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With the explosion of genome-wide studies of regulated transcription, it has become clear that
traditional definitions of enhancers and promoters need to be revisited. These control elements
can now be characterized in terms of their local and regional architecture, their regulatory compo-
nents, including histone modifications and associated binding factors, and their functional contri-
bution to transcription. This Review discusses unifying themes between promoters and enhancers
in transcriptional regulatory mechanisms.
Recent genome-wide studies have significantly advanced our

understanding of the genomic architecture that underlies gene

expression in higher eukaryotes. Integrative analyses of the tran-

scriptome, transcription factor (TF) binding profiles, and epige-

nomes reveal complex organization of individual transcription

units scattered throughout the genome and causal relationships

among the regulatory DNA sequences, chromatin state, and

transcriptional activity. In particular, a considerable amount of

data have established that enhancers are not merely a collection

of TF binding sites, but also have the capacity to drive transcrip-

tion independent of their target promoters. This feature of en-

hancers suggests that they serve more regulatory functions

than previously appreciated.

Regulatory DNA Elements in Eukaryotic Gene
Expression
Transcription of a gene in eukaryotes is a highly complex

process that requires precise coordination in the assembly of

trans-acting factors through the recognition of various types

of regulatory DNA sequences. The promoter and the enhancer

represent DNA regulatory regions responsible for ensuring

proper spatiotemporal expression patterns of eukaryotic

genes. The promoter generally refers to a DNA region that

allows accurate transcription initiation of a gene (Smale and

Kadonaga, 2003). The core promoter is a minimal stretch of

DNA sequences (e.g., the TATA box, initiator, and downstream

core promoter element) surrounding the transcription start

site that directly interacts with the components of basal tran-

scription machinery, including RNA polymerase II (RNAPII).

Although the DNA sequences or motifs comprising the core

promoter region for individual genes can be structurally and

functionally diverse, its universal role is thought to drive accu-

rate transcription initiation (Smale and Kadonaga, 2003). Tran-

scription factors that bind �100–200 bp upstream of the core

promoter can increase the rate of transcription by facilitating

the recruitment or assembly of the basal transcription machin-

ery onto the core promoter or by mediating the recruitment of
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specific distal regulatory DNA sequences to the core promoter

(Akbari et al., 2008).

These distal sequences, known as enhancers, activate or in-

crease the rate of transcription from the target gene promoter

independent of their position and orientation with respect to

target genes (Maniatis et al., 1987). In multicellular organisms,

enhancers are primarily responsible for the precise control of

spatiotemporal patterns of gene expression. Enhancer elements

were initially discovered in the early 1980s in studies that charac-

terized eukaryotic gene promoters. Functional tests of sea urchin

histone gene expression in the Xenopus oocyte identified DNA

sequences located upstream of the TATA box motif that

positively influence H2A gene transcription, originally termed

transcriptional ‘‘modulators’’ (Grosschedl and Birnstiel, 1980).

Deletion of the modulator resulted in 15- to 20-fold decrease in

H2A gene expression. Interestingly, the modulator activity was

retained even when its DNA sequence was inverted. Similarly,

the tandem 72 bp DNA repeats located upstream of viral SV40

early gene were found to be indispensable for SV40 early gene

expression (Benoist and Chambon, 1981). Shortly after those

initial observations, a series of studies on the SV40 enhancer es-

tablished the conceptual framework for defining enhancers as

follows (Atchison, 1988; Banerji et al., 1981; Fromm and Berg,

1982, 1983; Khoury andGruss, 1983;Moreau et al., 1981): (1) En-

hancers increase transcription of a linked gene from its correct

initiation site specified by the core promoter, (2) enhancer activity

is independent of orientation relative to its target gene, (3) en-

hancers can function independent of their position relative to

the target genes, and also over long distances, (4) enhancers

can function with a heterologous promoter, (5) enhancers exhibit

DNase I hypersensitivity (HS), which reflects a less compacted

chromatin state as a result of the binding of various transcription

factors. Although these properties were defined more than three

decades ago, they are still widely used to classify enhancers.

Subsequent studies identified the first mammalian cellular

enhancer, which is required for efficient expression of the immu-

noglobulin (Ig) heavy-chain gene (Banerji et al., 1983; Gillies

mailto:taekyung.kim@utsouthwestern.edu
mailto:rshiekhattar@med.miami.edu
http://dx.doi.org/10.1016/j.cell.2015.08.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.08.008&domain=pdf


et al., 1983; Neuberger, 1983). Importantly, the Ig enhancer

studies provided the first evidence demonstrating that enhancer

activity exhibits tissue or cell-type specificity. When various cell

lines were tested, Ig enhancer activity was observed only in

lymphocyte-derived cell lines (Banerji et al., 1983; Gillies et al.,

1983). Since then, a variety of cell-type- or developmental

stage-specific enhancers have been determined to regulate the

expression of genes in higher organisms (Müller et al., 1988).

Transcriptional activation of yeast genes was also shown to be

mediated by enhancer-like sequences, known as upstream acti-

vation sequences (UASs), although their distances from the core

promoters are much shorter (within a few hundred base pairs)

than the typical distances between enhancers and promoters in

mammals (Guarente, 1988). These results led to the realization

that enhancer activity is the primary mechanism for determining

the spatiotemporal gene expression pattern in eukaryotes.

RNAPII Association at Enhancers and Locus Control
Regions
The ability to recruit RNAPII and initiate transcription has gener-

ally been considered the most unique property of promoters.

