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Feature Review
The mammalian genome contains on the order of a
million enhancer-like regions that are required to estab-
lish the identities and functions of specific cell types.
Here, we review recent studies in immune cells that have
provided insight into the mechanisms that selectively
activate certain enhancers in response to cell lineage and
environmental signals. We describe a working model
wherein distinct classes of transcription factors define
the repertoire of active enhancers in macrophages
through collaborative and hierarchical interactions,
and discuss important challenges to this model, specifi-
cally providing examples from T cells. We conclude by
discussing the use of natural genetic variation as a
powerful approach for decoding transcription factor
combinations that play dominant roles in establishing
the enhancer landscapes, and the potential that these
insights have for advancing our understanding of the
molecular causes of human disease.

Exploiting macrophages to understand enhancer
biology and enhancer biology to understand
macrophages
Macrophages (see Glossary) are phagocytic cells of the
innate immune system that reside in all tissues of the body
and play key roles in responding to infection and injury
through signaling downstream of pattern recognition recep-
tors [1–3]. In addition to these general roles that operate
throughout the body, each tissue-resident population of
macrophages performs specific effector functions that con-
tribute to the homeostasis of that tissue [2,4]. Some of the
diverse roles that macrophages have in vivo that are unique
to their tissue environments include neuronal synaptic
pruning by microglia in the brain [5], bone resorption and
remodeling by osteoclasts [6], control of insulin sensitivity
and adaptive thermogenesis in adipose tissue [7,8], and
surfactant recycling by lung alveolar macrophages [9]. Al-
though the diverse functions of macrophages are normally
adaptive, they can be co-opted to drive tissue pathology,
particularly in the setting of chronic inflammatory diseases
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and cancer. For example, functions of macrophages that are
important for pathogen recognition and initiation of inflam-
mation play key roles the development and clinical compli-
cations of atherosclerosis [10,11]. Conversely, functions of
macrophages that are important for wound repair contrib-
ute to tumor growth and metastasis [12]. Understanding the
mechanisms by which various macrophage populations
achieve their tissue-specific functions and determining
whether these functions can be modulated for therapeutic
purposes remain largely unmet goals.

Distinct macrophage phenotypic polarization states
have been characterized in vitro by studying responses
to various ligands that result in alternative gene expres-
sion programs [13]. Two extensively characterized in vitro
polarization programs are broadly categorized as classical-
ly activated/proinflammatory M1 macrophages or alter-
nately activated/anti-inflammatory M2 macrophages
[14,15]. Treatment of macrophages with lipopolysaccha-
ride (LPS), a component of Gram-negative bacteria, drives
M1 polarization through Toll-like receptor (TLR)4-depen-
dent activation of members of the nuclear factor (NF)-kB,
activator protein 1 (AP-1) and interferon (IFN) regulated
families of transcription factors (Figure 1) [16,17]. These
factors induce the expression of hundreds of genes, many of
which play key roles in innate immunity, inflammation,
and initiation of adaptive immune responses. In contrast,
treatment of macrophages with interleukin 4 (IL-4) drives
M2 polarization through activation of signal transducer
and activator of transcription 6 (STAT6), which induces a
program of gene expression linked to immunity directed
against parasitic infection (Figure 1) [14,18].

Recent studies indicate that tissue macrophages ex-
hibit distinct gene expression programs that underlie
their tissue-specific functions [19–21]. Furthermore, tis-
sue environment has been shown to be a significant
determinant of the gene expression patterns and the
underlying transcriptional regulatory elements that
are characteristic of a particular macrophage subtype
[20,21]. The specific signals that dictate tissue-specific
programs of macrophage gene expression are for the
most part unknown. Some recently identified examples
include transforming growth factor (TGFb), which is
essential for maintenance of microglia phenotypes [22]
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Glossary

C/EBP: a family of basic-leucine zipper (bZIP) transcription factors that bind

DNA and form homo-and heterodimer interactions. C/EBPa and C/EBPb are

LDTFs in macrophages.

ChIP-Seq: chromatin immunoprecipitation followed by high-throughput se-

quencing. This assay identifies the genomic location and frequency with which

a particular protein or histone modification associates with DNA.

Chromatin: DNA that is wrapped around nucleosomes. Chromatin compaction

is dynamic with spatiotemporal patterns dependent on the cell cycle,

developmental state, and chromosomal location. Chromatin provides a

regulatory barrier between DNA and DNA-interacting proteins.

cis-eQTL: An eQTL where the SNP and the gene locus for the associated

transcript are close in linear genomic space (usually <1 megabase). cis-eQTLs

typically quantify effects of genetic variation in the coding sequence, promoter

or enhancer for the given gene.

De novo enhancer/latent enhancer: an enhancer that transitions from a closed

chromatin state to an open and active state by interactions involving SDTFs

and LDTFs.

DNase-Seq: high-throughput DNA sequencing of accessible, often regulatory,

regions of chromatin that result from chromatin digestion with DNase I.

E2A: encoded by the TCF3 locus, binds to E-box sequences in DNA and forms

homo- and heterodimers with other transcription factors. E2A is a critical LDTF

for B cell development.

EBF: a transcription factor expressed exclusively in the B cell lineage and

directs B cell fate.

Enhancer: a region of DNA that can amplify RNA Pol II transcription at

associated promoters. Enhancers are largely cell-type-specific and are bound

by sequence-specific transcription factors.

