SNPs in the genomic regulatory regions may affect:

® Enhancer Activation: loss of TFs interaction or TFs recruitment.

® Enhancer Selection: loss or association of LTDF

@ Alteration of timing or specific tissues activation

® Long range interaction between genomic regulatory regions
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How are SNPs studying in genome-wide manner?
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SUMMARY

Super-enhancers are large clusters of transcriptional
enhancers that drive expression of genes that define
cell identity. Improved understanding of the roles
that super-enhancers play in biology would be
afforded by knowing the constellation of factors
that constitute these domains and by identifying
super-enhancers across the spectrum of human
cell types. We describe here the population of tran-
scription factors, cofactors, chromatin regulators,
and transcription apparatus occupying super-en-
hancers in embryonic stem cells and evidence that
super-enhancers are highly transcribed. We produce
a catalog of super-enhancers in a broad range of hu-
man cell types and find that super-enhancers asso-
ciate with genes that control and define the biology
of these cells. Interestingly, disease-associated vari-
ation is especially enriched in the super-enhancers of
disease-relevant cell types. Furthermore, we find that
cancer cells generate super-enhancers at onco-
genes and other genes important in tumor pathogen-
esis. Thus, super-enhancers play key roles in human
cell identity in health and in disease.
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DEFINITION

AIM

1) Protein complexes

2) SE cell type-specific

3) SNPs linked to disease
in SE

CONCLUSION
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Mediator Coactivator Complexes and Master TFs are bound at Super-enhancers

Transcription Factors in ESCs
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Super-enhancers are clusters of enhancers—formed by binding
of high levels of master transcription factors and Mediator coac-
tivator—that drive high-level expression of genes encoding key
regulators of cell identity (Figure 1A) (Whyte et al., 2013). Five
ESC transcription factors were previously shown to occupy
super-enhancers (Octd, Sox2, Nanog, Kif4, and Esrrb) (Whyte
et al., 2013), but there are many additional transcription factors
that contribute to the control of ESCs (Ng and Surani, 2011; Orkin
and Hochedlinger, 2011; Young, 2011). We compiled ChIP-seq
data for 15 additional transcription factors in ESCs, for which
high-quality ChlP-seq data were available, and investigated
whether they occupy enhancers defined by Oct4, Sox2, and
Nanog (OSN) co-occupancy (Whyte et al., 2013) (Table S1 avail-

(A) Distribution of Med1 ChIP-seq signal at enhancers reveals two classes of enhancers in ESCs. Enhancer regions are plotted in an increasing order based on
their input-normalized Med1 ChiP-seq signal. Super-enhancers are defined as the population of enhancers above the inflection point of the curve. Example
super-enhancers are highlighted along with their respective ranks and their associated genes.



Bioinformatic analysis for the definition of SE:
- Signal in proximity of the gene
- signal extended in the genomic regions that identify SE

- increased numbers of reads into SE respect to costituent, single
enhancer in the SE

- increased signal into SE respect to typical enhancer



Mediator Coactivator Complexes and Master TFs are bound at Super-enhancers

Chromatin Immunoprepitation Binding Profiles at target genes
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(B) ChlIP-seq binding profiles for the indicated transcription factors at the POLE4 and miR-290-295 loci in ESCs. Red dots indicate the median enrichment of all
bound regions in the respective ChlP-seq data sets and are positioned at maximum 20% of the axis height. rpm/bp, reads per million per base pair.



ChlP-seq signal across SE domains
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(C) Metagene representations of the mean ChlP-seq signal for the indicated transcription factors across typical enhancers and super-enhancer domains.
Metagenes are centered on the enhancer region, and the length of the enhancer reflects the difference in median lengths (703 bp for typical enhancers, 8,667 bp
for super-enhancers). Additional 3 kb surrounding each enhancer region is also shown.



Reads distribution in regions and constituents
(single enhancers into SE) (rpm/bp)
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ChlIP-Seq density on TFs binding sites
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(E) Metagene representations of the mean ChlP-seq density for the indicated transcription factors across the constituent enhancers within typical enhancers and
super-enhancers. Each metagene is centered on enhancer constituents. Additional 2.5 kb surrounding the constituent enhancer regions is also shown.



