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REVIEWS

DESIGN ISSUES FOR ¢cDNA
MICROARRAY EXPERIMENTS

Yee Hwa Yang™* and Terry Speed*’

should we replicate, and if so, how?

The ever-increasing rate at which genomes are being
sequenced is attracting attention to functional genomics
— an area of genome research that is concerned with
assigning biological function to DNA sequences. More
precisely, the completion of the sequencing of any given
genome immediately raises the essential and formidable
task of defining the role of each gene, and of understand-
ing the interactions between sets of genes in that genome.
These tasks can be carried out in various ways, including
protein prediction, homology searching and expression
analysis. We are interested in DNA microarrays, which are
part of a new class of technology that allows simultane-
ous monitoring of the expression levels of numerous
genes. This technology is being more and more widely
applied in biological and medical research to address a
wide range of questions (see, for example, REFS 1-5).
Microarray experiments generate large and complex
multivariate data sets, and some of the greatest challenges
lie not in generating these data but in the development of
computational and statistics tools to analyse the large
amounts of data. However, an important ancillary task is
to design the experiments so that the efficiency and relia-
bility of the obtained data can be improved.
High-density oligonucleotide microarray experi-
ments provide direct information about the expression
levels in a mRNA sample of the 200,000-500,000
probed gene fragments®. By contrast, cDNA microrarray
experiments typically involve hybridizing two mRNA

Microarray experiments are used to quantify and compare gene expression on a large scale.

As with all large-scale experiments, they can be costly in terms of equipment, consumables
and time. Therefore, careful design is particularly important if the resulting experiment is to be
maximally informative, given the effort and the resources. What then are the issues that need

to be addressed when planning microarray experiments? Which features of an experiment have
the most impact on the accuracy and precision of the resulting measurements? How do we
balance the different components of experimental design to reach a decision? For example,

samples, each of which has been converted into cDNA
and labelled with its own fluorophore, on a single glass
slide that has been spotted with 10,000-20,000 cDNA
probes. Data from such experiments provide informa-
tion on the relative expression of the sample genes,
which correspond to the probes (80X 1). Our discussion
is mainly relevant to these two-colour experiments, in
which the main design issue is which samples should be
co-hybridized. However, several of the points we make
(in particular, see later sections on Multifactorial
designs, Variability and replication, and Power and sam-
ple-size determination) are also relevant to single-label
experiments.

What are the dangers of not paying adequate atten-
tion to design issues? At one extreme, an experiment that
is not carefully designed might be entirely satisfactory,
but possibly less efficient in its use of the available mater-
ial than it could have been otherwise, thereby sacrificing
a potential gain in efficiency. At the other extreme, a
badly designed experiment might leave an experimenter
unable to answer a question of interest with the data that
has been collected, or perhaps leave a potential bias in the
data that might compromise the interpretation of the
results. In most cases, neither of these extremes will
apply, but careful attention to experimental design
will ensure that good use is made of the available
resources, obvious biases will be avoided and it will be
possible to answer the primary questions of interest”.
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Box 1 | What are cDNA microarray experiments?

cDNA microarrays consist of thousands of individual DNA sequences printed in a high-
density array on a glass microscope slide by a robotic arrayer. The relative abundance of
the spotted DNA sequences in two DNA or RNA samples can be assessed by monitoring
the differential hybridization of the two samples to the sequences on the array. For
mRNA samples, the two samples or targets are reverse transcribed into cDNA, labelled
using different fluorescent dyes (usually a red-fluorescent dye, Cyanine 5 (Cy5),and a
green-fluorescent dye, Cyanine 3 (Cy3)), then mixed in equal proportions and
hybridized with the arrayed DNA sequences or probes (we follow the definition of probe
and target adopted in REE 29). After this competitive hybridization, the slides are imaged

using a scanner, and fluorescence measurements are made separately for each dye at
each spot on the array. The ratio of the red and green fluorescence intensities for each
spot is indicative of the relative abundance of the corresponding DNA probe in the two
nucleic acid target samples. See REE 29 for a more detailed introduction to the biology
and technology of cDNA microarrays and oligonucleotide chips.

COMPETITIVE HYBRIDIZATION
A mixture of differently labelled
target cDNA fragments that are
hybridized together in the
presence of a common probe or
collection of probes.

LOG RATIO

The logarithm, usually to the
base 2, of the ratio of the
measured signal intensities in
the two channels of a two-colour
microarray experiment. If we
denote these two signals by R
(red channel) and G (green
channel), then their log ratio is
log,(R/G).

This review describes the experimental design and
related issues that are important for carrying out cDNA
microarray experiments. In addition, we hope to facili-
tate discussion and understanding between biologists
who do the experiments and statisticians or others who
do the analyses. We first describe the objectives of experi-
mental design in the context of microarray experiments.
The next section introduces the reader to a display that
summarizes the hybridizations that are carried out in an
experiment. Furthermore, we discuss how scientific aims
affect the choice of design, and how practical issues con-
strain our design options. Finally, we use three case stud-
ies to illustrate the ways in which scientific and physical
constraints can be used to choose a design.

Why experimental design?

