Genetics and New Approaches in Neurodevelopmental Brain Disorders

Torino - 06/05/2019

Neurodevelopmental disorders (or Intellectual Developmental Disorders -IDD) are impairments of the growth and development of the brain:

- affects emotion, learning ability and memory;
- communication, speech and language;
- unfolds in infancy and childhood.

Neurodevelopmental disorders are associated with mental, emotional, physical, and economic burden to individuals, families and society in general.

- > Chromosomal disorders: Down syndrome, etc.
- Genetic disorders: autism spectrum disorders (ASD), microcephaly, lissencephaly, etc
- > Traumatic brain injury
- Fetal alcohol spectrum disorder
- > etc

Neurodevelopmental disorders result from the disruption of normal cortical development processes.

Mammalian corticogenesis (radial organization)

from Hu WF et al., 2014

Mouse cortical development

Human cortical development

Comparison of mouse and human cortical neurogenesis

Jurik-Sekhar & Hevner et al., 2019

Defects affecting different steps of neurodevelopment

Modified from Hu WF et al., 2014

Structural malformations of cortical development:

Three major groups based on the timing and pathogenesis of the disruption:

- ✓ group I: abnormal neuronal and glial proliferation;
- ✓ group II: abnormal neuronal migration;
- ✓ group III: abnormal post-migrational development.

Microcephaly (small brain)

Megalencephaly (large brain)

Cobblestone lissencephaly

Comparison of human brain malformations of cortical development (MCDs)

Tubulinopathies affect multiple processes in cortical development and cause heterogeneous MCDs

Jurik-Sekhar & Hevner et al., 2019

Cellular mechanisms of abnormal cortical development leading to malformations

	MCD group	MCD type	Morphologies	Related pathways
	Disorders of proliferation, apoptosis, and/or differentiation	Microcephalies	Microcephaly, microlissencephaly Alobar, lobar, and variant holoprosencephaly	Tubulinopathies, microtubule-associated proteins Decreased RTK → PI3K → AKT → mTOR signaling Sonic hedgehog pathway Midline differentiation
		Cortical overgrowth disorders (focal and diffuse)	Megalencephaly, hemimegalencephaly, polymicrogyria, FCD-II	Overactive RTK \rightarrow PI3K \rightarrow AKT \rightarrow mTOR signaling
	Disorders of neuronal migration	Classic lissencephaly spectrum	Smooth lissencephaly, microlissencephaly, subcortical band heterotopia	Tubulinopathies, microtubule-associated proteins Variant lissencephalies (noncytoskeletal)
		Cobblestone malformations	Rough lissencephaly, polymicrogyria, leptomeningeal glioneuronal heterotopia	Dystroglycanopathies Other basement membrane–glia limitans interaction disorders
		Periventricular heterotopia	Nodular or linear periventricular heterotopia	Microtubule-associated proteins
		Dyslamination without cytologic dysplasia or growth abnormality	FCD-I	Overactive RTK → PI3K → AKT → mTOR signaling Other rare forms (e.g., variant Rett syndrome)
	Disorders of axon pathway formation	Isolated callosal defects	Agenesis, hypogenesis, dysgenesis of corpus callosum	Axon growth and guidance Midline differentiation
		Other isolated axon defects (putative)	Unknown	Axon growth and guidance

Abbreviations: FCD-I, focal cortical dysplasia type I; FCD-II, focal cortical dysplasia type II; MCD, malformation of cortical development.

Different morphological aspects of polymicrogyria

Thick and overfolded brain (small gyri and sulci)

 GPR56 (adhesion G-protein-coupled receptor) regulates pial basement membrane integrity and cortical lamination
Growth factor signaling pathways (PTEN-AKT cascade)

Guerrini & Dobyns, Lancet Neurol, 2014

Tools for the Identification and Characterization of Genetic Changes in the Human Brain

Tool	Advantages	Disadvantages	
Whole-exome sequencing	Efficient sequencing of all the protein- coding genes (\sim 180,000 exons) in the human genome.	Unable to identify structural and noncoding variants, although there are some tools to detect copy number variations from exome data.	
Whole-genome sequencing	Sequencing of the entire genome of an individual.	The function of the majority of the human genome is incompletely understood. Thus, much sequencing data are often difficult to interpret. Also, whole-genome sequencing is costly, at least for now.	
Single-cell sequencing	Genome and transcriptome sequencing of individual cells detects cell-to-cell variability.	Requires amplification of the limited DNA and RNA in a single cell, which can introduce errors.	
RNA sequencing	Reveals how each protein-coding gene or RNA gene is utilized in a given cellular context.	Detection of genes with low expression levels is difficult. Multiple cell types can confound the interpretation.	
Chromosome conformation capture	Reveals chromosomal interactions influencing gene expression, such as interaction between an enhancer and a promoter of a protein-coding gene.	Can be costly due to depth of sequencing needed, depending on method. Requires a great number of cells; multiple cell types can generate noise and confound the interpretation, although single-cell chromosome conformation capture was recently developed.	

Complexity of neurodevelopmental disorders

Circle plot illustrating the allelic and phenotypic diversity of a subset of neurodevelopmental disease genes (due to hypomorphic and somatic mutations). Animal models for human diseases

Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases

Opportunities and challenges in animal models (example for Parkinson disease)

Transgenic C.elegans, Drosophila and fish (zebrafish and medaka fish).

Opportunities: Multicellular organisms with well-characterized nervous systems, allowing economical study of mechanisms of α -synuclein toxicity, and testing of potential antiaggregation therapeutics, without the confounding influence of endogenous α -synuclein.

