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Abstract After spinal cord injury, inflammatory reaction in-
duces the aggregation of astrocytes to form a glial scar that
eventually blocks axonal regeneration. Transcription factor
CCAAT/enhancer-binding protein delta (C/EBPδ) is a regula-
tory protein of genes responsive to inflammatory factors, but
its role in glial scar formation after spinal cord injury remains
unknown. By using a model of moderate spinal cord contu-
sion injury at the mid-thoracic level, we found that C/EBPδ
was expressed mostly in the reactive astrocytes bordering the
lesion in wild-type mice from 7 days after the injury. C/EBPδ-
deficient mice showed reduced glial scar formation, more re-
sidual white matter, and better motor function recovery com-
pared with wild-type mice 28 days after the injury. Upon in-

terleukin (IL)-1β stimulation in vitro, the increased expression
of C/EBPδ in reactive astrocytes inhibited RhoA expression
and, subsequently, the ability of astrocyte migration.
However, these reactive astrocytes also produced an increased
amount of matrix metalloproteinase-3, which promoted the
migration of non-IL-1β-treated, inactive astrocytes.
Although the involvement of other non-astroglial C/EBPδ
cannot be entirely excluded, our studies suggest that astrocytic
C/EBPδ is integral to the inflammatory cascades leading to
glial scar formation after spinal cord injury.
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Introduction

After spinal cord injury (SCI), astrocytes in the lesion
site become reactive and aggregate to form a glial scar,
which is one of the major obstacles to successful axonal
regeneration. The glial scar not only imposes a physical
barrier to regenerative axons but also produces inhibito-
ry molecules, such as chondroitin sulfate proteoglycans,
that chemically block the regrowth of injured axons
across the lesion [1, 2], leading to the failure of func-
tional recovery [3]. Despite its detrimental role in the
injured spinal cord, the glial scar may benefit wound
healing by preventing inflammatory cells and harmful
substances in the lesion core from spreading out, there-
by protecting the originally uninjured tissue from sec-
ondary injuries [4, 5]. Therefore, more in-depth under-
standing of reactive astrocytes and glial scar formation
may improve future therapeutic possibilities for SCI.

Glial scar formation results primarily from enhanced mi-
gration of reactive astrocytes toward the lesion site [6–9] with
a smaller contribution from the proliferation of migrating or
resident astrocytes [10–12]. Astrocyte motility relies largely
on the integrity of intermediate filaments [13] and the dynam-
ics of the actin cytoskeleton mediated by the Rho family of
small GTPases, including Rho and Rac1 [12, 14]. In addition,
matrix metalloproteinases (MMPs) also contribute to astro-
cyte migration by proteolytic remodeling of extracellular ma-
trix molecules [12, 15–17].

After SCI, disrupted blood vessels in the lesion allow the
infiltration of inflammatory cells and the release of cytokines,
including interleukins (ILs), transforming growth factor-β,
and interferon-γ [18–20]; this not only exacerbates the extent
of the primary injury but also induces astrocyte reactivity and
glial scar formation [1, 21]. Thus, inflammatory processes
following the injury are critical to secondary pathogenesis,
including glial scarring.

Transcription factor CCAAT/enhancer-binding protein del-
ta (C/EBPδ) belongs to the CCAAT/enhancer-binding protein
(C/EBP) family. This protein is expressed at relatively low
levels under normal physiological conditions and is upregu-
lated in a number of inflammatory diseases by a variety of
extracellular stimuli, such as IL-6, IL-1β, and tumor necrosis
factor (TNF)-α [22–24]. Activated C/EBPδ in astrocytes pro-
motes chemo-attraction and migration of microglia/
macrophages [24]; it also contributes to the resistance of cell
death [24] and attenuates macrophage-mediated phagocytosis
of damaged neurons [23], suggesting its involvement in
neuro-inflammatory and anti-apoptotic responses.

Inflammatory cytokine IL-1β not only activates C/
EBPδ expression but also reduces astrocyte migration
via de-activation of the Rho/Rock signaling axis [25].
Nevertheless, whether and how C/EBPδ regulates the
transcription of Rho and Rock genes in astrocytes has

not been investigated. Moreover, phosphorylation of C/
EBPδ at Ser167 in astrocytes is associated with the tran-
scription of genes encoding MMP-1 and MMP-3, which
are implicated in macrophage/microglia migration [26].
However, the role of C/EBPδ in modulating astrocyte
motility and glial scar formation after SCI remains
unknown.

In this study, we hypothesized that C/EBPδ plays a
regulatory role in the inflammatory responses that follow
SCI and, therefore, contributes to glial scar formation in
the injured spinal cord. To test this hypothesis, we com-
pared a number of wound healing events, including glial
scarring, white matter sparing, and motor function recov-
ery, between wild-type and C/EBPδ-deficient (C/EBPδ−/−)
mice after SCI. We also investigated how C/EBPδ affect-
ed the migratory behavior of cultured astrocytes in vitro.
Our results provide new insights into the functional role
of C/EBPδ in glial scar formation and may lead to novel
therapeutic strategies for the treatment of SCI.

Results

C/EBPδ Expression in Astrocytes Is Associated with Glial
Scar Formation After SCI

To investigate the role of C/EBPδ in glial scar formation,
we first examined the expression of C/EBPδ in the injured
spinal cord of wild-type mice. After contusive SCI, glial
fibrillary acidic protein (GFAP)-positive astrocytes
formed a glial scar surrounding the lesion epicenter. Co-
localization of GFAP and C/EBPδ immunoreactivity was
evident along the lesion border (Fig. 1a and Sup. Fig. 1).
To further confirm its specificity, the anti-C/EBPδ anti-
body was applied to sections of C/EBPδ−/− mice as the
negative control, and no positive immunostaining was
found (Fig. 1b). Quantitative analysis showed that the
expression of C/EBPδ increased in the injured spinal cord
over time (Fig. 1c) and was strongly associated with
GFAP-positive astrocytes in the vicinity of the lesion epi-
center, particularly in the glial scar (Fig. 1d). These find-
ings suggest that the expression of C/EBPδ in astrocytes
participates in glial scar formation after SCI in mice.