The objective of experimental design is to make the
analysis of the data and the interpretation of the results
as simple and as powerful as possible, given the purpose
of the experiment and the constraints of the experimen-
tal material. As described in BOX 1, the underlying idea of

Box 2 | Graphical representation of experimental designs

One way to represent
microarray experiments
is to use ‘multi-digraphs’
—directed graphs (that
is, one that contains
vertices or nodes, and
edges; see figure),
possibly with multiple
edges. In this

a b

—s——[E]
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representation, vertices or nodes (for example, A and B) correspond to target mRNA
samples, and edges or arrows correspond to hybridizations between two mRNA samples.
By convention, we place the green-labelled sample at the tail and the red-labelled sample
at the head of the arrow. For example, panel a shows an experiment that consists of
replicate hybridizations. Each slide involves labelling sample A with green (Cy3) dye and
sample B with red (Cy5) dye and hybridizing the samples together on the same slides.
Number 5 on the arrow indicates that there are five replicate hybridizations in this
comparison. Panel b depicts the simplest loop design: three samples — A, Band C — are
hybridized together in consecutive pairs, each labelled once in red and once in green.
Graphical representations of this nature have been used previously in experimental
design in the context of paired comparisons in precision measurement’.

a cDNA microarray experiment is a competitive
hybridization between a sample that is labelled with the
red-fluorescent dye Cyanine 5 (Cy5) and a sample that
is labelled with the green-fluorescent dye Cyanine 3
(Cy3). Unlike gene-expression data from nylon mem-
branes (filter) or GeneChip (Affymetrix), cDNA
microarray data are inherently comparative. This is
because the filter or Affymetrix data measure gene-
expression levels for each sample separately, whereas, in
the case of cDNA experiments, the pairing of target
samples for hybridization leads to relative expression
values and constrains the types of design that can be
considered. So, each cDNA microarray experiment gives
us the relative abundance of two sets of mRNA.

The principles of design for comparative experi-
ments of this kind are not new. They first arose in agri-
cultural research many years ago with Ronald A. Fisher?,
who studied yields from different plant varieties (see
also REFS$ 9,10). The varieties to be compared were grown
on the same land, as the variation between plots was
substantial. This planting arrangement is conceptually
equivalent to using COMPETITIVE HYBRIDIZATION tO compen-
sate for the variation between glass-slide microarrays.
This similarity means that the design and analysis of
comparative experiments can be accommodated in a
classical statistical framework, an important point to
which we return in later sections. In cDNA microarray
experiments, we see more variation between slides than
within slides (for further discussion, see the section on
Variability and replication), and so the most important
design issue is to determine which mRNAs are to
be labelled with which fluor, and which are to be
hybridized together on the same slide. In addition, there
can be constraints on the number of slides, the amount
of RNA available, or other cost considerations, all of
which will affect the experimental design.

Graphical representation of designs

Before discussing design choice, we introduce a graphi-
cal representation of microarray experimental designs
(BOX 2). In the rest of this review, we use this way of illus-
trating microarray designs. The structure of the graph
determines which gene-expression differences can be
estimated and the precision of these estimates. For
example, gene-expression levels in two target samples
can be compared only if there is a ‘path’ (that is,
sequence of hybridizations) that joins the correspond-
ing two vertices (mRNA samples). The precision of the
estimates of relative expression, then, depends on
the number of paths that join the two vertices, and is
inversely related to the length of these paths.

The sample experiment depicted in BOX 2, panel b,
consists of three sets of hybridizations (A, B and C).
There are two paths that join the vertices A and B: a path
of length 1 joins A and B directly and a path of length 2
joins A and B through C. When we are estimating the
relative abundance of mRNA between target samples A
and B, the estimate of roG ratio log(A/B) from the direct
path A to B — that is, the experiment in which A and B
are co-hybridized — is likely to be more precise than the
indirect estimate of log(A/B) = log(A/C) —log(C/B)
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Box 3 | Issues that affect the design of array experiments

Scientific
* Aim of the experiment.

» Specific questions to be answered and how they are prioritized.

» How will the experiments answer the posed questions?

Practical (logistic)

* Types of mRNA samples: reference, control, treatment 1 (T1), and so on.

» Amount of material available: count the amount of mRNA involved in one CHANNEL
of one hybridization as one unit.

* Number of slides available for the experiment.

Other factors

+ The experimental process before hybridization: sample isolation, nRNA extraction,

amplification and labelling.

+ Controls planned: positive, negative, ratio, and so on.

* Verification method: northern blot, reverse transcriptase (RT)-PCR, in situ

hybridization, and so on.

CHANNEL

c¢DNA microarrays have paired
hybridization intensity
measurements that are taken
from two wavelength bands after
laser excitation at two
wavelengths. These two sources
of data are known as channels.
By contrast, measurements of
radiolabelled hybridization
products are single channel, as
are the Affymetrix microarrays.

from the path of length 2 that joins A and B through
C (that is, from the two experiments in which A is
co-hybridized with C, and B is co-hybridized with C,
separately).

Scientific aims and design choice

BOX 3 contains a list of general issues that need to be
addressed when designing a cDNA microarray experi-
ment. We hope this list helps to translate biological
questions into appropriate statistical questions. Most
importantly, the primary focus of the experiments
needs to be stated, whether it is to identify differentially
expressed genes, to search for specific gene-expression
patterns or to identify tumour subclasses. It is important
to bear in mind that results from previous experiments
or other information might lead us to expect only a few
or many genes to be differentially expressed or to have
specific expression patterns.

