Differential Expressed Genes

Differential expression (DE) analysis refers to the identification of genes (or other types of genomic
features, such as, transcripts or exons) that are expressed in significantly different quantities in distinct
groups of samples, be it biological conditions (drug-treated vs. controls), diseased vs. healthy individuals,
different tissues, different stages of development, or something else.

Although genes (if we focus on those for a while) are of course not expressed independent of each other,
differential expression analysis is typically done on one gene at a time (although information is sometimes

borrowed across genes, as we will see below) in a univariate way.

the number of examples is much smaller than the number of features,
which makes it harder to fit a statistical model that considers all genes

as a whole.

WHY?

Multivariate dimension reduction methods such as principal component analysis (PCA) can be used to
construct low-dimensional representations of the expression profiles that retain some of the
properties of the complete data set and are thus often useful for visualization



Differential Expressed Genes — Replicates

The purpose of replication is to be able to estimate the variability between and among groups, which is important for,
for example, hypothesis testing. Technical replication is used to estimate the variability of the measurement technique,
for example, RNA-seq. Biological replication is used to find out the variability within a biological group. Roughly
speaking, a change observed in gene expression between two groups can only be called significant if the difference
between the groups is large compared to the variability within the group, while taking the sample size into
consideration.

How many replicates should you use? This depends on the specifics of the experiment. The biological homogeneity of

the different samples, the purpose of the experiment and the desired level of statistical power, among other things,
will affect the number of replicates needed.

Many sequencing core facilities require or suggest using at least three or four replicates per group to be compared,;
two is almost always too few. With three, there is the risk that at least one sample will fail in library preparation or
sequencing and you still end up with only two replicates in one of the groups.

Human blood and some tissue samples used for clinical case—control transcriptomics studies seem to exhibit
considerable variation between individuals. Particularly for complex diseases, very large numbers of replicates
(perhaps hundreds or thousands) may be needed to observe differential expression between cases and controls. For
cell lines or samples from distinct tissues, only a few replicates may be needed.



Differential Expressed Genes — Statistical Distribution

For RNA-seq experiments, where one might assume that sequences are sampled at random from the
sequencing library, the raw read counts would be expected to be Poisson-distributed.

You would expect to get slightly different counts even for the same library in an idealized scenario
where it was sequenced twice under the same conditions. This inevitable noise which arises from
the sampling process is called shot noise, and often the variability between technical replicates in
RNA-seq can be described quite well by this type of Poisson noise

Mean-variance plot for Marioni et al.
dataset (Marioni et al. 2008). The variability
in technically replicated RNA-seq data can
be adequately captured using a Poisson
model. The grey points in this plot shows
the mean and pooled variance for each
gene, scaled to account for differences in
library size between samples. The black line
displays the theoretical variance under the
Poisson model where the variance is equal
to the mean. The red crosses show binned
l : variance, where genes are grouped by
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Differential Expressed Genes — Noise

We distinguish:
 Shot noise

 unavoidable, appears even with perfect replication
» dominant noise for weakly expressed genes

e Technical noise
» from sample preparation and sequencing
* negligible (if all goes well)

* Biological noise

* unaccounted-for differenced between samples
* Dominant noise for strongly expressed genes
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Differential Expressed Genes — Statistical Distribution

When samples are taken from biologically distinct sources, such as different individuals, the variability
between them has often been modeled by a negative binomial distribution (sometimes called gamma-
Poisson distribution). This distribution can be described as an overdispersed Poisson distribution
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- because they are long or highly
expressed, tend to show more variance
between sample than genes with low
mean counts. Thus this data fits a
Negative Binomial Distribution.
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Variance

Differential Expressed Genes — Statistical Distribution
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Counts for the same gene
from different technical
replicates have variance
equal to the mean (Poisson)

Counts for the same gene
from different biological
replicates have a variance
exceeding the mean
(overdispersion)



Differential Expressed Genes — Normalization, DESeq?2

If sample A has been sampled deeper than sample B, we expect counts to be higher.
Naive approach: Divide by the total number of reads per sample

Problem: Genes that are strongly and differentially expressed may distort the ratio of total reads.

To compare more than two samples:

Form a “virtual reference sample” by taking, for each gene, the geometric mean of counts over all
samples

Normalize each sample to this reference, to get one scaling factor (“size factor”) per sample.



Remember RPKM, FPKM and TPM? Those nice methods for
adjusting for differences in overall read counts among libraries?

DESeq2 doesn’t use those methods (neither does edgeR). ..
Why not?

There are two main problems in library normalization, so let’s
talk about them.



Problem #1: adjusting for differences in library sizes

Gene
A1BG
A1BG-AS1
Al1CF

AZM
AZM-AS]
AZML1

Sample #1
635 reads

30
24
0

563
5

13

However, there is another problem. ..

