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Neurodevelopmental disorders (or Intellectual Developmental Disorders
-IDD) are impairments of the growth and development of the brain:

« affects emotion, learning ability and memory;

« communication, speech and language;

« unfolds in infancy and childhood.

Neurodevelopmental disorders are associated with mental, emotional,
physical, and economic burden to individuals, families and society in general.

» Chromosomal disorders: Down syndrome, etc.

> Genetic disorders: autism spectrum disorders (ASD), microcephaly,
lissencephaly, etc

» Traumatic brain injury

» Fetal alcohol spectrum disorder

> efc

Neurodevelopmental disorders result from the disruption of normal
cortical development processes.
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Comparison of mouse and human cortical neurogenesis

Mouse cortical development
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Comparison of mouse and human cortical neurogenesis
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Defects affecting different steps of neurodevelopment
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Structural malformations of cortical development:

Three major groups based on the timing and pathogenesis of the disruption:
v group I: abnormal neuronal and glial proliferation;
v'group II: abnormal neuronal migration;

v'group ITII: abnormal post-migrational development.



Malformations of cortical development: clinical features

Microcephaly
(small brain)

Megalencephaly
(large brain)

Lee, 2017



Brain Magnetic Resonance Imaging (MRI) of children with IDD

Normal Subcortical band heterotopia

Microcephaly
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Comparison of human brain malformations of cortical development (MCDs)
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Tubulinopathies affect multiple processes in cortical development
and cause heterogeneous MCDs
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Cellular mechanisms of abnormal cortical development leading to malformations
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MCD group MCD type Morphologies Related pathways
Disorders of Microcephalies Microcephaly, Tubulinopathies, microtubule-associated proteins
proliferation, microlissencephaly Decreased RTK — PI3K — AKT — mTOR
apoptosis, and/or Alobar, lobar, and variant signaling
differentiation holoprosencephaly Sonic hedgehog pathway
Midline differentiation
Cortical overgrowth | Megalencephaly, Overactive RTK — PI3K — AKT — mTOR
disorders (focal and hemimegalencephaly, signaling
diffuse) polymicrogyria, FCD-II
Disorders of Classic lissencephaly | Smooth lissencephaly, Tubulinopathies, microtubule-associated proteins
neuronal migration spectrum microlissencephaly, Variant lissencephalies (noncytoskeletal)
subcortical band heterotopia
Cobblestone Rough lissencephaly, Dystroglycanopathies
malformations polymicrogyria, Other basement membrane—glia limitans
leptomeningeal glioneuronal interaction disorders
heterotopia
Periventricular Nodular or linear Microtubule-associated proteins
heterotopia periventricular heterotopia
Dyslamination FCD-I Opveractive RTK — PI3K — AKT — mTOR
without cytologic signaling
dysplasia or growth Other rare forms (e.g., variant Rett syndrome)
abnormality

Disorders of axon
pathway formation

Isolated callosal
defects

Agenesis, hypogenesis,
dysgenesis of corpus
callosum

Axon growth and guidance
Midline differentiation

Other isolated axon
defects (putative)

Unknown

Axon growth and guidance

Abbreviations: FCD-I, focal cortical dysplasia type I; FCD-II, focal cortical dysplasia type II; MCD, malformation of cortical development.

Hevner et al., 2019
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Different morphological aspects of polymicrogyria

»GPR56 (adhesion G-protein-coupled receptor) requlates pial basement
membrane integrity and cortical lamination
»Growth factor signaling pathways (PTEN-AKT cascade)

Guerrini & Dobyns, Lancet Neurol, 2014



Tools for the Identification and Characterization of
Genetic Changes in the Human Brain

Tool Advantages Disadvantages

Whole-exome sequencing Efficient sequencing of all the protein- Unable to identify structural and noncoding variants,
coding genes (~ 180,000 exons) in the although there are some tools to detect copy number
human genome. variations from exome data.

Whole-genome sequencing Sequencing of the entire genome of an The function of the majority of the human genome is
individual. incompletely understood. Thus, much sequencing data

are often difficult to interpret. Also, whole-genome
sequencing is costly, at least for now.

Single-cell sequencing Genome and transcriptome sequencing of ~ Requires amplification of the limited DNA and RNA
individual cells detects cell-to-cell in a single cell, which can introduce errors.
variability.

RNA sequencing Reveals how each protein-coding gene or Detection of genes with low expression levels is
RNA gene is utilized in a given cellular difficult. Multiple cell types can confound the
context. interpretation.

Chromosome conformation capture Reveals chromosomal interactions Can be costly due to depth of sequencing needed,
influencing gene expression, such as depending on method. Requires a great number of
interaction between an enhancer and a cells; multiple cell types can generate noise and
promoter of a protein-coding gene. confound the interpretation, although single-cell

chromosome conformation capture was recently
developed.