TFs motif enrichment are used to associate gene target
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Core Transcriptional Regulatory Circuit of ESCs
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(G) Revised model of the core transcriptional regulatory circuitry of ESCs. The model contains an interconnected autoregulatory loop consisting of transcription
factors that meet three criteria: (1) their genes are driven by super-enhancers, (2) they co-occupy their own super-enhancers as well as those of the other
transcription factor genes in the circuit, and (3) they play essential roles in regulation of ESC state and iPSC reprogramming. The layout of the circuit model was

adapted from Whyte et al. (2013).



Super-enhancers are occupied by a large portion of
the enhancer-associated RNA polymerase Il
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A large fraction of these enhancer cofactors

are associated with super-enhancers
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Model showing RNAPII, transcriptional cofactors, and chromatin
regulators that are found in ESC super-enhancers. The indicated proteins
are responsible for diverse enhancer-related functions, such as enhancer
looping, gene activation, nucleosome remodeling, and histone modification.

Transcription
factors




SUPERENHANCER SHARED BETWEEN SEVERAL CELL TYPES

Nn.“
o
T
Q

{48%)

A A (B
STWA L

apls

MBI RS
ups

SR ETERTS
wojoo prowbis
SRAIUE
LB
BRSO
wnpeg da e woue py
Bun

HESH

aERE)
snbeydosy
253

uielg
(@00 poolg
(1120 1) poolg
1= g) poolg
(O6H) poolg
lsppeg
ALIIsY

ST

puelb jeuapy
anss) axdipy

< S180Ut



SUPERENHANCER SHARED BETWEEN SEVERAL CELL TYPES
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GENE ASSOCIATED TO SUPERENHANCER IN SEVERAL CELL TYPES:
GENE ONTOLOGY

[] Umbilical vein

:

-

E

[ [ ] Fatty acid metabolism

|:|E| Steroid biosynthesis

|:||:| Muscle organ development
1] immune response

|:| |:||:| Antigen processing

LI ] cel activation

|:||:||:| Reguilation of T cell activation
100 Regulation of lymphocyte activation
|:||:|[| Reguilation of leukocyte activation
|:||:| Defense response

|:||:|[| Inflammatory response
O] response to wounding
|:||:|E| Axon guidance

|:| DD Axonogenesis

|:||:||:| Meuron projection

|:| |:||:| Muscle contraction

[ ] Muscle system process

|:| |:||:| Regulation of heart contraction

|:||:|E| Heart development

[0 Adult heart development

|:||:||:| Reguilation of cell proliferation
|:||:|[| Epidermis development

][] Negative regulation of cell proliteration
|:||:|E| Regulation of franscription

][] Pancreas development

|:||:||:| Endocrine pancreas development
|:||:|[| Striated muscle contraction

] ] Lymphocyte activation

|:||:||:| Leukocyte activation

LI T cel activation

[C1CJC] meguiation of lacometion

EDD Reguilation of cell motion

|:|E| Regulation of cell migration

[ 1[] skeletal muscle

OO0 IOOOOO00 0000 OO0 OO OO O Adipese tissue
OO0 0000000000000 00000 OOOCCCIEL] Adrenal gland
OO0 OO0 000000 00000000 AT T Aerta
OO0 OO0 OO0 OO OO O S E I EEE ] Bleod (8 cell)
O OEERCOOOOCO OO O ] W ][] Bleod (T cel)
OO0 OO0 e e E ] Bleod (Menocyte)
R [ A ==
IR (O S

JE OO0 OOO0O0CO0 000000 0000000000000 0000 Lung
DDDDDDDDDDDDDDDDDDDDDDDEDDDDDDDDD%mms

« @ OO0 OO OO aEEE OO OO OO OO0 HOC ] Mammary epthelium

é‘a\.
[ |
-.\=
[
B

na

il |:\| (P-value)

0-5

—
(=]
—
[=]
-
(=]



MASTER TRANSCRIPTION FACTORS IN SIX CELL TYPES
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(C) Candidate master transcription factors identified in six cell types. All of these transcription factors were previously demonstrated to play key roles in the
biology of the respective cell type or fadlitate reprogramming to the respective cell type.