An independent verification method should also be
considered, such as northern or western blot analyses,
reverse transcriptase (RT)-PCR or in situ hybridization,
as a follow up to the experimental results. The amount
of verification that is carried out can influence the
choice of statistical methods and the sample size (see
below for further discussion). The source of mRNA (for
example, tissue samples or cell lines) will affect the
amount of mRNA available and, in turn, the number of
replicate slides possible. Details of sample isolation,
mRNA extraction and labelling also affect the number
of times the experiment has to be repeated and how this
needs to be done. Controls can be used simply for
checking that the experiment went well, or they might
be useful in data analysis — for example, in normalizing
the experimental results.

One design choice. We begin by looking at experimental
design with an example of an experiment in which there
is just one obvious design choice. In this case, one design
stands out as preferable to all others, given the nature
of the experiment and the material available. Let us

imagine that we wish to study mRNA from populations
of cells, each of which has been treated with a different
drug, and that the main goal is to compare the treated
with the untreated cells. In this case, the appropriate
design would dictate that the untreated cells become a
de facto reference, and that all hybridizations involve one
treated set of cells and the untreated cells.

To take a different example, suppose that we have col-
lected numerous tumour samples from patients. If the
scientific focus of the experiment is to discover tumour
subtypes'!, microarray experiments in which tumour
samples are compared with a common reference RNA
are an obvious choice. Here, the design choice is dictated
by the aims of the study, although considerations of sta-
tistical efficiency also affect the choice of design. BOX 4
provides two illustrations in which the aim of the experi-
ment sometimes leads directly to the best design.

In most experiments, however, several designs that
seem equally suitable can be devised, and we need some
principles for choosing one from several possibilities.
Such experiments are discussed below, where we focus
on the question of identifying differentially expressed
genes. We begin by explaining some design principles,
which we subsequently illustrate with examples.

Direct versus indirect comparisons

The key issue in designing a cDNA microarray for
which more than one design is appropriate is to decide
whether to use direct or indirect comparisons; that is,
whether to make the comparison within or between
slides (FIG. 1). We begin by discussing this comparison in
the simplest case — treatment T versus control C. For
the purposes of subsequent discussion, the terms ‘treat-
ment’ and ‘control’ are used broadly, to include compar-
isons between treated (for example, with a drug) and
untreated cells, between wild-type and mutant samples
(including samples from knockout or transgenic
animals) or between two tissues (for example, tumour
versus normal).

Box 4 | Design choices from scientific aims

The two designs represented below are best answered by
a common reference design.

Case 1: Use of meaningful biological control (Ctl).
Samples: Liver tissue from mice treated with cholesterol-
modifying drugs and from untreated (Ctl) mice.
Question 1: The expression of which genes differs
between the treated and untreated (Ctl) mice?

Question 2: Which genes respond similarly to two or
more treatments, when compared to wild-type?

Case 2: Use of universal reference (Ref).
Samples: Tissue from different tumours.
Question: What are the tumour subtypes?

] [ [ W] -
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VARIANCE

The most common statistical
measure of variability of a
random quantity or random
sample about its mean. Its scale
is the square of the scale of the
random quantity or sample. The
square root of the variance is
known as the standard
deviation.

a Direct b Indirect

O

Figure 1| Direct versus indirect designs. Two possible
designs that compare gene expression in two cell-population
samples T and C. a | In a direct comparison, the differential
expression of the genes in samples T and C is measured
directly on the same slide (in a single experiment). b | In an
indirect comparison, expression levels of samples T and C
are measured separately on two different slides. The log ratio
log,(T/C) is estimated by the difference log,(T/R) - log,(C/R).
R, reference.

Suppose that we plan to do two hybridizations, and
that the quantity of mRNA that is available for the
experiment is not a limiting factor. To carry out a
direct comparison, we might label T with Cy5 and C
with Cy3 and hybridize them together (T-C) on both
slides, as shown in FIG. 1a. For any particular gene, we
would then obtain two independent estimates of the
log ratio log(T/C) for that gene. If the variance for one
such measurement is 0%, then the variance of the aver-
age of two independent measurements is o%/2.
Conversely, if we make use of a common reference, for
example R, then our two hybridizations would be T-R
and C-R, as shown in FIG. 1b. In this case, the log ratio,
log(T/C), for any gene is the difference of two indepen-
dent log ratios from the equation log(7/C) = log(T/R)
—log(C/R). As before, if the variance for a single log
ratio is 0% it follows that the variance of the difference
of two independent log ratios is 20% To summarize,
with two hybridizations, we obtain a measure of the
log-ratio of a gene with variance 0*/2 by doing two
direct comparisons, and the log ratio of a gene with
variance 20°by doing two indirect comparisons. The
fact that these variances differ by a factor of 4 is the key
difference between direct and indirect comparisons. In
practice, we do not always observe a factor of 4 differ-
ence because the independence assumption is often
not satisfied if target mRNAs are from the same bio-
logical extraction, a point that will be discussed in
more detail later.

//\2\ // \\
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Figure 2 | Dye-swap replications. Dye-swap experiments
involve two hybridizations for two mRNA samples, in which
dye assignment is reversed in the second hybridization.
a,b | Two sets of two replicates; dye-swap replication is
shown in b.

Most of the remainder of our discussion focuses on
which RNAs to assign to fluors and which to hybridize
together, and follows from the simple observation above
on the relative merits of direct and indirect compar-
isons. For simplicity, we assume that all target mRNAs
are independent biological replicates.