Sample #2
1,270 reads

60
48

0
2126
10
26

The read counts for each
gene in Sample #2 are

twice the read counts in
Sample #1.

This difference is not due
to biology, but to
sequencing depth.

RPKM, FPKM, TPM and
CPM all deal with this.



Problem #2: Adjusting for differences in library
composition

RNA-seq (and other high-throughput sequencing) is often
used to compare one tissue type to another. For example,

liver vs. spleen.

It could be that there are a lot of liver specific genes
transcribed in liver but not in the spleen.

You can also imagine seeing differences in library
composition in the same tissue type if you knock out a

transcription factor.



Problem #2: Adjusting for differences in library

Gene
A1BG
A1BG-AS1
A1CF

AZM
AZM-AS1
AZ2ML1

Assume that only Sample #1 transcribes A2M

composition
Sample #1 Sample #2
635 reads 635 reads
30 235
24 188
0 0
563 ()
5 39
13 102

The read counts for
everything but A2M are
high in Sample #2

This means that the 563 reads used up by A2M in Sample #1 will be

distributed to other genes in Sample #2


Francesca Cordero



DeSeq2 normalisation step want handle:

1) Differences in library sizes

2) Differences in library composition

Sample #1 Sample #2 Sample #3

Genel 0 10 a | We'll start with a small dataset to
Gene2 2 6 12 p illustrate how DESeq2 scales the
Gene3 33 23 200 1 different samples.

The goal is to calculate a scaling factor for
each sample.

The scaling factor has to take read depth and
library composition into account.



Sample #1  Sample #2 Sample #3

Genel 0 10 oo
Gene2 2 6
Gene3 33 55

Step 1: Take the log of all the values

( log(Sample #1) log(Sample #2) lgg far
Genel —Inty 1.4 DESeq2 uses log, (“log base e”), so these
Gene2 0.7 2.3 numbers are what we would need to raise e
Gene3 3.5 5.3 . .

\_ J/ toin order to get the original value.

Notice that log(0) = -Infinity
-

This is just because R defines log(0)
to be -Infinity.



One thing cool about the average of

Sample #1  Sample #2 Sample #3 log values is that this average is not
Genel 0 10 4 easily swayed by outliers.
Gene2 2 6 12
Gene3 33 23 200 “ To see this, let’s calculate the average

read count for Gene3

Step 1: Take the log of all the values Step 2: Average Each Row

( log(Sample #1) log(Sample #2) log(Sample '3> (" Average of log values\
Genel -Inf 2.3 1.4 Genel -Inf

Gene2 0.7 1.8 2.5 Gene2 1.7

Gene3 33 4.0 53 Gene3 4.3
\_ y, \ Y,




Sample #1  Sample #2 Sample #3

Genel 0 10 4
Gene?2 2 6 12
Gene3 -3 200

./

Avg(Gene3) = 96

Remember that logs are exponents, and in this

case they are exponents of e, so we have to
raise e by 4.3 to get a “normal number”.

The average calculated with the logs
is smaller, and thus, not swayed as
much by the outlier.

NOTE: Averages calculated with logs
are called “Geometric Averages”

Now convert the average log
value for Gene3 into a normal
number.

Step 2: Aveyage Each Row

. Averpge of log values
Genel Inf

GeneZ2
Gene3 Q
\_ J

-®




Step 2: Average Each Row Step 3: Filter Out Genes with Infinity

( Average of log values\ 4 Average of log values\
Genel -Inf

Gene2 1.7 Gene2 1.7

Gene3 4.3 Gene3 4.3

\_ J \_ J

In general, this step filters out genes with
zero read counts in one or more samples.

If you are comparing liver and spleen, this
will remove all of the genes only transcribed
in liver (or spleen).

In theory, this helps focus the scaling factors on the house keeping
genes - genes transcribed at similar levels regardless of tissue type.



Step 4: Subtract the average log value from the log(counts)

- log(Sample #1) log(Sample #2) log(Sample '3? (" Average of log values\
Gene2 0.7 1.8 2.5 Gene2 1.7
Gene3 3.5 4.0 5.3 Gene3 4.3
\ / \ v
So we're really
a Sample #1  Sample #2  Sample #3 | checking out the ratio
of the reads in each
Gene2 1.0 0.1 0.5 sample to the average
Gene3 -0.8 -0.3 1.3 across all samples.
Remember: J

reads for gene X

log(reads for gene X) - log(average for gene X) = log
average for gene X



Step 5: Calculate the median of the ratios for each sample

reads for gene X

log(
average for gene X
g Sample #1 Sample #2 Sample #3 h
Gene2 -1.0 0.1 0.5
KG.n‘3 -0.8 -0.3 1.3 Y,
median= -0.9 -0.1 0.9

Step 6: Covert the medians to “normal numbers”
to get the final scaling factors for each sample

NOTE: Using the median is another
way to avoid extreme genes from
swaying the value too much in one
direction.