However, even before the genomics era, several studies found

that RNAPII can be directly recruited to enhancers upon tran-

scriptional induction, potentially serving as a regulatory check-

point for RNAPII delivery to the target promoter. Interestingly,

an early study of the SV40 enhancer found that, in the absence

of any known promoter sequence, the 72 bp DNA repeats can

also ‘‘promote’’ gene expression, although this was deemed to

be inefficient (Benoist and Chambon, 1981; Moreau et al.,

1981). This finding suggested the possibility that the 72 bp

sequence might serve as a general entry site for a component

of the transcription machinery, such as RNAPII, which could

then track along the DNA to a transcription initiation site (Moreau

et al., 1981). Another proposed mechanism that may not be

mutually exclusive with the RNAPII tracking model is the chro-

matin remodeling effect. As various chromatin modifying

enzymes such as histone acetyltransferases and methyltrans-

ferases can be part of the RNAPII transcription complex (Cho

et al., 1998; Gerber and Shilatifard, 2003), transcription initiated

from the enhancer proceeding across the intervening regions

between the enhancer and the target promoter might be respon-

sible for establishment and/or maintenance of an active chro-

matin conformation required for efficient gene transcription.

Initial studies of enhancer identification and characterization

were carried out by transient transfection experiments, which

means that enhancer activity may be subject to position-effect

variegation, depending on the chromatin configuration at the

genomic site of integration. However, a study of a transgene

containing the human b-globin locus discovered that five

DNase-I-hypersensitive sites scattered in a �70 kb region sur-

rounding the b-globin gene were sufficient to overcome the

positional effect (Grosveld et al., 1987). These cis-regulatory re-

gions (e.g., enhancers) conferring activation of a linked gene in a

tissue-specific, copy-number-dependent manner, independent

of its position of integration, were collectively termed a locus

control region (LCR) (Orkin, 1990). Notably, transcription activity

was detected at enhancers located within the b-globin LCR re-

gion and throughout the intervening DNA into the globin genes
(Ashe et al., 1997; Routledge and Proudfoot, 2002; Tuan et al.,

1992). These LCR-driven intergenic transcripts are relatively

short (< 3 kb), remain in discrete foci in the nucleus, and do not

encode proteins (Ling et al., 2005). Transcription predominantly

occurred toward the downstream globin genes but was indepen-

dent of the orientation, position, and distance of the enhancers

with respect to the gene (Kong et al., 1997; Routledge and

Proudfoot, 2002). RNAPII recruitment and transcription activity

have also been observed in other LCRs, including those that

control expression of major histocompatibility complex (MHC)

class II in antigen-presenting immune cells and pituitary-specific

expression of the human growth hormone (hGH) gene (Ho et al.,

2006; Masternak et al., 2003). Interestingly, insertion of an exog-

enous RNAPII termination sequence within the hGH-LCR

blocked hGH regulation, suggesting that transcription through

the LCR domain is a functionally important event.

In both the human andmurine b-globin gene loci, RNAPII inter-

acts with the LCR, but not directly with the b-globin gene prior to

erythroid differentiation, whereas it is associated with both in

differentiated erythroid cells (Levings et al., 2006; Vieira et al.,

2004). In an in vitro assay using nuclear extracts from MEL cells,

RNAPII and other basal transcription factors associated with im-

mobilized LCR templates could be transferred to a b-globin gene

template, whichwas facilitated by the erythroid transcription fac-

tor NF-E2 (Vieira et al., 2004). Although performed in vitro, these

results suggest a model in which the b-globin LCR functions to

assemble and hold the RNAPII transcription complex for timely

delivery to the b-globin gene to ensure the developmentally

stage-specific expression. Furthermore, blocking transcription

elongation between the LCR and the promoter by inserting a

transcription terminator sequence significantly decreased the

b-globinmRNA level, suggesting that the b-globin LCR facilitates

a tracking and transcription mechanism (Ling et al., 2004). A

similar mechanism has been proposed for other LCRs and

enhancers (Ho et al., 2006; Wang et al., 2005). In a contrasting

model, transfer of the RNAPII machinery from the a-globin LCR

to the promoter appears to be mediated by formation of a DNA

loop between the LCR and the promoter, as no RNAPII signal

is detected in the intervening DNA between the LCR and the pro-

moter (Vernimmen et al., 2007).

Genome-wide Architecture of Enhancers
These initial insights into the complex roles of enhancers and

LCRs set the stage for thinking about regulatory elements in

a more global manner. Early genome-wide studies identified

RNAPII binding at intergenic loci, which suggested the existence

of enhancer-like sequences across the genome; however, there

were questions regarding the functional relevance of such

RNAPII occupancy (Barrera et al., 2008; Brodsky et al., 2005;

Carroll et al., 2006; Heintzman et al., 2007). Moreover, it was

difficult to classify RNAPII binding sites as possible enhancer

or un-annotated promoter of a protein-coding gene by the virtue

of RNAPII association alone.

It became clear that additional criteria would be needed to

identify enhancers. Given their association with transcription fac-

tors, computational analysis of TF binding motifs combined with

the assessment of evolutionary conservation within the DNAwas

used as a popular approach in identifying enhancers (reviewed in
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Aerts, 2012). More recently, chromatin-immunoprecipitation-

based analysis of TF binding in vivo (e.g., ChIP-chip and ChIP-

seq) has been widely used to experimentally determine actual

TF binding sites in vivo. This approach revealed that only a small

fraction of TF bindingmotifs are actually bound by TFs in vivo in a

given tissue and/or stage (ENCODE Project Consortium et al.,

2007). TF binding per se does not signal a functional outcome.

Functional activation requires recruitment of additional cofactors

or mechanisms involving a combinatorial coordination of multi-

ple TFs. Therefore, analysis of evolutionarily conserved TFmotifs

or TF binding alone has a limited power for identification and

prediction of functional enhancers (see also Kellis et al., 2014

for review).