C/EBPδ Deficiency Improves Motor Function Recovery
After SCI

To evaluate the effects of C/EBPδ on the recovery of
motor behavior after SCI, functional improvements were
assessed by a battery of behavioral tests, including open-
field locomotion, performance on a rotarod, and footprint
analyses in wild-type and C/EBPδ−/− mice. Mice of both
genotypes showed comparable functional outcomes in all
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three behavioral tests before SCI (day 0; Fig. 2a–c). On
day 28 after the injury, however, C/EBPδ−/− mice exhib-
ited significantly higher BMS locomotor scores, better
rotarod performance, and longer stride length of the
hindlimb compared with the wild-type mice (Fig. 2a–c).
Our results indicate that C/EBPδ is associated with func-
tional disabilities and that genetic deletion of C/EBPδ
promotes the recovery of hindlimb motor function after
SCI.

C/EBPδ Deficiency Results in Decreased Glial Scar
Formation and Increased White Matter Sparing After
SCI

In the injured spinal cord, the glial scar mainly consists
of reactive astrocytes and is a major barrier that blocks
neurite extension and axonal regeneration during the
chronic stage of SCI [27]. Our previous study showed
that C/EBPδ contributes to astrogliosis in Alzheimer’s
disease [26]. The glial scar is formed with substantially

increased expression of astrocytic GFAP. In the present
study, we found that GFAP immunostaining was more
widespread in the C/EBPδ−/− mice 28 days after SCI
but the area with intense GFAP immunoreactivity was
loosely distributed and fragmental around the lesion
compared with that in the wild-type mice (Fig. 3a).
This finding suggests a milder and less severe glial scar
in C/EBPδ−/− mice than in the wild-type mice after SCI.
To determine whether C/EBPδ deficiency and the conse-
quent less severe astrogliosis affect the sparing of cord
tissue after the injury, we further quantified the size of
residual white matter around the lesion epicenter in C/
EBPδ−/− and wild-type mice using Luxol Fast Blue stain-
ing. Residual white matter has been demonstrated to be
the best single measurement for the severity of injury in
the contused spinal cord and is predictive of motor func-
tion recovery [28]. We found that the area of residual
white matter was significantly larger in C/EBPδ−/− mice
than in wild-type mice 28 days after SCI (Fig. 3b). This
may account for the wider area of GFAP immunostaining
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Fig. 1 C/EBPδ is associated with GFAP-positive astrocytes in the glial
scar of wild-type mice after SCI. a Transverse sections of the spinal cord
obtained fromwild-typemice are immunostained with anti-GFAP and -C/
EBPδ antibodies at 14 days after spinal cord injury. Both GFAP and C/
EBPδ immunoreactivity is apparent in the residual cord tissue (dotted
lines) ventrolateral to the lesion epicenter particularly along the lesion
border. b At higher magnification, co-localization of GFAP and C/

EBPδ immunoreactivity is evident in astrocytes of wild-type mice,
whereas C/EBPδ immunoreactivity is negative in astrocytes of
C/EBPδ−/− mice. c Quantitative analyses (n=6 for each time point) show
that the intensity of C/EBPδ immunoreactivity increases significantly
over time in the injured spinal cord. d The percentage of GFAP-positive
astrocytes that is co-localized with C/EBPδ immunoreactivity increases
from 7 days post-injury onwards
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observed above in the C/EBPδ−/− mice (Fig. 3a). These
data suggest that C/EBPδ is involved in glial scar forma-
tion and depletion of C/EBPδ not only reduces glial
scarring but also promotes white matter sparing after
SCI.

C/EBPδ Does not Affect Astrocyte Proliferation
but Impedes Astrocyte Migration

We have previously demonstrated that glial scar forma-
tion is primarily attributed to astrocyte migration toward
the lesion with a relatively minor contribution from as-
trocyte proliferation [12]. Nevertheless, a recent study
shows that the glial scar immediately borders the lesion
core is formed by newly proliferated astrocytes with
elongated morphology [29]. We thus investigated the in-
volvement of C/EBPδ in both astrocyte migration and
proliferation using immunofluorescence in vivo and
in vitro. Our quantitative results showed that the number
of GFAP-positive astrocytes double-labeled with Ki-67, a
cell proliferation marker, were comparable between wild-
type and C/EBPδ−/− mice 7 days after SCI (Fig. 4a).

With the use of primary cultures of astrocytes purified
from wild-type or C/EBPδ−/− mice, similarly, there was
no statistically significant difference in the number of
proliferative astrocytes immunolabeled with anti-GFAP
and -Ki-67 antibodies (Fig. 4b). These results suggest
that C/EBPδ deficiency has no detrimental effect on as-
trocyte proliferation. Furthermore, we examined the con-
tribution of C/EBPδ in astrocyte migration using a
scratch wound paradigm in vitro with inflammatory cy-
tokine IL-1β to stimulate astrocyte reactivity. IL-1β is
known to activate the expression of C/EBPδ in human
glioblastoma-astrocytoma U373MG cells and is
expressed abundantly in the injured spinal cord [18].
Here, we found that IL-1β upregulated both the levels
of C/EBPδ mRNA and protein in cultured wild-type as-
trocytes in vitro (Fig. 4c). Interestingly, however, the
migration of wild-type astrocytes was significantly atten-
uated with IL-1β treatment, whereas the migratory be-
havior of C/EBPδ− /− astrocytes was not affected
(Fig. 4d). These findings indicate that the expression of
C/EBPδ mRNA and/or protein reduces the migration of
IL-1β-treated wild-type astrocytes in vitro.
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Fig. 2 C/EBPδ−/− mice exhibit
improved functional recovery
compared with wild-type mice
after SCI. a Based on the 9-point
BMS locomotor rating scale, C/
EBPδ−/− mice show better motor
function recovery in the open
field than the wild-type mice after
SCI, particularly at 28 days after
injury (n=6 per genotype). b
Likewise, C/EBPδ−/− mice per-
form significantly better on a
rotarod. c C/EBPδ−/− mice show
longer stride length on the foot-
print analysis than the wild-type
mice 28 days after SCI (n=6 per
genotype)

