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Gene expression and clustering
Switching to Logarithms of Expression Level
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Gene expression and clustering
Gene expression matrix
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Gene expression and clustering

In 1997 Joseph deRisi measured expression of 6,400 yeast genes at 7
checkpoints before and after diauxic shift;

Expression matrix with 6,400 x 7;

Goal: partition all yeast genes into clusters so that:
I genes in the same cluster have similar behavior;
I gene in different clusters have different behavior.
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Gene expression and clustering

In 1999 Uri Alon measured expression of 2,000 genes from 40 colon tumor
patients and 40 healthy people;

Two Expression matrices with dimension 2,000 x 40;

Goal: find genes with significantly different expression vectors between tumor
patients and healthy (potential cancer bio-markers)
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Gene expression and clustering
Gene as Points in a Multidimensional Space
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Gene as Points in a Multidimensional Space
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Gene expression as a Cancer Biomarker

but how did scientists discover these 70 human genes?
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Part 1
Clustering as optimization problem
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Clustering as optimization problem
Toward a Computational Problem

Good Clustering Principle:
Elements within the same cluster should be closer to each other than elements in
different clusters.

we define a threshold ∆ then:
I distance between elements in the same cluster must be ≤ ∆;
I distance between elements in different clusters must be > ∆;
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Clustering as optimization problem
Introducing the Clustering problem:

Clustering problem

Definition: find a partition of expression vector into clusters satisfying the Good
Clustering Principle

Input: A collection of n vectors and an integer k.

Output: Partition of n vectors into k disjoint clusters satisfying the Good
Clustering Principle

Can you find a partition into two clusters which is valid solution for the
clustering problem?
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Clustering as optimization problem

Clustering as Finding Centers

Goal: partition a set Data into k clusters.

M. Beccuti BIOINFORMATICS May 2019 18 / 52



Clustering as optimization problem

Clustering as Finding Centers

Goal: partition a set Data into k clusters.
Equivalent goal: find a set of k points Centers that will be the “centers” of
the k clusters in Data, and will minimize some notion of distance from Data
to Centers.

M. Beccuti BIOINFORMATICS May 2019 19 / 52



Clustering as optimization problem

Clustering as Finding Centers

Goal: partition a set Data into k clusters.
Equivalent goal: find a set of k points Centers that will be the “centers” of
the k clusters in Data, and will minimize some notion of distance from Data
to Centers.

What is the “distance” between Data and Centers
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Clustering as optimization problem
Distance from a Single DataPoint to Centers

The distance from DataPoint in Data to Centers is defined as the distance from
DataPoint to the closest center

d(DataPoint,Centers) = min
∀x ∈Centers

d(DataPoint, x)

M. Beccuti BIOINFORMATICS May 2019 21 / 52



Clustering as optimization problem
Distance from a Single DataPoint to Centers

Different distance metrics can be used;

The most used metrics are:
I Euclidean distance:

d(p, q) =
√∑

i∈m

(pi − qi )2

I Manhattan distance:
d(p, q) =

∑
i∈m

|(pi − qi )|

hereafter we will use Euclidean distance, Manhattan distance works better in
case of high dimensional vectors.
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Clustering as optimization problem
Distance from a Single DataPoint to Centers

MaxDistance(Data,Centers) = max
∀DataPoint∈Data

d(DataPoint,Centers)
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Clustering as optimization problem
Introducing k-Center Clustering problem:

k-Center Clustering problem

Definition: Given a set of points Data, find k centers minimizing
MaxDistance(Data,Centers)

Input: A collection of n vectors and an integer k.
Output: A set of k points Centers that minimizes MaxDistance(Data,Centers)

over all possible choices of Centers
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Clustering as optimization problem

Introducing k-Center Clustering problem:

k-Center Clustering problem

Definition: Given a set of points Data, find k centers minimizing
MaxDistance(Data,Centers)

Input: A collection of n vectors and an integer k.
Output: A set of k points Centers that minimizes MaxDistance(Data,Centers)

over all possible choices of Centers

This problem is intractable;

Since it is a hard problem → approximation algorithms were developed.
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Clustering as optimization problem
k-Center Clustering heuristic
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Clustering as optimization problem
k-Center Clustering heuristic
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Clustering as optimization problem

What is wrong with FarthestFirstTraversal?

FarthestFirstTraversal selectes Centers that minimize
MaxDistance(Data,Centers).

But biologists are interested in typical rather than maximum deviations:
maximum deviations may represent outliers (experimental errors)
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Clustering as optimization problem
Modifying objection function

M. Beccuti BIOINFORMATICS May 2019 36 / 52



Clustering as optimization problem
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Clustering as optimization problem

NP-Hard for k>1
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Clustering as optimization problem
k-Means Clustering Problem
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Clustering as optimization problem
Lloyd approximation algorithm for k-Means Clustering Problem
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Clustering as optimization problem
Lloyd approximation algorithm for k-Means Clustering Problem

It ends when the Centers stop to move.
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Clustering as optimization problem

Lloyd algorithm
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Clustering as optimization problem
Lloyd algorithm converges!!!

if a data point is assigned to a new center during the Centers to Clusters
step:

I the squared error distortion is reduced because this center must be closed to
the point than the previous center.
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Clustering as optimization problem
Lloyd algorithm converges!!!

if a data point is assigned to a new center during the Clusters to Centers
step:

I the squared error distortion is reduced because the center of gravity is the only
point minimizing the distortion.
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Clustering as optimization problem
Lloyd algorithm converges!!!

It converges to local minimum. Thus several runs are required to discover
the best solution;

It can take time to converge.
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How can we choose a “good" K for K-means clustering?

There is no method for determining the exact value of K ;

One of the metrics that is commonly used to compare results across different
values of K is elbow method

It graphs the average internal per cluster sum of squares distance vs the
number of clusters to find a visual “elbow” which is the optimal number of
clusters.

Wk =
k∑

r=1

1
nr

Dr (1)

Where k is the number of clusters, nr is the number of points in cluster r and
Dr is the sum of distances between all points in a cluster:

Dr =
nr−1∑
i=1

nr∑
j=i

(di − dj)2 (2)
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Elbow plot
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