Dye-swap experiments. Dye-swap replications (FIG.2), in
which each hybridization is done twice, with the dye
assignments reversed in the second hybridization, are
useful for reducing systematic bias'>'*. Most cDNA
microarray experiments show systematic differences in
the red and green intensities, which require correction at
the normalization step. It is very unlikely that this nor-
malization can be done equally well for every spot on
every slide, leaving no residual colour bias. Whether
averaging over dye-swap pairs will leave an experiment
more or less prone to these biases will depend on the
extent of this colour bias, and its repeatability across
slides. For this reason, we recommend the use of dye-
swap pairs wherever possible. Alternatively, random dye
assignments to samples can be used, effectively to
include the bias in random error. Importantly, direct
comparisons of replicates of slides with the same
labelling should be avoided because unadjusted colour
bias might persist and accumulate. With indirect com-
parisons, repeatable residual colour bias should be
removed when between-slide differences are taken; as
shown in the following equation [log(A/R) + residual
colour bias] - [log(B/R) + residual colour bias]
=log(A/R) —log(B/R).

Constraints. For a proposed design to be acceptable, it
has to satisfy two types of constraint: physical and sci-
entific (BOX 3). First, it must be clear that the experi-
ment is feasible, given the number of slides and the
amount of mRNA expected to be available for use.
There might be limitations of other kinds, for example
on the number of RNA labellings that can be made. In
practice, the number of slides and the amount of
mRNA are the main physical constraints.

Second, it will have to be clear that the scientific
questions that motivate the experiment can be answered
if a given design is used — the more important ques-
tions will be answered more precisely than the less
important ones. The illustrations that follow show that a
combination of direct and indirect comparisons is often
the best practical solution to a design problem.

Single-factor designs

We now present a series of examples that illustrate how
the principles of design fare in different contexts. We fol-
low the layout of design parameters set out in BOX 3 to
show that the precise balance of direct and indirect com-
parisons in a given context should be determined by
making the estimated comparisons more precise, subject
to the scientific and physical constraints of the experi-
ment. Although we hope that these principles are clear,
and that the examples provide guidance, we cannot pre-
sent all technical details, such as calculations of the vari-
ances of comparisons (see supplementary Box online for
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Table 1 | Single-factor experiments

Design choices Number Units of material Average variance
of slides (number of samples)
Indirect designs
Design | 8 A=B=C=1 2.00
A B C
R
Design I 6 A=B=C=2 1.00
A B C
\ | /
I/
R
Direct design
Design lll 3 A=B=C=2 0.67

A————>C

\/

Variance of estimated effects for three different designs of single-factor experiments. o2 was set to 1
throughout.

an example of variance calculation). Although not diffi-
cult, these are beyond the scope of this review. Again, our
examples focus on the question of identifying differen-

tially expressed genes in various experiments.

Comparisons among sources of mRNA. We begin by
considering an experiment in which three mRNAs
from three sources are compared, and we suppose that
all pairwise comparisons are of equal interest. This
type of experiment could arise, for example, when
investigating the differences in expression between
three different regions (A, B and C) of the brain (FIG.2).
The scientific aim of this experiment is, therefore, to
identify genes that are differentially expressed in these
brain regions. The main interest is in identifying genes
with differential expression in (A-B), (B-C) or (A-C)
comparisons. TABLE 1 shows a few design choices, in
which Ris a common reference source of mRNA. In
this table, we assume that the variance for log ratios
within a slide for a given gene is 0. Each table entry is
the average variance that is associated with the three
pairwise comparisons of interest: log(A/B), log(B/C)
and log(A/C). Note that, because all pairwise compar-
isons are of equal interest, the main scientific con-
straint in the experimental design is that they can all be
estimated. Depending on the physical constraints, dif-
ferent design choices will be made. For example, if an
investigator has unlimited amounts of reference mate-
rial, but only one sample of RNA from each of A, B
and C, then design I is the only possible choice out of
the three presented in TABLE 1. However, if the investi-
gator has two samples of RNA from the A, B and C
regions, then both designs II and III are feasible (but
design II will use twice as many slides). However, direct
comparison (design IIT) will provide more precise
comparisons between the regions and will reduce the

LOOP DESIGN

A design that involves mRNA
samples labelled 1,2, 3,...,n,
hybridized together in pairs

(1,2),(2,3), ..., (n=L,n), (m1). number of slides that is required.

With more than three sources of mRNA, the situa-
tion becomes more complex. The so-called reference
designs are analogous to designs I and II, and compare
each of the three or more sources of mRNA to a fixed
reference source. The analogue of design III — which
we call the ‘all-pairs design’— is unlikely to be feasible
or desirable for a large number of comparisons
because of the amount of mRNA that would be
required. For example, with six sources of mRNA,
there are 15 pairwise comparisons that require five
units of each target mRNA, for seven there are 21 that
require six units, and so on. Alternative classes of
designs that involve far fewer slides include the Loop
pesiGNs of Kerr and Churchill?, in which the graph is a
single loop that connects successive pairs of vertices.
However, the larger loop designs necessarily have long
paths between some pairs of vertices, and conse-
quently, some comparisons are much less precise than
others. Therefore, instead of regarding the problem of
choosing a design as a competition between classes of
designs (such as reference, loop and all-pairs), a more
productive approach is to ask which comparisons are
of greatest interest and which are of lesser interest, and
to seek a design that gives higher precision to the for-
mer and lower precision to the latter. We illustrate
these issues with a discussion of short time-course
experiments below.