Mol Neurobiol (2016) 53:5912–5927 5915



C/EBPδ Attenuates Astrocyte Self-Migration
Through the Inhibition of RhoA

The expression of several key regulators, such as RhoA, Rac1,
Cdc42, and FAK, are involved in the signaling pathways that

promote cell migration [30–32]. Moreover, a previous study
has demonstrated that IL-1β induces reactive astrogliosis by
de-activating a signaling pathway mediated by Rho GTPase
and its downstream effector Rho kinase (ROCK) in human
astrocytes [25]. To elucidate the role of C/EBPδ in attenuated
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Fig. 3 C/EBPδ−/− mice display less severe glial scar formation and more
residual white matter than wild-typemice after SCI. a Transverse sections
of the spinal cord are immunostained with anti-GFAP antibody 28 days
after SCI. GFAP-positive astrocytes of the C/EBPδ−/− mice are relatively
dispersed, loosely aggregated in the glial limitans where the glial scar is
formed compared with those of the wild-type mice, suggesting a frag-
mental, less severe glial scar in the C/EBPδ−/− mice. Statistical analysis
reveals that the intensity of GFAP immunoreactivity is lower in the C/

EBPδ−/− mice than in the wild-type mice (n=6 per genotype). b Trans-
verse sections of the spinal cord are stained with Luxol Fast Blue to
visualize the residual white matter around the lesion epicenter 28 days
after SCI. C/EBPδ−/− mice show more prominent Luxol Fast Blue stain-
ing and quantitatively larger area of residual white matter than the wild-
type mice (n=6 per genotype). Dotted lines demarcate the residual cord
tissue
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astrocyte migration, we examined the expression of RhoA,
Rac1, Cdc42, and FAK in wild-type and C/EBPδ−/− astrocytes
treated with or without IL-1β in vitro. The result showed that
RhoA, but not Rac1, Cdc42, or FAK, was specifically and
substantially inhibited in IL-1β-treated wild-type astrocytes,
whereas such a reduction in RhoAwas not observed in IL-1β-
treatedC/EBPδ−/− astrocytes (Fig. 5a).Moreover, we conduct-
ed quantitative PCR (qPCR) to assess whether C/EBPδ atten-
uated RhoA transcription at the mRNA level. The result
showed that, with IL-1β treatment, RhoA transcription was
significantly reduced in wild-type astrocytes but remained un-
affected in C/EBPδ−/− astrocytes (Fig. 5b). In a reporter assay,
furthermore, we found that the activity of the RhoA reporter
was inhibited in IL-1β-treated wild-type astrocytes but was
unchanged in C/EBPδ−/− astrocytes treated with/without IL-
1β (Fig. 5c). We also conducted a chromatin immunoprecip-
itation (ChIP) DNA binding assay followed by PCR in vivo to

further verify whether C/EBPδ repressed RhoA transcription
by directly binding to its promoter. The results showed a direct
binding of C/EBPδ to the promoter of RhoA in IL-1β-treated
wild-type astrocytes, evidenced by immunoprecipitation of
cross-linked C/EBPδ and its target RhoA promoter, as well
as subsequent PCR outcomes (Fig. 5d). These results suggest
that attenuated migration of astrocytes that express C/EBPδ is
a consequence of RhoA inhibition.

To further determine the correlation between astrocytic C/
EBPδ and RhoA, we used double immunostaining to locate
the expression of C/EBPδ and RhoA in the injured spinal cord
14 days after SCI. In the wild-type mice, strong C/EBPδ im-
munoreactivity was found in reactive astrocytes located in the
glial scar along the lesion border where the intensity of RhoA
immunoreactivity was low. Conversely, however, astrocytes
in the penumbral region between the lesion border and the less
injured tissue exhibited weak C/EBPδ immunoreactivity but
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Fig. 4 C/EBPδ does not promote astrocytic proliferation but does affect
migration. a Transverse sections of the spinal cord are immunostained
with anti-GFAP antibody to label reactive astrocytes and the anti-Ki-67
antibody to identify proliferative cells. Quantitative analysis shows that
the number of proliferative astrocytes is comparable between C/EBPδ−/−

and wild-type mice 7 days after SCI. b Similarly, cultured primary astro-
cytes isolated from the cortex ofC/EBPδ−/− and wild-type mice exhibit no
statistical difference in cell proliferation, suggesting that C/EBPδ does not
affect astrocyte proliferation. c qPCR and Western blots reveal that the
expression of both C/EBPδ mRNA and protein increases significantly in

wild-type astrocyte cultures treated with IL-1β, an inflammatory cytokine
known to activate C/EBPδ expression, for 3 h compared with all the other
groups. dA scratchwound assay is conducted with IL-1β treatment using
primary cultures of C/EBPδ−/− and wild-type astrocytes as described in
the BMaterials and Methods^ section. Wild-type astrocytes treated with
IL-1β manifest reduced migration compared with untreated wild-type
astrocytes. However, the migration of C/EBPδ−/− astrocytes is not affect-
ed regardless of IL-1β treatment. Data obtained from three triplicates are
analyzed. Arrows and arrowheads point to proliferative astrocytes
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relatively high RhoA expression (Fig. 6 and Sup. Fig. 2).
Injured C/EBPδ−/−mice, on the other hand, showed consistent
RhoA immunoreactivity in astrocytes anywhere in the resid-
ual cord tissue (Fig. 6). This finding suggests that C/EBPδ
inhibits RhoA expression, especially in reactive astrocytes
located in the glial scar at the edge of the lesion epicenter after
SCI.

C/EBPδ Induces Astrocytic Expression of MMP-3,
Which Promotes the Migration of Inactive Astrocytes

Although our in vitro outcomes demonstrated that C/EBPδ
inhibited astrocytic expression of RhoA and thus astrocyte

migration (Fig. 5), this finding contradicted our in vivo study
that wild-type mice showed more intense astrogliosis abutting
the lesion compared with C/EBPδ−/− mice after SCI (Fig. 3).
This discrepancy implied a possibility that the inhibitory effect
of C/EBPδ on RhoA and consequent inhibition of astrocyte
migration was counteracted by other predominant promoting
factors, giving rise to enhanced astrocyte motility and
astrogliosis in injured wild-type mice in vivo.

