RNAseq interpretation — Gene Ontology

* An ontology is a specification of a conceptualization:

— a hierarchical mapping of concepts within a given frame of
reference.

* An ontology is a restricted structured vocabulary of
terms that represent domain knowledge.

* An ontology specifies a vocabulary that can be used to
exchange queries and assertions.

A commitment to the use of the ontology is an
agreement to use the shared vocabulary in a consistent
way.



RNAseq interpretation — Gene Ontology

* The goal of the Gene Ontology (GO) Consortium is to produce a
controlled vocabulary that can be applied to all organisms even
as knowledge of gene and protein roles in cells is accumulating
and changing.

* http://www.geneontology.org/

* For genes and gene products the Gene Ontology Consortium
(GO) is an initiative that is designed to address the problem of
defining common set of terms and descriptions for basic
biological functions.

* GO provides a restricted vocabulary as well as clear indications
of the relationships between terms.


http://www.geneontology.org/

RNAseq interpretation — Gene Ontology

 The Gene Ontology (GO) consortium produces three
independent ontologies for gene products.

 The three ontologies are:

* molecular function of a gene product which is defined to be
biochemical activity or action of the gene product (MF 7220).

* biological process interpreted as a biological objective to
which the gene product contributes (BP 9529).

* cellular component is a component of a cell that is part of
some larger object or structure (CC 1536).



RNAseq interpretation — Gene Ontology

 The GO ontologies are structured as directed acyclic

graphs (DAGs) that represent a network in which each
term may be a child of one or more parents.

* GO node is interchangeable with GO term.

* Child terms are more specific than their parents:

* The term “transmembrane receptor protein-tyrosine kinase”
is child of

* “transmembrane receptor” and “protein tyrosine kinase”.



RNAseq interpretation — Gene Ontology

* The relationship between a child and a parent can be
characterized by the relations:

* isa
* has a (part of)
* Positive/negative regulation (BP only)

e “mitotic chromosome” is a child of “chromosome” and
the relationship is an is a relation.

e “telomere” is a child of “chromosome” with the has a
relation.




RNAseq interpretation — Gene Ontology —is_a

e The is_a relationship is a simple class-subclass relationship, where A
is_a B means that A is a subclass of B; for example, nuclear
chromosome is_a chromosome.

G0:0043232 : intracellular non-membrane-bound organelle
[i1] GO:0005694 : chromosome

---[1] GO:0000228 : nuclear chromosome



RNAseq interpretation — Gene Ontology part_of

e The part_of relationship is slightly more complex; C part_of D means
that whenever C is present, it is always a part of D, but C does not
always have to be present. An example would be periplasmic
flagellum part_of periplasmic space:

GO:0044464 : cell part

[i] GO:0042995 : cell projection

--[1i] GO:0019861 : flagellum

------ [1] GO:0009288 : flagellin-based flagellum
--------- [i1] GO:0055040 : periplasmic flagellum
[i] G0O:0042597 : periplasmic space

---[p] GO:0055040 : periplasmic flagellum

When a periplasmic flagellum is present, it is always part_of a
periplasmic space. However, every periplasmic space does not
necessarily have a periplasmic flagellum.



RNAseq interpretation — Gene Ontology - regulates

e The requlates, positively_requlates and negatively_requlates relationships
describe interactions between biological processes and other biological
processes, molecular functions or biological qualities. When a
biological process E regulates a function or a process F, it modulates
the occurrence of F. If F' is a biological quality, then E modulates the
value of F. An example of the regulation of a biological process would
be the term regulation of transcription. When regulation of
transcription occurs, it always alters the rate, extent or frequency at
which a gene is transcribed.



RNAseq interpretation — Gene Ontology — transitivity rule

The is_a and part_of relationships are transitive, which means that the
relationships are propagated from parent terms to child terms. An example
of is_a transitivity is shown in the nuclear chromosome example previously
used:

GO:0043232 : intracellular non-membrane-bound organelle
[1] GO:0005694 : chromosome

-[1] GO:0000228 : nuclear chromosome

All nuclear chromosomes must be intracellular
non-membrane-bound organelles.
An example of part_of transitivity is shown below:

GO:0048869 : cellular developmental process

[1] GO:0030154 : cell differentiation

---[p] GO:0048468 : cell development

------ [p] GO:0000904 : cellular morphogenesis during differentiation

Every occurrence of cellular morphogenesis during differentiation
must be a part of an occurrence of cell differentiation.