Transcriptional coactivators p300 and CBP interact with a

large number of transcriptional activators and the general tran-

scription machinery, including RNAPII. Moreover, both p300

and CBPdisplay acetyltransferase activity toward the tails of his-

tones localized near cis-regulatory regions, which is thought to

create a transcriptionally permissive chromatin structure. There-

fore, although not perfect, genome-wide analysis of p300/CBP

binding sites has been commonly used as a method for identi-

fying enhancer elements in vivo without having to investigate

individual TFs (May et al., 2012; Visel et al., 2009)

A complementary approach in identifying enhancers takes

advantage of their chromatin accessibility. The assembly of

various TF complexes at cis-regulatory regions is considered

to compete with stable association of nucleosomes. As a result,

active enhancers and promoters have reduced nucleosome

density and display hypersensitivity to DNase I digestion. This

feature of chromatin accessibility has been utilized in next-gen-

eration sequencing-based techniques such DNase-seq, FAIRE-

seq, and ATAC-seq (Boyle et al., 2008; Buenrostro et al., 2013;

Giresi et al., 2007) to identify enhancers without any prior

knowledge of TF binding motifs or TF binding. Although not

sufficient to pinpoint cell-type-specific enhancers due to its

indiscriminate nature, this method can be very useful for

enhancer characterization when combined with other mapping

techniques.

An increasing number of epigenomic studies have illustrated

that the chromatin of metazoan genomes is organized into

modular domains that represent unique chromatin states formed

by a combination of multiple post-translational modifications on

histones within the nucleosomes (ENCODE Project Consortium,

2012; Ernst et al., 2011). For example, nucleosomes within

enhancer regions contain histone variants H3.3 and H2A.Z

(Goldberg et al., 2010; Henikoff et al., 2009; Jin et al., 2009).

These nucleosome variants are deposited into enhancer regions

in a replication-independent manner and are more sensitive to

high salt than canonical nucleosomes. In contrast, nucleosomes

flanking TF-bound sites are stable and undergo various histone

modifications that are distinctive to each functional domain

and across cell types and also correlate with transcriptional out-

puts (ENCODE Project Consortium, 2012; Heintzman et al.,

2007, 2009; Hon et al., 2009; Visel et al., 2009). Importantly,

such chromatin modifications combined with other measures

(chromatin accessibility and TF binding) have proven themselves

a useful barometer for active enhancers. Enhancers of active

genes generally display a high level of mono- or di-methylation
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on H3 lysine 4 (H3K4me1/2) but are low or devoid of

H3K4me3, whereas promoter sequences show the opposite

pattern. In addition to H3K4me1/2, mutually exclusive modifica-

tions on H3K27 residues co-segregate with active or inactive/

poised enhancers (Creyghton et al., 2010; Rada-Iglesias et al.,

2011). Active enhancers are enriched in the H3K27ac mark, a

major substrate for the histone acetyltransferase p300/CBP

(Jin et al., 2011; Tie et al., 2009), while poised enhancers are

associated with H3K27me3, a mark enriched in Polycomb

(PcG)-associated and transcriptionally repressed regions

(Rada-Iglesias et al., 2011). Additionally, H3K27me3 also co-

exists with the active promoter mark H3K4me3 in the promoters

of developmentally silenced genes in ES cells, known as poised/

bivalent promoters (Bernstein et al., 2006).

Although enhancers share common structural and functional

features, as described above, individual enhancers widely differ

in the enrichment levels of TF- and enhancer-specific histone

modifications. A set of recent studies inspected enhancers

based on the quantitative difference in the level of Mediator com-

plex binding or H3K27ac marks and found that enhancers are

often clustered in large domains, termed super-enhancers. Typi-

cally a few hundred super-enhancers are present in a given cell

type and are often located near cell-type-specific genes or the

genes that control the biological processes that define the iden-

tities of the cell types (Hnisz et al., 2013; Lovén et al., 2013;

Whyte et al., 2013). Consistently, a strong enrichment of dis-

ease-associated non-coding variants has been observed within

super-enhancers (Hnisz et al., 2013). Each super-enhancer rep-

resents a functional cluster of multiple enhancer units that

communicate with each other physically and functionally and

provide a platform where various signaling pathways converge

to robustly regulate genes that control cell identity during devel-

opment and tumorigenesis (Hnisz et al., 2015). With that opera-

tional definition, super-enhancers appear to be highly analogous

to the ‘‘regulatory archipelago’’ described at the HoxD locus

(Montavon et al., 2011). Although more analysis will be required

to establish whether or not super-enhancers reflect a novel para-

digm in gene regulation, their identification in each cell type

would, at least, be very useful for the characterization of the

cell-type-specific regulatory network.

From Enhancer Sequences to Enhancer RNAs
In 2010, two independent studies reported that direct RNAPII

recruitment and transcription are genome-wide features of func-

tionally active enhancers. In neurons, a combination of enhancer

markers (high levels of H3K4me1 overlapped with CBP binding

but with no or low H3K4me3) was used to identify �12,000

neuronal enhancers that mediate transcription induction upon

neuronal activation by membrane depolarization (Kim et al.,

2010). Interestingly �25% of the neuronal enhancers also ex-

hibited a significant level of RNAPII binding and produced RNA

transcripts. These enhancer RNAs (eRNAs) are dynamically

regulated by neural activity, with their levels positively correlating

with mRNA levels of nearby protein-coding genes. The majority

of eRNAs characterized in neurons are short (<2 kb), lack polya-

denylated tails, and do not appear to be spliced. Notably, global

profiling showed that eRNAs are transcribed bi-directionally

from the center of enhancers, where CBP andRNAPII are bound.