To explore this possibility, we first determined whether
or not wild-type astrocytes, which expressed C/EBPδ up-
on IL-1β pretreatment, produced any promoting factors
that facilitated astrocyte motility in vitro. Cultured wild-
type and C/EBPδ−/− astrocytes were treated with or
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fied. The results are normalized with β-actin and presented as the change
in folds relative to the IL-1β-untreated wild-type control. The expression
of RhoA is substantially reduced in wild-type astrocytes treated with IL-
1β for 6 h compared with astrocytes of the other condition or genotype,
although the expressions of Rac1, Cdc42, and FAK are not affected. b

qPCR also confirms a significant reduction in RhoA mRNA in wild-type
astrocytes treated with IL-1β for 3 h. c A reporter assay demonstrates
similar outcomes using primary astrocytes transfected with the RhoA
reporter, followed by IL-1β treatment and detection of the luciferase
activity. d A ChIP assay is conducted using IL-1β-treated primary wild-
type astrocytes. Immunoprecipitated product (P) captured by anti-C/
EBPδ antibody contains C/EBPδ and its binding target RhoA promoter,
which is subsequently verified by PCR. The results suggest that C/EBPδ
represses RhoA transcription by direct binding to RhoA promoter in IL-
1β-treated wild-type astrocytes
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without IL-1β for 6 h, followed by a thorough rinse with
phosphate-buffered saline (PBS) and replacement of cul-
ture media by serum-free Dulbecco’s modified Eagle’s
medium (DMEM) for 12 h. Then, these four conditioned
media were applied respectively to four groups of non-IL-
1β-stimulated, inactive wild-type astrocyte cultures. With
the use of scratch wound assays, we found a significant
increase in astrocyte migration in the group cultured with
the conditioned medium collected from IL-1β-pretreated
wild-type astrocytes, compared with the other three
groups (Fig. 7a); this suggests that astrocytes expressing
C/EBPδ upon IL-1β stimulation indeed secrete factors
that promote the migration of inactive astrocytes.

To further identify the promoting factors produced by as-
trocytes after IL-1β-induced C/EBPδ activation, a number of
assays were conducted to analyze astrocytic expression of
MMP-3 at protein and mRNA levels. Previously, we demon-
strated an increased expression ofMMP-3mRNA in response
to C/EBPδ activation in glioblastoma-astrocytoma U373MG
cells [26]. Here, we found that the quantity of MMP-3 mRNA
and protein increased significantly after IL-1β treatment in
primary cultures of wild-type astrocytes compared with those
in C/EBPδ−/− astrocytes (Fig. 7b). Moreover, after three puta-
tive C/EBP binding motifs were identified (Fig. 7c, upper
panel) using the EnsMart System (www.ensembl.org/

biomart/martview/c6c926d9815de045873590a6da1ac151),
our reporter assay demonstrated that the activity of theMMP-
3 reporter rose significantly after IL-1β treatment in primary
cultures of wild-type astrocytes compared with that in C/
EBPδ−/− astrocytes (Fig. 7c, bottom panel).

By using a ChIP DNA binding assay followed by PCR,
furthermore, we found that C/EBPδ bound directly to the pro-
moter region of the MMP-3 gene in IL-1β-treated wild-type
astrocytes in vitro (Fig. 7d). This finding was consistent with
the results of immunofluorescence in vivo, which demonstrat-
ed higher MMP-3 immunoreactivity in GFAP-positive astro-
cytes around the lesion epicenter in the wild-type mice than in
the C/EBPδ−/− mice 28 days after the injury (Fig. 7e).

In addition, a scratch wound assay was performed to
verify the contribution of MMP-3 in the migration of
inactive astrocytes. ShLacZ-knockdown and shMMP-3-
knockdown astrocytes were treated with IL-1β, rinsed
with PBS, and then incubated with serum-free DMEM
for 12 h. Subsequently, the conditioned media were col-
lected and applied respectively to primary cultures of IL-
1β-untreated, inactive wild-type astrocytes for the scratch
assay. The results showed that the conditioned medium
collected from IL-1β-treated shLacZ-knockdown astro-
cytes significantly enhanced the migration of inactive
astrocytes compared with that harvested from IL-1β-
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Immunostaining demonstrates a
regional heterogeneity in the ex-
pression of C/EBPδ and RhoA in
injured wild-type mice. GFAP-
positive astrocytes boarding the
lesion epicenter (dotted line)
show increased C/EBPδ but re-
duced RhoA expression, whereas
those at the penumbral region be-
tween the lesion border and the
less injured tissue exhibit con-
verse results. In the C/EBPδ−/−

mice, RhoA is expressed in as-
trocytes ubiquitously in the in-
jured spinal cord. The boxed area
is enlarged in the upper right cor-
ner of each photograph
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treated shMMP-3-knockdown astrocytes (Fig. 7f). This
result suggests that IL-1β-stimulated astrocytes secret
MMP-3, which in turn facilitates the migration of non-
IL-1β-stimulated, inactive astrocytes.

C/EBPδ is Integral to Glial Scar Formation After SCI

Taking all our findings together, we herein propose a model
depicting how C/EBPδ modulates glial scar formation after
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Fig. 7 Conditioned medium from wild-type astrocytes expressing C/
EBPδ promotes migration of the inactive astrocytes through MMP-3
activation. a In a wound healing assay, IL-1β-untreated, inactive wild-
type astrocytes grow in conditioned media obtained from wild-type or C/
EBPδ−/− astrocytes pretreated with or without IL-1β. Astrocytes show
enhanced migration when cultured in the conditioned medium collected
from IL-1β-pretreated wild-type astrocytes, suggesting a promoting ef-
fect of this conditioned medium on migratory behavior. b qPCR and
Western blots reveal that the expression of both MMP-3 mRNA and
protein increases significantly in wild-type astrocytes treated with IL-1β
for 6 h. p84 is used as the loading control for Western blots. c A reporter
assay shows that, when wild-type orC/EBPδ−/− astrocytes are transfected
with theMMP-3 reporter, luciferase activity increases significantly in IL-
1β-treated wild-type astrocytes. dA ChIP assay demonstrates that, in IL-
1β-treated wild-type astrocytes, immunoprecipitated product (Q)

captured by anti-C/EBPδ antibody contains both C/EBPδ and its binding
target on theMMP-3 promoter, which is evidenced by the PCR, suggest-
ing a direct binding of C/EBPδ to the MMP-3 promoter. e Transverse
sections of the spinal cord immunostained with anti-GFAP and -MMP-3
antibodies demonstrate that wild-typemice exhibit higherMMP-3 immu-
noreactivity in the penumbral region (asterisks) lying between the lesion
epicenter and the less injured tissue compared with the C/EBPδ−/− mice
28 days after SCI. fA scratch wound assay of wild-type astrocytes shows
that the conditioned medium harvested from IL-1β-treated shLacZ-
knockdown astrocytes significantly enhances astrocyte migration, which
can be attenuated by the conditioned medium collected from IL-1β-
treated shMMP-3-knockdown astrocytes (three left columns). Altered
migratory behavior of these astrocytes is consistently associatedwith their
expression of MMP-3 mRNA (three right columns)
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SCI (Fig. 8). After SCI, inflammatory cytokine IL-1β released
from the lesion epicenter activates the expression of C/EBPδ
in reactive astrocytes located immediately along the lesion
border. Activated C/EBPδ inhibits the cytoskeleton regulatory
protein RhoA and consequently impedes the migration of
these reactive astrocytes. Meanwhile, C/EBPδ in reactive as-
trocytes also enhances the expression of MMP-3, which pre-
dominantly promotes the migration of adjacent inactive astro-
cytes in the penumbral region toward the lesion border, giving
rise to a densely packed glial scar.