SINGLE NUCLEOTIDE MUTATIONS LINKED TO DISEASE (GWAS)
ASSOCIATED TO SUPERENHANCERS
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SINGLE NUCLEOTIDE MUTATIONS LINKED TO DISEASE (GWAS)
ASSOCIATED TO SUPERENHANCERS
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Super-enhancers in Cancer
Genes associated with SE and involved in cancer progression
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The super-enhancers formed in the MYC locus were tumor type specific
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Super-enhancers are associated with genes
that act as hallmarks in colonrectal cancer
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Methods to study Superenhancers:
From prediction of SE by ChlP-Seq to experimental validation



Convergence of Developmental
and Oncogenic Signaling Pathways
at Transcriptional Super-Enhancers
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SUMMARY

Super-enhancers and stretch enhancers (SEs) drive

expression of genes that play prominent roles in BACKGROUND
normal and disease cells, but the functional impor-
tance of these clustered enhancer elements is poorly AIM

understood, so it is not clear why genes key to cell
identity have evolved regulation by such elements.
Here, we show that SEs consist of functional constit-
uent units that concentrate multiple developmental
signaling pathways at key pluripotency genes in em-
bryonic stem cells and confer enhanced responsive-
ness to signaling of their associated genes. Cancer
cells frequently acquire SEs at genes that promote
tumorigenesis, and we show that these genes are
especially sensitive to perturbation of oncogenic
signaling pathways. Super-enhancers thus provide
a platform for signaling pathways to regulate genes I
that control cell identity during development and
tumorigenesis.

Super-enhancers (SE)
Functional costituent units

Cancer cells SE target
for oncogenic signalling

CONCLUSION
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Highlights

Super-enhancers (SEs) consist of clusters of active
enhancers

SEs are frequently bound by terminal transcription factors of
signaling pathways

SE-driven genes are especially responsive to signaling input

SEs acquired in cancer cells are responsive to oncogenic
signaling



ACTIVITY OF SUPER-ENHANCER CONSTITUENTS
IN SEVERAL GENOMIC LOCI
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ACTIVITY OF SUPER-ENHANCER CONSTITUENTS
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QUESTION: DO “SE CONSTITUENTS” ACT ADDITIVELY,
SINERGISTICALLY OR EXERT A COMPLEX INFLUENCE?

E2 has high activity, E1 and E3 influence E2 activity
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CONTRIBUTIONS OF SUPER-ENHANCER COSTITUENTS

TO GENE EXPRESSION IN VIVO
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QUESTION: HOW DOES SUPER-ENHANCER COSTITUENTS
REGULATE GENE EXPRESSION IN VIVO?

A
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In type Il CRISPR (clustered regularly interspaced short
palindromic repeals)-Cas (CRISPR-associated) systems, the

endonuclease Cas9 associates with a dual-RNAguide structure consisting
of a CRISPR RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA) to
cleave double-stranded DNA (dsDNA) using its HNH and RuvC nuclease
Domains.
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0 %« 32
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CRISP-Cas9
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The Cas9 nuclease encloses the guide RNA and binds the structure with specific
interactions in a number of domains. Specifically, the REC1 and REC2 domains bind the
complementary region of the guide RNA, and eventually the guide RNA target DNA
heteroduplex upon DNA binding. Mutations to the REC2 domain causes a small decrease
in Cas9 activity, while mutations in the REC1 domain eliminate activity completely. The
Recl domain is likely essential for Cas9 activity because it binds the repeat/anti-repeat
duplex. The Protospacer Adjacent Motif (PAM) Interacting (PI) domain and RuvC
nuclease domain bind the stem loops on the guide RNA. Overall, the exact process of
guide RNA binding by the nuclease is unknown. However, a dramatic conformational
change upon binding has been shown to produce an activated Cas9 nuclease capable
of binding and cleaving specific sequences of double-stranded DNA