RNAseq interpretation — Gene Ontology — transitivity rule

1s_a transitivity: If process B exists in the GO biological process ontology
and it is an is_a child of process A then any process that regulates process
B also regulates process A. For example:

GO:0016049 : cell growth
[i] GO0:0042815 : bipolar cell growth
---[r] GO:0051516 : regulation of bipolar cell growth

Due to is_a transitivity, we can say that any process that regulates
bipolar cell growth also regulates cell growth.



RNAseq interpretation — Gene Ontology — transitivity rule
The regulates relationships are transitive over part_of relationship.

GO:0010467 : gene expression

[r] GO:0010468 : regulation of gene expression
---[1] GO:0045449 : regulation of transcription
[p] GO:0006350 : transcription

---[r] GO:0045449 : regulation of transcription

part_of transitivity: If process Y exists in the GO biological process
ontology and it is a part_of child of process X then any process that
regulates process Y also regulates process X.

In the example above, regulation of transcription regulates
transcription which is part_of gene expression. Therefore, regulation
of transcription also regulates gene expression.



RNAseq interpretation — Gene Ontology
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RNAseq interpretation — Gene Ontology

GOID
G0:0030154
G0:0020154
G0:0030154
G0:0030154
G0:0030154
G0:0030154
G0:0030154
G0:0030154
G0:0030154

EVIDENCE ONTOLOGY ENTREZID SYMBOL

IEA BP
IEA BP
IEA BP
IEA BP
IEA BP
IMP BP
IMP BP
IEA BP
IEA BP

13642
14175
14367
15482
16413
16600
16923
17242
17450

Efnb2
Fgfd
Fzd5

Hspall
tgbibpl
KIf4

Sh2b3
Mdk

Morcl

GENENAME
ephrin B2
fibroblast growth factor 4
frizzled homolog 5 (Drosophila)
heat shock protein 1-like
integrin beta 1 binding protein 1
Kruppel-like factor 4 (gut)
SH2B adaptor protein 3
midkine
microrchidia 1

e The Experimental Evidence codes are:

Inferred from Experiment (EXP)

Inferred from Direct Assay (IDA)

Inferred from Physical Interaction (IPI)

Inferred from Mutant Phenotype (IMP)

Inferred from Genetic Interaction (1Gl)

Inferred from Expression Pattern (IEP)



http://geneontology.org/page/experimental-evidence-codes
http://geneontology.org/page/exp-inferred-experiment/
http://geneontology.org/page/ida-inferred-direct-assay/
http://geneontology.org/page/ipi-inferred-physical-interaction/
http://geneontology.org/page/imp-inferred-mutant-phenotype/
http://geneontology.org/page/igi-inferred-genetic-interaction/
http://geneontology.org/page/iep-inferred-expression-pattern/

RNAseq interpretation — Gene Ontology
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SH2B adaptor protein 3
midkine
microrchidia 1

* The Computational Analysis evidence codes are:
Inferred from Sequence or structural Similarity (ISS)
Inferred from Sequence Orthology (I1SO)

Inferred from Sequence Alignment (ISA)

Inferred from Sequence Model (ISM)

Inferred from Genomic Context (IGC)

Inferred from Biological aspect of Ancestor (IBA)

Inferred from Biological aspect of Descendant (IBD)

Inferred from Key Residues (IKR)

Inferred from Rapid Divergence(IRD)

Inferred from Reviewed Computational Analysis (RCA)



http://geneontology.org/page/computational-analysis-evidence-codes
http://geneontology.org/page/iss-inferred-sequence-or-structural-similarity/
http://geneontology.org/page/iso-inferred-sequence-orthology/
http://geneontology.org/page/isa-inferred-sequence-alignment/
http://geneontology.org/page/ism-inferred-sequence-model/
http://geneontology.org/page/igc-inferred-genomic-context/
http://geneontology.org/page/iba-inferred-biological-aspect-ancestor/
http://geneontology.org/page/ibd-inferred-biological-aspect-descendent/
http://geneontology.org/page/ikr-inferred-key-residues/
http://geneontology.org/page/ird-inferred-rapid-divergence/
http://geneontology.org/page/rca-inferred-reviewed-computational-analysis/
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* The Author Statement evidence codes used by GO are:

* Traceable Author Statement (TAS)

e Non-traceable Author Statement (NAS)

e The Curatorial Statement codes are:

e Inferred by Curator (IC)

 No biological Data available (ND) evidence code

e The Automatically-Assigned evidence code is:

* Inferred from Electronic Annotation (IEA)



http://geneontology.org/page/author-statement-evidence-codes
http://geneontology.org/page/tas-traceable-author-statement/
http://geneontology.org/page/nas-non-traceable-author-statement/
http://geneontology.org/page/curatorial-statement-evidence-codes
http://geneontology.org/page/ic-inferred-curator/
http://geneontology.org/page/nd-no-biological-data-available/
http://geneontology.org/page/automatically-assigned-evidence-codes
http://geneontology.org/page/automatically-assigned-evidence-codes/

RNAseq interpretation — Gene Ontology

Top node
The induced GO graph colored according to unadjusted hypergeometric p-value<0.01

GO can be used to link differentially expressed
genes to specific functional classes.




Enrichment analysis

We consider a total population of genes, e.g. the genes expressed in a high-
throughput experiment, and we are interested in the property of a gene to
belong to a specific GO category. The aim is to establish whether the class
of the DE genes presents an enrichment and/or a depletion of the GO
category of interest with respect to the total gene population.

The null hypothesis that the property for a gene to belong to the GO
category of interest and that to be DE are independent, or
equivalently that the DE genes are picked at random from the
total gene population



Hypergeometric distribution and Fisher’s test

The hypergeometric distribution is a discrete probability distribution that
describes the probability of k successes (random draws for which the object
drawn has a specified feature) in n draws, without replacement, from a
finite population of size N that contains exactly K objects with that
feature, wherein each draw is either a success or a failure.

Fisher's exact test to determine if something is enriched or not.


https://en.wikipedia.org/wiki/Probability_distribution#Discrete_probability_distribution
https://en.wikipedia.org/wiki/Population

Hypergeometric distribution and Fisher’s test

Bag of balls

| extract 7 blue balls and 1 red

What does that say about the distributions of colours in the bag?

Do | have more blues than normal?
Can | calculate a p-value from this sample?



Bag of balls

Red
Yallow
Orange
Green
Brown
Blue

13%
14%
21%
20%
12%
21%

Hypergeometric distribution and Fisher’s test




Hypergeometric distribution and Fisher’s test

Determine if the set of balls of this sample is special or not?

The order of how the balls are extracted is not

important, then consider all possible ordering of the 7
blue and 1 red as legit



Hypergeometric distribution and Fisher’s test

00000000

Let's start by calculating the

probability of getting 7 blues balls
followed by a single red

The probability that the first ball blue is 8/40 ,
Where:

8 because there are 8 blues
40 is the total number of balls

The probability that the second ball blue is 7/39,
Where:

7 because there are 8 blues
39 is the total number of balls




Hypergeometric distribution and Fisher’s test —
F {7 ©
o 00000000

Let’s start by calculating the
probability of getting 7 blues balls
followed by a single red

The probability that the first ball blue is 8/40,
Where:

8 because there are 8 blues
40 is the total number of balls

The probability that the first ball blue is 7/39,

Where:
7 because there are 7 blues

39 is the total number of balls

The probability that the first ball red is 5/33,

Where:
5 because there are 5 reds

33 is the total number of balls




Hypergeometric distribution and Fisher’s test

Let's start by calculating the

probability of getting 7 blues balls
followed by a single red

Multiply all those probabilities together to

get the probability of getting 7 blues
followed by one red is 0.000000065

The probability to obtain 7 blues and 1 red

not depend by the order then, to calculate

the probability of getting 7 blues and 1 red

we need to consider all the probabilities of
each possible ordering.