Discussion

Our studies provide novel evidence demonstrating that C/
EBPδ promotes glial scar formation and plays dual roles in
astrocyte migration after SCI. We show that C/EBPδ was
expressed by reactive astrocytes along the lesion border and
that C/EBPδ−/− mice exhibited reduced glial scar, more resid-
ual white matter, and better motor function recovery than
wild-type mice after the injury. Although increased expression

of C/EBPδ in response to IL-1β stimulation repressed RhoA
transcription and thus inhibited astrocyte motility in vitro, C/
EBPδ also enhanced the transcription and secretion of MMP-
3, which selectively promoted the migration of non-IL-1β-
treated, inactive astrocytes. Together, our results suggest that
C/EBPδ can modulate astrocyte motility and is integral to glial
scar formation after SCI.

Our study revealed that approximately 84∼90 % of C/
EBPδ immunoreactivity co-existed with GFAP after SCI,
indicating that non-astroglial cell types likely contributed
to the other 10∼16 % of C/EBPδ expression. Similarly,
our previous study shows that 95 % of C/EBPδ signal is
co-localized with GFAP-positive cells in AppTg mice
[26]. Moreover, C/EBPδ is expressed in both astrocytes
and microglia in the brain of mice treated with lipopoly-
saccharide (LPS) [33]. Although the possible involvement
of non-astroglial cells in the expression of C/EBPδ cannot
be entirely excluded, astrocytic C/EBPδ appears to play a
major role in glial scar formation during wound healing
because C/EBPδ is expressed mostly by reactive astro-
cytes after SCI.

Our result of immunofluorescence showed that C/EBPδ
was expressed in both nuclei and cytoplasm of astrocytes in
the glial scar using the antibody previously described (Geneka
Biotechnology, Montreal, Canada) [34]. Cytosolic C/EBPδ
does not seem consistent with its role as a transcription factor.
Interestingly, however, a previous study shows that cAMP-
dependent protein kinase contributes to C/EBPδ shuttling
from cytosol to the nucleus in osteoblasts [35], suggesting that
cytosolic C/EBPδ exists. Nevertheless, the biological function
of cytosolic C/EBPδ needs to be further investigated.

Astrogliosis has been observed under inflammatory condi-
tions in several acute and chronic neurological disorders, in-
cluding SCI, Alzheimer’s disease, and Parkinson’s disease
[24, 36, 37]. Reactive astrogliosis is characterized by a densely
packed, trabecular meshwork of astrocytes, which eventually
forms a scar [37]. Glial scar formation is a complex process that
involves the migration and proliferation of reactive astrocytes
[12, 29]. IL-1β plays a specific role in the primary initiation of
astrocytic reactivity in response to an injury [18]. Nevertheless,
a previous study showed that IL-1β inhibits astrocyte migration
through de-activation of the Rho/Rock1 pathway, which regu-
lates the dynamics of the actin cytoskeleton [25, 38] and is
associated with astrocyte motility in vitro and astrogliosis after
SCI [39–41]. Similarly, RhoA knockdown inhibits the migra-
tion of cancer cells [42]. Consistent with those finding, we
found that IL-1β upregulated astrocytic C/EBPδ, which in turn
suppressed RhoA expression and the self-migration of the as-
trocytes in vitro. This effect of impeded self-migration was lost
in IL-1β-treatedC/EBPδ−/− astrocytes, suggesting an inhibitory
role of C/EBPδ in RhoA expression and likely the downstream
Rho/Rock signaling pathway, culminating in restrained astro-
cyte motility upon IL-1β stimulation.

Fig. 8 A schematic diagram illustrates the proposed model for the
modulatory effect of C/EBPδ on astrocyte migration and glial scar for-
mation after SCI. In response to the injury, inflammatory cytokine IL-1β
released in the lesion epicenter activates astrocytic expression of C/EBPδ,
which in turn inhibits RhoA expression and thus impedes the migration of
the astrocytes located along the lesion border. Simultaneously, C/EBPδ
upregulates astrocytic expression of MMP-3. Diffusion of MMP-3 pro-
motes the migration of neighboring astrocytes, particularly those in the
penumbral region between the lesion border and less injured cord tissue.
Consequently, astrocytes in the penumbral region with relatively high
RhoA expression and an enriched MMP-3 environment migrate toward
the lesion border where they aggregate to form a glial scar. Relative
gradients of C/EBPδ, RhoA, and MMP-3 are illustrated on the right
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Some research suggests that glial scar formation is ben-
eficial to wound healing by preventing inflammatory
cells, such as macrophages and microglia, in the lesion
from infiltrating into the surrounding neural parenchyma
to cause secondary damage [2, 4, 5, 43, 44]. In our im-
munofluorescence study, we found that astrocytes located
immediately adjacent to the lesion site expressed high
levels of C/EBPδ but low levels of RhoA in wild-type
mice after SCI. From the aspect of neuroprotection,
C/EBPδ, under such conditions, appears to immobilize
these astrocytes to seclude the inflammatory cells in the
lesion. Nevertheless, this benefit, if there is any, is appar-
ently outweighed by the detrimental glial scar that ad-
versely affects motor function recovery, as observed in
the wild-type mice with SCI. On the other hand, injured
C/EBPδ−/− mice show reduced glial scarring and im-
proved locomotor recovery. In fact, we have demonstrated
previously that activated microglia/macrophages are re-
duced in the brain of amyloid precursor protein transgenic
and C/EBPδ-deficient (APPTg/C/EBPδ−/−) mice, indicat-
ing a relatively mild inflammation in these mice due to
the lack of Cepbd compared with the wild-type mice [45].