RuvC domain HNH domain C-term domain
N-| [ [ ]-C
RuvC active
Proto-spacer site y

AAATTCTAAACGCTAAAGAGGAAGAGGACA\ PAM
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v

TTTAAGATTT "
A JUUUAGAGCUGUGUUGUUUCGA-3"
4 crRNA



RNA-guided DNA recognition and cleavage strictly require the presence of a

protospacer adjacent motif (PAM) in the target DNA.
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CONTRIBUTIONS OF SUPER-ENHANCER COSTITUENTS
TO GENE EXPRESSION IN VIVO

Target Genomic

Protospacer Lufztii\
Locus Adjacent Motif ' I " e
rs (PAM)
5’ 3
‘T Cas9 T Exich

CCCEGETGATCCCTETCCTA

Target sequence

to cleave oaoaccacumcrncAocAUGUUUUAGAGCUAGA
of||[l® ||| &
ACUAUUGCCUGAUCGGAAUARRAUT CGAUA
A A
Ygur GUGGCACCGA
gulde RNA e
sequence 3’ — UUUUCEUGGCY
tracrRNA
built into

vectors

SmartNuclease™
All-in-one
sves Vector

FF1a: cat#CASO00A-1, CAG cat#CASI20A-1
CMV: cat2CASS40A-1, MSCV: cat#CASH0A-1

gRNA : Cat#CASIB80A-1

scaMold

hspCas9
H1 B
promoter oen

YiPRE



Genome Editing

Super-enhancer constituent enhancers (~400 bp) were deleted in V6.5 murine
ESCs using the CRISPR/Cas9 system. sgRNAs were cloned into the pX330
vector (Addgene: 42230) containing Cas9. Cells were transfected with two
plasmids expressing Cas9 and an sgRNA complementary to each end of the
targeted super-enhancer constituent using X-fect reagent (Clontech). A
plasmid expressing PGK-puroR was co-transfected for selection. 1 day after
transfection, cells were re-plated on DR4 MEF feeder layers. 1 day after re-
plating, puromycin (2 ng/ml) was added for 3 days. Subsequently, puromycin
was withdrawn for 34 days. Individual colonies were picked and genotyped
by PCR. Deletion alleles were verified by sequencing.
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Genome editing

Genome editing was performed using CRISPR/Cas9 essentially as described (Wang et
al., 2013). Briefly, target-specific oligonucleotides were cloned into a plasmid carrying a
codon-optimized version of Cas9 (pX330, Addgene: 42230). The genomic sequences
complementary to guide RNAs are listed in Supplemental Table 2. V6.5 murine ESCs @
were fransfected with two plasmids expressing Cas9 and sgRNA targeting regions

around 200 basepairs up- and down-stream of the center of the targeted SE-constituent @

(as defined by OCT4/SOX2/NANOG co-binding; see below), respectively. A plasmid
expressing PGK-puroR was also co-transfected. Transfection was carried out with the X-
fect reagent (Clontech) according to the manufacturer's instructions. One day after @
transfection, cells were re-plated on DR4 MEF feeder layers. One day after re-plating
puromycin (2ug/ml) was added for three days. Subsequently, puromycin was withdrawn
for three to four days. Individual colonies were picked, and genotyped by PCR, and the
edited alleles were verified by Sanger sequencing. All cell lines used in subsequent
experiments were homozygous deletion lines. Reference and deletion allele sequences

are listed in Supplemental Table 2.
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What is CRISPR,
Its scientific and ethical impact?

https://youtu.be/TdBAHexVYzc
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CONTRIBUTIONS OF SUPER-ENHANCER COSTITUENTS

TO GENE EXPRESSION IN VIVO
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LUCIFERASE ACTIVITY AND DELETION
OF SPECIFIC ENHANCER
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LUCIFERASE ACTIVITY AND DELETION
OF SPECIFIC ENHANCER