Epigenetic marks: includes methylation of DNA as well as modifications such

as acetylation, methylation, phosphorylation, and ubiquitinylation of amino

acids on histone tails. Certain patterns of these epigenetic marks provide

information about the function of the associated DNA.

eQTL: expression quantitative trait locus, which results when the abundance of

a transcript associates to the genotypes at a given genetic variant (usually at

SNPs). eQTL studies require measuring transcripts across many individuals

and can be classified as cis- or trans- (also in Glossary).

GATA6: a member of the GATA family of zinc finger transcription factors that is

induced by retinoic acid signaling in LPMs.

GWAS: genome wide association study. In most common form, uses specific

SNPs (alleles) to link genomic loci to disease risk using cohorts of individuals

with disease and healthy controls.

H3K27ac: acetylation of the lysine at position 27 of the histone tail of histone

H3. H3K27ac marks active enhancers and promoters.

H3K4me1: monomethylation of the lysine at position 4 of the histone tail of

histone H3. H3K4me1 marks primed and active enhancers.

H3K4me2: dimethylation of the lysine at position 4 of the histone tail of histone

H3. H3K4me2 marks primed and active enhancers and promoters.

H3K4me3: trimethylation of the lysine at position 4 of the histone tail of histone

H3. H3K4me3 marks promoters.

Histone tails: peptides that extend from histones that can be modified with

epigenetic marks.

LDTF: lineage-determining transcription factor: a transcription factor required

for the development of a specific cell type. LDTFs typically have the ability to

select enhancers in concert with other LDTFs or collaborative factors. Examples

include PU.1, C/EBPs in macrophages; E2A in B cells.

LPM: large peritoneal macrophage – a macrophage population resident in the

peritoneal cavity that is dependent on retinoic acid.

LXRs: SDTF nuclear receptors that translocate to the nucleus and bind DNA in

response to endogenous oxysterols to regulate cholesterol efflux and

biosynthetic genes.

Macrophage: innate immune phagocytic cells of myeloid origin that reside in

every organ of the body and perform diverse functions in health and disease.

MG: microglia – major resident macrophage population of the brain that is

dependent on TGFb.

NF-kB: SDTF complex that binds DNA upon TLR signaling to activate

inflammatory genes in macrophages. During B and T cell differentiation, NF-

kB has an important function more in line with an LDTF role.

Nucleosome: unit of chromatin that is composed of two copies each of histone

proteins H2A, H2B, H3, and H4; 147 base pairs of DNA wrap around one

nucleosome.

Promoter: region of DNA that contains binding sequences necessary to

assemble the minimal transcriptional machinery and ultimately load RNA Pol II

at gene start sites.

PU.1: encoded by the SPI1 human locus (Sfpi1 in Mus musculus), is a member

of the ETS family of sequence-specific transcription factors that is a LDTF

critical for macrophage and B cell differentiation.

RNA-Seq: high-throughput sequencing of RNA that is used to measure gene

expression genome-wide.

SDTF: signal-dependent transcription factor: transcription factor that becomes

active in response to an internal or external signal. Examples: NF-kB and LXRs.

SNP: single nucleotide polymorphism.

Super-enhancer: clusters of enhancers that are densely occupied by master

regulators and the Mediator co-regulator complex, which frequently occur at

genes that define the identity of a given cell. Super-enhancers can alternatively

be defined by tracking epigenetic marks indicative of enhancer activity, such as

H3K27ac.

trans-eQTL: An eQTL where the SNP and the gene locus for the associated

transcript are far in linear genomic space (usually >1 megabase). trans-eQTLs

typically quantify effects of the genetic variant on the associated gene through

an intermediate product, such as by altered expression of a transcription factor

or signaling molecule that perpetuate expression differences on the target

gene.
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(Figure 1); retinoic acid, which is required for develop-
ment/maintenance of large peritoneal macrophages [23]
(Figure 1); IL-4, which is required for maintenance of
homeostatic beige adipose tissue macrophages (Figure 1)
[8]; and receptor activator of nuclear factor kappa-B
ligand (RANKL), which is required for the development
of osteoclasts [24]. Importantly, while these molecules
are established to be important for the phenotypic char-
acteristics of particular macrophage subsets in vivo, they
represent only a part of the total spectrum of signals
sensed by the macrophage within each tissue environ-
ment (Figure 1). Furthermore, as discussed below, sig-
nal-dependent transcription factors such as NF-kB
primarily regulate gene expression by acting on pre-
existing enhancers, which have recently been shown to
differ among tissue macrophage subsets [20,21]. The
implication of these findings is that the quantitative
and qualitative responses of different tissue macro-
phages to the same signal, such as LPS, are likely to
vary in a tissue-specific manner. Therefore, while in vitro
studies of M1 and M2 macrophage activation provide
powerful models to investigate mechanisms of signal-
dependent gene expression, studies of the enhancer
and promoter landscapes of macrophages in vivo provide
important insights into how complex environmental sig-
nals regulate their development and function in distinct
tissues.

