Proteome Project (B/D-HPP)

- Level: Multi omics cellular level
- Project: ENCODE
- Aim: Functional annotation of human genome
- **Samples**: Cell lines, primary cells, tissue (non human), whole organism
- Technologies: ChIP-Seq, RNA-Seq, CLIP/RIP-Seq, WGBS, RRBS, DNase-seq, ChIA-PET, 5C, FAIRE-Seq, Repli-Seq, WGS, Hi-C
- **Data**: Raw, processed, integrated

Data access: https://www.encodeproject.org/matrix/?type=Experiment

Experiment Mat	rix	Assa	ау	Assay catego	ory		Та	get of	assa	y		0)ate r	eleas	ed		Av	ailable data	
lick or onter search terms to	filter the	Chl	P-seq 8908	DNA binding	89	08	tr	anscripti	on fa	ctor 4	024		July,	2013	2765	i	fa	istq	13700
where included in the r	natrix	DNase-seq 863		Transcription	3331	h	histone		3102			March, 201		4 887		bam		12733	
speriments melded in the r	ilduix.	poly	A RNA-seq 817	DNA	11	17	h	istone		3	102		July,	2016	614		b	igWig	11688
Enter search term(s)		shRNA RNA- 533		accessibility			п	odification	n				May,	2016	569	1	b	ed narrowPea	7298
		seq		DNA methyla	tion 8	65	0	ontrol		2	568		Octob	ber,	485	5	b	igBed	7287
		tota	IRNA-seq 413	RNA binding	6	30	b	road hist	one n	nark1	(21		2016	10.2			n	arrowPeak	
			+ See more		+ See	mor	e			+ Sei	more			+ 3	see m	ore			+ See more
Organism											AS	SAY							
Homo sapiens	10847	PLE																	and
Mus musculus	1863	W						11								1	1	bes	5 26
Drosophila melanogaster	1435	SC	15321 ro	culte				ee o	0	i	1		00	00		Seg	Ina	NA.	more
Caenorhabditis elegans	974	BIG	1552116	Juita		1	03	12	00	Co.	e		4.8	20	4 7	÷ .	2	Ace	
Drosophila pseudoobscura	12					Seq.	1. P.	EN.S	0	me	5	0 1	NY NY	000	Bin	an	4	RN	
	+ See more				Chip	0	Poly Sho	total eC.	RNA	ONA	Rec.	Smal	micre 47.	RAM	PN4	Can	Sino	Repli	
Biosample type		c	ell line														_		
cell line	5746			K562	698	8	19 270	12 190	12	3 1	1	8 1	1	1	2	9		6 1	
tissue	4373			HepG2	371	3	11 257	6 161	7	3 2	2	3			2	6		6 1	
whole organisms	2051			A549	384	14	27		2	2 1	1	9			2	3		2	
primary cell	1674			GM12878	249	3	14	4	8	3 2	2	6 2	2	1	2	6	13	6 1	
in vitro differentiated cells	676			HEK293	257				1	2	2				2				
	+ See more		+ S	ee 196 more															
		ti	ssue																
Organ	2002			liver	162	9	22	3	10	1 11	1	1		2	3		2	/	
DIOOD	2608			neart	100	22	16	3	10	10	1	1 8	1 0	2			1	8	
bodily fluid	2608			stomach	98	21	10	0	10	0 0	1	4 4	0	0	1			4	
liver	11//			lung	60	10	12	1	2	2 0	3	1	+ 4					4	
embry0 broin	982			kianey	09	11	13		2	2 0	4	4	+ 4					4	
ror sales	025																		
oran	935		+ 5	ee 160 more															
Jian	935 + See more	W	+ 5 hole organisms	ee too more	4590		70	50								45			
Project	935 + See more	w	+ 5 hole organisms W	hole organism	1580		73	50								15			

	Clear Filters 3	
Assay category		ſ
DNA binding	698	l
Assay		
ChIP-seq	698	Ì
shRNA RNA-seq	276	
eCLIP	190	
CRISPRi RNA-seq	77	
siRNA RNA-seq	50	
	+ See more	
Project		
ENCODE	698	
RFA		
ENCODE3	478	
ENCODE2	220	
Experiment status		
released	669	
revoked	26	
archived	3	
Genome assembly (visualization)	
hg19	519	
GRCh38	491	
Organism		
Homo sapiens	697	
Target of assay		
transcription factor	543	