We repeat the computation of the probability

considering any order and we obtain:
0.00000053



We repeat the computation of the probability

considering any order and we obtain:
0.00000053

Compute the p-value



Probability versus p-value

First flip Second flip Outcomes

L 1 +\
e

0.5 H 0.5 T — HT The number of
times HH occurred 1/4
0.5 N 0.5 H TH The total # of outcomes

0.5 T > TT

First flip Second flip Outcomes
f A \ ! A ) I_H

0os »H —> HH
05~ H é T —[HT The number of times

HT or TH occurred 2

05N T Z H TH The total # of outcomes 4
OSNYT = TT

The probability of getting one H

and one T (regardless of order) is...

The order of the
elements does not
matter.



Probability versus p-value

A p-value is the probability that random
chance generated the data, or &methlng else

that is oqual or rarer.
We've already taken care
of the first part...
HH 1
= —=0.25
HH, HT, TH, TT 4
+
T . — . .
- =0.25 + Since nothing is rarer, this part is
HH, HT, TH, TT 4 equal to zero.

The probability of getting HH is 0.25

The p-value for getting HH is 0.5



Probability versus p-value

Pr(4 heads and 1 tails) =

5
— =0.15625
32

What's the p-value?

Pr(4 heads and 1 tails) \
+

Pr(1 heads and 4 tails)
+

Pr(5 heads) + Pr(5 tails)

= 0.375

Outcomes
——
TTHHH TTTHH
THTHH TTHTH
O THHTH THTTH ””t:,
THHHT HTTTH
THHHH TTHTT
HTTHH TTHHT
HTHHN HTHTH THTHT THITY
::L’;: HTHHT  HTTHT W
HHTTH THHTT
HHHNT HHTHT  HTHTT

HHHTT HHTTIT

A p-value is the probability that random
chance generated the data, or &mcthlng else
at is equal or rarer.



Hypergeometric distribution and Fisher’s test

We repeat the computation of the probability

considering any order and we obtain:
0.00000053

The p-value is the sum of the probabilities of all things equally rare or rarer. Then
compete the probability for 7 blues and 1 orange, 8 blues (as the rarer) etc.

Finally the p-values is 0.01.

This is call Fisher’s exact test.

Enrichment for other things, “does this list of genes have more involved in
metabolism than normal” can be answered following the same way.



RNAseq interpretation — Gene Ontology, enrichment

Consider a population of genes representing a
diverse set of GO terms shown below as
different colors.




RNAseq interpretation — Gene Ontology, enrichment

Many methods can be used to identify a set of
differentially expressed genes
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RNAseq interpretation — Gene Ontology, enrichment

What are the some of the predominant GO
terms represented in the set of differentially
expressed genes and how should significance
be assigned to a discovered GO term?
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RNAseq interpretation — Gene Ontology, enrichment

A 2x2 contingency matrix is typically used to capture
the relationships between differentially expressed
membership and membership to a GO term.
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RNAseq interpretation — Gene Ontology, enrichment

| Subset Contingency
in out Matrix
in 8 2
GO term
out |4 26
O
O 0 ©
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RNAseq interpretation — Gene Ontology, enrichment

Hypergeometric Distribution

3 b a+b The probability of any particular
matrix occurring by random
selection, given no association

C d c+d ) .
between the two variables, is given

3+C b+d by the hypergeometric rule.

(a+c)! (b+d)!
alcl _pld__(a+b)c+d)(a+o)l(b+d)

n! nlalb'cld!
(a+b)!(c+d)!




RNAseq interpretation — Gene Ontology, enrichment

Assigning Significance to the Findings

The HyperGeometric Test permits us to determine if there
are non-random associations between the two variables,

differential expression membership and membership to a
particular Gene Ontology term.

Subset
in out

in 8 2

GO term ‘ p ~.0002

out | 4 26

( 2x2 contingency matrix )



RNAseq interpretation — Gene Ontology, criticalities

The GO is a consistent descriptions of genes in different data sources. The annotations can
use also to measure the functional similarities (SS) of genes.

Different types of SS have been proposed: based only on GO structure, or based on the
information content of a term derived form the corpus statistics.
SS’s measure is based on both

(i) the location in the GO graph

(ii) the GO term’s semantics that are inherited from all its ancestor terms.

Based on human perspectives, if two terms sharing the same parent are near the root of
the ontology (terms are more general), they should have larger semantic difference than
two terms having the same parent and being far away from the root of the ontology
because the later are more specific terms.