Genes with huge differences in
expression have no more influence
on the median than genes with
minor differences.

Since genes with huge differences
will most likely be rare, the effect is
to give more influence to moderate
differences and “house-keeping”
genes.

Scaling factor for Sample #1: e =0.4 Sample #2: e%3=0.7 Sample #3:e°°=25



Step 7: Divide the original read counts by the scaling factors

Original read counts Scaled read counts
( Sample #1 Sample #2 Sample #3 N\ ( Sample #1 Sample #2 Sample #3 A
Genel 0 10 4 Genel 0 14 2
Gene2 2 6 12 Gene?2 5 9 5
Gene3 33 55 200 Gene3 83 79 80
\ J \ /

Scaling factor for Sample #1: e =0.4 Sample #2: e%3=0.7 Sample #3:e%9=2.5

Summary of DESeq2’s Library Size Scaling Factor

Logs eliminate all genes that are only transcribed in one sample type (liver vs spleen).
They also help smooth over outlier read counts (via the Geometric Mean).

The median further downplays genes that soak up a lot of the reads, putting more emphasis
on moderately expressed genes.



Differential Expressed Genes — Generalized linear models

Two sample groups, treatment and control.

Assumption:

Count value for a gene in sample j is generated by Negative Binomial distribution with mean pj and
dispersion a.

Null hypothesis:
All samples have the same ;] .

Alternative hypothesis:
Mean is the same only within groups:

log uj = BC + xj BT

where xj=0ifjis control sample
xj = 1 if jis treatment sample



1) Use least-squares to fit a a line to the data.

2) Calculate R?

3) Calculate a p-value for R?




First, draw a line

through the data...
— o — [

|

(e] ® |
4 ! : Second, measure the
® E ? ! [ distance from the line

-+ b i to the data, square
|

e | — :
. Mouse size W each dlstance, and
Mouse size o) then add them up.

| | H
o) T | i !
(@] 4 | |
e 6 : The distance from a
o) -+ e} linetoa data.l point is
o . (6] called a “residual”.
l l l l l |
] 1 1 1 ] 1
= { { = { : Mouse weight

Mouse weight

Third, rotate the line a little bit...

With the new line,
measure the
residuals, square
them, and then sum
up the squares.

. Mouse size
Mouse size

—e
-
-
—
—t
—

1 1 1 1 1 I Mouse weight
Mouse weight
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After a bunch of rotations, you -

-+ can plot the sum of squared
/ residuals and corresponding T
rotation. ¢

Sumof 4+ @ Sumof 4 @
squared squared e
residuals - residuals - e -
-
- 4 This rotation is one
with the “least
A1 - squares”, so it will be

the one fit to the data.
L |

A+ _@7"

Different rotations:

Different rotations:

Here’s the equation for
the line.

® (@)
Least-squares estimated

two parameters:
y=0.1+0.78x

e 1 T~

A y-axis intercept... ..and a slope

| | | | |
| I | | | |

Mouse weight

Mouse size




Calculating R? is the first step in determining how
good that guess will be.

Mougse size Now sum the squared residuals...
Just like in least squares, we measure the distance
from the mean to the data point and square it,
Flest, calculate the Here we have shifted all of the then add those squares together.
average mouse Size. — data pOintS to the Y'aXiS to

emphasize that, at this point,
we are only interested in
4 mouse size.

We’ll call this SS(mean), for “sum of squares
around the mean”

Mouse weight Mouse weight

Mouge size Note:  SS(mean)= (data - mean)?

(data - mean)?

Variation around the mean =

n

SS(mean)
Var(mean) = —————
n

Mouse weight


Francesca Cordero



Now go back to the original plot.

Sum up the squared residuals around our least-squares fit.

We'll call this SS(fit), for the
sum of squares around the
least-squares fit.

SS(fit) = (data - line)?

Mouse weight

Just like with the mean,
the variance around the
fit...

Var(fit) = (data - line)?
n
. SS(fit)
Var(fit) =
n



Mouse size Mouse size

—_— ®

There is less variation
around the line that we T

fit by least-squares. e

s

We say that some of the variation
in mouse size is “explained” by
_: taking mouse weight into account.

|
)
1

e
an—

—t—
—
—
—t
—

Heavier mice are bigger. Mouse weight

Lighter mice are smaller.

Var(mean) =11.1 Var(fit) = 4.4

Mouse si
- ®

.

i
|
.EE o2 _Var(mean) - Varf(fit) .
iii Var(mean) )
IR
i 11.1-4.4 -
1L R? =
1 11.1 -
B )
:l
' R? = 0.6 = 60% )
| | | | | |

e——
—
—
—_

There is a 60% reduction in
variance when we take the

mouse weight into account.

