ALTERATIONS OF TRANSCRIPTIONAL REGULATION
IN CANCER
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DYSREGULATION OF MASTER TRANSCRIPTION FACTOR
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DYSREGULATION OF ACTIVATED SIGNALLING TRANSCRIPTION FACTOR
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DYSREGULATION OF ONCOGENIC TRANSCRIPTION FACTOR
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Chromatin remodelling plays a role in disease: transcription activation
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Chromatin remodelling plays a role in disease: transcription activation

Normal chromatin
(e.g. histone
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Efficient transcriptional signaling from
enhancers to promoters is often
chromatin dependent, mediated by
specialized transcriptional cofactors that
physically associate with or biochemically
modify the genome to reinforce gene
activation or repression. Chromatin
regulators function globally, so their
dysregulation can also have profound
effects on the gene expression program of
cells



Long range interactions are mediated by CTCF and cohesin
and define specific regulatory domain

Insulated neighborhoods




Cohesin mutation may disrupt long range interactions
between enhancer-promoter
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CTCF mutation may favorite long range interactions
between enhancer-promoter

CTCF mutation
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Mechanisms that lead SE formation

A

Super-enhancer

Super-enhancer

DMNA breaks Translocation Oncogene
i i o e
— — — —
e

DNA breaks

tgo!

Insertion of a
MTF binding site

!

Focal Er‘ﬂpliﬁﬂﬂti{}r‘l
L: g -
/ersowo, T
i
N
Small insertion
i g

Ny




Activation of silent proto-oncogenes by somatic mutations
that disrupt insulated neighborhood anchor sites
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Molecular mechanisms that may be used for drug discovery
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The drug-tolerant tumor cells can, in turn, be ablated with histone deacetylase
inhibitors, establishing a paradigm of combination therapy using

inhibitors of chromatin regulators against drug resistance
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Somatic Mutations and aberrant DNA methylation drive oncogenesis

® Genome editing may represent a promise technology to reverse disease mechanisms
@ Activation of degradation pathway of TFs
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IDENTIFICATION AND CHARCTERIZATION
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In summary:

-Oncogenesis is based on growth tumors and one molecular mechanism
is the transcription activation

- Aberrant transcription activation depends on:
® super-enhancers formation
@ transcription factors and cofactors dyregulation

® Long range interactions dynamic



In summary llI:

Dysregulated transcriptional programs may be target for drug discovery:
Increased turnover of oncogenes

Interfering with cooperation between TFs and cofactors

Targeting chromatin remodeling enzymes

Genome editing of specific regulatory regions

Activation of proteasome degradation machinery



SINGLE NUCLEOTIDE VARIATIONS ASSOCIATED WITH PROTEIN
IMPORTANT IN CHROMATIN ORGANIZATION, LAMININ,
INDUCES LAMINOPATHIES
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Lamina-Associated Domains: Links with Chromosome
Architecture, Heterochromatin, and Gene Repression
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In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear
lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside
the nucleus and have been associated with gene repression. Here, we discuss the properties of
LADs, the molecular mechanisms that determine their association with the nuclear lamina, their
dynamic links with other nuclear compartments, and their proposed roles in gene regulation.



NUCLEAL LAMINA- ASSOCIATED HETEROCHROMATIN
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DamID (DNA adenine methyltransferase identification)

DamlD identifies binding sites by expressing the proposed DNA-binding protein as a fusion
protein with DNA methyltransferase. Binding of the protein of interest to DNA localizes the
methyltransferase in the region of the binding site

GFP-tagged m6A -tracer protein
that binds to adenine-methylated DNA (green)

Antibodies against laminB1
red



https://en.wikipedia.org/wiki/Fusion_protein
https://en.wikipedia.org/wiki/Fusion_protein
https://en.wikipedia.org/wiki/DNA_methyltransferase
https://en.wikipedia.org/wiki/DNA_methyltransferase

Transcription factories are discrete subnuclear foci composed
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Dynamic juxtapositioning of transcription units at transcription factories

Transcription factory

Current Opinion in Genetics & Development

Active genes recruit Active genes Transcription
to transcription associates to activation with RNA
factory transcription factory: nascent (red).
RNA pol Il complex Induction of genes in
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Edelman et al., 2012




DYNAMIC TRANSCRIPTIONAL ACTIVATION
Some LADs (semi-transparent green) contact the NL erratically (i.e., in a
subset of cells) and may become transcriptionally active when associated
with a permissive compartment (semi-transparent blue).