Showing 25 of 698 results

	View All D	
--	------------	--

ChIP-seq of K562

Homo sapiens K562 Target: MTA1 Lab: Michael Snyder, Stanford Project: ENCODE

ChIP-seq of K562

Homo sapiens K562 Target: AFF1 Lab: Michael Snyder, Stanford Project: ENCODE

ChIP-seq of K562

Homo sapiens K562 Target: AFF1 Lab: Michael Snyder, Stanford Project: ENCODE

ChIP-seq of K562

Homo saplens K562 Target: MNT Lab: Michael Snyder, Stanford Project: ENCODE

ChIP-seq of K562

Data access: https://www.encodeproject.org/matrix/?type=Experiment

Summary		Attribution		EN PH
Assay:	ChIP-seq	Lab:	Michael Snyder, Stanford	
Target:	MTA1	Award:	U54HG006996 (Michael Snyder, St	anford)
Biosample summary:	Homo sapiens K562	Project:	ENCODE	
Biosample Type:	cell line	External resources:	GEO:GSE10382312	
Replication type:	isogenic	Allases.		GSE105823_
Description:	MTA1 ChIP-seq on human K562	Date submitted:	May 2, 2017 May 17, 2017	GSE105823_
Nucleic acid type:	DNA	Date foldadai	indy in, zon	GSE105823_
Size range:	450-650			GSE105823_
Strand specificity:	Non-strand-specific			GSE105823_
Platform:	Illumina HiSeq 2000			GSE105823_
Controls:	ENCSR173USI		\backslash	GSE105823_
Controls:	ENCSR173USI		\backslash	GSE105823_

Available files:

- Experiment protocols and QC
- Raw reads (Fastq)
- Alignment files (BED, SAM, BAM)
- Genomic coverage files (BIGWIG)
- Peaks coordinates (BED, BIGBED)

Supplementary file	Size	Download	File type/resource
GSE105823_ENCFF002ZRH_peaks_GRCh38.bed.gz	6.9 Mb	(ftp)(http)	BED
GSE105823_ENCFF056TVE_peaks_hg19.bigBed	12.4 Mb	(ftp)(http)	BIGBED
GSE105823_ENCFF132APO_fold_change_over_control_GRCh38.bigWig	1.9 Gb	(ftp)(http)	BIGWIG
${\tt GSE105823_ENCFF161QXX_optimal_idr_thresholded_peaks_GRCh38.bigBed}$	683.5 Kb	(ftp)(http)	BIGBED
GSE105823_ENCFF180XEU_conservative_idr_thresholded_peaks_hg19.bigBed	469.6 Kb	(ftp)(http)	BIGBED
GSE105823_ENCFF194ZGF_fold_change_over_control_hg19.bigWig	1.9 Gb	(ftp)(http)	BIGWIG
GSE105823_ENCFF334TNK_peaks_GRCh38.bigBed	12.4 Mb	<u>(ftp)(</u> http)	BIGBED
GSE105823_ENCFF362MSS_conservative_idr_thresholded_peaks_GRCh38.bigBed	470.0 Kb	(ftp)(http)	BIGBED
GSE105823_ENCFF407VAS_conservative_idr_thresholded_peaks_hg19.bed.gz	195.2 Kb	(ftp)(http)	BED
GSE105823_ENCFF433GGH_signal_p-value_GRCh38.bigWig	2.0 Gb	(ftp)(http)	BIGWIG
GSE105823_ENCFF445RPZ_signal_p-value_hg19.bigWig	1.8 Gb	(ftp)(http)	BIGWIG
GSE105823_ENCFF658ZHZ_peaks_hg19.bed.gz	6.9 Mb	(ftp)(http)	BED
GSE105823_ENCFF769GYG_optimal_idr_thresholded_peaks_hg19.bed.gz	326.6 Kb	(ftp)(http)	BED
GSE105823_ENCFF801KEW_optimal_idr_thresholded_peaks_GRCh38.bed.gz	327.8 Kb	(ftp)(http)	BED
GSE105823_ENCFF843MEU_conservative_idr_thresholded_peaks_GRCh38.bed.gz	193.9 Kb	(ftp)(http)	BED
GSE105823_ENCFF845IDA_optimal_idr_thresholded_peaks_hg19.bigBed	677.8 Kb	(ftp)(http)	BIGBED
SE105nnn/GSE105823/suppl/GSE105823_ENCFF334TNK_peaks_GRCh38.bi	Bed	(ftp)(http)	BED

Data visualization and integration

WashU Genome Browser

UCSC Genome Browser

Search Candidate cis-Regulatory Elements by ENCODE (SCREEN)

Review Deciphering ENCODE

Adam G. Diehl¹ and Alan P. Boyle^{1,2,*}

The ENCODE project represents a major leap from merely describing and comparing genomic sequences to surveying them for direct indicators of function. The astounding quantity of data produced by the ENCODE consortium can serve as a map to locate specific landmarks, guide hypothesis generation, and lead us to principles and mechanisms underlying genome biology. Despite its broad appeal, the size and complexity of the repository can be intimidating to prospective users. We present here some background about the ENCODE data, survey the resources available for accessing them, and describe a few simple principles to help prospective users choose the data type(s) that best suit their needs, where to get them, and how to use them to their best advantage.