In this review, we briefly introduce the current state of
enhancer biology along with advances in the field of mac-
rophage gene regulation. We begin with the characteris-
tics of enhancers and underscore their dynamic behavior
in cell lineage specification and environmental signaling
contexts. We describe a working model in which distinct
classes of sequence-specific transcription factors, referred
to as lineage-determining and signal-dependent tran-
scription factors (LDTFs and SDTFs), define the reper-
toire of active enhancers in macrophages through
collaborative and hierarchical interactions. We note some
important challenges to this model, specifically providing
examples from T cells. Next, we highlight how natural
genetic variation can be leveraged as a powerful tool to
identify sets of collaborating transcription factors that
establish enhancers in different cells. To this end, studies
utilizing genetic variation in tissue-resident subsets of
macrophages are discussed to exemplify the importance
of tissue environment on enhancer selection. We
conclude with a discussion of how these findings, which
combine genetic variation and enhancer function, are
highly informative for interrogating the molecular causes
of human disease.
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Figure 1. Different signaling pathways in macrophages lead to diverse phenotypic

outcomes. Left panels: Macrophages can be polarized toward M1 or M2

phenotypes in vitro by exposure to LPS or IL-4, respectively. Right panels: the

brain and peritoneal cavity contain high levels of TGFb or RA, respectively, that are

important determinants of the distinct phenotypes of microglia and resident

peritoneal macrophages. However, these are only a subset of what are as yet

mostly unknown signals that must be integrated to establish tissue-specific gene

expression signatures. Abbreviations: AP-1, activator protein-1; GATA, GATA-

binding protein; IL, interleukin; LPS, lipopolysaccharide; NF-kB, nuclear factor-kB;

RA, retinoic acid; RAR, retinoic acid receptor; SMAD, mothers against

decapentaplegic homolog; STAT, signal transducer and activator of

transcription; TGF, transforming growth factor.
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The million enhancer question
All cells in the body contain essentially the same genome.
The mechanisms that govern how different cell types
uniquely interpret the same set of instructions, and there-
by achieve specialized functional roles, are incompletely
understood. In recent years, it has become clear that on the
genome scale, DNA sequences called enhancers, more so
than promoters, orchestrate the majority of cell-type-spe-
cific patterns of gene expression [25–29]. Although the
distinction between enhancers and promoters are becom-
ing increasingly blurred [30], as discussed further below,
Box 1 outlines key properties of each.

By cataloging enhancers using epigenetic chromatin
marks across hundreds of tissues, cell types, and activation
Box 1. Characteristics of promoters and enhancers

Promoters Enhancers

� Sites of mRNA transcription initiation

� Necessary for gene transcription

� Largely not cell-type-specific

� H3K4me3 > H3K4me1

� One per mRNA isoform

� Sites of enhance

� Augment transc

� Selected by coll

� Largely cell-type

� �1 million in hu

� H3K4me1/2 > H

� Can be many pe
states, the total number of enhancers in the human ge-
nome is estimated to be of the order of 1 million
[27–29]. From this vast palette, a given cell type typically
selects 30 000–50 000 enhancer-like regions that deter-
mine its identity and functional potential [25–29]. A fun-
damental question is therefore to elucidate the molecular
determinants regulating enhancer activity.

General features of enhancers
Enhancers are discrete regions of the genome that function
to increase transcription from nearby promoters [31]
(reviewed in [32,33]). In the pre-genomics era, enhancers
were first identified as stretches of DNA that, when
inserted up- or downstream of transgenes, were able to
augment gene expression irrespective of orientation [31].

In eukaryotes, DNA is wrapped around nucleosomes
into chromatin, which serves as a regulatory barrier to
transcription factors. Enhancer elements are bound by
sequence-specific transcription factors that are able to
compete with nucleosomes to generate a nucleosome-free
region of DNA. These binding events can be measured by
assays of increased DNA accessibility such as DNase I
hypersensitivity or the assay for transposase-accessible
chromatin, ATAC-seq [34,35]. It is important to note that
not all transcription factors are able to recognize their
DNA-binding motifs in the context of compact, or closed
chromatin. The post-genomics era has led to the observa-
tion that enhancers exhibit distinctive patterns of modifi-
cations on adjacent histone tails, and that chromatin
immunoprecipitation sequencing (ChIP-seq) is an effective
technique to identify these elements [36]. Rigorous proof
that a specific genomic region performs enhancer function
requires evidence that mutation or deletion results in
reduced activity of the associated gene promoter. Enhancer
function can be tested in vivo with transgenic mice [37] or
by other, massively parallel reporter assays [38–41]. How-
ever, it is important to keep in mind that the vast majority
of enhancer elements discovered by genomics methods
remain annotated based on indicative chromatin features
rather than on in vivo mutation.

In a given cell, enhancer elements can be broadly cate-
gorized as inactive, primed, poised, or active [25,36,42]. An
inactive enhancer is defined as DNA that is either seques-
tered as heterochromatin, is actively repressed by DNA
methylation, or generally lacks the marks of an alternate
enhancer state. A primed enhancer is defined by mono- or
dimethyl modifications on histone H3 lysine 4 (H3K4me1/
2) [43] but lacks additional active marks (see below).
Particularly during early embryogenesis, poised enhancers
can additionally be marked with trimethylation of histone
r RNA transcription initiation

ription from target mRNA promoters

aborative interactions among sequence-specific transcription factors

-specific

man genome

3K4me3

r mRNA target
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H3 on lysine 27 (H3K27me3), which is a marker of active
repression and is mutually exclusive with acetylation on
the same residue [44]. Finally, active enhancers generally
exhibit acetylation of histone H3 lysine 27 (H3K27ac)
[44,45]. Interestingly, active enhancers are also actively
transcribed by RNA polymerase II (Pol II), giving rise to
enhancer RNA, or eRNA [28,46–48]. Some studies have
demonstrated that chromatin looping is facilitated by
eRNAs [49–51]. Consistent withthis, changes in eRNAlevels
correlate with changes in target gene expression [51–55],
making eRNA an accurate marker of enhancer activity.

