
• An ontology is a specification of a conceptualization:
– a hierarchical mapping of concepts within a given frame of 

reference.
• An ontology is a restricted structured vocabulary of 

terms that represent domain knowledge. 
• An ontology specifies a vocabulary that can be used to 

exchange queries and assertions. 
• A commitment to the use of the ontology is an 

agreement to use the shared vocabulary in a consistent 
way.
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• The goal of the Gene Ontology (GO) Consortium is to produce a 
controlled vocabulary that can be applied to all organisms even 
as knowledge of gene and protein roles in cells is accumulating 
and changing. 
• http://www.geneontology.org/

• For genes and gene products the Gene Ontology Consortium 
(GO) is an initiative that is designed to address the problem of 
defining common set of terms and descriptions for basic 
biological functions.

• GO provides a restricted vocabulary as well as clear indications 
of the relationships between terms.
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• The Gene Ontology (GO) consortium produces three 
independent ontologies for gene products.  

• The three ontologies are:
• molecular function of a gene product which is defined to be 

biochemical activity or action of the gene product (MF 7220).
• biological process interpreted as a biological objective to 

which the gene product contributes (BP 9529).
• cellular component is a component of a cell that is part of 

some larger object or structure (CC 1536).
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• The GO ontologies are structured as directed acyclic 
graphs (DAGs) that represent a network in which each 
term may be a child of one or more parents.

• GO node is interchangeable with GO term.
• Child terms are more specific than their parents:

• The term “transmembrane receptor protein-tyrosine kinase” 
is child of
• “transmembrane receptor” and “protein tyrosine kinase”.
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• The relationship between a child and a parent can be 
characterized by the relations:
• is a 
• has a (part of)
• Positive/negative regulation (BP only)

• “mitotic chromosome” is a child of “chromosome” and 
the relationship is an is a relation. 

• “telomere” is a child of “chromosome” with the has a
relation. 
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Term-Term Relationships

• The is a relationship is a simple class-subclass relationship, where A
is a B means that A is a subclass of B; for example, nuclear
chromosome is a chromosome.
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Term-Term Relationships

• The part of relationship is slightly more complex; C part of D means
that whenever C is present, it is always a part of D, but C does not
always have to be present. An example would be periplasmic
flagellum part of periplasmic space:

When a periplasmic flagellum is present, it is always part of a
periplasmic space. However, every periplasmic space does not
necessarily have a periplasmic flagellum.
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RNAseq interpretation – Gene Ontology - regulates

Term-Term Relationships

• The regulates, positively regulates and negatively regulates relationships
describe interactions between biological processes and other biological
processes, molecular functions or biological qualities. When a
biological process E regulates a function or a process F, it modulates
the occurrence of F. If F is a biological quality, then E modulates the
value of F. An example of the regulation of a biological process would
be the term regulation of transcription. When regulation of
transcription occurs, it always alters the rate, extent or frequency at
which a gene is transcribed.
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RNAseq interpretation – Gene Ontology – transitivity rule
Relationship Transitivity

The is a and part of relationships are transitive, which means that the
relationships are propagated from parent terms to child terms. An example
of is a transitivity is shown in the nuclear chromosome example previously
used:

All nuclear chromosomes must be intracellular
non-membrane-bound organelles.
An example of part of transitivity is shown below:

Every occurrence of cellular morphogenesis during differentiation
must be a part of an occurrence of cell differentiation.
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Relationship Transitivity

is a transitivity: If process B exists in the GO biological process ontology
and it is an is a child of process A then any process that regulates process
B also regulates process A. For example:

Due to is a transitivity, we can say that any process that regulates
bipolar cell growth also regulates cell growth.
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RNAseq interpretation – Gene Ontology – transitivity ruleRelationship Transitivity

The regulates relationships are transitive over part of relationship.

part of transitivity: If process Y exists in the GO biological process
ontology and it is a part of child of process X then any process that
regulates process Y also regulates process X.