Figure 1. A Contemporary View on Pro-

moters and Enhancers
Features of promoters include transcription initia-
tion in the sense and anti-sense direction being
mediated by the transcription machinery assem-
bled independently onto its own core promoter.
Although not shown here, convergent transcription
has been observed at the promoters of weakly
expressed genes. H3K4me3 is highly enriched
at the promoter regions. Enhancer-like chromatin
signatures (H3K4me1 and H3K27ac) and the Tyr-
1P form of RNAPII have also been observed near
the upstream anti-sense TSSs. Polyadenylation
sites are enriched near the 30 end of the upstream
anti-sense RNAs and mediate the exosome-
dependent degradation of the antisense RNAs. 50

splice sites are only present in the coding gene and
might contribute to the productive elongation of
sensemRNA transcripts through the binding of the
U1 splicing complex, which blocks PAS-mediated
early termination. The Ser-5P form of RNAPII is
engaged in upstream anti-sense transcription, but
it is not known whether Ser-2P of RNAPII occurs
during the elongation of anti-sense RNA.
Features of enhancers include, as with the pro-
moter, recruitment of the general transcription
factors (GTF), including RNAPII, and initiation of
transcription at defined sites. Enhancer-driven
transcription typically exhibits more prominent
bi-directionality than that stemming from the

promoter. H3K4me1/2 is commonly enriched at enhancers. Functionally active enhancers also exhibit a high level of H3K27 acetylation, whereas poised or
inactive enhancers are marked by H3K27me3. Ser-5P and Tyr-1P forms of the RNAPII have been observed. It is not clear whether or not Ser-2P RNAPII and
H3K36me3 marks are present at active enhancers. 50 splice site sequences are not enriched near the regions surrounding enhancers. Both strands of enhancer
RNAs appear to be degraded by the exosome, although it is not known whether it is mediated by the PAS-dependent mechanism.
Another study discovered eRNAs (originally referred to in the

study as inducible upstream extragenic transcripts) in endo-

toxin-stimulated primary macrophages (De Santa et al., 2010).

RNAPII ChIP-seq analysis identified 4,855 extragenic RNAPII

binding sites, and �70% of them showed an enhancer-like

chromatin signature (high levels of H3K4me1 with low or no

H3K4me3). Many of these extragenic enhancers produce eRNAs

upon LPS stimulation. Unlike neuronal eRNAs, several macro-

phage eRNAs were shown to be produced from uni-directional

transcription and to be polyadenylated without being spliced.

Since these initial discoveries, eRNAs have been found in

many mammalian cell types, including embryonic stem cells,

suggesting that eRNA synthesis is a universal cellular mecha-

nism (reviewed in Lam et al., 2014). Super-enhancers exhibit a

much higher level of RNAPII binding and eRNA transcription

than typical enhancers (Hah et al., 2015; Hnisz et al., 2013). Mul-

tiple eRNAs are generatedwithin super-enhancers with a striking

correlation in their expression patterns, which could imply that

each super-enhancer might form a single regulatory module

(Hah et al., 2015). Importantly, a recent study has identified the

RNAPII-associated complex, Integrator, as the molecular ma-

chine involved in the 30 end processing of eRNAs at enhancers

and super-enhancers (Lai et al., 2015).

As greater numbers of eRNAs have been identified, we’ve

gained more detailed insights into their properties and regula-

tion. The majority, although not all, of eRNAs in the nucleus

lack polyadenylated tails (ENCODE Project Consortium, 2012;

Derrien et al., 2012; Djebali et al., 2012; Harrow et al., 2012).

A genome-wide study in murine CD4+ CD8+ thymocytes

correlated non-polyadenylated and polyadenylated eRNAs
with bi-directional and uni-directional transcription, respectively,

although the functional implication of this dichotomy is not

known (Koch et al., 2011; Natoli and Andrau, 2012). Moreover,

eRNA-producing enhancers are cell-type specific and are

associated with a chromatin signature unique to functionally

active enhancers, including H3K4me1, H3K27 acetylation, and

H3K79 dimethylation, along with RNAPII binding (Djebali et al.,

2012). A genome-wide chromosomal interaction study in several

human cell lines further demonstrated that eRNA-producing

enhancers are preferentially engaged in an interaction with the

proximal promoters (Sanyal et al., 2012). Another notable feature

of eRNAs is the timing of their expression relative to mRNA

upon stimulus-dependent induction. In many different cell types,

eRNA transcription marks the earliest response in the wave of

transcriptional change when cells undergo a state change in

response to environmental or developmental cues (Arner et al.,

2015; De Santa et al., 2010; Hah et al., 2013; Hsieh et al.,

2014; Schaukowitch et al., 2014).

Promoter versus Enhancer: A New Comparison in the
Genomic Era
Recent genome-wide evidence of transcribing enhancers

observed in a wide range of cell types argues that the conven-

tional definitions of the promoter and the enhancer must be

revised. The roles of promoters and enhancers in transcription

have been thought to be distinct; however, these two regulatory

elements are highly interrelated and show noticeable similarities

in structure and function. As summarized below, both the pro-

moter and theenhancer exhibit commonstructural and functional

features that have not been previously appreciated (Figure 1).
Cell 162, August 27, 2015 ª2015 Elsevier Inc. 951



Shared Local Structure

Both promoters and enhancers display DNase I hypersensitivity,

which results from depletion of nucleosomes. This local struc-

ture arises because both regulatory regions are composed of

binding sites for TFs, which exclude nucleosomes. However,

whether or not there is any distinguishable difference in TF bind-

ing site composition between the regions is somewhat debat-

able. Initial genome-wide studies suggested that promoters

and enhancers differ in the composition of binding sites (Rada-

Iglesias et al., 2011; Shen et al., 2012; Thurman et al., 2012).