A
Super- 45 kb J0kb.
enhancer;
101 OCT4/580X2/
ANOG
g d _J | el e
E 11-
g | l | |MED1
I-l—l—l-n
QE _ 20 Prdmi4
CR=Y Luciferase
= o 0 ..
8 © 0 O i activity
100+
e Change in
+50 1 luciferase
& 01 activity
-50] I I w after OCT4
100 shutdown

E.1 E.2 EIE EI4 E.5

Constituents

Super- 45 kb 10kb

enhancer:  —
OCT4/SOX2/

10+ 0G
AN
—l *u—‘#——h-—i*—
11+
| l | l MEDA1

Deletions: & 1 ' " tetott]
E1 E2 E3 E4 E5 Prdmi4

rpm/bp

Cas9

guide : .
RNA Super-enhancer -constituent deletions

(% to wild type ESC)

Prdm14 expression level

Héi\

e —
o =
¢t & en 3 E
1 | 1 1 '] 1
H

Prdm14 mBRNA

0 -

o G_v"}*é’}@b&b{?

Qf.‘:



IDENTIFICATION OF INTERACTION
BETWEEN SPECIFIC COSTITUENTS ENHANCERS
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SUPER-ENHANCERS ENRICHMENT
OF TRANSCRIPTION FACTORS PATTERN



SPECIFIC MULTIPLE TRANSCRIPTION FACTORS BIND
SUPER-ENHANCERS
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Hierarchical clustering of 20 transcription factor ChlP-seq binding profiles at
super-enhancer and typical enhancer constituents. A set of factors with binding
profiles similar to OCT4, SOX2, and NANOG is highlighted in green.



enhancers. An examination of the pattern
of transcription factor binding to super-
enhancer constituents provided a hy-
pothesis to resolve this conundrum
(Figure 3A, Table S3). The terminal TFs
of the Wnt (TCF3), TGF-p (SMAD3), and
LIF (STATS3) signaling pathways, which
play essential roles in transcriptional con-
trol of the stem cell state (Ng and Surani,
2011; Young, 2011), were among the TFs
whose binding pattern to SE constituents
was most similar to that of OCT4, SOX2,
and NANOG at SE constituents (Fig-
ure 3A). Most SE constituents (75%)
were occupied by at least one of these
three TFs, whereas only 43% of typical
enhancer constituents were bound by
one of the three (Figure S3A). More impor-
tantly, 98% of super-enhancers were 1TF
bound by at least one, 86% were bound 2TFs
46% were bound by all three signaling 3TFs
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TCF3, SMAD3, STAT3, regulated by oncogenic
pathways, bind constituent enhancers in SE.

No same pattern in randomized set of typical
enhancers.
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Binding motifs for TCF3, SMAD3, and STAT3 and the
p values for their enrichment in super-enhancer
constituent enhancers in murine and human ESCs. The
motif of CTCF is not found enriched and serves as a
negative control.

C
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Gene expression analyses

RNA-Seq RPKMs were calculated for two replicates each of murine ESCs treated with
LIF for 1h (E-MTAB-1796 Arrayexpress dataseti(Martello et al., 2013)) . Reads for each
replicate were aligned to the mm9 reference genome using Tophat2 (Trapnell et al.,
2009) version 2.0.11, using Bowtie version 2.2.1.0 and Samtools version 0.1.19.0.
RPKMs per Refseq transcript were calculated from aligned reads using RPKM_count.py
from RSeQC (Wang et al., 2012). Fold-changes for +/-LIF conditions were calculated by

averaging RPKMs for each condition for all transcripts with the same gene name,

lividing [ average RPKM (adding one pseudocount each), and
transforming by log2. Gene expression changes after
inhibitor SB431542 were downloaded from a previous study (Mullen et al., 2011). Gene
expression changes after stimulation of the Wnt pathway by Wnt 3a conditioned medium

were downloaded from a previous study (Cole et al., 2008).