In the example above, regulation of transcription regulates
transcription which is part of gene expression. Therefore, regulation
of transcription also regulates gene expression.
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• The Experimental Evidence codes are:
• Inferred from Experiment (EXP)
• Inferred from Direct Assay (IDA)
• Inferred from Physical Interaction (IPI)
• Inferred from Mutant Phenotype (IMP)
• Inferred from Genetic Interaction (IGI)
• Inferred from Expression Pattern (IEP)
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• The Computational Analysis evidence codes are:
• Inferred from Sequence or structural Similarity (ISS)
• Inferred from Sequence Orthology (ISO)
• Inferred from Sequence Alignment (ISA)
• Inferred from Sequence Model (ISM)
• Inferred from Genomic Context (IGC)
• Inferred from Biological aspect of Ancestor (IBA)
• Inferred from Biological aspect of Descendant (IBD)
• Inferred from Key Residues (IKR)
• Inferred from Rapid Divergence(IRD)
• Inferred from Reviewed Computational Analysis (RCA)
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• The Author Statement evidence codes used by GO are:
• Traceable Author Statement (TAS)
• Non-traceable Author Statement (NAS)

• The Curatorial Statement codes are:
• Inferred by Curator (IC)
• No biological Data available (ND) evidence code

• The Automatically-Assigned evidence code is:
• Inferred from Electronic Annotation (IEA)
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GO can be used to link differentially expressed 
genes to specific functional classes.

Top node
The induced GO graph colored according to unadjusted hypergeometric p-value£0.01
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The null hypothesis that the property for a gene to belong to the GO 
category of interest and that to be DE are independent, or 

equivalently that the DE genes are picked at random from the 
total gene population

We consider a total population of genes, e.g. the genes expressed in a high-
throughput experiment, and we are interested in the property of a gene to 
belong to a specific GO category. The aim is to establish whether the class 

of the DE genes presents an enrichment and/or a depletion of the GO 
category of interest with respect to the total gene population.

Enrichment analysis



Hypergeometric distribution and Fisher’s test

The hypergeometric distribution is a discrete probability distribution that 
describes the probability of k successes (random draws for which the object 

drawn has a specified feature) in n draws, without replacement, from a 
finite population of size N that contains exactly K objects with that 

feature, wherein each draw is either a success or a failure.

Fisher's exact test to determine if something is enriched or not.

https://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution
https://en.wikipedia.org/wiki/Population


Bag of balls

I extract  7 blue balls and 1 red

What does that say about the distributions of colours in the bag?

Do I have more blues than normal? 
Can I calculate a p-value from this sample?

Hypergeometric distribution and Fisher’s test



Bag of balls

Hypergeometric distribution and Fisher’s test



Determine if the set of balls of this sample is special or not?

The order of how the balls are extracted is not 
important, then consider all possible ordering of the 7 

blue and 1 red  as legit

Hypergeometric distribution and Fisher’s test



Let’s start by calculating the 
probability of getting 7 blues balls 

followed by a single red

The probability that the first ball blue is 8/40 , 

Where:
8 because there are 8 blues

40 is the total number of balls

The probability that the second ball blue is 7/39 , 

Where:
7 because there are 8 blues

39 is the total number of balls

Hypergeometric distribution and Fisher’s test



Let’s start by calculating the 
probability of getting 7 blues balls 

followed by a single red

The probability that the first ball blue is 8/40 , 

Where:
8 because there are 8 blues

40 is the total number of balls

The probability that the first ball blue is 7/39 , 

Where:
7 because there are 7 blues

39 is the total number of balls

The probability that the first ball red is 5/33 , 

Where:
5 because there are 5 reds

33 is the total number of balls

Hypergeometric distribution and Fisher’s test



Let’s start by calculating the 
probability of getting 7 blues balls 

followed by a single red

Multiply all those probabilities together to 
get the probability of getting 7 blues 
followed by one red is 0.000000065

The probability to obtain 7 blues and 1 red 
not depend by the order then, to calculate 
the probability of getting 7 blues and 1 red 
we need to consider all the probabilities of 

each possible ordering.