However, recent FANTOM5 cap analysis gene expression

(CAGE) studies argue that the difference in binding site compo-

sition might simply result from the fact that enhancers are largely

devoid of CpG islands (CGI) and repeats resembling non-CGI

promoters (Andersson et al., 2014). Consistently, some older

studies showed that interacting promoter-enhancer pairs often

harbor common TF binding sites (Bienz and Pelham, 1986; Boh-

mann et al., 1987; Parslow et al., 1987).

Consistent Histone Modification Patterns

Although the local ratio of H3K4me3/me1 has been widely

used as ameans to distinguish enhancers and promoters, recent

studies argue that the three H3K4methylation states (H3K4me1/

2/3) simply reflect dynamic changes in transcription activities

of both the promoters and enhancers rather than representing

static and intrinsic features of individual regulatory elements.

The majority of enhancers simply show a low H3K4me3/me1 ra-

tio, as their transcription level is generally lower than promoter-

driven transcription. However, H3K4me3 is often observed at

functionally active enhancers, and the H3K4me3/me1 ratio posi-

tively correlates with transcription level, independent of tran-

script stability (Core et al., 2014; Koch et al., 2011; Pekowska

et al., 2011).

Functional Interchangeability

The notion that promoters and enhancers functionally overlap

was initially supported by the finding that the proximal promoter

region of mouse metallothionein I (Mt1) gene, when inserted

downstream of a rabbit b-globin test gene, could enhance

b-globin transcription upon metal ion stimulation, thus acting

as an inducible enhancer (Serfling et al., 1985). Moreover,

a chromosomal interaction study found that promoters

frequently associate with other promoters through space analo-

gous to well-characterized promoter-enhancer interactions,

which could imply an enhancer-like function of the promoter

in transcription (Li et al., 2012). Recently, intragenic enhancers

were shown to frequently function as alternative tissue-specific

promoters, producing a class of abundant, spliced, multi-exonic

poly(A)+ RNAs (meRNAs) reflecting the host gene’s structure

(Kowalczyk et al., 2012). These examples collectively support

the notion that the enhancers and promoters not only share

many of the similar architectural features (nucleosome hyper-

sensitivity and chromatin marks), but also may be functionally

interchangeable.

Common Mechanisms to Control RNA Synthesis

Similar to promoters, RNAPII and general transcription factors

(GTFs) are assembled on enhancers and initiate transcription

(Koch et al., 2011; Natoli and Andrau, 2012). The C-terminal

domain (CTD) of RNAPII is composed of multiple heptapeptide

repeats (YSPTSPS) and undergoes differential phosphorylation
952 Cell 162, August 27, 2015 ª2015 Elsevier Inc.
as the transcription cycle progresses. While unphosphorylated

RNAPII enters the pre-initiation complex, escape from the pro-

moter is highlighted by phosphorylation of the Ser-5 residues

of the CTD, and entry of the RNAPII into productive elongation

is coordinated by a wave of Ser-2 phosphorylation. Both un-

phosphorylated and Ser-5-phosphorylated forms of RNAPII are

also observed at enhancers. Moreover, tyrosine 1 phosphoryla-

tion of the RNAPII CTD has been observed with antisense pro-

moter transcription and active enhancers in mammalian cells

(Descostes et al., 2014). However, the elongation-specific form

of RNAPII (Ser-2-phosphorylated), as well as the H3K36me3

mark, both of which are normally seen across the coding regions

of actively transcribing genes, have not been readily detected

in the eRNA transcribing areas (Kaikkonen et al., 2013; Koch

et al., 2011; Natoli and Andrau, 2012). On the other hand,

several studies observed H3K79me2/3 marks over transcribed

enhancer regions, an additional coding-region-specific modifi-

cation whose levels are highly correlated with transcription activ-

ity (Bonn et al., 2012; Djebali et al., 2012).

At this point, it is not clear whether the lack of elongation-spe-

cific marks (H3K36me3 and Ser-2 phosphorylation of RNAPII) at

enhancers reflect a fundamentally different transcription mecha-

nism between enhancers and promoters or whether the eRNA

regions being transcribed are simply not long enough to suffi-

ciently accumulate thosemarks, which are known to be enriched

near the 30 end of genes. Alternatively, the levels of eRNA tran-

scription might not be high enough to observe the enrichment

of these elongation-specific features, as their levels are generally

correlated with transcription output.

Bi-Directional Transcription

Bi-directionality is a striking feature of eRNA transcription that

has been documented at many enhancers. However, the major-

ity of mammalian promoters also drive divergent transcription,

resulting in the production of short antisense ncRNAs (known

as uaRNAs, PROMPTs, or promoter upstream transcripts) from

upstream promoter regions in addition to sense mRNAs (Core

et al., 2008; Preker et al., 2008; Seila et al., 2008). Both eRNAs

and promoter upstream antisense transcripts are relatively un-

stable, possibly due to exosome-mediated degradation (Ander-

sson et al., 2014; Flynn et al., 2011). Genome-wide analyses

integrating nascent transcript mapping, DNase I hypersensitive

sites, nucleosome positions, and binding profiles of various

TFs and histone modifications have corroborated the shared

architecture of transcription initiation between enhancers and

promoters. Both enhancers and promoters exhibit similar fre-

quencies of canonical core promoter elements, highly positioned

flanking nucleosomes, and tight average spacing (�110 bp) be-

tween each pair of divergent TSSs. Divergent transcription at

promoters and enhancers is mediated by independent RNAPII

transcription complexes assembled at each TSSs, which is

intrinsically configured by underlying core elements as well as

TF binding motifs enriched near both sense and anti-sense

TSSs (Core et al., 2014; Duttke et al., 2015; Scruggs et al.,

2015). Moreover, elevated levels of TF binding and enhancer-

like chromatin signatures (e.g., high levels of H3K4me1 and

H3K27ac) were observed near the anti-sense TSSs located

upstream of highly transcribed sense TSSs (Scruggs et al.,

2015). Intriguingly, a nucleotide-resolution mapping analysis of



RNAPII position by native elongating transcript sequencing

(NET-seq) has revealed that the promoters of genes expressed

at a low level in human HeLa or HEK293T cells drive convergent

transcription, in which antisense transcription originates down-

stream of the sense TSS (Mayer et al., 2015). It is not known

whether convergent transcription is also a feature of enhancers.