We found that C/EBPδ directly repressed the transcription
of RhoA, but not Cdc42, Rac1, or FAK in IL-1β-treated wild-
type astrocytes. Sumoylation, a post-translational modifica-
tion process affecting the structure and subcellular localization
of a protein, is required for the suppression of C/EBPδ-
dependent transcription in cells treated with EGF and
lipogenic inducers [46, 47]. However, whether this post-
translational modification participates in the C/EBPδ-
mediated repression of RhoA transcription in IL-1β-treated
astrocytes needs to be further investigated.

Our research suggested that C/EBPδ inhibited astrocyte
migration at the lesion border but, contradictorily, C/EBPδ
also enhanced the overall glial scarring in wild-type mice after
SCI. This finding raises an intriguing question about whether
C/EBPδ concomitantly induces promoting factors that pre-
dominantly counteract the inhibitory effect of C/EBPδ on
RhoA expression, leading to enhanced overall motility of as-
trocytes and thus extensive glial scar formation. Indeed, we
found that IL-1β-treated astrocytes with increased C/EBPδ
expression produced MMP-3 in the conditioned medium,
which facilitated the migration of non-IL-1β-treated, inactive
astrocytes in vitro.

In the injured wild-type mouse, moreover, astrocytes ex-
hibited relatively low C/EBPδ but high RhoA expression in
the penumbral region lying between the lesion border and the
less injured tissue where MMP-3 was evident, suggesting
higher migratory activity of these astrocytes that ultimately
form a glial scar. Conversely, the glial scarring was not appar-
ent in the C/EBPδ−/− mouse, despite obvious RhoA expres-
sion, because of low MMP-3 levels in the injured cord. This
outcome supports the involvement of astrocytic C/EBPδ in

MMP-3 expression, which promotes astrocyte motility after
SCI.

MMP-3 is upregulated in astrocytes after brain injury. Our
previous micro-array data showed that C/EBPδ upregulates
MMP-3 expression in human glioblastoma-astrocytoma
U373MG cells. Moreover, MMP-3 may activate the expres-
sion of MMP-9 in tumor cells [48]. MMP-9 has been demon-
strated to facilitate astrocyte migration, promote glial scar for-
mation, and inhibit axonal regeneration and functional recov-
ery after SCI [12, 49]. Our results add to further understanding
of how C/EBPδ contributes to astrocyte motility and glial scar
formation through upregulation of MMPs after SCI.

In addition to astrocytes, microglia also express MMP-3,
for instance, upon amyloid-β stimulation [50]. Although pre-
vious studies suggest that IL-1β has no detectable effect on
the expression of MMP3 gene in pure microglia culture [51],
the involvement of microglia in the process of astrocyte mi-
gration and glial scar formation has to be taken into account
when microglia-astrocyte interaction exists. It is noteworthy
that the astrocyte culture system used in the present research is
mixed with microglia at least to a small extent. Thus the pos-
sibility that microglia may affect the migratory behavior of
astrocytes in vitro cannot be completely excluded unless
microglia-free astrocyte cultures are used [51, 52].
Moreover, although we demonstrated that MMP-3 was
expressed in astrocyte cultures by IL-1β stimulation in vitro,
whether astrocytic expression of MMP-3 was solely IL-1β-
dependent in the injured spinal cord needs further investiga-
tions. We showed previously that elevated expression of C/
EBPδ in astrocytes indirectly promotes the activation of mi-
croglia through the expression of a chemoattractant monocyte
chemotactic protein-1 (MCP-1) [26]. Nevertheless, additional
research on the interplay between astrocytes and microglia
upon the influence of C/EBPδ will better elucidate the role
of microglia in glial scar formation during wound healing after
SCI.

As discussed above, inflammatory responses following the
injury are triggers for glial scar formation [53]. C/EBPδ has
been suggested to regulate many inflammatory molecules,
such as TNF-α, IL-1β, IL-6, CXCL1, IL-17A, MCP-1,
PTX3, and COX-2 [45, 46, 54, 55]. In addition to C/EBPδ,
activation of transcription factors NF-κB, CREB, and STAT3
in astrocytes has been observed in many neuro-inflammatory
diseases. Several studies have shown that NF-κB, CREB, and
STAT3 are the upstream transcriptional activators of the C/
EBPδ gene in various cell types [56–58]. In astrocytes,
CREB has been suggested to play an important role in C/
EBPδ transcription [59]. Among these three transcription fac-
tors, the activation of astrocytic NF-κB and STAT3 has been
suggested to play important roles particularly in the upregula-
tion of intermediate filaments, hypertrophy of the cell body,
and glial scar formation after SCI [29, 60, 61]. However, the
involvement of astrocytic CREB in SCI remains unclear.
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More detailed studies regarding the transcriptional activation
of C/EBPδ in response to IL-1β in astrocytes are needed to
further define the roles of C/EBPδ, NF-κB, CREB, and
STAT3 in reactive astrogliosis after SCI.

In conclusion, our studies demonstrate for the first time
the involvement of C/EBPδ in glial scar formation by
modulating astrocyte motility after SCI. Although inflam-
mation is a series of complex processes initiated from the
original insult, inhibition of C/EBPδ or C/EBPδ-mediated
downstream genes or proteins may ultimately become a
therapeutic option in the future to reduce glial scarring
and associated secondary pathogenesis to improve func-
tional outcomes after SCI.

Materials and Methods

This study was approved by the Institutional Animal Care and
Use Committee at National Cheng-Kung University, Taiwan,
in accordance with the Guideline for the Care and Use of
Laboratory Animals. The C/EBPδ−/− mice were provided as
a gift by Dr. E. Sterneck [62].

Primary Cultures of Mouse Astrocytes

Primary astrocytes were isolated from the cerebral cortex of
wild-type or C/EBPδ−/− newborn mice by mechanical disso-
ciation. The isolated cells were then filtered through a 70-μm
nylon strainer (Millipore, Bedford, MA) and cultured in a
poly-L-lysine-coated flask containing the medium as previ-
ously described [12, 24, 29]. This method of cortical astrocyte
culture is widely used in research on spinal cord injury
in vitro. The purity of astrocyte cultures was approximately
95 %, determined by anti-GFAP immunostaining and nuclear
staining with Hoechst dye.