We repeat the computation of the probability 
considering any order and we obtain: 

0.00000053

Hypergeometric distribution and Fisher’s test



We repeat the computation of the probability 
considering any order and we obtain: 

0.00000053

Compute the p-value 

Hypergeometric distribution and Fisher’s test



Probability versus p-value

= 1/4

The order of the 
elements does not 

matter.



Probability versus p-value

+



Probability versus p-value

= 0.375



We repeat the computation of the probability 
considering any order and we obtain: 

0.00000053

The p-value is the sum of the probabilities of all things equally rare or rarer. Then 
compete the probability for 7 blues and 1 orange, 8 blues (as the rarer) etc.  

Finally the p-values is 0.01.

This is call Fisher’s exact test.

Enrichment for other things, “does this list of genes have more involved in 
metabolism than normal” can be answered following the same way.

Hypergeometric distribution and Fisher’s test



Consider a population of genes representing a 
diverse set of GO terms shown below as 
different colors.
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Many methods can be used to identify a set of 
differentially expressed genes
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What are the some of the predominant GO 
terms represented in the set of differentially 
expressed genes  and how should significance 
be assigned to a discovered  GO term?
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A 2x2 contingency matrix is typically used to capture 
the relationships between differentially expressed 
membership and membership to a GO term.

RNAseq interpretation – Gene Ontology, enrichment



out

in
GO term

outin
Subset

2

4 26

8

Contingency
Matrix

RNAseq interpretation – Gene Ontology, enrichment



Hypergeometric Distribution
a b

c d

a+c

a+b

b+d

c+d

!!!!!
)!()!()!()!(

)!()!(
!

!!
)!(

!!
)!(

dcban
dbcadcba

dcba
n

db
db

ca
ca

++++
=

++

+
´

+

The probability of any particular
matrix occurring by random
selection, given no association
between the two variables, is given
by the hypergeometric rule.

RNAseq interpretation – Gene Ontology, enrichment



Assigning Significance to the Findings
The HyperGeometric Test permits us to determine if there 
are non-random associations between the two variables, 
differential expression membership and membership to a 
particular Gene Ontology term.  

8 2

4 26

in out

in

out

Subset

GO term p » .0002

( 2x2 contingency matrix )
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The GO is a consistent descriptions of genes in different data sources. The annotations can 
use also to measure the functional similarities (SS) of genes. 

Different types of SS have been proposed: based only on GO structure, or based on the 
information content of a term derived form the corpus statistics. 
SS’s measure is based on both

(i) the location in the GO graph
(ii) the GO term’s semantics that are inherited from all its ancestor terms. 

Based on human perspectives, if two terms sharing the same parent are near the root of 
the ontology (terms are more general), they should have larger semantic difference than
two terms having the same parent and being far away from the root of the ontology
because the later are more specific terms. 

RNAseq interpretation – Gene Ontology, criticalities



Every GO term must obey the true path rule: if the child term describes the gene 
product, then all its parent terms must also apply to that gene product. Let consider
how chitin metabolism is represented in the process ontology. Chitin metabolism is a 
part of cuticle synthesis in the fly and is also part of cell wall organization in plants. 
This was once represented in the process ontology as follows: 

The problem with this organization becomes apparent when one tries to annotate a 
specific gene product from one species. A fly chitin synthase could be annotated to 
chitin biosynthesis, and appear in a query for genes annotated to cell wall biosynthesis
(and its children), which makes no sense because flies don’t have cell walls. 

RNAseq interpretation – Gene Ontology, criticalities
True path rule

Every GO term must obey the true path rule: if the child term describes
the gene product, then all its parent terms must also apply to that gene
product. Let consider how chitin metabolism is represented in the process
ontology. Chitin metabolism is a part of cuticle synthesis in the fly and is
also part of cell wall organization in yeast. This was once represented in
the process ontology as follows:

The problem with this organization becomes apparent when one tries to
annotate a specific gene product from one species. A fly chitin synthase
could be annotated to chitin biosynthesis, and appear in a query for
genes annotated to cell wall biosynthesis (and its children), which makes
no sense because flies don’t have cell walls.
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True path rule

This is the revised ontology structure which ensures that the true path rule
is not broken:
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This is the revised ontology structure which ensures that the true path rule is
not broken: 
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GO is marked by flaws due to a failure to address basic ontological principles. 