Alternatively, we can say that
mouse weight “explains” 60% of
the variation in mouse size.



Var(mean) =11.1 Var(fit) = 0

, Var(mean) — Var(fit) -+

Var(mean)

11.1-0 7
R?=
11.1 -
R?=1=100% )
|| | | ]

| | ]
1 1 1 1 1 1 1 I 1 I 1 1

Mouse weight

In this case, mouse weight “explains” 100% of the variation in

mouse size.
Var(mean) = 11.1 Var(fit) = 11.1
T _ o I
{ , Var(mean) — Var(fit) 4+ | "
1 — 1
1 Var(mean) g "
1 T M
I | ’
HE 11.1-11.1 T %‘ )
It R = :
oT 11.1 + | E
' (o] |
|
' i R?=0=0% T -
| { | | | ]

—t
—
—
p—
—
-

I I 1 1

In this case, mouse weight doesn’t “explain” any of the
variation around the mean.



mouse size

mouse weight

In this particular example, R? = 0.6, meaning we saw a 60%
reduction in variation once we took mouse weight into account.

The variation in mouse size explained by weight

R2=
The variation in mouse size without taking weight into account

calculating a p-value



The variation in mouse size explained by weight

F=
The variation in mouse size not explained by weight

The p-value for R? comes from something called “F”

Reduction in variance when we
take weight into account.

mouse size —— mouse size

The variation in mouse size explained by weight

The variation in mouse size not explained by weight

v

These dotted lines (residuals) represent the variation
that remains after fitting the line. This is the variation
that is not explained by weight.

mouse size

mouse weight



_ SS(mean) - 5(fit) / (o - Pver)
ssi(fit) / (n - Py

This equation will tell us if R?
is significant.

y = y-intercept

1 parameter F=

/ (pfit - pmean)
/ (n - pg)

These numbers over here are the “degrees of
freedom”.

They turn the sums of squares into variances.

/. l y = y-intercept + slope x

\ /

2 parameters

al S5SNI (P mean) Pir = 2

Ps. is the number of parameters in the fit
line...

Pmean 1S the number of parameters in the
mean line.



If the “fit” is good, then...

The variation explained by the extra parameters in the “fit” > large number

The variation not explained by the extra parameters in the “fit”. small number

F = really large number

How do we turn this number in to a p-value?



Histogram
Generate a set of random data... 4 g

...calculate the mean and SS(mean)...

...calculate the “fit” and SS(fit)... : - :

- SS(mean) - SS(flt) /pextra | /

SS(fit) / (n - pge)

F




...calculate the mean and SS(mean)...

...calculate the “fit” and SS(fit)...

_ SS(mean) — SS(fit) / Petra
SS(fit) / (n - pg)

F

Generate
b another set of

_ SS(mean) — SS(fit) / Pextr
SS(fit) / (n - pg)

F

Histogram

...calculate the mean and SS(mean)...

random data. ...calculate the “fit” and SS(fit)...

Histogram



Repeat with yet
b another set of
random data.

[+]
o
o

o

.0

o« )
—

***** \
rrrrrr

_ SS(mean) — SS(fit) / Peyra

SS(fit) / (n - pg)

Histogram

1 ']
llllll




Original data ¢

. SS(mean) — SS(fit) / Poxira
SS(fit) / (n - pg)

=6

lm—

“
"
(o)}




Original data o

. SS(mean) — SS(fit) / Pexera
SS(fit) / (n - pg) -

The p-value is number
of more extreme values
divided by all the values.

=6




Reduction in Variance...

al .
N mouse size
p

mouse size

mouse weight

In this particular example, R? = 0.6, meaning we saw a 60%
reduction in variation once we took mouse weight into account.

P The variation in mouse size explained by weight

The variation in mouse size without taking weight into account

. SS(mean) = SS(fit) / Prerers
SS(fit) / (n - pg)

The p-value is number
of more extreme values
divided by all the values.



Mouse size

We’'re back to the relationship between
mouse weight and mouse size. However,
now we have two types of mice...

Mouse weight

Mouse size

Mouse weight

Can we use statistics
to test if there is a
significant difference
between the two
types of mice?



t-test

y= meancontrol + diﬁerence(mutant - control)

On the other hand, a normal t-test
would ignore the relationship

T between weight and size...
L ad T -
o
T ) T o —
Mouse size - } difference(mutant - control)

... and in this case,
the p-value is > 0.05.

-
I ° o -
pe—
o T -
—e-

t o 1 1

Control Mutant I I
Control Mutant

generalised linear regression

... a term for the

y = control intercept + mutant offset + slope
mutant mouse offset...