Time-course experiments. In time-course experiments,
the design choices depend on the comparisons of inter-
est. Scientific constraints definitely matter, along with
physical ones (for example, if the number of hybridiza-
tions is restricted), and the best design can crucially
depend on the number of time points. TABLE 2 shows a
range of design choices. Design IT in TABLE 2 involves
hybridizations between consecutive time points,
whereas design I uses T1 (where T is treatment) as a
common reference. When the main focus of the experi-
ment is on the relative changes between T2, T3, T4 and
the initial time point T1, design I is the better choice.
However, if more subtle variations from one time point
to another are of greater interest, then design II will be
preferable. This is an illustration of how the compar-
isons of greatest interest determine the best design.

The choice becomes less obvious when four
hybridizations can be done. Design III illustrates a com-
mon reference approach, whereas design IV is similar to
using T1 as a common reference, with one extra direct
hybridization between T2 and T3. Design V is an exam-
ple of aloop design and design VI offers a mixture of
direct and indirect comparisons that lead to some com-
parisons being more precise than others. TABLE 2 also
shows the precision that is associated with each pairwise
comparison. The choice between designs V and VI
clearly depends on the comparisons of interest, as the
average variance of comparisons is the same. For exam-
ple, design V is preferable if comparisons between con-
secutive times are of more interest than those that are
two time units apart.

At present, most microarray experiments®* use refer-
ence designs, as they have the advantage of easy analysis
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Table 2 | Time-course experiments

Design choices
tversust+1
t/t, tjt, tjt,

Design | — T1 as common 1.00 2.00 2.00

reference

T—>T2 T3 T4
Design Il — direct: sequential 1.00 1.00 1.00

T T2 T3 T4

Design Il — common reference 200 200 2.00
™ T2 T4

\\_AR‘{TS/

Design IV — T1 as common 0.67 067 1.67
reference

—_—

T=——>T2—>T3 T4
Design V — direct: loop 0.75 075 0.75

—

T T2 T3 T4

Design VI — direct: mixed 1.00 0.75 1.00

—_———

T1 T2—>T3 T4

Comparisons Average

tversust+2 tversust+3 variance
t/t, tjt, t/t,
1.00 2.00 1.00 1.5
2.00 2.00 3.00 1.67
2.00 2.00 2.00 2.00
0.67 1.67 1.00 1.06
1.00 1.00 0.75 0.83
0.75 0.75 0.75 0.83

Variance of estimated effects for six different designs of time-course experiments. Designs | and Il involve only three slides and the

remaining designs involve four. o2 was set to 1 throughout.

and interpretation without the need for statistical tools.
However, because of frequent cross-disciplinary collabo-
rations in microarray data analysis, it is not unreasonable
to expect that statistical tools will become available for
combining slide data across many experiments'. The two
examples above illustrate some of the possible design
choices that need to be made, and the general considera-
tions that lead to a decision. We turn now to a more com-
plex kind of experiment, with its own design questions.

Multifactorial designs

The previous two examples are known in the statistics
literature as single-factor or one-way designs, in
which the factor (brain region in the first example and
time in the second example) has three or more levels
or values (regions A, B and C in the first example;
times T1, T2, and so on, in the second). A more com-
plex class of designs arises when two or more factors
are considered jointly, and each factor has two or
more levels. In a sense, these could be regarded as one-
way designs with four or more levels, but the special
nature of the levels singles out certain comparisons
for attention above others. These are called factorial
experiments, and are used to study differences that
not only are caused by single factors, but also result
from the joint effect of two or more factors. Any dis-
cussion of factorial experiments necessarily includes a
study of the idea of interaction. (Loosely speaking,
interaction refers to the way in which the joint effect
of two factors differs from what might be predicted on
the basis of their effects alone. Interaction is therefore
an idea that is, to a great extent, model dependent and
scale dependent).

Factorial experiments were introduced by R. A.
Fisher in 1926 (REE.8), and studied extensively by him
and his collaborator®. They arise frequently enough to
warrant separate discussion. Here, we focus on under-
standing the interactions and the relationship between
separately and jointly administered treatments (cf.
Glonek and Solomon').

2x 2 factorial experiments. Suppose that we have two
ways of treating a cell line — for example, by adding dif-
ferent growth factors. If we let C denote mRNA that is
derived from the untreated (control) cells,and A and B
denote mRNA that is derived from the cells that were
treated by the first and second method separately, we can
then use AB to denote cells that were treated with both
factors simultaneously. TABLE 3 shows a few examples of
factorial experiments. The impact of the first treatment
on gene expression can be assessed by studying the rela-
tive expression of a given gene in samples A and C in the
absence of the second treatment, and also by comparing
the relative expression of that gene in samples AB and B,
that is, in the presence of the second treatment. To mea-
sure the extent to which these relative expression levels
differ, we look at the difference of the log ratios log(A/C)
and log(AB/B). The difference between log(AB/B) and
log(A/C):log(AB/B) —1og(A/C) =1og(ABxC/AxB) is
called the interaction of the two treatments on this log
scale. We can think of the interaction as a measurement
of the extent to which the presence or absence of factor B
affects the differential expression of a gene in response to
the presence or absence of factor A. The terms log(A/C)
and log(B/C) are defined as the main effects of factors
A and B, respectively. Note that sometimes different
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Table 3 | 2 x 2 factorial experiments

Design choices
Indirect design

Design | 0.50

\I/

A balance of direct
and indirect design

Design Il 0.67

C—>A

|

B<«——AB

Design lll 0.50

C—A

<

B<«——AB

!