• the existing annotation databases are incomplete; 

• the quality of an association among GO terms and genes depends upon the source of 
the annotation, some information are imprecise or incorrect; 

• the GO is an ongoing project in which new GO terms are added continuously and this
can lead to a re-classification of all tagged gene products; 

• genes involved in several biological process, all the biological process is weight
equally, it is not possible single out the more relevant one. 
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Optimize the organization of the GO to optimize the distribution of the information. 
Particularly used by enrichment web tools. 

The quantification of information contained in the terms ontology is computed considering
the amount of annotations available for a given term. With this measure Alterovitz et al 
demostrate some structural inefficiency: 

1.the variability of the information content among the terms within a given ontology level. 
For example, pilus retraction is at the same level of cell cycle and cell development. 

2.in some area of GO the mean information content decrease from one level to the next
creating the bottle-neck → problem in the use of enrichment tools. 

3.the closer a topological structure is to uniform, the greater is the information that
experiments can derive from it. 

RNAseq interpretation – Gene Ontology, criticalities



• Interpreting the results to gain insights into biological mechanisms remains a 
major challenge

• For a typical two group comparison, e.g., tumor vs. normal, treated vs. 
control, a standard approach has been to produce a list of differentially 
expressed genes (DEGs)

• One also might obtain a list of “Distinguished Genes” from examining 
correlation of gene expression with a pertinent clinical variable,  or from 
differences in methylation

RNAseq interpretation – Gene set enrichment



Criteria for Differential Expression of a Gene
• Statistically significant differential expression 

• by  t-test, multi-way ANOVA, etc.
• P-value cut-off: require, e.g., p ≤ 0.01, but see FDR (which will impose more 

stringent requirement for p-values)

• Satisfactory false discovery rate (FDR) 
• What fraction of the DEG list is false positives?
• Benjamini-Hochberg procedure for estimating the FDR is a common choice 

(e.g., require FDR ≤ 0.1 or 0.2).  

• Sufficient level of fold change (FC)
• require |FC|  ≥  1.5 or 2; common convention: groups A, B, gene g with 

average expression levels   µA, µB;  FC º µA /µB
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Challenges in Interpreting Gene Microarray/Seq Data

• Even with DEG lists of upregulated and of down-regulated genes, still need to accurately 
extract valid biological inferences. Cutoff for inclusion in DEG lists is somewhat arbitrary.  

• May obtain a long list of statistically significant genes without any obvious unifying biological 
theme

• May have few individual genes meeting the threshold for statistical significance 
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• These methods formulate a statistic for the ensemble of genes in each    gene set using a selected 
metric for each gene.  Increases statistical power.

• The expression data for all the genes in the dataset is used.Can be applied to many types of gene sets 

• But note: results depend on the collection of gene sets examined, and still must address multiple 
testing error control (though much less severe than for all probes on a large array).  Run different 
types of gene set collections separately.

v T-score for group A vs. group B comparison
v Fold Change for group A vs. group B
v Pearson correlation of gene expression with  a pertinent clinical 

variable

v pathways from BioCarta & KEGG 
v genes changed in response to some disease or experimental condition
v GO categories 
v genes co-located in cytobands
v genes having common transcription factor motifs

RNAseq interpretation – Gene set enrichment



Overview of GSEA



GSEA is a computational method that determines whether an a priori 
defined set of genes shows statistically significant, concordant 
differences between two biological states (e.g. phenotypes). 

text and figure from the Broad Institute web pages for GSEA : http://www.broad.mit.edu/gsea/index.html
the current version of the figure at the Broad site is slightly different from the one above

RNAseq interpretation – Gene set enrichment
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ES<0