... and lastly, a term for
the slope (which, in this
case, is the same for both
types of mice).

Mouse size

Mouse weight



I

Samplel Treatment A
Sample 2 Control
Sample 3 Treatment A
Sample 4 Control
Sample 5 Treatment A
Sample 6 Control
Sample 1 S1
Sample 2 S2
Sample 3 S3

Sample 4 S4
Sample 5 S5
Sample 6 S6

Design Matrix

N
— = = = = =ntercept

Let’s now consider this parameterization:

C= Baseline expression
T,= Baseline expression + effect of treatment

So the set of parameters are:

C = Control (mean expression of the control)
a = T,— Control (mean change in expression
under treatment

Parameters (coefficients,
levels of the variable)

ekl

Intercept measures the

/ baseline expression.

a measures now the
differential expression
between Treatment A and
Control

© = o = o = Treatment A
__~




t-test

y = meancontrol + diﬁerence(mutant - control)

+ —
Control Mutant

y=1x mean ., +0x diﬁerence(mutant - control)

| .

design matrices in the
context of using 1’s and
0’s to turn parts of the
equation “on” or “off”...

Remember that the numbers
in the first column are
multiplied by mean_,,,,,

...and the numbers in the
second column are multiplied
by difference(mutant - control)

Multiplying mean_,..
by 1 “turns it on” by
just letting it be.

difference(mutant - control)
by 0 makes it 0 and that
“turns it off”.



y = control intercept + mutant offset + slope

Mouse size

Mouse weight

This means we need a
design matrix where the
first column is 1’s...

Ir—ar-av-ap-ap-o-nl-v-l

This means
that both lines
intercept the
y-axis at some
point...

... a term for the
mutant mouse offset...

... and lastly, a term for
the slope (which, in this
case, is the same for both
types of mice).

...the second column
indicates whether the
mutant offset is on or off...

1 0
mutant

1 0 offset is
“off” for

1 0 the control

1 0 mice...

1 1

1 1

1 1

1 1

...and “on”
for the
mutant
mice. This
allows the
mutants to
have their
own y-
intercept.



y = control intercept + mutant offset + slope y = overall mean

Mouse size Mouse size -

Now compare the fancy
model...

Mouse weight

...to a simpler model... Mouse weight

N\

-~

=SS(Slmp|e) - SS(fancy) / (pfancy - psimple)
SS(fancy) / (n - Paney)

F

=21.88

p-value = 0.003

The small p-value says that
taking weight and mouse type
into account is significantly
better at predicting size than
just using the average size.



y = control intercept + mutant offset + slope y = intercept + slope

Mouse size Mouse size

Mouse weight

Mouse weight

This model takes weight into
account, but ignores the fact
that some mice are normal and
others are mutants.

. SS(simple) — SS(fancy) / (Prancy - Psimple)
SS(fancy) / (n - pfancy)

=32.6

p-value = 0.0023

This small p-value suggests
that using both weight and
mouse type is better at
predicting mouse size than
weight alone.



Linear Models

— The observed value of Y is a linear combination of
the effects of the independent variables

Arbitrary number of independent variables

E(Y) = /30 + [)’IXI + ﬁZXZ + ..+ ﬁka Polynomials are valid
EY)=f,+BX +BX+.+B,X]
E(Y)= B, +B1og(X,)+ B f (X)) +...+ BX,

We can use functions Smooth functions: not exactly the same as
of the variables if the the so-called additive models
effects are linear

— If we include categorical variables the model is
called General Linear Model



In DeSeqg2

RNA-seq raw count data follows a negative binomial distribution, as reported in the previous slide.

The DESeq2 authors model the data i.e. imply that for each gene is built a regression model of the data such that it is
possibile to make statistical inferences from the data.

The normalised counts, are used to compute a logistic regression model fro each gene with the negative binomial
distribution.

Once modelled each gene, the way to derive a P value for each model coefficient is by the Wald Test.



In DeSeqg2

RNA-seq raw count data follows a negative binomial distribution, as reported in the previous slide.

The DESeq2 authors model the data i.e. imply that for each gene is built a regression model of the data such that it is
possibile to make statistical inferences from the data.

The normalised counts, are used to compute a logistic regression model fro each gene with the negative binomial
distribution.

Once modelled each gene, the way to derive a P value for each model coefficient is by the Wald Test.

The likelihood ratio (LTR) test

We are working with models, therefore we would like to do hypothesis tests on coefficients or contrasts of those models:

* We fit two models M| without the coefficient to test and M2 with the coefficient.

* We compute the likelihoods of the two models (LI and L2) and obtain LRT=-2log(L| /L2) that has a known distribution
under the null hypothesis that the two models are equivalent. This is also known as model selection

ddsLRT = DESeq(dds, test="LRT", full=~sex+age+smoke+disease, reduced=~sex+age+smoke)

The LRT It tests whether the increase in the log likelihood from the additional coefficients would be expected if those
coefficients were equal to zero. It doesn't mean the reduced model is a good model or a good fit.