From Bae et al., Dev Cell, 2015
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Complexity of neurodevelopmental disorders
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Animal models for human diseases

Naturally occurring or experimentally induced animal diseases
with pathological processes sufficiently similar
to those of human diseases



Opportunities and challenges in animal models
(example for Parkinson disease)

Transgenic C.elegans, Drosophila and
fish (zebrafish and medaka fish).

Rodent models of prion-like propagation
of u-synuclein. Opportunities: Allow the

testing of therapeutics targeting the
trafficking of extracellular c-synuclein along
neuroanatomical pathways in an
accelerated timeframe not normally

available within the lifespan of a laboratory
animal, Challenges: Require application of

Opportunities: Multicellular erganisms
with well-characterized nervous
systems, allowing economical study of
mechanisms of a-synuclein toxicit

and testing of potential anti-
aggregation therapeutics, without the
confounding influence of endogenous

a-synuclein.

full complexity of PD, ﬁ :

Cell-based assays (e.g., yeast)
Opportunities: Successfully

o

Challenges: Too simplistic to model the

supraphysiological quantities of a-synuclein

to initiate pathology.

3
¥t

BAC-Tg t-synuclein mice
Opportunities: Mimic the

Future potential: Large scale clinical trials in

individuals with early-stage or prodromal
Parkinson’s disease can be performed testing
efficacy of the most promising candidates
emerging from pre-clinical screening of

disease modifying agents.

AAV «-synuclein overexpression in rodents
and non-human primates. Opportunities:

normal spatiotemporal
expression of a-synuclein and
develop synucleinopathy and
a decline in motor function.

employed as a high-throughput
screen to identify chemical and

molecular modulators of -
synuclein. Challenges: Findings

restricted to single cell organism

with no nervous system.

Backbone to test therapeutics
aimed at preventing toxins or
misfolded a-synuclein in
driving synucleinopathy along
clinically relevant pathways.
Challenges: Pathology and
behaviour only develop in
some lines and at an
advanced age.

New generation of AAV allow high level,
sustained delivery of neuron specific o
synuclein, expression with development of
synucleinopathy, dopaminergic
degeneration and parkinsonian behaviour in

rodents in a timeframe amenable to testing
novel therapeutics. Challenges: Ongoing
studies are attempting to translate the use
of new generation AAV vectors in non-
human primates, though characterization
and validation of such models remain
outstanding.

Trends in Neurosciences




Learning from and for development: using the knowledge of cortical
development for generating cortical neurons in vitro
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Learning from and for development:
using the knowledge of cortical development for generating
cortical neurons in vitro

A Blastocyst
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Regenerative medicine in clinics and industry

Reprogramming Differentiation

Organoids/Neurons
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Indirect and direct lineage reprogramming to create
patient-derived neural cells
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Somatic cell reprogramming: potential applications
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ADVANTAGES of Direct Conversion:

1. Faster than iPS method

2. Epigenetic signature of patient cell is likely preserved

3. Specific Neuronal subtype generation (Spinal Motor, Dopaminergic)



Somatic cell direct reprogramming in the brain

+FEZF2
or
+SATB2

Subcerebral Projection Neuron
or
Callosal Projection Neurons

Astrocyte

GABAergic neuron

Basket cell



In vivo reprogramming in postmitotic neurons during prenatal stages

~ Viral vectors

(Fezf2)
Corticofugal Callosal
neuron neuron
B C Fezraimos-crp
Control-GFP Fezf2-GFP e2le/mos=
/ CtX\L i /G o f ):hal\’ Ctx _\} N\ .
Published Unpublished (Studer lab)

(Arlotta & Jabaudon teams)



Improving the efficacy of in vivo neuron-to-neuron conversion
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Glia-to-neuron reprogramming in the postnatal brain
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Glia-to-neuron reprogramming in the postnatal brain
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Engineering neurogenesis outside the classical neurogenic niches
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Learning from and for development:
using the knowledge of cortical development for reproducing
mini-brains in the dish

Embryonic brain Cerebral organoid or “mini-brain”




Overview of organoid methodologies
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The 3D cerebral organoid culture system

a | hES media, low bFGF | Neural induction media |D|fferent|at|on med|a| Differentiation media +RA|
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Lancaster M. et al., Nature, 2013



Self-organized developmental regional patterning and differentiation
is recapitulated in cerebral organoids
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Development of a broad spectrum of cell types in human brain
organoids by large-scale, single-cell sequencing
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Human brain organoids contain subclasses of forebrain and retinal cells
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Unguided and guided approaches for making brain organoids
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Self-organized organoids versus directed spheroids

a Self patterning

Neuronal-activity PSCs
measurements
Multi-region

Light brain organoid

Photoreceptor-like
cells

Cell
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Engineered cerebral organoids (enCORs) generate elongated neuroepithelium

a Microfilaments Matrigel ECM
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Lancaster et al., 2017



enCORs display radial units and radial neuronal migration

P-Vim b Nestin Ctip2 DAPI Nestin Ctip2 DAPI

Lancaster et al., 2017



The diffusion limit depletes progenitors and prohibits organoid expansion

NPCs are ‘buried’ inside as
cortical structure expands

A necrotic core builds up
inside the organoid owing
to lack of oxygen and
nutrient diffusion