Get ranked 
list L of all the
genes on the 
chip based 
on a chosen

measure, e.g., FC or Tscore, 
of the difference of

their expression 
levels between the 
phenotypes A & B 
under study, e.g., 
tumor vs. normal 

Multiple hypothesis testing (MHT)
error control for multiple S’s using

the estimated false discovery rate (FDR)

Analyze significance of 
this Kolmogorov-Smirnov

type statistic by 
permutation testing  

For each
gene set S:

find the
location of 
each gene s
in S within L

L

bands are locations in L     
of genes from S

+FC

-FC

ES>0

Generate enrichment 
score ES for S based 

on running-sum statistic:
“reward” presence of s

toward top or bottom of L
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RNAseq interpretation



Null distribution of  
enrichment scores

Actual ES

• Randomise data (groups), rank genes again and repeat test 
1000 times

• Null distribution of 1000 ES for geneset

• FDR q-value computed – corrected for gene set size and 
testing multiple gene sets
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Testing the Significance of ES using Sample Label Permutations: 

do » 1000 sample label permutations p * - for each permutation pi randomly shuffle             
the labels of which sample is in which group while leaving the rest of the expression                 
matrix fixed, and recalculate  {DE(g)} and then the enrichment score for each S

pe
rm

ut
at
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n 

nu
m

be
r

*actually want at least 7 samples in each group for sample label permutation, else do gene permutation

{ES(S,p1)}
{ES(S,p2)}

{ES(S,p4)}
{ES(S,p3)}

compute the 
differential expression 
value for each gene 
(DE(g)), and then the 
ES(S) values for all the 
gene sets 

gene expression matrix, sample labels indicate phenotype group  
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Testing the Significance of ES
Significance of the observed ES(S) is compared with the set of empirical null distribution 
scores ES(S,p)  computed with the randomly assigned phenotypes or random gene sets.

G T1 T2 T3 T4 N1 N2 N3 N4

:
1000 x

Histogram of 1000 ES(S,p) Scores

ES(S,p1)G T4 N3 N4 T3 T1 T2 N1 N2

G T3 N2 T1 N3 T4 N4 T2 N1

G N4 T4 N1 N3 T3 T4 N2 T1

ES(S,p2)
ES(S,p3)

:

ES(S,p1000)

ES(S)

ESNULL(S):null distribution for ES(S)

ES(S)

The empirical, nominal p-value for 
each ES(S) is then calculated relative 
to the null distribution for ES(S):          
p = fraction of ES(S,p) values ≥ ES(S)
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How normalized enrichment scores (NES) are calculated from ES 

meanp{ES(S, p) values ES(S)}

original ES(S)
NES(S)  º

Using the NES helps normalize out effect of different gene set sizes 
Histogram of the ES(S,p) values for a given S from the permutations

ES(S,p)

meanp{ES(S, p) values 
ES(S, pk)}

ES(S, pk)
NES(S, pk)  º

For each permutation p and gene set S, compute NES(S, p) to use in computing the FDR:

ES(S)

ES(S,p)

ES(S,p1)

ES(S,p3)
ES(S,p2)
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ESNULL

ESNULL

ESNULL
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Genes in expression matrix are sorted based on correlation to phenotype classes (red and blue 
at the top of D, panel A). The positions of genes in S are noted with black bars to the right of D. 
ES(S) is calculated based on both the correlations and the positions in L. 



The running enrichment score for a negative ES gene set      
from the P53 GSEA example data set 

Zero crossing of ranking 
metric values

ES(S) 
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running enrichment score figure copied from 
http://www.broadinstitute.org/gsea/datasets.jsp
p53 dataset (gene set is BRCA_UP)

+ -

locations of genes in S

p53 WT p53 MUT

RNAseq interpretation – Gene set enrichment

http://www.broadinstitute.org/gsea/datasets.jsp


GSEA returns two lists of gene sets: {S with NES > 0} and {S with NES < 0} (sorted by NES value)

NES > 0, 
descending 
order

NES < 0, 
ascending 
order
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Conclusions of GSEA