AB

Design IV N/A

DE=S= 0O

Main effect A Main effect B

Interaction A.B

0.50 1.50

0.43 0.67

0.50

1.00

0.30 0.67

Variance of estimated effects for four different designs of 2 x 2 factorial experiments. 02 was set to 1

throughout.

SUMMARY STATISTIC

A numerical summary of some
aspect of an experiment,
typically an estimate of a
parameter.

definitions (parameterizations) are used to describe these
concepts and, for ease of explanation and interpretation,
we have chosen the simplest definition (80X 5). Ultimately,
it does not matter which parameters are used, as long as
care is taken when the estimates are interpreted.

In the treated-cell-line experiments of the kind we
have discussed, we have four sources of mRNA: C, A, B
and AB. Let us suppose that our main scientific interest
is to identify genes for which the difference of the log
ratios log(AB/B) and log(A/C) is not small. We can do

Box 5 | Parameters for a 2 x 2 factorial experiment

a2 x 2 factorial experiment, let

respectively, and that the
interaction log(Cx AB/AxB)
is a.f3. (Note that this is not the
standard parameterization for
2 x 2 factorial experiments,
but here it is the most suitable
one.) Table 3 refers to the
estimation of the parameters
o, fand .3, which we
describe as the main effects for
the factors A and B, and the
interaction A.B.

As well as looking at the effects that are caused by single factors, factorial experiments also
provide information about the joint effects of two or more factors. To define parameters for

us imagine that C denotes control, A and B denote singly

treated cell samples, and AB denotes the doubly treated cell samples, as described in the
main text. We denote the expected log intensities for a generic gene in these four samples by
W u+a, u+ fand u+ o+ B+ a.f, respectively. It follows that the expected values of the log
ratios log(A/C),log(B/C),log(AB/B) and log(AB/A) are o, 5, @ + c.fand 3+ .3,

u =lo /C) n+o
E_¢ go(A/C) A

B =1og,(B/C) B+ a.p = logo(AB/A)

B o + o.fp = logo(AB/B) A
u+p

B
u+a+p+op

this in many ways, some of which are shown in TABLE 3.
Note that all designs in TABLE 3 involve six slides. Designs
ITand IV give the smallest variance for the interaction
term log(ABxC/AxB), whereas differential expression
owing to A is not even estimable in design IV. Also,
notice that design I is by far the worst for estimating the
interaction, but that it uses less mRNA (two units from
each source, compared with three in all of the others).
The design of choice here depends on the level of inter-
est in the main effects of A and B rather than in their
interactions, assuming that any constraints on the num-
ber of slides or amount of mRNA available are satisfied.
In general, design II (or its analogue with dye swaps
between C and A, and B and AB, rather than between C
and B, and A and AB) will probably be the design of
choice that offers good precision for all comparisons.
However, differential expression owing to one of A or B
will be estimated more precisely than that resulting
from C, as the designs are not symmetrical.

Variability and replication

Why should replicate slides be used in microarray
experiments? And how many replicates should be
used? Replicates reduce variability in suMMARY STATISTICS
and, importantly, the data obtained from replicate
slides can be analysed using formal statistical methods.
It is more difficult to say how many replicates should
be done, athough Lee et al.'® indicate that three repli-
cates are sufficient.

The cDNA microarray system is rather variable at the
individual gene level. Expression of a gene might vary
fourfold in one hybridization, but only 1.3-fold in a sec-
ond independent hybridization, and twofold in a third. If
we wish to determine which genes are differentially
expressed between two samples of mRNA, for example,
in the same tissue type from a knockout and from a
wild-type animal, and have some assurance that our
determinations are not false positives, then replication is
essential. In essence, replication allows averaging, and
averages are less variable than their component terms.

One common form of replication in cDNA microar-
ray experiments involves putting replicates of the same
spot (cDNA probe) on each slide'’. Data from replicate
spots can be extremely valuable for monitoring and
improving the overall quality of the experimental data,
but adjacent spots can never be full replicates for the fol-
lowing reasons. Nearly all aspects of the experiment
(printing, general hybridization and scanning condi-
tions) will be shared by spot replicates, and as a result,
any systematic effects of these conditions on the mea-
surements will also be shared. The consequent lack of
independence of the measurements greatly reduces their
value for broader statistical inference. Of course, sharing
of conditions also applies to a lesser extent to experi-
ments on different slides, but different hybridizations,
even of identically prepared material, usually lead to
rather different data, and it is these replicate hybridiza-
tions that are of real interest here. Note that, if duplicate
spots are to be used, it is advisable to have them well
spaced and not adjacent, as this would give a better
reflection of the variability across the slide.
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Figure 3 | Averaging replicates reduces variability. Plots of log ratios M = log,(KO/WT),
averaged across replicate slides, against overall intensity A = log,v(KO x WT), which is similarly
averaged, are shown. The green spots correspond to eight genes that were known to be
differentially expressed between the two mRNA sources (knockout (KO) and wild-type (WT) liver).
The example shown here is based on data from the Apo Al experiment in REE 5. The numbers of
replicate slides (n) shownarea|1,b|2,c|4andd|8.

Lack of replication greatly restricts our ability to
use formal statistical tests to decide whether a given
intensity log ratio is significantly different to zero. In
particular, replication is essential to estimate the vari-
ance of the log ratios across slides. Attempts to assess
the significance of log ratios using data from only a
single slide depend on unverifiable modelling
assumptions (see REF. 20 for further details) and, in
general, fail to take into account the most important
source of variation — between-slide variability. By
contrast, suitably defined, standard statistical meth-
ods, such as r-tests, are applicable to analysing data
from replicate slides, although some changes to these
methods need to be made?*?*'. When we replicate, we
usually have a random sample of different mRNA
from cell samples, and under these circumstances, we
can extrapolate from our sample to the population of
all such cell samples. In this sense, replication is inti-
mately connected with the statistical extrapolation
from sample to population.