Trends Genet. 2016, 32(4), 238-249. <u>https://doi.org/10.1016/j.tig.2016.02.002</u>

What else?

- <u>Cancer Cell Line Encyclopedia</u> (CCLE)
- BD2K-LINCS project
- <u>NCI60</u>
- <u>GDSC</u>
- Project <u>Achilles</u> and <u>DRIVE</u>

What's next?

2003	2007	▶ 2013 ▶ 2015	2017-2021
Pilot Phase 1	Phase 2	Phase 3	Phase 4
Pilot Phase (1%) Data Production (Human Only)	Data Production (DCC & DAC) (Human Only)	Data Production (DCC & DAC) (Human & Mouse)	Data Production (DCC & DAC) (Human & Mouse)
		Computational Analysis 1	Computational Analysis 2
	modENCODE (Fly and Worm)		Functional Characterization
	Mouse ENCODE		
Technology Development 1 & 2	Technology Development 3	Technology Development 4	

• Level: Multi omics - tissue level

- Project: TCGA
- Aim: Molecular characterization and classification of tumors and their vulnerability
- **Samples**: Healthy and primary cancer tissue samples
- Technologies: WES, WGS, RNA-Seq, protein array, DNA Methylation array
- **Data**: Processed and integrated

Publication list

Data access: <u>https://portal.gdc.cancer.gov/</u>

Show	ing 1 - 5	of 5 files				1F	JSON	TSV	
- 1	Access	File Name	Cases Project	Data Category	Data Format	File	Size Ani	notation	IS
	Copen	c98b8334-836a-4c3c-b149-b08a7256 aa68.FPKM-UQ.txt.gz	1 TCGA-BRCA	Transcriptome Profiling	TXT	526.18	KB		0
1	G open	c98b8334-836a-4c3c-b149-b08a7256 aa68.FPKM.txt.gz	1 TCGA-BRCA	Transcriptome Profiling	TXT	524.2	KB		0
R	G open	c98b8334-836a-4c3c-b149-b08a7256 aa68.htseq.counts.gz	1 TCGA-BRCA	Transcriptome Profiling	тхт	254.53	KB		0
-	G open	5002ba7d-8811-4141-89b8-d9487b53 3430.mirbase21.mirnas.quantificatio n.txt	1 TCGA-BRCA	Transcriptome Profiling	TSV	50.08	KB		0
R	G open	5002ba7d-8811-4141-89b8-d9487b53 3430.mirbase21.isoforms.quantificatio n.txt	1 TCGA-BRCA	Transcriptome Profiling	TSV	217.36	KB		0
Show	20 -	entries					1	3 3	

Available files:

- Gene / miRNA expression quantification
- VCF and MAF file
- CNV data
- Methylation data
- Protein level data
- Clinical data

Data visualization and integration Pancreatic Adenocarcinoma (TCGA, Provisional) Modify Query Gene Set / Pathway is altered in 140 (94%) of queried samples Tumor Samples with sequencing and CNA data (149 samples) / 2 Genes OncoPrint Cancer Types Summary Mutual Exclusivity Plots Mutations Co-Expression Enrichments Survival Network CN Segments Download Bookmark **cBioPortal** Case Set: Tumor Samples with sequencing and CNA data (149 patients / 149 samples) Pancreas Altered in 140 (94%) of 149 sequenced cases/patients (149 total) Acinar Cell Carcinoma of the Pancreas KRAS 91% Acinar Cell Carcinoma of the Pancreas (Johns Hopkins, J Pathol 2014) **TP53** Cystic Tumor of the Pancreas Cystic Tumor of the Pancreas (Johns Hopkins, PNAS 2011 Genetic Alteration Inframe Mutation (putative driver) Missense Mutation (putative driver) Truncating Mutation (putative driver) Amplification Deep Deletion No alterations Pancreatic Adenocarcinoma Pancreatic Adenocarcinoma (ICGC, Nature 2012) Pancreatic Adenocarcinoma (QCMG, Nature 2016) Pancreatic Adenocarcinoma (TCGA, Provisional) OncoPrint Cancer Types Summary Mutual Exclusivity Plots Mutations Co-Expression Enrichments Survival Network CN Segments Download Bookmark Pancreatic Cancer (UTSW, Nat Commun 2015) KRAS TP53 Pancreatic Neuroendocrine Tumor Insulinoma (Shanghai, Nat Commun 2013) **TP53** UniProt: P53 HUMAN Pancreatic Neuroendocrine Tumors (Johns Hopkins University, Science 2011) Transcript: ENST00000269305 Whole-Genome Sequencing of Pancreatic Neuroendocrine Tumors (Nature, 2017). R248U/0/M Somatic Mutation Frequency: 70.5% 6 Select Genomic Profiles: Mutations @ Putative copy-number alterations from GISTIC @ mRNA Expression z-Scores (RNA Seq V2 RSEM) @ 72 Missense 34 Truncating Protein expression Z-scores (RPPA) 0 1 Inframe O Other 200 Select Patient/Case Set: View 3D Structure Tumor Samples with sequencing and CNA data (149) × × To build your own case set, try out our enhanced Study View. Not mutate 12.0 SVG O PNG O Data O Enter Gene Set: User-defined List XV Cases with Alteration(s) in Query Gene(s 9766 Cases without Alteration(s) in Query Gene(s Advanced: Onco Query Language (OQL) Select from Recurrently Mutated Genes (MutSig) Select Genes from Recurrent CNAs (Gistic) 700 •• ·... KRAS 10.5 ٠. TP53 1 10.0 30% All gene symbols are valid. Submit Query Mary Deleter States Deleter Gain 30 35 40 45 50 55 60 45 70 7 Months Sundy

