
Differential expression (DE) analysis refers to the identification of genes (or other types of genomic
features, such as, transcripts or exons) that are expressed in significantly different quantities in distinct
groups of samples, be it biological conditions (drug-treated vs. controls), diseased vs. healthy individuals, 
different tissues, different stages of development, or something else.

Although genes (if we focus on those for a while) are of course not expressed independent of each other, 
differential expression analysis is typically done on one gene at a time (although information is sometimes
borrowed across genes, as we will see below) in a univariate way.

the number of examples is much smaller than the number of features, 
which makes it harder to fit a statistical model that considers all genes
as a whole.

WHY?

Differential Expressed Genes

Multivariate dimension reduction methods such as principal component analysis (PCA) can be used to 
construct low-dimensional representations of the expression profiles that retain some of the 
properties of the complete data set and are thus often useful for visualization



The purpose of replication is to be able to estimate the variability between and among groups, which is important for, 
for example, hypothesis testing. Technical replication is used to estimate the variability of the measurement technique, 
for example, RNA-seq. Biological replication is used to find out the variability within a biological group. Roughly
speaking, a change observed in gene expression between two groups can only be called significant if the difference
between the groups is large compared to the variability within the group, while taking the sample size into
consideration.

How many replicates should you use? This depends on the specifics of the experiment. The biological homogeneity of 
the different samples, the purpose of the experiment and the desired level of statistical power, among other things, 
will affect the number of replicates needed.

Differential Expressed Genes – Replicates

Many sequencing core facilities require or suggest using at least three or four replicates per group to be compared; 
two is almost always too few. With three, there is the risk that at least one sample will fail in library preparation or 
sequencing and you still end up with only two replicates in one of the groups.
Human blood and some tissue samples used for clinical case–control transcriptomics studies seem to exhibit
considerable variation between individuals. Particularly for complex diseases, very large numbers of replicates
(perhaps hundreds or thousands) may be needed to observe differential expression between cases and controls. For 
cell lines or samples from distinct tissues, only a few replicates may be needed.



For RNA-seq experiments, where one might assume that sequences are sampled at random from the 
sequencing library, the raw read counts would be expected to be Poisson-distributed.

Differential Expressed Genes – Statistical Distribution

You would expect to get slightly different counts even for the same library in an idealized scenario 
where it was sequenced twice under the same conditions. This inevitable noise which arises from 
the sampling process is called shot noise, and often the variability between technical replicates in 
RNA-seq can be described quite well by this type of Poisson noise



Differential Expressed Genes – Noise



When samples are taken from biologically distinct sources, such as different individuals, the variability
between them has often been modeled by a negative binomial distribution (sometimes called gamma-
Poisson distribution). This distribution can be described as an overdispersed Poisson distribution

Differential Expressed Genes – Statistical Distribution

In RNAseq genes with high mean counts, 
because they are long or highly
expressed, tend to show more variance
between sample than genes with low
mean counts. Thus this data fits a 
Negative Binomial Distribution.



Differential Expressed Genes – Statistical Distribution

Counts for the same gene 
from different technical
replicates have variance
equal to the mean (Poisson)

Counts for the same gene 
from different biological
replicates have a variance
exceeding the mean
(overdispersion)



If sample A has been sampled deeper than sample B, we expect counts to be higher. 

Naive approach: Divide by the total number of reads per sample 

Problem: Genes that are strongly and differentially expressed may distort the ratio of total reads.

To compare more than two samples: 

Form a “virtual reference sample” by taking, for each gene, the geometric mean of counts over all
samples

Normalize each sample to this reference, to get one scaling factor (“size factor”) per sample.

Differential Expressed Genes – Normalization, DESeq2
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DeSeq2 normalisation step want handle:

















Differential Expressed Genes – Generalized linear models

Assumption: 
Count value for a gene in sample j is generated by Negative Binomial distribution with mean μj and 

dispersion α. 

Null hypothesis: 
All samples have the same μj . 

Alternative hypothesis: 
Mean is the same only within groups:

log μj = βC + xj βT 

where xj = 0 if j is control sample 

xj = 1 if j is treatment sample

Two sample groups, treatment and control.
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t-test

generalised linear regression



Intercepts	

	
	

Different	parameteriza:on:	using	intercept	
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Sample	 Treatment	

Sample1	 Treatment	A	

Sample	2	 Control	

Sample	3	 Treatment	A	

Sample	4	 Control	

Sample	5	 Treatment	A	

Sample	6	 Control	

Let’s	now	consider	this	parameteriza:on:	
	
C=	Baseline	expression	
TA=	Baseline	expression	+	effect	of	treatment	
	
So	the	set	of	parameters	are:	
	
C	=	Control	(mean	expression	of	the	control)	
a	=	TA	–	Control	(mean	change	in	expression	
under	treatment	

Intercept	
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Different	parameteriza:on:	using	intercept	