How the chromatin is organized near the lamina-associated domain

Some LADs are apparently stochastically distributed between the NL,
nucleoli, and pericentromeric heterochromatin (ph), which are all repressive
environments.
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The Nuclear Lamins
Structural Properties and Functions

Major structural proteins of the lamina
Located throughout the nucleoplasm
Determinants of nuclear size and shape
Nuclear envelope assembly/ disassembly

Mitotic spindle assembly

DNA synthesis (chain elongation phase)
DNA damage repair

Transcription (RNA Pol II)

Cell proliferation and senescence
Structural support for nuclear memb.
Support and positioning of nuclear pores
Chromatin anchorage and organization




OVERVIEW OF CHROMATIN ARCHITECTURE:
RELATIONSHIP BETWEEN TAD AND LAD
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DamliD : DNA adenine methyltransferase identification

Graphical Abstract

Single-cell DamID mapping
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A modified DamID method enables the
mapping of genome-wide nuclear lamina
interactions in single human cells,
providing insight into the cell-to-cell
variation in the interphase chromosome
architecture and suggesting extensive
intra-chromosomal coordination of
nuclear lamina contacts.

Kind et al., 2015, Cell 163, 134-147



DamiD : DNA adenine methyltransferase identification
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DamliD

: DNA adenine methyltransferase identification
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DamlID is a molecular biology protocol
used to map the binding sites of DNA-
and chromatin-
binding proteins in eukaryotes. DamlID
identifies binding sites by expressing
the proposed DNA-binding protein as
a fusion protein with DNA
methyltransferase. Binding of the
protein of interest to DNA localizes the
methyltransferase in the region of the
binding site.
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CHROMATIN ORGANIZATION IN THE NUCLEUS USING CHROMATIN
LOOPING TECHNIQUES

PCR
{Al DamliD Frurify Cleawe at Cleave at with Hybridization
EEROMIC methylated non-methylated  adapter —:':_ capture
DA RE sites RE sites primers ~—~ S ——
ka8 "ﬂ _— e _'.l« — Ligate o
L’“‘-u' “ju_n Ligate N seguencing
Cell expressing adapters - e - adapters Capture-C
Dam fused to torget protein
PCR
Crossfinked nuclei RE digest ; Reverse SIS
(B) Chromosome addass.  Dilute /  Ligate crosslinks junction
Conformation 17 L —— /A > » o 3C
Sonicate
cﬂpmﬁ' Ligate ::-Iigcus
X i ACFO%E
jumctions Amplify ligated oligo pairs
x with common primers
End clean-up i el s5C
IP with anti-target :4 Ligate digest -
proteim antibody biotinglated RE Biotimylate
linker di fragment PCR from
.:n,l et ends ™ “hait® RE -,
Ligate linkers l X Biotinylate Circularize X fragment bait
] . . fragment 4c
X | Ligate in gel A - O
¥
: Reverse Ligate
Ligate ¥
o l - e crosslinks sequencing
Sonlcate ngate Sonlcate oo adapters P L R .
3 Lgate Streptavidin : HEx
Cleave PETs with RE SEqUEncing purlﬁcannn
Ligate seq, adapters ada F'tEFE-
i an;:lte s
— C——
ChlA-PET DNase Hi-C

In situ or single cell Hi-C

TRENDS in Genelics




Hutchinson-Gilford progeria syndrome (HGPS)
PROGERIA

IS caused by a point mutation in the LMNA gene that
activates a cryptic donor splice site and yields a truncated
form of prelamin A called progerin



LAMINA ALTERATIONS INDUCE DISEASE

Progeria, or Hutchinson-Gilford progeria syndrome (HGPS), is a rare,
fatal genetic disease characterized by an appearance of accelerated
aging in children.

This syndrome is typically caused by mutations in codon 1824, cryptic
splincing site (p.G608G, no change aminoacid) of the LMNA, leading
to the production of a mutated form of lamin A precursor called progerin.

Progerin accumulates in cells causing progressive molecular defects,
including nuclear shape abnormalities, chromatin disorganization, damage
to DNA and delays in cell proliferation.



LAMINA ALTERATIONS INDUCE DISEASE

Progeria, or Hutchinson—Gilford progeria syndrome (HGPS)

Codon 608 (p.G608G) of the LMNA: mutated form of lamin A precursor
called progerin.
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Loss of splicing site induce a deletion of aminoacid sequence
that is recognized by ZMPSTE24 enzyme

Normal Prelamin A Processing
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PROGERIA EFFECTS ON THE BIOLOGICAL FUNCTIONS
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Loss of protein complexs organization in HGPS
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In summary
In HGPS:

the mutation leads to alternative splicing in exon 11 and fo the
loss of 50 amino acids in prelamin A

ZMPSTE24 enzyme not cleave the farnesylated C-terminus of
this protein.

This mutant protein, called progerin, remains permanently
farnesylated

Alteration of lamin A processing induce nuclear shape and
protein complexes dysorganization.