Enhancer selection by LDTFs
Enhancer selection is defined here as the process by which
an enhancer element in the genome is converted from an
inactive to a primed, poised, or active state. Important
classes of transcription factors, called pioneer transcrip-
tion factors or LDTFs, are able to initiate enhancer selec-
tion by competing with nucleosomes to bind their DNA
recognition motifs and establish a nucleosome-free region.
This process is accompanied by concurrent or subsequent
recruitment of chromatin-modifying enzymes that read,
write, and erase histone marks [56,57].

Studies of macrophages and B cells illustrate enhancer
selection by collaborative interactions among LDTFs
[58]. Differentiation from the common precursor, the he-
matopoietic stem cell, to either the lymphoid lineage, and
mature B cells, or the myeloid lineage, and macrophages
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requires expression of the ETS transcription factor origi-
nally named spleen focus forming virus (SFFV) proviral
integration oncogene, or PU.1 [59,60] (Figure 2A). Despite
a common requirement for PU.1, roughly half of PU.1
enhancer binding is cell-type-specific between B cells
and macrophages [58,61]. Cell-type-specific PU.1 binding
is explained by the local distribution of DNA motifs and the
expression of additional LDTFs that collaborate with PU.1
to select enhancers (Figure 2). Specifically, DNA sequence
motifs recognized by B cell lineage transcription factors
E2-alpha (E2A), early B cell factor 1 (EBF1), NF-kB and
octamer-binding transcription factor 2 (OCT2) are
enriched near (<100 base pairs) the B cell-specific PU.1-
bound enhancer cistromes [58]. Conversely, these regions
are depleted of macrophage lineage factor recognition
motifs. In contrast, in the macrophage, PU.1 colocalizes
with macrophage lineage-determining factors CCAAT/en-
hancer binding protein alpha and beta (C/EBPa/b) or
activating protein 1 (AP-1) (Figure 2B).

Importantly, gain and loss of function experiments in-
dicated that the binding of PU.1 and alternate lineage-
determining factors is mutually dependent, a property that
we refer to as collaborative binding. For example, binding
of C/EBP factors to many of their genomic locations in
macrophages was dependent on PU.1, while many PU.1
binding sites in B cells were dependent on E2A [58]. The
distance distribution between PU.1 and the other DNA
motifs suggest that the transcription factors compete with
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Figure 3. Chromatin transitions to active enhancers involve interactions between

cell lineage-determining transcription factors and signal-dependent factors. (A)

Enhancers primed by lineage-determining factors frequently require signal-

dependent transcription factor binding to gain H3K27ac and become active. (B)

Active enhancers can also be selected by interactions between signal-dependent

factors and lineage-determining factors. Abbreviaions: C/EBP, CCAAT/enhancer

binding protein; NF-kB, nuclear factor-kB; PU.1, transcription factor originally

named spleen focus forming virus (SFFV) proviral integration oncogene.
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nucleosomes to bind DNA independent of direct protein–
protein interactions between the lineage transcription
factors [20,58,62] (Figure 2B). While protein–protein inter-
actions between such factors likely augment enhancer
selection in some situations, the ability to select enhancers
independent of spacing requirements allows for evolution
to act on many combinations of different sets of transcrip-
tion factors and DNA motif configurations. Consistent with
this flexibility, the precise genomic location of cell-specific
enhancers relative to target genes are largely not con-
served between mice and humans [63]. Nonetheless, the
cell-type-specific combinations of LDTF motifs, and corre-
sponding binding, that establish functional transcriptional
networks do appear to be conserved between species
[64]. This suggests that while the units of information
have become shuffled since mice and humans diverged,
the meaningful combinations of transcription factors that
drive specific functions have largely remained the same.
The functional evidence for this flexibility is exemplified by
the correct expression of transgenes between species. For
example, when the human globin locus is inserted in mice,
it is expressed with the same fetal-to-adult switch as it is in
humans [65,66].

Recent studies indicate that all cells contain 300–500
regions of the genome that are characterized by a particu-
larly high density of features of active enhancers, referred
to as super-enhancers or stretch enhancers [67–70]. Al-
though the majority of these regions remain to be func-
tionally validated, they can most likely be considered
analogous to locus control regions (LCRs) [71], which were
initially discovered as crucial regions controlling globin
gene expression [72–74]. Notably, each cell type contains a
different repertoire of super-/stretch enhancers that colo-
calize with genes that are particularly important for the
identity and function of that cell type. For example, super-/
stretch enhancers are typically associated with genes
encoding LDTFs, key receptors, and proteins with major
cell-specific functions. Furthermore, super-/stretch enhan-
cers are occupied by combinations of lineage-determining
factors, which suggests a mechanism for reinforcement of
their own expression. Thus, knowledge of a super-/stretch
enhancer repertoire of a cell can provide insights into the
identities of genes that the cell has prioritized for expres-
sion. Interestingly, many of the super-/stretch enhancers
identified in large peritoneal macrophages are environ-
ment-dependent [20].

