http://biologia.i-learn.unito.it/:

1. Lecture PDFs: the slides we used during the class

2. Textbook: reviews that will give the necessary background and
lessons first part

3. Research Papers: articles that we will analyze
4. Bibliography: scientific literature concerning the subject

5. Audio and Main Concept Lessons


http://biologia.i-learn.unito.it/

EXAM

Students are expected to demonstrate:

1. Knowledge of basic concepts

2. Understanding of specific concepts

3. Comprehension of experimental methodology
4

Solving problem that we have discuss during lesson

Evaluation:

EXAMS is based on lessons and is composed to multiple choice questions
and two open questions.



GENE REGULATION
How we can understand gene regulation
Using genome-wide sequencing data

® FUNCTIONAL GENOMICS

® INTEGRATION DATA APPROACH



Functional genomics

Functional genomics uses genomic data to study gene expression,
regulation and biological functions on a global scale (genome-wide or
system-wide), focusing on gene transcription, epigenetic
modifications, chromatin remodelling enzymes, transcription factors
association involving high-throughput methods.
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GENOMIC REGULATORY REGIONS
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Functional Genomics

Functional genomics is a branch that integrates molecular biology and cell biology studies, and
deals with the whole structure, function and regulation of a gene in contrast to the gene-by-gene

approach of classical molecular biology technique.

From: Encyclopedia of Bioinformatics and Computational Biology, 2019
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GENE REGULATION
How we can understand gene regulation
Using genome-wide sequencing data

® FUNCTIONAL GENOMICS
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GENE REGULATION
How we can understand gene regulation
Using genome-wide sequencing data

® INTEGRATION DATA APPROACH

® FUNCTIONAL GENOMICS



GENE REGULATION
How we can understand gene regulation
Using genome-wide sequencing data

® INTEGRATION DATA APPROACH

Is based on the comparison of different data
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How SNPs play a FUNCTIONAL role in disease:

Alteration of cell identity
and

biological functions



Genome-wide characterizations of regulatory regions.

Cooperating TFs

@ H3K4me1 O Minireview topic
@ H3K4me3 <*¥ |nteraction regions

® H3K9Ac orK27Ac © gNP

Peggy J. Farnham J. Biol. Chem. 2012;287:30885-30887

©2012 by American Society for Biochemistry and Molecular Biology




How SNPs play a FUNCTIONAL role in disease:

Impact on transcription

® Changing consensus sequenses for transcription factors binding sites
® Changing interaction between for transcription factors
® Changing epigenetic profiling of specific genomic regions

® Changing long range interaction between two genomic regions



SNPs types functions:
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SNPs mechanims for alteration of regulatory
transcription factors complexes
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SNPs may change long range interactions

v Variant
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Genome-wide data describe activation state of specific gene locus
and the correlation of these features with disease open the way
to understand disease outcome
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Genome-wide characterizations of regulatory regions.

Cooperating TFs

@ H3K4me1 O Minireview topic
@ H3K4me3 <*¥ |nteraction regions

® H3K9Ac orK27Ac © gNP

Peggy J. Farnham J. Biol. Chem. 2012;287:30885-30887

©2012 by American Society for Biochemistry and Molecular Biology




@@ APPLICATIONS OF NEXT-GENERATION SEQUENCING

Role of non-coding sequence variants
In cancer

Ekta Khurana'-%4,Yao Fu®, Dimple Chakravarty?¢, Francesca Demichelis®37,
Mark A. Rubin’%% and Mark Gerstein8-'°

Abstract | Patients with cancer carry somatic sequence variants in their tumour in addition to the
germline variants in their inherited genome. Although variants in protein-coding regions have
received the most attention, numerous studies have noted the importance of non-coding
variants in cancer. Moreover, the overwhelming majority of variants, both somatic and germline,
occur in non-coding portions of the genome. We review the current understanding of
non-coding variants in cancer, including the great diversity of the mutation types —from single
nucleotide variants to large genomic rearrangements — and the wide range of mechanisms by
which they affect gene expression to promote tumorigenesis, such as disrupting transcription
factor-binding sites or functions of non-coding RNAs. We highlight specific case studies of
somatic and germline variants, and discuss how non-coding variants can be interpreted on a

large-scale through computational and experimental methods.