Regulation of Upstream Transcription

Computational analysis of promoters showed that the regions

where upstream antisense transcription occurs are enriched in

polyadenylation sites (PAS) but are depleted of potential U1

small nuclear ribonucleoprotein (snRNP) recognition sites, or 50

splice site-like sequences. This asymmetric feature in functional

DNA motifs flanking TSSs was argued to underlie promoter

directionality (Almada et al., 2013; Core et al., 2014; Ntini et al.,

2013). Transcription of upstream antisense RNAs terminates

at the enriched PAS, and the RNAs are then degraded by the

exosome, whereas the sense transcripts are protected by U1

snRNP, which prevents premature cleavage and polyadenyla-

tion (Berg et al., 2012; Kaida et al., 2010). The FANTOM5

CAGE analysis suggested that the eRNAs are also subject to a

similar decay mechanism. However, unlike the promoters, the

DNA regions flanking enhancers do not show an enrichment of

50 splice site sequences (Andersson et al., 2014).

The Role of Enhancer Transcription
The defined characteristics of eRNAs—low abundance, low sta-

bility, lack of RNA processing such as polyadenylation and

splicing, and bi-directionality in transcription—could collectively

suggest that eRNAs are the byproduct of enhancer transcription

activity, with no biological function. This idea of transcriptional

noise proposes that excess RNAPII machinery is uniformly asso-

ciated with physically accessible genomic regions, including

enhancer regions, and initiates transcription ‘‘nonspecifically’’

from incorrect sites (Struhl, 2007). In this model, nonspecific

transcripts are generally in low abundance, as they are rapidly

degraded by intrinsic cellular surveillance mechanisms such as

nonsense-mediated decay or exosome-mediated degradation

(LaCava et al., 2005; Wyers et al., 2005).

However, transcription does not appear to be a random pro-

cess. For example, there is no transcription activity in poised en-

hancers, which clearly show chromatin accessibility judged by

DNase I hypersensitivity. It was also proposed that enhancers

that mediate rapid induction of neural genes in response to

membrane depolarization do not transcribe eRNAs unless the

enhancer is paired with its target promoter (Kim et al., 2010).

However, enhancer transcription initiated from hGH-LCR in the

pituitary was independent of the interaction with the target

hGH-N promoter (Yoo et al., 2012). Despite this discrepancy in

the promoter dependency of eRNA production, it is generally

agreed that eRNA transcription occurs only from functionally

active enhancers in a regulated manner (Andersson et al.,

2014; Core et al., 2014; Creyghton et al., 2010; Hah et al.,

2011; Kaikkonen et al., 2013; Kim et al., 2010; Rada-Iglesias

et al., 2011). Furthermore, as we have described, both en-

hancers and promoters share key architectures of transcriptional

initiation sites. These features collectively suggest that eRNA

synthesis is a regulated process, with its transcription initiation

fidelity comparable to the promoter, rather than a consequence
of random RNAPII transcription initiation from accessible

genomic regions. However, they do not necessarily prove

the functionality of eRNA transcripts (Weingarten-Gabbay and

Segal, 2014).

When considering the functional relevance of enhancer

transcription, several lines of evidence suggest that the act of

eRNA transcription, rather than the eRNA transcript itself, might

have a specific biological function. One possibility is that

enhancer-promoter pairing or looping is mediated by a tracking

mechanism in which the enhancer-bound transcription com-

plex is ferried to a specific target promoter via uni-directional

RNAPII transcription. Consistently, LCR-driven transcription

takes a uni-directional path toward target genes (Ashe et al.,

1997; Ho et al., 2006; Ling et al., 2005; Routledge and Proud-

foot, 2002), and some eRNAs in T lymphocytes were also

shown to be transcribed uni-directionally (Koch et al., 2011;

Natoli and Andrau, 2012). However, global profiles of eRNA

expression argue that such a simple tracking/scanning mecha-

nism of enhancer-promoter communication might not be

general, as the majority of enhancer transcription occurs bi-

directionally within confined flanking regions not contiguous

to the target gene.

Since RNAPII can carry histone-modifying enzymes through

interactions with its CTD (see review in Selth et al., 2010),

RNAPII transcription could be an underlying mechanism for

altering the chromatin architecture at enhancers or intervening

DNA regions between enhancers and promoters. Indeed, active

chromatin modifications such as histone hyperacetylation and

DNase I hypersensitivity are often observed near RNAPII-tran-

scribed regions (Bulger et al., 2003; Gribnau et al., 2000; Mas-

ternak et al., 2003; Travers, 1999). For example, a transcription

inhibitor, actinomycin D, significantly blocked LPS-induced his-

tone hyperacetylation in the intervening regions between induc-

ible gene promoters and enhancers in macrophages (De Santa

et al., 2010). Another study in macrophages showed that TLR4-

signaling-induced eRNA transcription precedes a local increase

in the level of H3K4me1/2, and the length of eRNAs coincides

with the width of the H3K4me1/2-modified region (Kaikkonen

et al., 2013). A transcription elongation inhibitor, flavopiridol,

but not eRNA knockdown, significantly reduces the level of

H3K4me1/2 at enhancers, suggesting that transcription activity

at enhancers, not the eRNA transcript itself, might be important

for at least some aspect of enhancer-specific chromatin modi-

fication (Kaikkonen et al., 2013). However, flavopiridol treatment

in MCF-7 cells did not alter the levels of enhancer-specific

histone marks (i.e., H3K4me1 or H3K27ac) (Hah et al., 2013).