Gene set enrichment analysis (GSEA) of gene
expression changes after manipulation of the Wnt, TGF-
b, and LIF pathways. “SE-genes” and “TE-genes”
Indicate genes associated with SEs and typical
enhancers, respectively.
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If super-enhancers confer responsiveness to the Wnt, TGF-B,
and LIF pathways more frequently than typical enhancers, then
stimulation or perturbation these pathways should have a
more profound effect on super-enhancer-associated genes than
typical enhancer-associated genes. The results of transcriptional
profiling and gene set enrichment analysis in ESCs confirm this
prediction (Figure SD!; suEer-enhancer associated genes were

found enriched among the genes whose exEressinn exhibited

the most Ernfnund changes after Eath way stimulation or Eertu rba-
tion (Wnt:p < 0.01: TGF- B: p < 0.01: LIF: p < 0.01). Incontrast, the

enrichment for genes associated with typical enhancers was more
moderate (Figure 3D). The super-enhancer-associated genes that
showed a profound response to signaling included previously
reported targets of these pathways that play key roles in ESC
self-renewal and differentiation (Figure 3D, Figure S3G). A subset
of the Prdm14 SE constituents that are bound by signaling TFs
were found to be responsive to perturbation of these signaling
pathways in reporter assays (Figure S3H). These results lead us
to propose that key cell identity genes have evolved a clustered
enhancer structure to provide a means to respond directly to
these developmentally important signaling pathways.




SE function on c-Myc locus
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Left: ratio of H3K27Ac in CRC (HCT-116) versus normal colon tissue used
densities at the union of SEs identified in the two samples. Right: metagene
representation of H3K27Ac and TCF4 ChlP-seq densities at the regions
corresponding to the top 100 acquired super-enhancers.
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ure 4C). Genes associated with these acquired super-enhancers
were enriched for expression changes after stimulation or
blockage of the Wnt pathway (stimulation: p < 0.01; blockage:
p < 0.01), although not all super-enhancer genes showed this
response (Figure 4D). These results indicate that acquired su-
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SEs in breast cancer cell lines
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DISCUSSION



Super-enhancers control genes that play
especially prominent roles in cellular
physiology and disease (Brown et al,
2014; Chapuy et al.,, 2013; Groschel
et al., 2014; Herranz et al., 2014; Hnisz
et al., 2013; Loven et al., 2013; Mansour
et al., 2014; Northcott et al., 2014; Parker
et al., 2013; Siersbaek et al., 2014;
Whyte et al., 2013), but there is a limited
understanding of the functions of these
clustered elements and, thus, why they
have evolved to drive genes that play
key roles in cell-type-specific biology.
Our results reveal that SEs can_provide
a platform for signaling pathways to regu-
late genes that control cell identity during

deuelngment and tumnrigenesis.



Several lines of evidence argue that the constituent enhancers SEs characteristics
of at least some super-enhancers can act as an interdependent
structural and functional unit to control their associated genes.
Our results show that ESC SEs generally consist of clusters of @ OCT4 binding in ESC
active enhancers that have OCT4-dependent and ESC-specific
functions (Figure 1) and demonstrate that optimal transcriptional @ SE regulates transcription
activity of target genes is dependent on the presence of most of
the constituent enhancers (Figure 2). Chromatin interaction data @ SE chromatin interaction
indicate that constituent enhancers physically interact within the
SEs; indeed, the interactions among SE constituents in ESCs
appear to be morefrequentthan interactions betweenthe SE con-
stituents and their associated gene promoters, and interactions
between typical enhancers (Dowen et al., 2014). We previously
noted that enhancer clusters can be gained or lost asa unitduring @ SE rolein oncogenesis
development or oncogenesis (Hnisz et al., 2013)and have shown
that large tumor SEs can collapse as a unit when depleted of the
enhancer cofactor BRD4 (Loven et al., 2013) or when a constitu-
entis deleted (Mansour et al., 2014). Insome T cell acute lympho-
blastic leukemia (T-ALL) cells, a small mono-allelic insertion that
creates a binding site for a master transcription factor can
nucleate the formation of an oncogenic super-enhancer that in-
volves establishment of additional transcriptional components
in adjacent sites (Mansour et al., 2014). Super-enhancers pro-@ eRNA linked to SE
duce relatively high levels of enhancer RNAs (Hnisz et al., 2013),
and a recent study showed that inflammation-dependent super-
enhancers form domains of coordinately regulated enhancer® jnflammation linked to SE
RNAs (Hah et al., 2015). These results, taken together, suggest
that the constituent enhancers of super-enhancers can interact
physically and functionally to coordinate transcriptional activity.