NATURE REVIEWS | GENETICS VOLUME 17 | FEBRUARY 2016 |



SNPs with an impact in tumorigenesis

Steps for studying the role of SNP

Cases Controls Cells from
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SNPs may have an impact in tumorigenesis

FUNCTIONAL ANNOTATION OF SNPs

Experimental validation of
functional effects

(CRISPR—-Cas9,

reporter assays etc.)




SNPs ESPERIMENTAL VALIDATIONS

@ Synthesize mutated sequence

~

* Site-directed mutagenesis
* CRISPR—Cas system
¢ Oligonucleotide synthesis
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MOLECULAR FUNCTIONAL EFFECTS

b Test molecular functional effects on target gene

Combined analysis and validation using high-throughput sequencing h f[LUC reporter activity A
STARR-seq
[P]
O
Barcoded promoter libraries Recombine into reporter
in reporter vectors vectors downstream to ORF

\ / >

Cell lines or model systems Trantceah

cells

S 5C ple— . " §
_-EE_'-'E'
T

| = - =

High-throughput

LUC
RNA sequencing Inference of regulatory element —
to quantify from the transcribed barcode ) —
transcription — AR
driven by each E
cis-regulatory BC E Assay LUC Luc
element i activity
i - e T
— ¥ E { |
ucd

‘ Alignment of reads to the reference genome




In order to test if SNP has a role in the transcription rate
by alteration of TFBS, luciferase assay can be used

LUC reporter activity
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In order to test if SNP has a role in the transcription rate
by alteration of TFBS, luciferase assay can be used

LUC reporter activity

To test enhancer and promoter with SNPs:
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Is the SNP in the promoter or in enhancer
able to change trascription activation?
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In order to test if SNP has a role in the transcription rate
by alteration of TFBS, luciferase assay can be used

LUC reporter activity
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In order to test if SNP has a role in the transcription rate
by alteration of TFBS, luciferase assay can be used

LUC reporter activity
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What are positive and negative controls?

-
Transcription Negative Positive
‘ Factor g Control , Control
. (%)




Negative does not have a “regulatory sequence” that
you want to fest
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Positive control has a "costitutive active sequence” that
induce trascription
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BIOLOGICAL FUNCTION TESTS

C Test effects on oncogenesis
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Correlation of SNP/functions with several clinical analysis
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EXAMPLE

Gene expression alteration in disease | | Gene expression alteration in disease
May be used as BIOMARKERS May be used as DRUG TARGET

(molecules acting as sensor (drug discovery to stop disease and
of disease) restore health )

a Target modulation b Function-phenotype c Clinical outcome
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In summary:

® Functional genomics is a field of molecular biology based on
genome-wide sequencing data.

® Genome-wide sequencing data describe genomic regulatory
regions that control gene expression

® Gene expression disregulation may be linked to the disease

® Understanding molecular mechanisms of disease outcome opens
the way to discovery drug and identify biomarkers



@ Enhancer Overview
® Genomic regulatory network to define cell identity

® Genetic variations meaning in cell identity



GENOMIC REGULATORY REGIONS ARE
PROMOTER, in proximity of gene target, and
ENHANCER, distant from gene target

THETOPIC IN BRIEF

@ Epigenomics is the study of the key
functional elements that regulate gene
expression in a cell.

@ Epigenomes provide information about the
patterns in which structures such as methyl
groups tag DNA and histones (the proteins
around which DNA is packaged to form
chromatin), and about interactions between
distant sections of chromatin.

