

UNIT 1

Concepts and Signaling Pathways in Developmental

Biology

Key Concepts in Developmental Biology

Animal development

Early development is generalizable

Each animal passes through similar stages of early development

What are the main steps in animal development ?

Early development is generalizable

Each animal passes through similar stages of early development

Embryogenesis

- fertilization
- cleavage
- gastrulation
- organogenesis

Developmental Biology

"the study of the **cellular and molecular mechanisms** which control the different stages of embryo development and the **differentiation of cells**, tissues and organs of the body"

...but also regeneration and aging

9

Original work by Mike Jones for Wikipedia (2006)

start@unito

Cell potency

Cell Potency

Repertoire of cell types a particular cell can give rise in all possible environments

Cell potency & fate

Cell Potency

11

Repertoire of cell types a particular cell can give rise in all possible environments

Cell Fate

The range of cell types a particular cell can give rise to during development

What is the main difference and the relationship between the two?

Cell potency & fate

Cell Potency

Repertoire of cell types a particular cell can give rise in all possible environments

Cell Fate

The range of cell types a particular cell can give rise to during development

The **potency of a cell** is an **intrinsic property** and is **greater than or equal** to its **fate** (fate=potency + environment)

Cell commitment

As cell fate becomes restricted following each decision in the developmental hierarchy, cells become **committed** to a certain fate or developmental pathway

Cell commitment in developing tissues

UNCOMMITTED

DIFFERENTIATED

Cell commitment in developing tissues

15

Specification - Determination

Cell Specification

UNCOMMITTED

COMMITTED

Cells are **specified** if they follow their fate even when placed in a **neutral environment** or **isolation** Start@Unito

Cell determination

17

Committed cells are **not determined** if they can change their fate depending on the environment

Committed cells are **determined** If they maintain their fate regardless of the environment

start@unito

Intrinsic versus Extrinsic factors

Intrinsic determinants

External Inductive signals

Inductive signals

The response of a cell to inductive signals can be:

1)Stereotyped

2)Different depending on the signal concentration

Morphogens

Soluble secreted molecules form a morphogen gradient

A morphogen can specify more than one cell type depending on its concentration

The response of receiving cells to the signal is dependent on their distance from the source of the signal

What are the factors influencing morphogen distribution ?

21

The French flag model

Cell differentiation and the epigenetic landscape model

Conrad Hal Waddington

....interaction between GENES and the ENVIRONMENT models the developmental pathways a cell can take during DIFFERENTIATION

Rodolfa, K.T., Inducing pluripotency, StemBook, ed. The Stem Cell Research Community, StemBook, 2008doi/10.3824/stembook.1.22.1

Cell differentiation, an irreversible process?

The reversal of cell differentiation

The Nobel Prize in Physiology or Medicine 2012 Sir John B. Gurdon and Shinya Yamanaka

Cloning in frog 1962

Principle of genome conservation

From nuclear transfer to nuclear reprogramming

Original work by Deryck Chan, courtesy to cameraman Sien Yi Tan (2012)

"for the discovery that mature cells can be reprogrammed to become pluripotent"

Original work by Rubenstein on flickr (2009)

iPSCs

Oct4 Sox2 Klf4 c-Myc