Chromatin dynamics
Chromatin dynamics in hematopoietic development has
proven to be a powerful system to study enhancer state
transitions during lineage specification [21,61,75]. Hema-
topoiesis initiates with the self-renewing multipotent he-
matopoietic stem cell (HSC) that differentiates into either
the common lymphoid progenitor (CLP) or common mye-
loid progenitor (CMP) [76]. CMPs further differentiate into
lineage-committed progenitors called megakaryocyte–ery-
throid progenitors (MEPs) or granulocyte–macrophage
progenitors (GMPs). From CLPs, MEPs, and GMPs arise
all terminally differentiated cell types in the blood, includ-
ing erythrocytes, monocytes, macrophages, dendritic cells,
B cells, T cells, and natural killer (NK) cells.
For the �50 000 enhancers identified using histone
modifications across all stages of hematopoiesis, 90% chan-
ged enhancer state during differentiation [61]. For these
dynamic enhancers, 60% transitioned from being primed
in the HSC (H3K4me1-positive) to inactive (H3K4me1-
negative) in subsequent lineages that failed to maintain
the primed status. For example, the Gata2 locus is primed
in HSCs, and remains so in MEPs, but is lost in B and T
cells. The reciprocal 40% of dynamic enhancers transi-
tioned from an inactive state in the HSC to a primed or
active state in subsequent stages. Examples of these de
novo enhancers include the apparent priming at loci for
myeloid genes IL-1b, CD14 and S100a8, B cell gene loci
Ebf1 and Cr2, and T cell gene loci Bcl11b and
CD3g. Notably, the loci for genes that are ultimately
expressed in lineage-specific patterns were found to be
primed with H3K4me1 at developmental stages prior to
exhibiting H3K27ac or RNA expression. In fact, 32% of
activated enhancers (H3K27ac-positive) in terminally dif-
ferentiated cells were primed at a previous stage by
H3K4me1 alone. Results of other studies utilizing different
model systems have come to the same conclusion that the
genetic loci of lineage-specific genes are often primed prior
to transcriptional activation [77–82].

Studies in the erythroid lineage of hematopoiesis have
shown that Gata2 serves as a multipotency factor and
binds important regulatory sequences in the erythroid
progenitor, such as near the Gata2 and globin genes
[83–85]. Upon erythrocyte commitment, Gata2 is ex-
changed for Gata1, with coincident changes in chromatin
modifications and gene expression patterns. These stud-
ies highlight another important mechanism of chromatin
priming whereby two members of the same transcription
factor family are exchanged to fine-tune chromatin
state.
511
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LDTFs direct signal responsiveness
Enhancer selection by LDTFs results in primed enhancers,
but may not result in active enhancers (as measured by
acetylation on histone H3 tails at lysine 27, or H3K27ac
[45] and enhancer transcription [46,47]).

The transition to an active enhancer state can either be
initiated from a primed state, whereby lineage factors have
already established a nucleosome-free region, or from an
inactive or closed state [32,61,86] (Figure 3). Both mecha-
nisms of enhancer activation involve collaborative inter-
actions between LDTFs and SDTFs. Examples illustrating
these mechanisms are discussed here for two transcription
factors important in macrophage biology: liver X receptor
(LXR) and NF-kB.

LXR is a nuclear receptor and sequence-specific tran-
scription factor that becomes available to bind DNA upon
changes in cellular cholesterol levels in diverse cell types
including macrophages [87]. NF-kB, like LXR, is also
activated in a variety of cell types, including macrophages.
NF-kB is usually sequestered in the cytoplasm, but upon
signaling downstream of pattern recognition receptors
(e.g., TLR4 ligation by LPS), NF-kB is free to enter the
nucleus and find its recognition motif [88]. In macrophages,
a large fraction of LXR binding is dependent on enhancer
priming by PU.1, whereas PU.1 binding is not altered by
deletion of LXRs [58]. These studies established a hierar-
chical relationship between PU.1 and LXR. A similar
picture was observed for NF-kB, in which �90% of
TLR4-induced NF-kB binding events occurred at primed
enhancers [52,89–91] (Figure 3A). Notably, a small frac-
tion of NF-kB binding in macrophages was observed at
sites of previously closed chromatin and binding at these
loci occurred in collaboration with macrophage LDTFs
PU.1 and AP-1 [52,90] (Figure 3B). Similar observations
have been made for other SDTFs [90]. The transition from
a closed to an active state at these enhancers, called de
novo or latent enhancers, plays a role in sustained activa-
tion of NF-kB target genes. At de novo enhancers, NF-kB
exhibits properties of both an LDTF and SDTF, in that it is
required for the initial process of enhancer selection as a
collaborative binding partner with PU.1 and/or C/EBPs,
and this activity is signal-dependent. Latent enhancers are
likely to provide mechanistic insights into the substantial
remodeling of enhancer landscapes that occurs during
developmental transitions, exemplified by intermediates
in hematopoiesis [61].