@ They also contain information about
regulatory elements in DNA itself: both those
that lie in the promoter region immediately
upstream of where a gene’'s transcription
begins, and those in distant enhancer
sequences.
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The selection and function of
cell type-specific enhancers

Sven Heinz!, Casey E. Romanoski?, Christopher Benner' and Christopher K. Glass*3

Abstract | The human body contains several hundred cell types, all of which share the same
genome. In metazoans, much of the regulatory code that drives cell type-specific gene
expression is located in distal elements called enhancers. Although mammalian genomes
contain millions of potential enhancers, only a small subset of them is active in a given cell
type. Cell type-specific enhancer selection involves the binding of lineage-determining
transcription factors that prime enhancers. Signal-dependent transcription factors bind to
primed enhancers, which enables these broadly expressed factors to requlate gene
expression in a cell type-specific manner. The expression of genes that specify cell type
identity and function is associated with densely spaced clusters of active enhancers known
as super-enhancers. The functions of enhancers and super-enhancers are influenced by,
and affect, higher-order genomic organization.

NATURE REVIEWS [ MOLECULAR CELL BIOLOGY VOLUME 16 [ MARCH 2015 |



ACTIVATION CHARAC;'ERISTIC

ENHANCER

SELECTION FUNCTION



Enhancer Characteristitcs

® Enhancers are cis-regulatory elements in proximity of genes

® Each cell has a set of enhancers

® Enhancers have motifs for sequence-specific transcription factors
® Enhancers are marked with epigenetic modifications

® Enhancers are in different states of activation



MUCH OoF THE REGULATORY CODE THAT DRIVES
CELL-TYPE-SPECIFIC GENE EXPRESSION IS LOCATED IN

DISTAL ELEMENTS CALLED ENHANCERS

Active gene

A cell-
identity gene

B cell-
identity gene

Silent gene

Cell type A

Typical enhancer

Super-enhancer

Cell type B

Typical enhancer

- | —

T

Super-enhancer

e eale =




CELL TYPE USE A SMALL SUBSET OF MILLIONS
OF POTENTIAL ENHANCERS
Active Enhancer
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Trends in Biochemical Sciences April 2014, Vol. 39, No. 4



Active Enhancer
during SPECIFIC TIME
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LINEAGE-DETERMINING TRANSCRIPTION FACTORS BIND
AT CELL-TYPE SPECIFIC ENHANCERS
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EACH CELL HAS ACTIVE ENHANCERS

Available regulatory regions
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Maintaining Cell Identity
through Global Control of Genomic Organization

Gioacchino Natoli'-*

Available requlatory regions
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TRANSCRIPTION FACTOR BINDS SPECIFIC CONSENSUS SEQUENCE
IN ACTIVE ENHANCER

———————

GR binding site motif found in approx. every
1000bp in genome
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TRANSCRIPTION FACTORS THAT BIND ENHANCERS

TRANSCRIPTION FACTORS

b Active enhancer

SDTF: SIGNAL —DETERMINING CTF: COLLABORATING
TRANSCRIPTION EACTORS  TRANSCRIPTION FACTORS

Wide nucleosome-free region



TRANSCRIPTION FACTORS THAT BIND ENHANCERS

R Rindle

—kbps—Mbps [/ ¥

Q)

TRANSCRIPTION FACTORS

b Active enhe ~
£ {e] (B —Er—/ ° |+

(®)
RE
)

Wide nucleosome-free region



Enhancer Activation

® Transcription Factors bind specific genomic regions and allow
access to other proteins remodelling chromatin

Differentiation states and external stimuli induce enhancers
activation



ACTIVE ENHANCER

(A)

INACTIVE ENHANCER

Enhancer states can broadly be classified as inac-
tive, primed, poised or active??. An inactive enhancer is
essentially buried in compact chromatin and is devoid of
transcription factor binding and histone modifications.