The adjusted p-value computed stay for: if it is small, then for the set of genes with those small adjusted p-values, the
additional coefficient in full and not in reduced increased the log likelihood more than would be expected if their true value

was Zero.

ddsLRT = DESeq(dds, test="LRT", full=~sex+age+smoke+geneA+disease, reduced=~sex+age+smoke+disease)



Differential Expressed Genes — FDR

## log2 fold change (MAP): dex trt vs untrt
## Wald test p-value: dex trt vs untrt
## DataFrame with 6 rows and 6 columns

## baseMean log2FoldChange 1fcSE stat
pvalue pad]

## <numeric> <numeric> <numeric> <numeric>
<numeric> <numeric>

## ENSGO00000179593 67.24305 4.,880507 0.3308119 14.75312
2.937594e-49 9.418996e-47

## ENSGO00000109906 385.07103 4.860877 0.3321627 14.63403
1.704000e-48 5.181040e-46

## ENSG00000152583 997.43977 4,315374 0.1723805 25.03400
2.608143e-138 4.599460e-134

## ENSG00000250978 56.31819 4.090157 0.32882406 12.43872
1.610666e-35 2.679631e-33

## ENSG00000163884 561.10717 4.078073 0.2103212 19.38974
9.42137%e-84 1.038413e-80

## ENSG00000168309 159.52692 3.991146 0.25477755 15.66534

2.610147e-55 1.180255e-52



Measuring gene expression in RNA-seq experiments

RNA-seq isn’t perfect, and different samples
'\ are always a little different - so each time we
measure expression we'll get slightly different

Read Counts values.

for gene X

Rarely, we'll get a value that

LF/\—J is much larger than the
p-___ S Most values are mean...

Low counts High counts
close to the mean.

" ] And rarely we’ll get a value

that is much smaller.

R T— [ —  I—— L/ ...................
Read Counts

for gene X ...etc...

Frequency

00 02 04

n A B9 Average for the

normal cells
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Low counts AT High counts
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,,,/ i Because these measurements are close to
20" "
P ,/' the mean, they come from the middle of
"‘ ’ . . .
" ',/' o~ the distribution.
. d
cocgecoas - ':’;:‘ -------------------------------------- 1
Read Counts
for gene X
Sample #1

Average for the

normal cells

-
o
Frequency o
o
o T T )
Low counts AN High counts
t," !
Y ;' Again, these three measurements come
S0 from the middle of the distribution.
f' } :
precpeovecvece coecgreceees P PPN rONCeReR RPN RRTRRREEE R RN EEE S w
I
'l
Read Counts
for gene X
Sample #1 Sample #2

Average for the

normal cells

Sample #1 normal cells: epithelian cells, reference genes or genes not specific of that cells.

Sample #2 normal cells: red blood cells, reference genes or genes not specific of that cells.
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o~ e
‘i . L a2
,,-::v" ,4' ! If we did a statistical test to compare
- o
- o 2 '.‘ 'o‘ Sample #1 to Sample #2, the p-value
- - ’
o ’_,{' L £ ,I' would be large (> 0.05) because the
il e’ el sttt e e -
- | / two samples overlap.
'
Read Counts
for gene X
Sample #1 Sample #2 Average for the

normal cells
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Very rarely, we'll get two samples that do
not overlap. When this happens, the p-
value will be < 0.05.

This is called a “false-positive” .

.. because the small p-value suggests that

Sample #1

e

Sample #2

the samples are from two types of mice
(two separate distributions), and this is
false.




Normally, false positives are rare

95% of the time the samples will overlap. 5% of the time they don't.

VA N
N/ WV

But human and mouse cells have at least 10,000
transcribed genes. If we took two samples from the same
type of mice and compared all 10,000 genes. ..

00 02 04

a0 02 04

5% of 10,000 = 500 false positives - 500 genes that appear
interesting, even when they are not.

The False Discovery Rate (FDR) can control the
number of false positives.

Technically, the FDR is not a method to limit false positives, but the
term is used interchangeably with the methods. In particular, it is
used for the “Benjamini-Hochberg method”.



We'll start by generating 10,000 p-values from
samples taken from the same distribution.

o4

Test #1 S p-value = 0.83

04

Test #2 p-value = 0.98

02

00

A histogram of 10,000 p-values generated by testing samples
taken from the same distribution.