Technical replicates. As explained above, and consistent
with statistical tradition?, replication is a highly desirable
feature of comparative microarray experiments. There
are several forms of replication, and we briefly review
them here. The differences lie in the degree to which the
data might be regarded as independent, and in the pop-
ulations that are represented by the experimental sam-
ples. Given that replicate hybridizations are almost
invariably carried out by the same person, using the

same equipment and protocols, and frequently at about
the same time, it is inevitable that replicate data will
share many features. Most of the differences listed below
concern the target mRNA samples.

Technical replicates between slides refers to replica-
tion in which the target mRNA is from the same pool,
that is, from the same extraction. We have observed that
there are characteristic, repeatable features of extrac-
tions and, therefore, conclude that technical replicates
generally involve a smaller degree of variation in mea-
surements than the biological replicates described
below. Consequently, they do not provide the indepen-
dence of data that gives the fullest benefits of averaging,
and shared systematic features of technical replicate
samples will remain even after averaging.

Biological replicates. The term ‘biological replicates’
usually refers to hybridizations that involve mRNA from
different extractions — for example, from different
samples of cells from a particular cell line or tissue. In
many cases, this is the most convenient form of genuine
replication. Provided the sample labelling is carried out
separately for mRNA from different extractions, this
approach will lead us as close to independent experi-
mental results as is feasible in this context. Therefore, we
strongly recommend biological replication as the prin-
cipal source of replicate slides.

The term can also mean that the target mRNA
comes from different individuals or different versions of
a cell line. This form of biological replication is different
in nature from the biological replication described
above, and typically involves a much greater degree of
variation in measurements. For example, experiments
with mice have to deal with the inevitability of the hor-
monal and immune systems of individual mice being in
different states or their tissues being in different states of
inflammation. Most of the variation might seem unnec-
essary, as it can make real expression differences harder
to discern, but from the perspective of the generalizabil-
ity of conclusions, for example, to an entire inbred
strain of mice, this might be the appropriate form of
replication for some experiments.

‘We should note that, even in this case, if a common
reference design is being used, logs of ratios in which the
numerators come from independent, biological repli-
cates, will still show some correlation because they share
some unique features (they share a batch of reference
mRNA as their denominator). This can be seen in FIG. 3,
which shows plots of log ratios log,(KO/WT) averaged
across replicate slides, against overall intensity log V(KO x
WT), similarly averaged. Each of the replicate slides
involves mRNA from a different experimental animal,
hybridized with the same reference mRNA?. The green
spots correspond to eight genes that are known to be dif-
ferentially expressed between the two mRNA sources
(knockout and wild-type liver tissue). As the sample size
(here, the number of mice) increases, the cloud of points
around the horizontal axis shrinks. This makes it easier to
distinguish real change and random variation about zero.
Note that, with #n = 1 replicate, the cloud extends beyond
+1 on the log base 2 scale, that is, twofold in either direc-
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POWER CALCULATION

A calculation that leads to the
probability that a null hypothesis
that is being tested will be
rejected in favour of the
alternative, under specified
assumptions that imply that the
alternative hypothesis is true.

MEDIAN

The middle value in a set of
numbers ordered in value from
smallest to largest. If there are an
even number of numbers, the
median is the average of the
middle two after ordering.

tion. By contrast, with # = 8 replicates, the cloud is largely
contained in the range +0.7 on the log scale, that is, ~1.6-
fold in either direction. If the eight replicate data sets had
been genuinely independent, which they are not in this
case (the reference RNA is shared across all eight mice),
then we would have expected a much greater reduction in
the size of the cloud. It would be reduced to +/-0.35 on
the log scale or a 1.3-fold change in either direction.

The type of replication to be used in a given experi-
ment affects the precision and the generalizability of the
experimental results. In general, an experimenter will
want to use biological replicates to obtain averages of
independent data and to validate generalizations of con-
clusions, and perhaps technical replicates to assist in
reducing the variability. Given that there are usually sev-
eral possible forms of technical and biological replication,
we need to be careful when deciding how much replica-
tion of a given kind is desirable, subject to experimental
and cost constraints. For example, if a conclusion that is
applicable to all mice of a certain inbred strain is sought,
experiments that involve many mice, preferably a ran-
dom sample of this mouse population, must be carried
out. Extrapolating to all mice of that strain from results
on a single mouse, even when several mRNA extractions
are used, has well-known dangers associated with it.