Our results reveal that SEs are occupied more frequently by
terminal transcription factors of the Wnt, TGF-B, and LIF signaling
pathways than typical enhancers in ESCs, and genes driven by
SEs show a more pronounced response to the manipulation of
these pathways than genes driven by typical enhancers (Figure 3).
Thus, the clustered enhancer architecture of SEs may have
evolved, at least in part, to provide a conduit for these signaling
pathways to signal maintenance or change at genes that are
key to control of cell identity. Our results also suggest that one
reason that tumor cells evolve SEs at key oncogenes is to
enhance the connection to oncogenic signaling pathways. The
recent report of NOTCH1-driven SEs in T-ALL likely represents
another example of this phenomenon (Herranz et al., 2014;
Wang et al., 2014). An implication of this model is that therapies
that target both oncogenic signaling pathways and super-
enhancer components may be especially effective in tumor cells
that have signaling and transcriptional dependencies.
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SYROS IS LOOKING FOR ENTHUSIASTIC SCIENTISTS TO JOIN OUR DYNAMIC TEAM!

BSyros e e e o

OUR SCIENCE TEAM NEWS + PUBLICATIONS CONNEC
PHARMACEUTICALS 20 I 5

ettermedicine€s through
geneicontrol :
/ /[‘ W -

https://d1lio3yog0oux5.cloudfront.net/ f40afe575865714f6435a44f
2019 f4426eae/syros/db/306/1890/file/gene-control-final.mp4
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An Expression
Makes a World of
Difference

At Syros, we are pioneering a new area of medicine focused on
controlling the expression of genes. The genes expressed - turned on, off,
up or down - in any given cell determine its type and function, and when
wrong genes are expressed at the wrong time or in the wrong amounts, it
can lead to disease. By creating medicines to control the expression of
genes, we aim to make a profound difference in the lives of patients and

their families. Join us in understanding the coordinated expression of the

Syros team in fulfilling our mission.



OUR PLATFORM

Syros is solely focused on gene control. Building on the seminal discoveries of our scientific founders, we have developed what we believe is the first
proprietary platform designed to systematically and efficiently analyze non-coding regions of the genome to identify alterations in gene expression
programes.

uﬁmmﬁmmﬁm By doing so, we believe our gene control platform will allow us to:

Gene control platform *@

e |dentify a wide array of potential new drug targets across a range of

freipieeed diseases
i Computations! * Provide a new lens for diagnosing and segmenting patients, including
Shameiien i = _/ those with complex, multi-factorial diseases that have eluded
from patients _’ Gine coniral cue S segmentation with other genomic-based approaches
:::; themetry W 200 \ » Advance a new wave of medicines with the potential to influence
el S multlple. drivers of d|se.ase through a 5|ﬁg!e ta rge.t, makllng them less
. . oo susceptible to drug resistance and providing patients with a more
L% .@ :‘, profound and durable benefit than many of today’s targeted therapies.

Learn more about our platform



DRUGS DISCOVERY FROM SYROS PHARMACEUTYCAL

Syros

Commercial
Program Indication Preclinical Early Clinical Mid-Clinical Pivotal Rights
R/R AML
Newly-diagnosed,
older unfit AML
North
SY-1425 .
R/R high-risk MDS America
(RARa agonist) and Europe
Lower-risk fransfusion-
dependentMDS
Breast cancer
Solid tumors
SY_.I 355 TNBC, ovarian, SCLC
(CDKT7 inhibitor)  Biood cancers
AML and ALL
Oral CDK7
inhibitor Cancer
CDK12/13 Worldwide
Inhibitor Cancer
P 5 Cancer/
s immuno-oncology

Program 6 Cancer .

*SY-1425 is approved in Japan as Amnolake® (tamibarotene) for patients with relapsed/refractory APL