RNAseq interpretation — Gene Ontology, criticalities

Every GO term must obey the true path rule: if the child term describes the gene
product, then all its parent terms must also apply to that gene product. Let consider
how chitin metabolism is represented in the process ontology. Chitin metabolism is a
part of cuticle synthesis in the fly and is also part of cell wall organization in plants.
This was once represented in the process ontology as follows:

cuticle synthesis

[i] chitin metabolism

cell wall biosynthesis

[i] chitin metabolism
---[i] chitin biosynthesis
---[i] chitin catabolism

The problem with this organization becomes apparent when one tries to annotate a
specific gene product from one species. A fly chitin synthase could be annotated to
chitin biosynthesis, and appear in a query for genes annotated to cell wall biosynthesis
(and its children), which makes no sense because flies don’t have cell walls.



RNAseq interpretation — Gene Ontology, criticalities

This is the revised ontology structure which ensures that the true path rule is
not broken:

chitin metabolism

[i] chitin biosynthesis

[i] chitin catabolism

[i] cuticle chitin metabolism

---[i] cuticle chitin biosynthesis
---[i] cuticle chitin catabolism

[i] cell wall chitin metabolism
---[i] cell wall chitin biosynthesis
---[i] cell wall chitin catabolism



RNAseq interpretation — Gene Ontology, criticalities

GO is marked by flaws due to a failure to address basic ontological principles.
* the existing annotation databases are incomplete;

* the quality of an association among GO terms and genes depends upon the source of
the annotation, some information are imprecise or incorrect;

* the GO is an ongoing project in which new GO terms are added continuously and this
can lead to a re-classification of all tagged gene products;

* genes involved in several biological process, all the biological process is weight
equally, it is not possible single out the more relevant one.



RNAseq interpretation — Gene Ontology, criticalities

Optimize the organization of the GO to optimize the distribution of the information.
Particularly used by enrichment web tools.

The quantification of information contained in the terms ontology is computed considering
the amount of annotations available for a given term. With this measure Alterovitz et al
demostrate some structural inefficiency:

1.the variability of the information content among the terms within a given ontology level.
For example, pilus retraction is at the same level of cell cycle and cell development.

2.in some area of GO the mean information content decrease from one level to the next
creating the bottle-neck - problem in the use of enrichment tools.

3.the closer a topological structure is to uniform, the greater is the information that
experiments can derive from it.



RNAseq interpretation — Gene set enrichment

* Interpreting the results to gain insights into biological mechanisms remains a
major challenge

* For a typical two group comparison, e.g., tumor vs. normal, treated vs.
control, a standard approach has been to produce a list of differentially
expressed genes (DEGs)

* One also might obtain a list of “Distinguished Genes” from examining
correlation of gene expression with a pertinent clinical variable, or from
differences in methylation



RNAseq interpretation — Gene set enrichment

Criteria for Differential Expression of a Gene
* Statistically significant differential expression

* by t-test, multi-way ANOVA, etc.

* P-value cut-off: require, e.g., p £ 0.01, but see FDR (which will impose more
stringent requirement for p-values)

 Satisfactory false discovery rate (FDR)
* What fraction of the DEG list is false positives?

* Benjamini-Hochberg procedure for estimating the FDR is a common choice
(e.g., require FDR £0.1 or 0.2).

 Sufficient level of fold change (FC)

e require |FC| = 1.5 or 2; common convention: groups A, B, gene g with
average expression levels pA, uB; FC=puA /uB



RNAseq interpretation — Gene set enrichment

Challenges in Interpreting Gene Microarray/Seq Data

e Even with DEG lists of upregulated and of down-regulated genes, still need to accurately
extract valid biological inferences. Cutoff for inclusion in DEG lists is somewhat arbitrary.

e May obtain a long list of statistically significant genes without any obvious unifying biological
theme

e May have few individual genes meeting the threshold for statistical significance



RNAseq interpretation — Gene set enrichment

* These methods formulate a statistic for the ensemble of genes in each gene set using a selected
metric for each gene. Increases statistical power.
< T-score for group A vs. group B comparison

< Fold Change for group A vs. group B

< Pearson correlation of gene expression with a pertinent clinical
variable

* The expression data for all the genes in the dataset is used.Can be applied to many types of gene sets
< pathways from BioCarta & KEGG

< genes changed in response to some disease or experimental condition
< GO categories

< genes co-located in cytobands

< genes having common transcription factor motifs

* But note: results depend on the collection of gene sets examined, and still must address multiple
testing error control (though much less severe than for all probes on a large array). Run different
types of gene set collections separately.