Intercept	measures	the	
baseline	expression.	
a	measures	now	the	
differen:al	expression	
between	Treatment	A	and	
Control	
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t-test









Linear	models		

– The	observed	value	of	Y	is	a	linear	combina:on	of	
the	effects	of	the	independent	variables	

–  If	we	include	categorical	variables	the	model	is	
called	General	Linear	Model	

E(Y ) = β0 +β1X1 +β2X2 +...+βkXk

E(Y ) = β0 +β1X1 +β2X
2
1 +...+βpX

p
1

E(Y ) = β0 +β1 log(X1)+β2 f (X2 )+...+βkXk

Arbitrary	number	of	independent	variables	

Polynomials	are	valid	

We	can	use	func:ons	
of	the	variables	if	the	
effects	are	linear	

Smooth		func:ons:	not	exactly	the	same	as	
the	so-called	addi/ve	models	
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Linear Models



In DeSeq2
RNA-seq raw count data follows a negative binomial distribution, as reported in the previous slide.

The DESeq2 authors model the data i.e. imply that for each gene is built a regression model of the data such that it is 
possibile to make statistical inferences from the data.

The normalised counts, are used to compute a logistic regression model fro each gene with the negative binomial 
distribution. 

Once modelled each gene, the way to derive a P value for each model coefficient is by the Wald Test.



In DeSeq2
RNA-seq raw count data follows a negative binomial distribution, as reported in the previous slide.

The DESeq2 authors model the data i.e. imply that for each gene is built a regression model of the data such that it is 
possibile to make statistical inferences from the data.

The normalised counts, are used to compute a logistic regression model fro each gene with the negative binomial 
distribution. 

Once modelled each gene, the way to derive a P value for each model coefficient is by the Wald Test.

The LRT It tests whether the increase in the log likelihood from the additional coefficients would be expected if those 
coefficients were equal to zero. It doesn't mean the reduced model is a good model or a good fit.

The adjusted p-value computed stay for: if it is small, then for the set of genes with those small adjusted p-values, the 
additional coefficient in full and not in reduced increased the log likelihood more than would be expected if their true value 
was zero.

We are working with models, therefore we would like to do hypothesis tests on coefficients or contrasts of those models:

 

•  We fit two models M1 without the coefficient to test and M2 with the coefficient.  

•  We compute the likelihoods of the two models (L1 and L2) and obtain LRT=-2log(L1 /L2) that has a known distribution 
under the null hypothesis that the two models are equivalent. This is also known as model selection  

The likelihood ratio (LTR) test

ddsLRT = DESeq(dds, test="LRT", full=~sex+age+smoke+disease, reduced=~sex+age+smoke) 

ddsLRT = DESeq(dds, test="LRT", full=~sex+age+smoke+geneA+disease, reduced=~sex+age+smoke+disease) 



Differential Expressed Genes – FDR



Measuring gene expression in RNA-seq experiments

Average for the 

normal cells



Average for the 

normal cells
Average for the 

normal cells

Sample #1 normal cells: epithelian cells, reference genes or genes not specific of that cells.

Sample #2 normal cells: red blood cells, reference genes or genes not specific of that cells. 



Average for the 

normal cells



Average for the 

normal cells







possible value of p-values
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the false negative can be reduced 
increasing the sample size





Experiment: all the active genes in the neuronal cells, 

one set of neuronal cells is treated with a drug the other set is not.

































Differential Expressed Genes – Visualization



MA-plot of changes induced by 
treatment.

The log2 fold change for a particular
comparison is plotted on the y-axis and the 
average of the counts normalized by size
factor is shown on the x-axis (“M” for 
minus, because a log ratio is equal to log 
minus log, and “A” for average). Each gene 
is represented with a dot. 

Genes with an adjusted p value below a 
threshold (here 0.1, the default) are shown
in red.

Differential Expressed Genes – Visualization



The red points indicate genes for which the 
log2 fold change was significantly higher
than 1 or less than -1 (treatment resulting
in more than doubling or less than halving
of the normalized counts) with 
adjusted p value less than 0.1. 

The point circled in blue indicates the gene 
with the lowest adjusted p value.

Differential Expressed Genes – Visualization



Differential Expressed Genes – Visualization

A Volcano plot is simply a scatterplot
that has the fold change values for all
features on the horizontal (x) axis, and 
the −log 10-transformed p-value on the 
vertical (y) axis.



Differential Expressed Genes – Visualization

Heatmap of relative rlog-transformed values
across samples.

Treatment status and cell line information are 
shown with colored bars at the top of the 
heatmap. 

Note that a set of genes at the top of the 
heatmap are separating the N061011 cell line 
from the others. In the center of the heatmap, 
we see a set of genes for which the 
dexamethasone treated samples have higher
gene expression.



Differential Expressed Genes – Visualization

Normalized counts for a single gene over 
treatment group.



Differential Expressed Genes – Visualization

Exon expression by 
DEXSeq