One potential source for this discrepancy might be differences

in the stability of the enhancer-specific marks between the

two cell types (T cells versus MCF-7 cells) and/or the mode

of stimulus-induced signaling, although the aforementioned

study in macrophages claimed that the effect of transcription

blockers in H3K4me1/2 modifications is also observed in pre-

existing enhancers (Kaikkonen et al., 2013). It also needs to

be noted that the proposed function of enhancer transcription

in the enhancer-specific chromatin landscape does not have

to be mutually exclusive with the possibility that the eRNA

transcript itself might play a functional role in transcriptional

activation.
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Figure 2. Mechanisms of Enhancer-Pro-

moter Interactions
H3K4me1/2 modification at enhancers can be
mediated by RNAPII transcription activity.
Enhancer RNA is also shown to play a role in
various stages of transcription. Looping: The
Mediator/Cohesin complex is involved in stable
formation of enhancer-promoter looping. Some
eRNAs (e.g., ncRNA-a and eRNAs expressed
from estrogen receptor-a bound enhancers) facil-
itate the looping through an interaction with the
subunit(s) of the Mediator/Cohesin complex.
Chromatin remodeling: eRNAs (e.g., CERNA) can
also promote transcription by remodeling the
chromatin structure such that the accessibility of
RNAPII machinery is increased. RNAPII transition:
Early RNAPII elongation is another transcription
step regulated by eRNAs. eRNAs (e.g.,Arc eRNAs)
can help RNAPII enter into a productive elongation
stage by facilitating transient release of the nega-
tive elongation factor, NELF, which causes RNAPII
pausing near the TSS.
The Role of eRNA Transcript
Several recent studies have suggested that the eRNA transcript

itself might have an activating role in target gene expression in

various cell types (Hsieh et al., 2014; Lam et al., 2013; Li et al.,

2013; Melo et al., 2012; Mousavi et al., 2013; Ilott et al., 2014;

Schaukowitch et al., 2014). Knockdown of eRNAs generated

from various enhancer regions consistently causes a decrease

in the expression of their specific target genes. Multiple mech-

anisms have been described to underlie the eRNA function.

These include the eRNAs regulating enhancer-promoter loop-

ing, chromatin remodeling, and early transcription elongation

(Figure 2). In human MCF-7 breast cancer cells, several eRNAs

expressed from estrogen receptor-a-bound enhancers facilitate

specific enhancer-promoter interactions in a ligand-dependent

manner by recruiting the cohesin complex to the enhancer from

which they originated (Li et al., 2013). An eRNA expressed from

Kallikrein-related peptidase 3 (KLK3) enhancer, one of the

strongest androgen receptor (AR)-bound enhancers in prostate

cancer cells, was also shown to facilitate a specific interaction

between the KLK3 enhancer and the KLK2 promoter but in this

case by forming a complex with AR and a subunit of the Medi-

ator complex, MED1 (Hsieh et al., 2014). Therefore, chromo-

somal looping between specific set(s) of enhancers and

promoters appears to be a key regulatory step in which both

eRNAs and other activating lncRNAs can commonly act

(Figure 2). By contrast, the eRNA expressed from the MYOD1

core enhancer (CERNA) during the myogenic differentiation of

C2C12 skeletal muscle cells had no impact on the enhancer-

promoter interaction (Mousavi et al., 2013). Instead, CERNA

increased RNAPII occupancy at the promoter region of the

MYOD1 gene and subsequent transcription by promoting chro-

matin accessibility. Although the exact mechanism has not

been defined, the chromatin remodeling activity of CERNA is

reminiscent of the function of HOTTIP (Wang et al., 2011)

(Figure 2).
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Early transcription elongation is another step in which eRNAs

play a role. RNAPII pausing immediately downstream of the tran-

scription start sites is a widespread regulatory mechanism in

higher eukaryotes, which is mediated by negative elongation

factor, NELF, and DRB sensitivity-inducing factor. By serving

as a key rate-limiting step, RNAPII pausing allows the conver-

gence of signaling pathways and is thought to be important for

the establishment of permissible chromatin structure as well as

rapid and/or synchronous gene expression (Adelman and Lis,

2012). During induction of neuronal immediate early genes,

eRNAs contribute to the gene induction in cis by promoting effi-

cient release of NELF from their target gene promoters. eRNAs

are rapidly transcribed and destabilize NELF’s association with

paused RNAPII by directly binding to the RNA recognition motif

present in the NELF-E subunit (Schaukowitch et al., 2014).

Knockdown of eRNA blocks transient release of NELF from

the promoter during transcription activation and specifically de-

creases the amount of elongating RNAPII without affecting the

RNAPII recruitment step or chromosomal looping between the

enhancer and the promoter (Figure 2).

lncRNAs with Enhancer-like Functions
In parallel with the eRNA studies, an independent study discov-

ered an enhancer-like function for a set of long non-coding

RNAs (lncRNAs) in human cell lines, termed ncRNA-activating

(ncRNA-a) (Lai et al., 2013; Ørom et al., 2010). Knockdown of

several lncRNAs in this class invariably reducedexpression levels

of nearby protein coding genes. A subsequentmechanistic study

revealed that the ncRNA-a recruits a transcription coactivator

complex, Mediator, to facilitate chromosomal interaction be-

tween the ncRNA-a loci and its targets (Figure 2) (Lai et al.,

2013). Mediator forms a complex with cohesin that creates a

ring-like structure to keep two DNA segments together, which

then regulates gene expression by connecting the enhancers

and promoters of active genes in a cell-type-specific manner



(Kagey et al., 2010). In parallel, ncRNA-a stimulates the CDK8 ki-

nase activity ofMediator to increase the level of histone H3 phos-

phorylation at serine 10 (H3S10), which is amark associated with

active chromatin and gene induction (Nowak and Corces, 2004).