Similar observations have been made in other cell types
[58,92–98]. For example, in erythroid cells, the lineage-
determining GATA1 transcription factor directs binding of
the respective Wnt and bone morphogenetic protein
(BMP), signal-dependent factors T Cell-Specific, HMG-
Box factor 7-like2 (TCF7L2) and mothers against decapen-
taplegic homolog factors (SMADs) [99]. In this system,
ectopic expression of the myeloid lineage factor C/EBPa

redirects TCF7L2 and SMAD to occupy myeloid enhancers.
Given that many SDTFs, such as nuclear receptors, NF-
kB, TCFs and SMADs, are induced across many cell types
by common signaling pathways, cell-type-specific enhancer
priming by lineage factors provides a mechanistic expla-
nation for how different cells integrate the same signal to
output different patterns of gene response.
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While the aforementioned studies, primarily from
macrophages, suggest a straightforward definition of tran-
scription factors as LDTFs or SDTFs, in T cells the picture
seems to be less clear cut. For example, the transcription
factors forkhead box (Fox)p3, RAR-related orphan receptor
gamma (RORgt), and T Cell-specific T-Box transcription
factor (Tbet) are indispensible for specialized subsets of T
cells, and are thus accepted as master regulators of T
regulatory (Treg), T helper (Th)17, and Th1 cells, respec-
tively [100–103]. Nonetheless, these factors do not open up
chromatin [95,98,104]. For example, Foxp3 binding in Treg
cells occurs at enhancers that are already accessible upon T
cell receptor activation prior to Foxp3 expression [95]. Sim-
ilarly, in Th17 cells, RORgt binds to preformed regulatory
elements that are pioneered by a cooperative complex
involving interferron regulatory factor 4 (Irf4) and basic
leucine ATF-like transcription factor (Batf) [104,105]. In
this setting, RORgt functions to modulate the expression of
a small set of lineage-specific genes. With respect to SDTF
function in T cells, the signal-dependent binding of STAT
proteins to enhancers in Th1 and Th2 cells was found to
determine subset-specific enhancer activation. Enhancer
activation specific to Th1 cells as measured by co-activator
(p300) recruitment, however, was predominately indepen-
dent of the Th1 master regulator Tbet [98].

Taken together, these studies in T cells challenge the
working definitions of LDTFs and SDTFs, and what we
mean by cell ‘fate’ and cell ‘state’. Because T cell subsets
largely share the same set of enhancers, but adopt distinct
functional roles based on responses to alternative signals
that activate factors such as Foxp3 and RORgt, they could
be considered analogous to M1 and M2 macrophages,
which are generally considered to represent changes in
cell state rather than fate. In this view, Foxp3, RORgt and
Tbet would not be defined as LDTFs analogous to PU.1 and
C/EBPs, as they do not pioneer chromatin accessibility to
enable SDTF binding and function. However, if distinct cell
lineages are defined on the basis of distinct functions, then
NF-kB, STAT6, Foxp3, RORgt, and Tbet would all meet the
criteria of being LDTFs.

Testing enhancer selection models using natural
genetic variation
A collaborative and hierarchical model for selection and
activation of cell-specific enhancers provides a framework
for understanding how genetic variation perturbs enhanc-
er function and target gene expression with cell specificity.
The concept that enhancers are major determinants of cell-
specific gene expression is central to the interpretation of
certain types of noncoding variants associated with disease
risk. Conversely, natural genetic variation can be used as a
genome-wide ‘mutagenesis screen’ that enables testing
specific hypothesis related to how enhancers are selected
and activated. This strategy, applied to C57BL/6J and
BALB/cJ mouse macrophages, illuminated several princi-
ples of cis-regulatory elements [89]. At the basic level, this
approach confirmed on the genome-wide scale that genetic
variation that mutates LDTF motifs reduces binding of the
respective transcription factor relative to the loci with
wild-type alleles of the motifs. The effect size of motif
mutations was dependent on the position within a given
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motif. Comparison of genome-wide mutation with and
without consequence enabled the empirical definition of
functional binding motifs for PU.1 and C/EBPa and fur-
thermore identified the core nucleotides most consequen-
tial to binding. Notably, when analyzing the surrounding
sequence of mutated motifs, the presence of an additional
motif within �20 base pairs buffered the effect of muta-
tions on binding, thereby highlighting the importance of
local sequence context.

Consistent with the collaborative model of enhancer
selection by sets of LDTFs, motif mutations that directly
reduce binding of the respective factor also significantly
reduce binding of the collaborating factor, even if its
motif is not mutated [89]. Interestingly, upon TLR4
ligation and signal-dependent  activation of NF-kB, motif
mutations in lineage factor motifs were three times as
likely to reduce NF-kB binding compared to mutations in
the kB motif itself. These findings are consistent with
individual-specific binding of NF-kB in human lympho-
blastoid cell lines [106,107]. Thus, natural genetic vari-
ation can be used to validate the importance of specific
transcription factor combinations predicted by genomic
studies.
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Using natural genetic variation to discover regulatory
networks
Macrophages are important effector cells that reside in
every tissue of the body [4]. Their diverse functions in
different tissue environments as well as their essential
roles in health and disease make them an important
experimental system to study chromatin priming, signal
integration, and cooperative interactions at enhancers. To
this end, transcriptomes and primed and active enhancers
were compared between macrophages resident in diverse
tissues in mice [19–21]. Different macrophage populations
exhibited both a common program of core macrophage gene
expression, as well as highly divergent patterns of gene
expression that were specific to different tissue environ-
ments. In parallel, each population of tissue macrophages
exhibited both common and distinct sets of active enhan-
cers (Figure 4A). Intriguingly, experiments in which spe-
cific populations of tissue macrophages were either placed
in culture or were transplanted to another anatomic loca-
tion demonstrated that marked changes occurred in both
transcriptomes and enhancer landscapes [21]. These
results indicate that macrophage phenotypes are under
constant environmental regulation and that local signals
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specify the active enhancer repertoire that controls con-
text-dependent gene expression.