(B)
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a Poised enhancer
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Figure 1 | The anatomies of poised and active enhancers. The characteristic features
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TRENDS in immunology

Figure 3. Chromatin transitions to active enhancers involve interactions between
cell lineage-determining transcription factors and signal-dependent factors. (A)
Enhancers primed by lineage-determining factors frequently reguire signal-
dependent transcription factor binding to gain H3K27ac and become active. (B}
Active enhancers can also be selected by interactions between signal-dependent
factors and lineage-determining factors. Abbreviaions: C/EBP, CCAAT/enhancer
binding protein; NF-kB, nuclear factor-xB; PU.1, transcription factor originally
named spleen focus forming virus (SFFV) proviral integration oncogene.

Enhancers in stimulus-induced gene activation

Trends in Immunology September 2015, Vol. 36, No. 9



H3K4mel, H3K4me2, ,
high H3K27me3

mark POISED ENHANCERS
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H3K4mel, H3K4me2, , lack H3K27me3,
presence of Pol Il and RNA transcript

mark ACTIVE ENHANCERS
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Enhancer Selection

® The role of lineage-determining transcription factors.

® Therole of signal-dependent transcription factors.



TRANSCRIPTION FACTORS

b Active enhancer
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Pioneer Factors and Lineage-determining Transcription Factors leads tc
nucleosome remodeling and increased chromatin accessibility

. 4

(A) (1) Closed chromatin Pioneer factors and LDTFs (3) Histone modifications and
recruitment of transcription
machinery

m é M |
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(2) Collaborative DNA

binding and nucleosome
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a Compact chromatin
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b Compact chromatin
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Figure 3 | Cell type-specific enhancer selection and activation. a| Collaborative




In activated macrophage:




Review Early T helper cell programming of gene expression in human

Soile Tuomela, Riitta Lahesmaa*
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Differentiation of Effector
CD4 T Cell Populations*

Jinfang Zhu, Hidehiro Yamane, and William E. Paul
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Enhancer RNAs and regulated
transcriptional programs

Michael T.Y. Lam’, Wenbo Li?, Michael G. Rosenfeld?, and Christopher K. Glass'-?

Trends in Biochemical Sciences April 2014, Vol. 39, No. 4



eRNA mediates the long interactions
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Molecular mechanisms that underline enhancer activation

(©) Signal-induced enhancer
formation and eRNA elongation

initiation
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Activating ncRNAs
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Model 1: ncRNAs collaborate with transcriptional activators
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Model 2: ncRNAs modulate chromatin loops
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Enhancer Function

® Chromatin looping

¢ Super-enhancers, cluster of enhancers, key player in the cell
Identity and differentiation



CHROMATIN LOOPING
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Super-enhancers.
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Figure 2 Schematic of an experimental approach to characterizing
super-enhancers. Use of genome editing tools, such as the CRISPR-Cas9
system, provides a methodology to create a minimal targeted deletion to
test the activity of specific putative enhancers within super-enhancer loci
by assessing the consequences of genetic deletions on gene activity.
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OPINION

Making the case for chromatin
profiling: a new tool to investigate
the iImmune-regulatory landscape

Deborah R. Winter, Steffen Jung and Ido Amit

Abstract | Recent technological advances have enabled researchers to accurately
and efficiently assay the chromatin dynamics of scarce cell populations. In this
Opinion article, we advocate the application of these technologies to central
questionsin immunology. Unlike changes to other molecular structures in the cell,
chromatin features can reveal the past (developmental history), present (current
activity) and future (potential response to challenges) of a given immune cell type;
chromatin profiling is therefore an important new tool for studying the
immune-regulatory networks of health and disease.
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Methods for identification of genomic regulatory regions
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From reads to DNA elements function

b Data interpretation
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Cell-type-specific enhancers to regulate same genes




¢ Effect of the tissue environment
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Association of human chromatin data and susceptibility to immune dise
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NATURAL GENETIC VARIATION IS ASSOCIATED WITH TF BINDING
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SNPs in the genomic regulatory regions may affect:

® Enhancer Activation: loss of TFs interaction or TFs recruitment.

® Enhancer Selection: loss or association of LTDF

® Alteration of timing or specific tissues activation

® Long range interaction between genomic regulatory regions