) & 510 p-values (5.1%) are < 0.05. .. each “bin” contains about 5%
2 8- of the p-values (500 p-val bi
E p-values ( p-values per bin).
g :
o
o 2 -
() z B BN BN BN BN N . -
=) _4 Since the p-values are uniformly distributed,
§ there’s an equal probability that a test’s p-value
qL) § - falls into any one of these bins.
=
‘::S ol | 1 | 1 | |
0.0 0.2 04 06 08 1.0

possible value of p-values



We'll start by generating 10,000 p-values from
samples taken from the same distribution.

04

Test #1 S p-value = 0.83

00

T

DX

04

Test #2

02

p-value = 0.98

00

N

A histogram of 10,000 p-values generated by testing samples
taken from the same distribution.

7 o 510 p-values (5.1%) are < 0.05...
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possible value of p-values

Now let’s look at how p-values are distributed when they
come from two different distributions.

Test #1 ' { ?g E p-value = 0.03

VA

, f ?S E p-value = 0.01

vV

02

04

Test #2

02

00

A histogram of 10,000 p-values generated by testing samples
taken from two different distributions.

Most of the p-values are < 0.05.
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Possible values for p-values

the false negative can be reduced
increasing the sample size



To summarize what we know so far. ..

When samples come from the same distribution,
the p-values are uniformly distributed. ..

VAN I

NG, |

When samples come from different distributions,
the p-values are heavily skewed and closer to 0. ..
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Experiment: all the active genes in the neuronal cells,

one set of neuronal cells is treated with a drug the other set is not.

The drug might affect 1,000

genes...
The measurements for V

these genes will come from @

two different distributions. The black sample  The red sample

is from the control s from the cells
treated with the
cells.

drug.

The remaining 9,000 active
genes might not be

affected by the drug. ..

This means the  j—
measurements for most of W
the genes will come from

the same distribution.

|

p-values

13
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:
:
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i
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Since the samples come
from different distributions,
the p-values are skewed.

p-values
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The p-values on the left side are a
mixture from genes affected and
genes unaffected by the drug.

600 1000

0 200

5

The uniformly distributed p-values
ome from the genes unaffected by the

drug.
A

%

The histogram of p-values
we obtain from all 10,000
genes is the sum of the two
separate histograms.

.........




E

We can extend this line and : |

use it as a cutoff to identify |
8 - the “true positives” 8 fL

oo 2 g as e

The histogram of p-values
we obtain from all 10,000

& genes is the sum of the two

i~

By eye, we can see where
are uniformly distributed and B

determine how many tests are in each
bin.




1000

lG(X)

0 200

Since we usually use a cutoff f - L

of 0.05, we're going to focus

N on these p-values ..

/ Roughly 450 p-values < 0.05 are above the

dotted line.

we obtain from all 10,000

The histogram of p-values
* genes is the sum of the two

separate histograms.

Dhﬁmﬂ“- -—

I,

03

I T T T T ]
0.0 0.2 04 0.6 08 1.0

Roughly 450 p-values < 0.05 are below the
dotted line.

One way to isolate the true
positives (genes affected by the drug)
from the false positives would
be to only consider the smallest
450 p-values.




Are skewed for the genes
affected by the drug...

[ [ [ 1 I s ———
0.00 oM 0.02 003 004 0.05 /

This procedure works fairly well because
the p-values within the bins. .

and spread evenly for the \
genes not affected by the drug. ”
JCrerrfrry>™({ I b~ rr il ' I rae—




The Benjamini-Hochberg method

* |s based on the “eyeball” method we just saw. * If your cutoff for significance is FDR < 0.05, then less than 5%
— We'll go over how it really works in just a bit. of the “significant” results will be false positives.

* |t adjusts p-values in a way that limits the number of false
positives that are reported as “significant”.

“adjusts p-values” means that it makes them larger.

For example, before the FDR correction, your p-value might be 0.04 (significant)
After the FDR correction, your p-value might be 0.06 (no longer significant)

Why don’t all of the ,
true positive genes These are the genes with p-values < 0.05

have adjusted FDR
p-values < 0.05?

8 These are the genes with FDR modified p-values < 0.05
Because not all true - ¥
positive genes will | | Notice that not all of the “true positive” genes are inside
have super small p- g the box.
values.
3 However, only 5% of the modified p-values in the box are
= . e .
Here's the histogram 'faxlseie p.os:mxve‘s.KTrx\e.rexm‘m[nrx\g x95x%xafe true positives.
. of true positive p- J ’ ' v J v
values < 0.05. e - o - . "
UM,
r T T T T 1

0.00 oo 0.02 003 0.04 005



The Benjamini-Hochberg method A simple example

1. Order to p-values from smallest to largest. J / \ |
10 pairs of samples taEen from the

same distribution. (i.e. 10 genes that
were not effected by the drug).

smallest largest
. -




The Benjamini-Hochberg method A simple example

N\

1. Order to p-values from smallest to largest. pr— ofwfmm ha
2. Rank the p-values same distribution. (i.e. 10 genes that

were not effected by the drug).