Overview of GSEA

» Take gene expression data from two different
conditions and rank according to the differential
expression across the conditions

» Take a test set of genes and determine whether
they are collectively differentially expressed

» Randomly swap the class labels of the data and
repeat the test many times as a gauge of
significance



RNAseq interpretation — Gene set enrichment

GSEA is a computational method that determines whether an a priori
defined set of genes shows statistically significant, concordant

differences between two biological states (e.g. phenotypes).

Gene Set
Database

Molecular
Profile Data
< Run GSEA

Set : Enrrehgg\
Parameters @S Sets

text and figure from the Broad Institute web pages for GSEA : http://www.broad.mit.edu/gsea/index.html
the current version of the figure at the Broad site is slightly different from the one above



http://www.broad.mit.edu/gsea/index.html

RNAseq interpretation — Gene set enrichment

Get ranked \

list L of all the
genes on the
chip based
on a chosen
measure, e.g., FC or Tscore,
of the difference of
their expression
levels between the
phenotypes A & B

under study, e.g.,

e

For each
gene set S:
find the
location of
each gene s
in S within L

Gene set

FC |

bands are locations in L

ES>0

ES<0

of genes from S

Generate enrichment
score ES for S based
_____ | onrunning-sum statistic:
“reward” presence of s
toward top or bottom of L

l

Analyze significance of
this Kolmogorov-Smirnov
type statistic by
permutation testing

|

Multiple hypothesis testing (MHT)
error control for multiple S’s using
the estimated false discovery rate (FDR)

running sum

(I 1

L




RNAseq interpretation Enrichment Score (ES) Calculation

Start with ranked list (L) of genes that are in (Hit) or not in (Miss) a gene set (S),
using fold change (FC) as example metric

Ranked List
(L)

Hits: Genes €S
Misses: Genes & S

Z =sum of fold changes for genes in gene set (S) (e.g., 100)

FC

15
12
10

N =no. of genes in the array (e.g., 1020)
N, = no. of genes in the gene set (S) (e.g., 20)

Contribution Hits Misses Running
to running +|FC| /Z | -1/(N-N,;) | sum for ES
sum for ES

Hit +0.15 +0.15 0.15

Hit +0.12 +0.12 0.27

Miss -0.001 -0.001 0.269

Hit +0.09 +0.09 0.359

Hit +0.08 +0.08 0.439

Miss -0.001 -0.001 0.438
+|FC| /3 /
'1/(N'NH)

FIFTINTT T v

running sum
N ,/.
?

A

ES(S) = value of maximum deviation from 0 of the running sum



RNAseq interpretation — Gene set enrichment

 Randomise data (groups), rank genes again and repeat test
1000 times

* Null distribution of 1000 ES for geneset

Null distribution of
enrichment scores

TAc;tual ES

* FDR g-value computed — corrected for gene set size and
testing multiple gene sets



RNAseq interpretation — Gene set enrichment

Testing the Significance of ES using Sample Label Permutations:
gene expression matrix, sample labels indicate phenotype group

gene \ sample

CAsPa 782 7.87 815 781 796 792 7.90 7.96

BAX 801 785 782 795 805 791 778  7.96 compute the

CASP8 773 782 792 813 818 801 790 7.86 differential expression
CD40 812 815 832 821 806 802 800 8.08

—
BIRC3 787 801 799 7.8 799 7.8 801 7.96 value for each gene
GADD4SA 7.8 777 799 794 793 799 775  7.69 (DE(g)), and then the

BIRC2 807 801 7.8 801 794 786 806 7.92

ATM 9.40 954 932 960 911 945 942 9.34 ES(S) values for all the

gene sets

do ~ 1000 sample label permutations & * - for each permutation &, randomly shuffle
the labels of which sample is in which group while leaving the rest of the expression
matrix fixed, and recalculate {DE(g)} and then the enrichment score for each S

'%}*1 {ES(S, )}
g g - {ES(SITCZ)}
s £ 3 {ES(S,m5)}
acld {ES(S,m,)}

*actually want at least 7 samples in each group for sample label permutation, else do gene permutation



RNAseq interpretation — Gene set enrichment

Testing the Significance of ES
Significance of the observed ES(S) is compared with the set of empirical null distribution
scores ES(S,m) computed with the randomly assigned phenotypes or random gene sets.