Motif enrichment analysis for cell-type-specific enhan-
cers suggested distinct sets of transcription factors that
bind to each macrophage enhancer subset. This approach,
however, does not establish that the implicated factors
participate in enhancer selection and/or cooperative bind-
ing. Enhancers of all macrophage subsets are highly
enriched for the motif to which PU.1 binds, consistent with
a requirement for PU.1 for the development of all tissue
macrophages [2]. The observation that mutations in bind-
ing sites for C/EBP or AP-1 transcription factors could
result in loss of PU.1 binding without mutations in the
PU.1 binding site itself [89] suggested that genetic varia-
tion between diverse inbred mouse strains could be used to
discover collaborative interactions between PU.1 and un-
known lineage-determining factors for each macrophage
type (Figure 4B). Specifically, loss of PU.1 binding at a
particular genomic location in one strain compared to
another, without a mutation in the PU.1 recognition motif
itself, could occur because of a mutation in the recognition
motif for a collaborative transcription factor. Thus, char-
acterization of the frequencies of mutations in all potential
transcription factor recognition motifs in the vicinity of
strain-similar versus strain-specific PU.1 binding could
provide the basis for identifying collaborative factors im-
portant for PU.1 binding.

This approach was taken by performing ChIP-Seq for
PU.1 in large peritoneal macrophages (LPMs) and micro-
glia (MG) from three genetically diverse mouse strains
(C57BL/6J, NOD/ShiLtJ, and SPRET/EiJ) that provide
>40 million single nucleotide variants [20]. A sufficiently
large number of strain-specific PU.1 binding sites was
observed to allow the identification of dozens of motifs
predicted to bind transcription factors that collaborate
with PU.1 either in both LPMs and MG or specifically in
one macrophage type (Figure 4). This approach yielded
both known and unknown transcription factor candidates.
For example, a GATA motif was selectively recovered in
LPMs, which is consistent with the recently identified role
of GATA6 in survival and proliferation of peritoneal macro-
phages downstream of retinoic acid signaling
[19,23,108]. In line with its important function in LPMs,
the Gata6 locus is associated with a super-enhancer in
these cells, which is typical for cell-fate-determining genes
[69]. Conversely, SMAD motif mutations affected PU.1
specifically in MG, consistent with an essential role of
TGFb signaling in specifying MG phenotypes [22,109].

Remarkably, many of the putative collaborative tran-
scription factors for PU.1 identified in LPMs were signifi-
cantly downregulated following transfer of LPMs to a
tissue culture environment, in concert with loss of a large
fraction of LPM-specific enhancers. Downregulation of a
subset of the collaborative factors could be prevented by
treatment with retinoic acid, which was associated with
maintenance of a corresponding subset of LPM-specific
enhancers [20]. These results are consistent with the
recent discovery of retinoic acid as an important peritoneal
cavity-specific environmental factor [23].

The use of genetic variation to identify motifs and
corresponding transcription factors associated with both
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common and subset-specific binding sites for PU.1 in LPMs
and MG suggests a general model for the establishment of
subset-specific enhancers and gene expression that builds
upon the collaborative/hierarchical model initially de-
scribed for macrophages and B cells. PU.1 and collabora-
tive transcription factors that are common to many or all
macrophage subsets prime a common set of enhancers that
have the potential to respond to diverse internal and
external signals. These enhancers become active in a
context-dependent manner to drive downstream gene ex-
pression. For example, a common set of enhancers is
primed to respond to retinoic acid signaling via retinoic
acid receptors (Figure 5). However, these enhancers only
become active in environments such as the peritoneal
cavity, in which retinoic acid is present. Activation of these
enhancers in LPMs leads to expression of retinoic acid
target genes, which include transcription factors such as
GATA6 that can collaborate with PU.1 to select a LPM-
specific set of enhancers. An alternative set of common
enhancers is primed to respond to TGFb, but this only
occurs in tissue environments that are characterized by
high levels of TGFb, such as the brain.

Implications for human disease
Recent advances in the field of gene regulation on the
genome-wide scale, such as emergent properties of enhanc-
er selection and activation by different classes of transcrip-
tion factors, have valuable applications in the field of
human genetics. The observation that the majority
(�88%) of risk loci for common diseases in genome-wide
association studies (GWASs) are outside of the protein-
coding genome [110] certainly necessitates insightful strat-
egies for elucidating the functional sequence variants,
perturbed regulatory mechanisms, affected genes, and
affected cell types. Toward this goal, studies integrating
chromatin modifications and/or DNA accessibility, tran-
scription factor binding and computational predictions are
demonstrating substantial progress [29,42,107,111–115].