rank: 1




The Benjamini-Hochberg method A simple example

1. Order to p-values from smallest to largest.

2. Rank the p-values 10 pairs of samples ta en from the

3 The Iargest DR adeStEd p-value same distribution. (i.e. 10 genes that
A ‘o were not effected by the drug).

rank: 1 7 8

adj p-values:



The Benjamini-Hochberg method A simple example

1. Order to p-values from smallest to largest.

2. Rank the p-values 10 pairs of samples ta en from the

. same distribution. (i.e. 10 genes that
3. The largest FDR adjusted p-value... and the largest p-value arethes | . i cffected by thie drug).

rank: 1

adj p-values:



The Benjamini-Hochberg method A simple example

10 pairs of samples taEen from the

same distribution. (i.e. 10 genes that
were not effected by the drug).

Order to p-values from smallest to largest.
Rank the p-values
The largest FDR adjusted p-value... and the largest p-value are the same

The next largest adjusted p-value. .

oWN e

a: The previous adjusted p-value = 0.91

...I1s the smaller of two options:
total # of p-values
b: the current p-value «

p-value rank
rank: 1 2 3 4 5 6 7 8 9 10

b ———————



The Benjamini-Hochberg method A simple example

IJL

10 pairs of samples ta en from the
same distribution. (i.e. 10 genes that

Order to p-values from smallest to largest. were not effected by the drug).
Rank the p-values

The largest FDR adjusted p-value... and the largest p-value are the same

The next largest adjusted p-value. ..

_WN -

a: The previous adjusted p-value = 0.91

...1s the smaller of two options:
10
b:0.81 « =0.90

K
rank: 1

adj p-values: 0_91



The Benjamini-Hochberg method A simple example

10 pairs of samples taEen from the

Order to p-values from smallest to largest. same distribution. {l.e: 10 aemes that
Rank the p-values were not effected by the drug).

The largest FDR adjusted p-value... and the largest p-value are the same
The next largest adjusted p-value. ..
a: The previous adjusted p-value = 0.90

...1s the smaller of these two options:

WN e

10
b: 0.71 « =0.89
8
.. I Y
rank: 1 2 3 4 5 6 7 8 9 10

adj p-values: 090 091



The Benjamini-Hochberg method

1. Order to p-values from smallest to largest.
2. Rank the p-values
3. The largest FDR adjusted p-value... and the largest p-value are the same
4. The next largest adjusted p-value. ..
rank: 3 4 5 6 7 8 9 10
adj p-values: 055 070 (077 082 085 087 089 090 @091

The false positive p-value. .. is no longer significant.



The Benjamini-Hochberg method

[

These are the p-values from when the I've made these p-values smaller to
samples came from two separate reflect their normal skew.
distributions.
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NOTE!

We've got 0 0.12 0.32
some false [N I
positives!

0.04
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The Benjamini-Hochberg method

But these
true ; These are the adjusted p-values.
positives
remain
<0.05

The false
positives
are now >
0.05




Differential Expressed Genes — Visualization
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Differential Expressed Genes — Visualization

log fold change

100

mean expression

10000

MA-plot of changes induced by
treatment.

The log2 fold change for a particular
comparison is plotted on the y-axis and the
average of the counts normalized by size
factor is shown on the x-axis (“M” for
minus, because a log ratio is equal to log
minus log, and “A” for average). Each gene
is represented with a dot.

Genes with an adjusted p value below a
threshold (here 0.1, the default) are shown
in red.



Differential Expressed Genes — Visualization

log fold change

ENSG0000Q152583()

100

mean expression

10000

The red points indicate genes for which the
log2 fold change was significantly higher
than 1 or less than -1 (treatment resulting
in more than doubling or less than halving
of the normalized counts) with

adjusted p value less than 0.1.

The point circled in blue indicates the gene
with the lowest adjusted p value.



Differential Expressed Genes — Visualization

—log10 (pvalue)

parathyroidGenes

3.5

3.0 7

295 7

2.0

1.5

1.0 7

05 9

0.0

Fold change

A Volcano plot is simply a scatterplot
that has the fold change values for all
features on the horizontal (x) axis, and
the —log 10-transformed p-value on the
vertical (y) axis.



Differential Expressed Genes — Visualization
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Heatmap of relative rlog-transformed values
across samples.

Treatment status and cell line information are
shown with colored bars at the top of the
heatmap.

Note that a set of genes at the top of the
heatmap are separating the N061011 cell line
from the others. In the center of the heatmap,
we see a set of genes for which the
dexamethasone treated samples have higher
gene expression.



Differential Expressed Genes — Visualization
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Differential Expressed Genes — Visualization
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Exon expression by
DEXSeq
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