ES\uu(S):null distribution for ES(S)

Lol

EIIIEIEAEIENEE ES(Sm) ) s

HEREEEEE i) g0l

7 5 RS 3

DERRERREE < -
’ 5+

ES(S) Histogram of 1000 ES(S,nt) Scores

ES(S)

1000 x ES(S, T1000) T
The empirical, nominal p-value for
each ES(S) is then calculated relative
to the null distribution for ES(S):
p = fraction of ES(S, ) values = ES(S)



RNAseq interpretation — Gene set enrichment

How normalized enrichment scores (NES) are calculated from ES
Using the NES helps normalize out effect of different gene set sizes

Histogram of the ES(S,n) values for a given S from the permutations

—

ES(S)

gr

COES(Sm)

il

NES(S) =

original ES(S)

mean,{ES(S, 1) values ES(S)}

For each permutation © and gene set S, compute NES(S, i) to use in computing the FDR:

—

S(S,TEZ’

{_l_

ES(S, ;)

| ES(S,m,)

[y

|

ES(S, )

NES(S, &) =

ES(S, =, )

mean_{ES(S, rt) values
ES(SI nk)}



RNAseq interpretation — Gene set enrichment

A Phenotype B Leading edge subset
Classes /\‘ Gene set S
mmBe  conosets LN 1L ]

Ranked Qen.e' !_i§t

Correlation with Phenotype

Random Walk

Maximum deviation Gene List Rank

from zero provides the

enrichment score ES(S)

Genes in expression matrix are sorted based on correlation to phenotype classes (red and blue
at the top of D, panel A). The positions of genes in S are noted with black bars to the right of D.
ES(S) is calculated based on both the correlations and the positions in L.



RNAseq interpretation — Gene set enrichment
The running enrichment score for a negative ES gene set
from the P53 GSEA example data set

GSEA_Results
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f

Zero crossing of ranking

running enrichment score figure copied from metric values
http://www.broadinstitute.org/gsea/datasets.jsp
p53 dataset (gene set is BRCA_UP)



http://www.broadinstitute.org/gsea/datasets.jsp

RNAseq interpretation — Gene set enrichment

GSEA returns two lists of gene sets: {S with NES > 0} and {S with NES < 0} (sorted by NES value)

4

1 ||[EXTRACELLULAR SPACE Details . |[229 ||0.58[2.07||0.000  [[0.000 NES > 0
2 ||PROTEASE_INHIBITOR_ACTIVITY Details . 40 |l0.72[2.00{0.000 [0.010 ’
3 |KEGG_COMPLEMENT AND_COAGULATION CASCADES Details . |67 Nossl1oellocon lloasr descendlng
4 ||REACTOME_SPHINGOLIPID_METABOLISM Detais . ||62 [0.64/1.94]0.000 [o0.028 Order
5 ||KEGG_LYSOSOME Details . 117 ||0.60(1.94[0.000 [0.022

1 ||REACTOME_MITOTIC M_M_G1_PHASES Details . |[164 ||~ - |5 ~- [|0.000 0.000

0.77||267
NES <O,

2 |REACTOME_DNA REPLICATION Details . [|184 | 5 77566 [[0-000] 0.000 ascend|ng

3 |REACTOME_M_G1_TRANSITION Details . |77 {15 gol12.57 [|0.000 0000 Order

4 ||REACTOME G1_S TRANSITION Details . [[105 {5 77555 [[0-000]|0.000




Conclusions of GSEA

»

GSEA is a statistical test which can identify sets of genes,
belonging to a particular biological category, which play an
important role in distinguishing between two classes of
gene expression data.

The test is particularly sensitive as small changes which
are coordinated across the set can be detected.

The test helps reveal the biological mechanisms
responsible for the difference between the two classes
because the test set has an a priori biological theme.