For immune cells in particular, the Immune Variation
(ImmVar) project has mapped the effect of common human
genetic variation on gene expression programs in healthy
innate and adaptive immune cells at baseline and upon
exposure to activating agents like influenza, LPS or IFN
[116–118]. When the abundance of a given transcript
measured across the population statistically associates
with genotype, an expression quantitative trait locus
(eQTL) is observed [119]. ImmVar has robustly demon-
strated that, in accordance with a similar study in human
monocytes [120] and others, gene expression is genetically
determined for thousands of expression traits by thou-
sands of genetic variants. One common theme of these
and other studies is that some eQTLs are apparent only for
particular environmental exposures [121,122]. For exam-
ple, mRNA expression of the cytokine IFN-b from the
IFNB1 locus does not have an eQTL with any proximal
single nucleotide polymorphism (SNP) (i.e., cis-eQTL) in
unstimulated monocytes or those stimulated with LPS for
24 h. Upon LPS stimulation for 2 h, however, a significant
cis-eQTL was observed at rs2275888 [120]. The expression
of many additional transcripts also mapped to rs2275888
in trans only after 24 h of LPS treatment. These eQTLs are
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termed trans-eQTLs, which means that the loci from which
the genes are transcribed are far from the SNP to which
they associate. The temporal relationship between IFN-b
regulation in cis at 2 h, and trans genes at 24 h is consistent
with transient signaling whereby the altered cis-regulated
gene product (IFNB1) transduces to its downstream tar-
gets in a defined timeframe. In general, overlapping cis-
and trans-eQTLs has proven a helpful way to pair direct
targets of genetic variation with downstream targets.
For example, in dendritic cells, this approach identified
a cis-eQTL for IRF7 upon influenza exposure. Several
genes co-mapped to the same SNP, rs12805435, in
trans. Overexpression of IRF7 subsequenctly validated
the predicted targets, overall summarizng a genetically
determined response during influenza infection in humans
[116].

The observation that genetic variation affects gene
expression with cell type and cell state context-specificity
justifies a need to annotate enhancer elements in many
cellular states. Several examples now exist where
suggested functional variants for GWAS loci reside in
signal-dependent enhancers [112,116–118,123]. For exam-
ple, GWAS loci for Crohn’s disease, multiple sclerosis, and
rheumatoid arthritis are highly enriched for enhancers
that gain epigenetic activation marks upon ex vivo stimu-
lation of CD4+ T cells with phorbol myristate acetate
(PMA)/ionomycin or Th0, Th1, and Th2 stimulation with
anti-CD3/CD28 [112,124]. These observations suggest that
a significant fraction of disease-causing mechanisms origi-
nate in context-dependent regulatory states and highlight
the importance of acquiring enhancer data from pure in
vivo cell types and disease-relevant contexts. Looking
ahead, tremendous opportunities will exist for geneticists
and human immunologists to uncover the mechanistic
underpinnings of human disease.

Concluding remarks
Rapid progress is being made with respect to how enhan-
cers function; nonetheless, many challenges remain
(Box 2). For example, the ability to predict transcription
515



Box 2. Outstanding questions

� Can we predict TF binding from genomic sequence alone? Many

binding motifs are not bound by transcription factors, and con-

versely, many binding events do not involve canonical motifs.

� How can we identify the repertoire of TFs with predominant

activity in a given cell type? Many transcription factor family

members bind the same motifs, different homo/heterodimer com-

binations complicate matters, and compensation among family

members can occur.

� What are the cell fate- and state-determining signals that orches-

trate enhancer selection and activity in different cell types? Signal

integration involves numerous receptors, transduction molecules

and transcription factors.

� How can we predict gene targets of enhancers, and conversely, all

enhancers for a gene? The nomination of nearest genes as en-

hancer targets is often incorrect. The resolution required to pair

enhancers with promoters in genome-wide chromosome confor-

mation experiments are cost-prohibitive for most laboratories, and

physical interaction is not sufficient to determine enhancer activity.

� What are the consequences of genetic mutations in respective

enhancers? Enhancers may be redundant and genetic variation

affecting enhancers is often buffered at the level of gene

expression.
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factor binding and enhancer selection based on DNA se-
quence and knowledge of expressed transcription factors is
a distant goal. Predicting the consequences of transcription
factor binding is also problematic. One challenging obser-
vation, for instance, is that the binding of NF-kB to an
enhancer can result in an increase, decrease, or no change
in enhancer activity, as measured by histone acetylation,
eRNA production, or other surrogate measures of activity.
How spatial organization of transcription factor binding
motifs, specific combinations of sequence-specific tran-
scription factors, and associated co-regulators are integrat-
ed to specify different enhancer activity states remains
poorly understood. An additional challenge is to link spe-
cific enhancers to target genes. Chromatin conformation
capture assays indicate that these interactions may occur
over megabases [125,126] and multiple enhancers may
regulate genes with unexpected effects. However, chroma-
tin interactions detected by conformation capture assays
do not necessarily predict functional interactions
[127]. Mutational analysis therefore remains the most
reliable method for determining whether a putative en-
hancer element is of functional importance. Limitations to
systematic mutagenesis have been greatly reduced by the
development of clustered regularly interspaced short pal-
indromic repeats (CRISPR) and CRISPR associated pro-
tein 9 (Cas9)- and transcription activator-like effector
nuclease (TALEN)-based methods, which will be a main-
stay in interrogating enhancer function going forward
[28]. However, these methods at present are most amena-
ble to enhancer deletions, with specific point mutations
being more difficult to generate. The tens of millions of
SNPs provided by natural genetic variation in the mouse,
and the greater than 10 million SNPs present in human
populations, thus provide a valuable substrate for investi-
gation of mechanisms that control enhancer selection,
activity and target gene expression.
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