Challenges: Too simplistic to model the full complexity of PD.

Rodent models of prion-like propagation of α -synuclein. Opportunities: Allow the testing of therapeutics targeting the trafficking of extracellular α -synuclein along neuroanatomical pathways in an accelerated timeframe not normally available within the lifespan of a laboratory animal. **Challenges:** Require application of supraphysiological quantities of α -synuclein to initiate pathology.

BAC-Tg α-synuclein mice Opportunities: Mimic the

normal spatiotemporal expression of α-synuclein and develop synucleinopathy and a decline in motor function.

Backbone to test therapeutics aimed at preventing toxins or misfolded α-synuclein in driving synucleinopathy along clinically relevant pathways. **Challenges:** Pathology and behaviour only develop in some lines and at an advanced age. Future potential: Large scale clinical trials in individuals with early-stage or prodromal Parkinson's disease can be performed testing efficacy of the most promising candidates emerging from pre-clinical screening of

disease modifying agents.

AAV α-synuclein overexpression in rodents and non-human primates. Opportunities:

New generation of AAV allow high level, sustained delivery of neuron specific α synuclein, expression with development of synucleinopathy, dopaminergic degeneration and parkinsonian behaviour in rodents in a timeframe amenable to testing novel therapeutics. **Challenges:** Ongoing studies are attempting to translate the use of new generation AAV vectors in nonhuman primates, though characterization and validation of such models remain outstanding. Learning from and for development: using the knowledge of cortical development for generating cortical neurons in vitro

Learning from and for development: using the knowledge of cortical development for generating cortical neurons in vitro

Regenerative medicine in clinics and industry

Nature Reviews | Molecular Cell Biology

Indirect and direct lineage reprogramming to create patient-derived neural cells

Somatic cell reprogramming: potential applications

ADVANTAGES of Direct Conversion:

- 1. Faster than iPS method
- 2. Epigenetic signature of patient cell is likely preserved
- 3. Specific Neuronal subtype generation (Spinal Motor, Dopaminergic)

Somatic cell direct reprogramming in the brain

In vivo reprogramming in postmitotic neurons during prenatal stages

Published (Arlotta & Jabaudon teams)

Unpublished (Studer lab)

Improving the efficacy of in vivo neuron-to-neuron conversion

Glia to LV reprogramming?

 \rightarrow Fezf2 + Lmo4

Glia-to-neuron reprogramming in the postnatal brain

Benedikt B., unpublished

Engineering neurogenesis outside the classical neurogenic niches

Learning from and for development: using the knowledge of cortical development for reproducing mini-brains in the dish

Overview of organoid methodologies

Madeline Lancaster & Juergen Knoblich, Science, 2014

The 3D cerebral organoid culture system

Lancaster M. et al., Nature, 2013

Self-organized developmental regional patterning and differentiation is recapitulated in cerebral organoids

Dias & Guillemot, EMBO J. 2017

Development of a broad spectrum of cell types in human brain organoids by large-scale, single-cell sequencing

Quadrato et al., 2017

Human brain organoids contain subclasses of forebrain and retinal cells

Quadrato et al., 2017

4

Unguided and guided approaches for making brain organoids

Qian et al., DEV 2019

Self-organized organoids versus directed spheroids

Birey et al., Nature, 2017

Engineered cerebral organoids (enCORs) generate elongated neuroepithelium

Lancaster et al., 2017

Lancaster et al., 2017

The diffusion limit depletes progenitors and prohibits organoid expansion

Air-liquid interface culture (ALI-CO) leads to improved neuronal survival and morphology

ALI-CO cultures exhibit mature neuronal morphology and function

Giandomenico et al., 2019

Neurons of ALI-COs exhibit dynamic axon guidance behaviors

Giandomenico et al., 2019

Structural comparison between cortical organoids and the human embryonic cortex

Qian et al., DEV 2019

CRISPR/Cas9 engineering in IPSC cells

Organoids for human disease modeling

Neuronal heterotopia and abnormal cell migration in DCHS1 and FAT4 mutated cerebral organoids

DCHS1 &FAT4: protocadherins act as planar cell polarity genes

Induction of Expansion and Folding in PTEN Mutant Human Cerebral Organoids

WT:	5'- <u>aaaaggagata</u>	atcaag agg atggattc -3'
Mut1a:	5'- aaaaggagat-	ggattc -3' -11bp
Mut1b:	5'- aaaaggagata	attc -3' -13bp
Mut2a:	5'- aa	gaggatggattc -3' -13bp
Mut2b:	5'- aaaaggagat-	ggattc -3' -11bp
Mut3a:	5'- aaaaggagag	gatggatggattc -3' -4bp
Mut3b:	5'- aaaaggagat-	attc -3' -13bp
С	ontrol	PTEN mutant

Phosphatase and tensin homolog (PTEN) known as a tumor suppressor

Delayed neurogenesis

Li et al., 2019

ZIKV Infection Impairs Expansion and Folding in Human Cerebral Organoids

Li et al., 2019

Overall strategy of disease modeling

Human brain organoids as models of neuropsychiatric diseases

Quadrato et al., Nat Med, 2016

Generation, characterization and analysis of 3D cellular models of the human brain

Quadrato et al., Nat Med, 2016

ORGANOID GENERATION

Organogenesis in a dish: Modeling development and disease using organoid technologies

Madeline A. Lancaster and Juergen A. Knoblich*