Depth into organoid surface

Oxygen
Cells near the organoid surface receive

sufficient oxygen and nutrients

Oxygen becomes limited deeper into the surface

Acidification and released inflammatory contents
induce apoptosis of neighboring cells; adherens
junctions at the apical surface are disrupted

Cell necrosis occurs due to lack of oxygen
and nutrients

Qian et al., DEV 2019



Air-liquid interface culture (ALI-CO) leads
to improved neuronal survival and morphology

a Air-liquid interface cerebral organoids h DAPI TUNEL
(ALI-CO)

ALI-CO

o

Whole organoid

SMI312 (axons) MAP2 (dendrites) DAPI

Giandomenico et al., 2019



ALI-CO cultures exhibit mature neuronal morphology and function
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Giandomenico et al., 2019



Neurons of ALI-COs exhibit dynamic axon guidance behaviors

Giandomenico et al., 2019



Structural comparison between cortical organoids and the human embryonic cortex

Cortical organoids

Human embryonic cortex
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Different experimental approaches in human disease modeling
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CRISPR/Cas9 engineering in IPSC cells
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Organoids for human disease modeling

| R |
Human PSCs; EE :Brain organoids Diseases : References

i g8 i

1 3 ' [ ” ir ==

: 2| i Sandhoff disease il Allende et al., 2018

Genetically : . =
repaired e > @ - > | /| Microcephaly Lancaster et al., 2013; Gabriel et al., 2016
; ' Autism Mariani et al., 2015

Ye et al., 2017
Mellios et al., 2018
Bershteyn et al., 2017; lefremova et al., 2017

Schizophrenia
Rett syndrome
Miller-Dieker syndrome

Genome editing y
(gene repair)

..
Patient-derived ® : —_

0o | ‘ Alzheimer disease Raja et al., 2016
' : Frontotemporal dementia ||| Seo et al., 2017
°® ' Prenatal cocaine exposure | Lee et al., 2017
Unaffected ©00° L —p | ‘ — ! Bisphenol A exposure i Qianetal., 2016
000 = y | 5
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N Y 4 7IK A virus infection Qian et al., 2016; Dang et al., 2016
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::} . Autism Wang et al., 2017
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Neuronal heterotopia and abnormal cell migration in DCHS1 and FAT4
mutated cerebral organoids

DCHS1 &FAT4: protocadherins act as planar cell polarity genes

CTRL organoid DCHS1 organoid FAT4 organoid

NESTIN

Gap43-GFP 4dpe

DCHS1 organoid

Klaus et al., 2019



Induction of Expansion and Folding in PTEN Mutant Human Cerebral Organoids

A
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Mut2b: 5'- aaaaggagat-———-——— ggattc -3’ -11bp <
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Li et al., 2019



ZIKV Infection Impairs Expansion and Folding in Human Cerebral Organoids

C
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Li et al., 2019



Overall strategy of disease modeling

. g
Choice of disease I
for example, monogenic versus polygenic, early versus late onset, environmental component

v

election of cell type to reprogram
for example, fibroblasts, keratinocytes, early versus late passage

v
x Disease phenotype characterization

for example, molecular characterization, expression studies, RNAi knockdown,
comparison with animal models, genetic rescue, novel observations

Reprogramming method
for example, choice of transcription factors, retrovirus mediated, nonintegrative &* %
a

_:@_o’ Eﬂﬁ

, > |
o ¢ . Drug screening
iP lon for example, validated pharmacological effectors, new small-molecule effectors

for example, pluripotency, teratoma assay, genetic analysis, epigenetic analysis

T g bl
e v

Differentiation to relevant cell type

for example, cardiomyocytes for LQTS, neurons for PD and ALS




Human brain organoids as models of neuropsychiatric diseases
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Quadrato et al., Nat Med, 2016




Generation, characterization and analysis of 3D cellular models of the human brain

g Bank of Optimize
p \ MM targeted —> Neuronal network
maturation

CRISPR
mutagenesis

Cell integration
(blood, microglia)
Reproducibility
—»  (less heterogeneity)

Analyze
Single-cell Networks; Anatomy;
Compara RNA-seq circuit function connectivity

(optical imaging)

s4 64

Human brain

Quadrato et al., Nat Med, 2016



REVIEW SUMMARY

ORGANOID GENERATION

Organogenesis in a dish: Modeling
development and disease using
organoid technologies

Madeline A. Lancaster and Juergen A. Knoblich*
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