Scratch Wound Assay

The mouse primary astrocytes were grown in Dulbecco’s
modified Eagle’s medium (DMEM) with 10 % Fetal
bovine serum (FBS) for 24 h. Then, the confluent mono-
layer of astrocytes was scratched with a Culture-Insert
(ibidi GmbH, Martinsried, Germany). After washing with
phosphate-buffered saline (PBS), the experimental cells
were grown in 10 ng/mL IL-1β or in the conditioned
media described above. The scratched area was
photographed at 0 and 21 h after the scratch wound was
made for subsequent quantitative analyses using NIH
ImageJ image processing software. The size of the
scratched area covered by migrating astrocytes at 21 h
was first delineated, measured, and then compared with
the measurement obtained at 0 h (100 %).

Contusive Spinal Cord Injury

Adult female wild-type or C/EBPδ−/− mice with the C57BL/6
genetic background, weighing 20–30 g and 3∼6 months of
age, were anesthetized with 2.5 % Avertin (0.02 mL/g body
weight, intraperitoneal administration, tribromoethanol;
Sigma, St. Louis, MO) and subjected to a moderate contusion
injury to the spinal cord at the mid-thoracic level as described
previously [49]. Briefly, a laminectomy was performed at the
eighth thoracic vertebra and a 2-g weight was dropped from a
height of 5 cm onto the exposed dura mater. After the injury,
the overlying muscles were sutured, and the skin was closed
with wound clips. The body temperature of the animals was
maintained at 37 °C with a heating pad throughout the surgery
and during the recovery from anesthesia. Postoperative care
included subcutaneous administration of antibiotics and man-
ual expression of the bladder twice per day.

Assessment of Open-Field Locomotion

The 9-point Basso Mouse Scale (BMS) for locomotor rating
[63] was used to examine the locomotor recovery of the in-
jured animals. This rating scale assessed limb movement,
stepping, coordination, and trunk stability in an open field
(53×108×5.5 cm). Injured animals with better locomotor re-
covery scored higher. One trial, which lasted for 3 min, was
performed before the injury (day 0) and on day 7, 14, 21, and
28 after the injury.

Rotarod and Footprint Analysis

The rotarod test was conducted as described previously [61].
Briefly, the injured mice were placed on a rod rotating from 0
to 30 rpm, and the time that the mice ran on the rod before
falling was measured. Each trial lasted for a maximum of
3 min and was repeated three times. For the footprint analysis,
the hindpaws of the mice were painted with ink to record the
walking pattern during continuous locomotion across a paper
runway (3×30 cm) 4 weeks after the injury. The stride lengths
were measured and analyzed only when the mice ran at a
constant velocity. Strides over the first and last 5 cm of the
passage were excluded because of the variation in the walking
velocity of the mice.

Quantitative PCR

Total RNA was extracted using the TRIsure RNA extraction
reagent (Invitrogen). cDNA synthesis was performed with an
RT reaction using SuperScript III (Invitrogen). Quantitative
PCR (qPCR) was conducted using KAPA SYBR FAST
qPCR Master Mix (Life Technologies Corporation and Kapa
Biosystems Inc.). PCR was conducted using a CFX connect
Real-Time PCR System (BIO-RAD) with the following pairs
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of specific primers: mouse C/EBPδ (forward): 5 ′-
CTCCCGCACACAACATACTG-3′ and C/EBPδ (reverse):
5′-AGTCATGCTTTCCCGTGTTC-3′, mouse MMP-3 (for-
ward): 5′-TGGAACCTGAGACATCACCA-3′ and MMP-3
(reverse): 5′-GATGGAAGAGATGGCCAAAA-3′, mouse
RhoA (forward): 5′-TGGTTGGGAACAAGAAGGAC-3′
and RhoA (reverse): 5′-CAAGATGAGGCACCC AGACT-
3′. Then the quantity of mRNA was determined by NIH
ImageJ software. The result of each group was normalized
with that of the IL-1β-untreated wild-type astrocytes and
was expressed as the difference in folds.

Western Blot Analysis

The cells were harvested and lysed with modified RIPA buffer
(50 mM Tris-HCl [pH 7.4], 150 mM sodium chloride, 1 mM
ethylenediamine tetra-acetic acid, 1 % NP40, 0.25 % sodium
deoxycholate, 1 mM dithiothreitol, 1 mM PMSF, 1 μg/mL
aprotinin, and 1 μg/mL leupeptin). The lysates were resolved
on a sodium dodecyl sulfate gel containing 10 % polyacryl-
amide, then transferred to a polyvinylidene difluoride nylon
membrane and probed with primary antibodies for the target
proteins at 4 °C overnight. The primary antibodies used in-
cluded anti-p84 (Clone: 5E10, GeneTex), −Rac1
(GTX100761, GeneTex), −Cdc42 (GTX100904, GeneTex),
−RhoA (ab68826, Abcam, Cambridge, MA), −FAK (#3285,
Cell Signaling Technology, Danvers, MA), −MMP-3 (JM-
3523-100, MBL International, Woburn, MA), and -β-Actin
(sc-1616, Santa Cruz Biotechnology, Santa Cruz, CA). As
the molecular weight of MMP-3 is close to that of β-actin,
p84 (84 kDa) was used as the loading control for probing
MMP-3. The specific proteins were detected by incubation
with a peroxidase-conjugated secondary antibody at room
temperature for 1 h. The signals were visualized using an
enhanced chemiluminescence Western blot system (Pierce,
Rockford, IL). Then the chemiluminescence intensity was
quantified using NIH ImageJ software. The result of each
group was normalized with that of the untreated wild-type
astrocytes and was expressed as the difference in folds.

Luciferase Reporter Assay

The 5′ flanking regions of theMMP-3 genes were obtained by
PCR with genomic DNA and then individually cloned into a
pGL3 basic vector. The primers for PCR of the genomic DNA
were as follows: MMP-3 (forward): 5′-XhoI-CCGC
TCGAGCGGAAGACTGGAGAAGGAGGCTG-3′ and
MMP-3 ( reve r se ) : 5 ′ -HindI I I -CCCAAGCTTGG
GCTGCCTCCTTCTAGGTCCAC-3′ and RhoA (forward):
5 ′ -KpnI-GGGGTACCCCCAGGAGAACCCAATG
GTACAG-3′ and RhoA (reverse): 5′-XhoI-CCGCTCG
AGCGGATCCACGCCCTGAGAGCTAGAC-3′. For the re-
porter assay, the cells were transfected with the reporters and

expression vectors as indicted using poly-Jet (SignaGen,
Ijamsville, MD). The lysates of the transfected cells were har-
vested following the manufacturer’s instructions for the lucif-
erase assay. The luciferase activity of the reporters in each cell
group was quantified and normalized with that of the IL-1β-
untreated wild-type astrocytes.