Other lncRNAs also show related functions in different biolog-

ical contexts. A Notch-regulated lncRNA, LUNAR1 (leukemia-

induced noncoding activator RNA), enhances IGF1R mRNA

expression by a mechanism similar to ncRNA-a (Trimarchi

et al., 2014). Importantly, the enhancer-like activity of LUNAR1

for IGF1R expression was critical for the growth of T cell acute

lymphoblastic leukemia cells both in vitro and in vivo. HOTTIP

is a lncRNA expressed from the tip of the HOXA locus that

coordinates the activation of several HOXA genes in vivo

(Wang et al., 2011). Knockdown of HOTTIP specifically de-

creases expression of distally located HOXA genes, but not

the highly homologous HOXD genes, which suggests a cis

mechanism. Unlike ncRNA-a, HOTTIP does not affect the

chromosomal interaction. Instead, chromosomal looping brings

HOTTIP into close proximity to the HOXA gene locus where

HOTTIP promotes histone H3 lysine 4 trimethylation and gene

transcription by recruiting WDR5/MLL methyltransferase com-

plexes. NeST (nettoie Salmonella pas Theiler’s [cleanup Salmo-

nella not Theiler’s]) is another enhancer-like lncRNA that works

together with WDR5 to increase H3K4me3 level at the inter-

feron-g (Ifng) gene in activated T cells. Transgenic overexpres-

sion of NeST was shown to induce IFN-g synthesis in activated

CD8+ T cells, suggesting a possible trans-mechanism to regu-

late its neighboring gene. Interestingly, a recent study found

the previously described lncRNA, ncRNA-a3, mapping to a bi-di-

rectionally transcribed enhancer of the TAL1 gene (Ørom et al.,

2010; Vu�ci�cevi�c et al., 2015). Therefore, it is likely that, as eRNAs

in different human cells are fully cataloged, many of the currently

annotated lncRNAs with enhancer-like function will fall under the

classification of eRNAs (Vu�ci�cevi�c et al., 2015).

Prospects
Transcription activity at enhancers was first hinted by the pro-

moter-like activity (i.e., able to initiate transcription) of the first

viral enhancer, the 72 bp tandem DNA repeats located upstream

of SV40 early gene. Subsequently, several cellular LCRs and en-

hancers were also shown to transcribe ncRNAs. Nonetheless,

transcriptional activity was not regarded as a general feature

of enhancers until the advent of genome-wide studies. It now

seems clear that ncRNA transcription is a signature of function-

ally active enhancers at least in higher metazoans.

As described above, some experimental evidence already

supports the roles of both enhancer transcription and the

eRNA transcript in gene expression. However, we are still far

from fully understanding the functional and biological signifi-

cance of eRNAs, and more thorough studies on eRNA function

and mechanism will be required. For example, the molecular de-

terminants of eRNA function have not been studied, and thus it is

not known whether specific sequences or secondary structures

would be critical for eRNA function. Moreover, although some

studies found that only the sense eRNAs—transcribed in the

same direction with its target mRNA—appear to be sufficient

for the eRNA function (Lam et al., 2013; Li et al., 2013), it is not

clear at this point whether strand-specific functionality is a gen-
eral feature of eRNAs. It also needs to be mentioned that all

current functional studies of eRNAs have relied exclusively on

knockdown and/or overexpression approaches in cell culture;

hence, in vivo relevance is yet to be validated. While in vitro

analytical methods offer technical advantages in mechanistic

studies, several recent examples show that the findings from

cell line studies in vitro are not observed or are quite different

in knockout animals (Kohtz, 2014). Therefore, determining

the biological significance of eRNAs in an in vivo context is

imperative.

The functionality question aside, widespread observation of

transcribed enhancers across multiple mammalian cell types

calls for revising the traditional definition of ‘‘promoters’’ as the

DNA regions that allow accurate transcription initiation of

a gene. Similar to a promoter, an enhancer can direct RNA

transcription from a defined site by independent RNAPII tran-

scription machinery assembled with general TFs. Initiation of

bi-directional transcription is another shared feature of transcrip-

tional regulatory elements. Moreover, many of the features of up-

stream anti-sense transcripts mirror those of eRNAs, including

their inherent instability and their enrichment of the tyrosine 1

phosphorylated form of RNAPII.

Importantly, the distinctive characteristic of the promoters is

their ability to direct transcription of a spliced, polyadenylated

transcript. In contrast to the promoter-driven mRNAs, eRNAs

and upstream anti-sense RNAs are shorter in length (a few hun-

dred base pairs up to a few kilobases) and by and large less sta-

ble. In addition, they are commonly subject to early termination

through the action of the Integrator complex, which is consistent

with their lack of 50 splice sites and polyadenylation-dependent

cleavage. However, as far as transcription initiation is con-

cerned, there appears to be very little difference between the

promoter and the enhancer. Indeed, in many examples, en-

hancers may look reminiscent of weak promoters transcribing

low levels of RNAs. Additional studies will certainly be needed

before we can fully understand and define the structural and

functional identities of enhancers and promoters and their inter-

relationship. Nonetheless, the recent unveiling of shared tran-

scriptional architectures between the two regulatory domains

compels us to revise our old ways of thinking and incorporate

new models of transcriptional regulation in eukaryotes.
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