Article

Cell

Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics

Graphical Abstract

Authors

Li Ding, Matthew H. Bailey, Eduard Porta-Pardo, ..., David A. Wheeler, Gad Getz, The Cancer Genome Atlas Research Network

Correspondence

lding@wustl.edu (L.D.), wheeler@bcm.edu (D.A.W.), gadgetz@broadinstitute.org (G.G.)

In Brief

A synthesized view on oncogenic processes based on PanCancer Atlas analyses highlights the complex impact of genome alterations on the signaling and multi-omic profiles of human cancers as well as their influence on tumor microenvironment.

What else?

- International Cancer Genome Consortium (ICGC)
- <u>Pediatric Cancer Genome Project</u> (PGCP)
- <u>TARGET Project</u>

What's next?

Cancer Moonshot

Cell. 2018, 173(2), 305-320 https://doi.org/10.1016/j.cell.2018.03.033

- Level: Multi omics organ level
- Project: <u>Allen Brain Atlas</u>
- Aim: Integrated analysis of cell line drug responsiveness
- Samples: Human and mouse brain biopsies
- Technologies: Microarray, ISH, RNA-Seq, MRI
- **Data**: Raw, processed and integrated

Data access: http://www.brain-map.org/

Mouse Brain data: ISH data Developing Mouse Brain data: ISH data Mouse Spinal Cord: ISH data Mouse Brain Connectivity: Reconstruction using transgenic mice data Cell Type: RNA-Seq data, Morphology and Electrophysiology data Brain observatory: Physiological data transgenic mice

<u>Human Brain data</u>: Microarray and RNA-Seq data, MRI scan <u>Developing Human Brain data</u>: Microarray, RNA-Seq, Exon microarray data <u>Glioblastoma Atlas</u>: RNA-Seq, Clinical data <u>Aging, Dementia, TBI</u>: RNA-Seq, Clinical data, IHC

Non-human primate data: Microarray data

Data visualization and integration

Trends in Neurosciences Corpress

Volume 35, Issue 12, December 2012, Pages 711-714

Forum: Science & Society

The Allen Human Brain Atlas: Comprehensive gene expression mapping of the human brain

Elaine H. Shen ^{III}, Caroline C. Overly, Allan R. Jones

E Show more

https://doi.org/10.1016/j.tins.2012.09.005

Get rights and content

The Allen Human Brain Atlas is a freely available multimodal atlas of gene expression and anatomy comprising a comprehensive 'all genes–all structures' array-based dataset of gene expression and complementary *in situ* hybridization (ISH) gene expression studies targeting selected genes in specific brain regions. Available via the Allen Brain Atlas data portal (www.brain-map.org), the Atlas integrates structure, function, and gene expression data to accelerate basic and clinical research of the human brain in normal and disease states.

Trend in Neuros. 2012, 35(12), 711-714 https://doi.org/10.1016/j.tins.2012.09.005

What else?

- Human Connectome Project
- Human Brain Project
- <u>iPOP</u> and <u>P100</u>

What's next?

100K WELLNESS PROJECT

Institute for Systems Biology

100K Wellness Project **AN EXAMINED LIFE** The longitudinal study collected data at daily and three-month intervals, and allowed personalized interventions - such as changes in diet - as the study proceeded.

- A large amount of high-throughput data derived from small scale omic project and research
- These data are stored in repositories like <u>Gene</u> <u>Expression Omnibus</u> (GEO) and <u>ArrayExpress</u> or provided as supplementary material of publications

From: https://medicine.umich.edu/dept/dcmb/research

- A large number of biological systems and phenotypes were studied using high-throughput technologies
- Most of these data are freely available and easy to retrieve and visualize
- Any biological studies can be improved by integrating these public omic information.
- Then exploit them and stay updated (e.g. pubmed "<u>save</u>" function)