Chromatin Immunoprecipitation Assay

Briefly, mouse primary astrocytes were treated with 1% form-
aldehyde for 15 min. The cross-linked chromatin was then
prepared and sonicated to an average size of 500 base pairs.
The DNA fragments were immunoprecipitated with a specific
antibody recognizing C/EBPδ (sc-636, Santa Cruz
Biotechnology) or a rabbit immunoglobulin (Ig) G as the con-
trol at 4 °C for 12–16 h. After reversal of the cross-link be-
tween the proteins and the genomic DNA, the precipitated
DNAwas amplified by PCR with primers related to the spe-
cific regions of the genomic loci of the target genes. The
primers were as follows: MMP-3 (forward), 5′-CAAACA
TTACAGCTCTGGAAGG-3′ and MMP-3 (reverse), 5′-
CTTAAGCCCAACTTTTATAGAGTGG-3′ or RhoA (for-
ward), 5′-CAGGAGAACCCAATGGTACAGT-3′ and RhoA
(reverse), 5′-GCAAGCGAAGTAGATCTTCC-3′.

Immunofluorescence Analysis

Frozen sections of the spinal cord were cut transversely at
20 μm, mounted onto glass slides, and treated with protein
blocker/antibody diluents (Bio SB, Santa Barbara, CA, USA)
for 1 h. Then, the sections were incubated overnight with
primary antibodies diluted in the same buffer at 4 °C for im-
munofluorescent staining. The primary antibodies included
anti-GFAP (Clone: 2.2B10, Invitrogen), −C/EBPδ (Geneka
Biotechnology, Montreal, Canada), −Ki-67 (M3064, Spring
Bioscience, Pleasanton, CA), −RhoA, and -MMP-3 antibod-
ies. For the staining of cell cultures, primary astrocytes were
post-fixed in 4 % paraformaldehyde in PBS for 20 min,
followed by 70 % methanol in PBS at −20 °C for 10 min.
The fixed primary astrocytes were further incubated with pri-
mary antibodies against the target proteins in 3 % BSA at
4 °C. Frozen section or primary astrocytes were then washed
with 0.2% Triton X-100 in PBS, incubated with Alexa 488- or
555-conjugated secondary antibodies (Invitrogen) for 1 h at
room temperature, and washed again with 0.2 % Triton X-100
in PBS. The glass slides were counter-stained and cover-
slipped with ProLong Gold anti-fade reagent with 4′,6-
diamidino-2-phenylindole for immunofluorescence microsco-
py. The intensity of immunoreactivity was analyzed quantita-
tively using TissueQuest imaging software (TissueGnostics,
Austria) with a module in which a threshold value was first
determined empirically to eliminate the background staining
of the uninjured cord tissue and then applied to the sections
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containing the lesion epicenter. The area with fluorescent in-
tensity higher than the threshold value was considered immu-
noreactive and was calculated, averaged with those of the
same mouse group, and reported as a percentage. Co-
expression or co-localization of GFAP and C/EBPδ immuno-
reactivity was calculated by the formula [(GFAP/ C/EBPδ
double positive signals)/ total C/EBPδ positive signals]%.

Luxol Fast Blue Assay

Luxol Fast Blue staining was used to visualize the residual
white matter around the lesion epicenter of the injured spinal
cord. Cross sections of the spinal cord were rinsed in 50 %
ethanol, followed by gradient dehydration in 75, 85, and 95%
ethanol for 3 min each. The sections were stained with 0.1 %
Luxol Fast Blue containing 0.5 % glacial acetic acid in 95 %
ethanol at 60 °C for 3 h. After a rinse in 95 % alcohol and
distilled water, the sections were incubated in 0.05 % lithium
carbonate solution for 3 min, followed by color differentiation
in 70 % ethanol and distilled water. The sections were
dehydrated and clarified in gradient ethanols and xylene, re-
spectively, and cover-slipped with Micromount. The area of
the residual white matter was then measured by the NIH
ImageJ software.

Lentiviral Knockdown

The virus was produced from Phoenix cells by co-transfecting
various shRNA expression vectors in combination with the
pMD2.G and psPAX2 expression vectors. The expression
vectors were obtained from the National RNAi Core Facility
located at the Genomic Research Center of the Institute of
Molecular Biology, Academia Sinica, Taiwan. After deter-
mining the viral infection efficiency, the lentivirus containing
shβ-galactosidase (shLacZ) or shMMP-3 was used to infect
primary astrocytes for 48 h. The shRNA sequences in the
len t iv i ra l express ion vec to r s were shLacZ: 5 ′ -
CCGGTGTTCGCATTATCCGAACCATCTCGAGATGGT-
TCGGAT AATGCGAACATTTTTG-3′, and shMMP-3: 5′-
CCGGCC CACATATTGAAGAGCAATACTCGAG
TATTGCTCTTCAATATGTGGGTTTTTG-3′.

Preparation of Conditioned Media

Conditioned media were harvested from primary cultures of
wild-type or C/EBPδ−/− astrocytes infected with the shLacZ
or shMMP-3 lentivirus. Briefly, experimental cells were
grown in DMEM with 10 % FBS for 24 h and then treated
with or without IL-1β for 6 h in serum-free DMEM. After
washing with PBS, the IL-1β-pretreated cells were cultured
in serum-free DMEM. After another 12 h, the supernatants
from the cultures were centrifuged, filtered, and stored at
−80 °C for further use.

Statistical Analysis

All experiments were repeated at least three times, and the
data were analyzed for statistical significance using the two-
tailed unpaired Student’s t test (Prism 5 software). Two-way
ANOVA, followed by Bonferroni’s post hoc test, was per-
formed for multiple comparisons between groups. The data
were expressed as the means and standard error of mean
(±SEM). A statistically significant difference was defined at
*p<0.05, **p<0.01, and ***p<0.001.
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