Power and sample-size determination
Having chosen a form of replication that is suited for
the experiment under consideration, the experimenter
needs to determine the sample size, that is, the number
of slides to use. In general, a POWER CALCULATION requires
that the experimenter states: the variance of individual
measurements; the magnitude of the effect to be
detected; the acceptable false-positive rate; and the
desired power of the calculation, that is, the probability
of detecting an effect of the specified (or greater) mag-
nitude. The question of sample size is difficult to answer
in the context of microarray experiments, as the vari-
ance of the relative expression levels across hybridiza-
tions varies greatly from gene to gene. Even if the experi-
menter knew these gene-specific variances in advance
(which they could not in any detail), they would usually
be unable to nominate in advance the gene expression
changes that are of interest. So, two vital components of
the standard power calculations are absent: the variance
o’ of the individual log ratio measurements and the
magnitude of the effects of interest for individual genes.
Experimenters might wonder how many hybridiza-
tions they need to do to have a 90% chance of detecting a
twofold differential expression. This question could be
answered provided we knew the variance o? for the dif-
ferentially expressed genes. One way to get over this
impasse is to specify a value of 0 (which is necessary for
power calculations) that is not too small, on the basis of
past experience with that experimental system, for exam-
ple, the MeDIAN OF upper quartile of the variances across
genes. Doing a power calculation with the upper quartile
variance, experimenters would be able to assert that their
number of replicates gives them a certain power for
detecting differential expression of greater than a stated
value, for all but the 25% most variable genes.

This discussion of power and sample size raises a
question that can be better addressed with an analysis
that examines the trade off of power against false-
positive rate. This is a standard statistical question, but
in the context of microarray experiments, in which
validation of results is routine, there is a special twist.
In situations where mRNA samples for the experi-
ments are scarce and the verification method is
straightforward and relatively cheap, the experimenter
might be willing to accept a higher false-positive rate
on the grounds that sorting out true from false posi-
tives is not so difficult. In such cases, the number of
replications needed can be reduced. A non-standard
approach to determining the number of microarrays
needed to ascertain differential expression is presented
in Zien et al.”? These authors base their analysis on a
model of the variability in (high-density short
oligonucleotide) array data; in particular, they do not
include gene-specific variances in expression.

Statistical design in microarray practice

To what extent have the principles we have described
been used in microarray practice? It has to be said that
unreplicated microarray experiments are still the most
common. In part, this is because researchers seem reluc-
tant to ‘waste’ a hybridization by replicating one that has
already been done, when they could do a new and dif-
ferent one. But perhaps the main reason for the lack of
replication is the wide use of clustering methods to
analyse the data>*? that do not seem to fall into the
standard framework of statistical inference. Many of
these experiments are unashamedly exploratory, and
therefore do not seek statistical support for their conclu-
sions. However, it should be pointed out that there is an
element of ‘effective replication’ in time-course or other
sets of similar experiments.

Several authors have replicated their comparisons:
Callow et al.>, Conklin et al?* and Pritchard et al.?, to
mention just a few. Factorial experiments were used by
Jin et al." and Boldrick et al.* The experiments of Jin
et al." include replication but have no common refer-
ence mRNA sample, whereas Boldrick et al.* do not
replicate their hybridizations but do include a common
reference sample. In another study, Hughes et al.' dupli-
cated every hybridization they carried out and, in addi-
tion, made use of an error model (not mentioned in this
review) (see supplementary material in REE 1 for further
information on this model). An optimistic assessment
might be that statistical design principles are trickling
into the microarray world.

Our distinction between expression comparisons
carried out within- and between-slide needs to be sup-
plemented by one of even greater magnitude, and hence
importance. In their study, Jin et al.'* took the bold step
of treating the signals from the two channels of their
cDNA experiment as two separate sources of data; they
did not convert to ratios or log ratios, but kept both of
the signals for their analysis. As a result they detected
two types of effect: those that are estimated within
hybridizations and that are therefore based on ratios
within hybridizations (of age, in this case), and others
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that are not based on ratios within hybridizations
(effects of sex and strain, in this case). In our view, this
approach can only be adopted after a very thorough
multi-slide normalization of all the single channels,
because there are many systematic non-additive spatial
and intensity-dependent hybridization biases that will
only disappear when ratios of single-channel readouts
are considered.

Setting aside the normalization issue, designing for
single-channel cDNA microarray experiments is anal-
ogous to designing for high-density short oligonu-
cleotide microarray or nylon membrane experiments
at the whole slide level. In this review, we have concen-
trated on the within-slides design. Combining the two
design types is beyond the scope of this review,
although we note that there is much experience and
some theory on design for two-stratum experiments in
the statistics literature?”*.

Conclusion

In our view, the main design issue with cDNA microarray
experiments is the determination of which mRNA sam-
ples should be hybridized together on the same slide,
bearing in mind the objectives of the experiment and the
constraints on reagents and materials. We have discussed
this question, here, in the context of several types of

experiment. The next most important question concerns
replication. Different types of replicates contribute to the
analysis in different ways, and we have attempted to
explain these differences and to make recommendations
for different types of experiments, emphasizing biological
replication. We do not believe that a straightforward ana-
logue of traditional statistical power analysis can be used
in the microarray context. We have explained why and
have outlined a weaker calculation. Finally, we briefly
addressed a design issue that is unique to cDNA microar-
ray experiments — the use of dye-swap experiments —
and briefly reviewed the extent to which the ideas pre-
sented here are evident in the microarray literature.

How can we expect this topic to evolve? It is
undoubtedly true that increasingly complex microarray
experiments are being carried out — for example, the
ones with many factors or those that combine the facto-
rial and the time-course experiments (as discussed
above). The analysis of such experiments is already chal-
lenging, but it will be even more difficult to provide
well-founded design recommendations for them. Ina
sense, the tools and techniques of statistical design must
continue to develop as more and more imaginative
experiments are devised by biologists, but they must
always be based on the sound principles of analysis of
these experiments.
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&) Online links

FURTHER INFORMATION

Terry Speed’s lab:
http://www.stat.berkeley.edu/users/terry/zarray/html/index.html
Access to this interactive links box is free online.
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