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a. it is a functional assay where the SNP rs6661009 C gives a significant
increase of the transcription with respect of variant A. The other SNP

rs11265251G leads to a significant decrease in transcription.

b. The single nucleotide variation in the consensus sequence does not
affect the trascription factor binding and the luciferace gene reporter

activity is the same.

c. the mutation in E2F1 binding site (rs6661009 A-->C) gives a significative
decrease in the luciferase activity with the mutation (so gene transcription
is decreased). Instead, in the mutation in p65 binding site (rs11265251A--

>(3) gives a signifiative increase in the luciferase activity with the mutation

(so gene transcription in increased) +/

d. For p65 they change the second A in a G and they obtain a significative
reduction in the luciferase activity. For E2F1 they change the third Aina C

and they obtain a significative increase in the the luciferase activity.

e. The single nucleotide variation in the consensus sequence changes the

expression of the trascription factors as showing by luciferace assay. X
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OVERVIEW OF MOLECULAR APPROACHS TO STUDY SUPER-ENHANCERS
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LUCIFERASE ACTVITY WITH ROLE OF SE
VECTOR THAT CONTAINS —— IN GENE TRANSCRIPTION
COSTITUENT ENHANCER REGULATION

CRISPR-CAS9 SYSTEM TO DELETE COSTITUENT ENHANCER

ROLE OF SE IN GENE EXPRESSION ROLE OF SE
IN CHROMATIN REMODELING

ROLE OF SE
IN TRANSCRIPION FACTOR BINDING



Convergence of Developmental
and Oncogenic Signaling Pathways
at Transcriptional Super-Enhancers

Denes Hnisz,'* Jurian Schuijers,’* Charles Y. Lin,”? Abraham S. Weintraub,'-* Brian J. Abraham,” Tong lhn Lee,’
James E. Bradner,? and Richard A. Young'-3~

"Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA

?Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA

#Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

SUMMARY

Super-enhancers and stretch enhancers (SEs) drive

expression of genes that play prominent roles in BACKGROUND
normal and disease cells, but the functional impor-

tance of these clustered enhancer elements is poorly AlM

understood, so it is not clear why genes key to cell
identity have evolved regulation by such elements.
Here, we show that SEs consist of functional constit-
uent units that concentrate multiple developmental
signaling pathways at key pluripotency genes in em-
bryonic stem cells and confer enhanced responsive-
ness to signaling of their associated genes. Cancer
cells frequently acquire SEs at genes that promote
tumorigenesis, and we show that these genes are
especially sensitive to perturbation of oncogenic
signaling pathways. Super-enhancers thus provide
a platform for signaling pathways to regulate genes I
that control cell identity during development and
tumorigenesis.

Super-enhancers (SE)
Functional costituent units

Cancer cells SE target
for oncogenic signalling

CONCLUSION
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SE function on c-Myc locus
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ChiP-seq binding profiles for
H3K27Ac at the c-MYC locus in
colon and colorectal cancer
cells (HCT-116).

Wnt: V6.5 mESCs were cultured
in media containing 3uM IWP-2
(STEMGENT) for 24 hours prior
to transfection to suppress Wnt
signaling. Cells were then
transfected either in media
containing 3uM IWP-2 or in media
containing 50ng/ul recombinant
Wnt3a (R&D). Transfected cells
were incubated for 24 hours, and
luciferase measurements were
performed as described above.



Left: ratio of H3K27Ac in CRC (HCT-116) versus normal colon tissue used
densities at the union of SEs identified in the two samples. Right: metagene
representation of H3K27Ac and TCF4 ChiIP-seq densities at the regions
corresponding to the top 100 acquired super-enhancers.
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ure 4C). Genes associated with these acquired super-enhancers
were enriched for expression changes after stimulation or
blockage of the Wnt pathway (stimulation: p < 0.01; blockage:
p < 0.01), although not all super-enhancer genes showed this
response (Figure 4D). These results indicate that acquired su-
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SEs in breast cancer cell lines
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ONCOGENIC SUPER-ENHANCERS
IN TUMOR PROGRESSION



ONCOGENE REGULATION

An oncogenic super-enhancer formed
through somatic mutation of a
noncoding intergenic element

Marc R. Mansour,”? Brian J. Abraham,?* Lars Anders,”* Alla Berezovskaya,'
Alejandro Gutierrez,”* Adam D. Durbin,' Julia Etchin,' Lee Lawton,”

Stephen E. Sallan,"* Lewis B. Silverman,”* Mignon L. Loh,” Stephen P. Hunger,"
Takaomi Sanda,” Richard A. Young,?®1 A. Thomas Look"*t
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In certain human cancers, the expression of critical oncogenes is driven from large
regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional
anparatus and are defined by extensive acetylation of histone H3 Iysine 27 (H3K27c). Ina
stbset of T-cell acute [ymphoblastic leukemia (T-ALL) cases, we found that heterozygous
somatic mutations are acquired that introduce binding motifs for the MYB transcrintion

| BACKGROUND
factor in a precise noncoding site, which creates a super-enhancer upstream of { eTALII MYB form

Super-enhancers
(SE) upstream TALA1

oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner Jf  Leukemogenic
CBP as well as core components of a major leukemogenic transcriptional complex that I;f:,if:,ft'ona'
containg RUNKL, GATA-3, and TAL itself. Additionally, most endogenous super-enhiancers

found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB
In super-enfancer initiation, Thus, this study identifies & genetic mechanism responsible
for the generation of oncogenic super-enhancers in malignant cells.

MYB binds
T-ALL cells SEs

CONCLUSION



ChIP-Seq profile for H3K27ac (active enhancer mark)
in different cell lines
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Sequence alignments of the -7.5 kb site showing wild-type (WT)
sequences in black and inserted sequences in red for Jurkat and MOLT-3
T-ALL cell lines and eight pediatric T-ALL patients. hg19, human genome
build 19.

hg19: 47.704 983 47,704,954
| I

WT GGGTCACAGAAAGACGTAACCCTACTTCCT

Jurkat GGGTCACAGARARAAGRACGE T TAGCEAAACCGTAACCCTACTT

MOLT-3 GGEGTCACAGAARGACGC TTAACCCTACTT

Patient #1 GGUTCACAGARRGRC CC T ITARCCCTACTT

Patient #2 GGGTCACAGAAAGACGCCETTARCAGACGETARACTACTT

Patient #3 FEGTCACAGARAGACCCTTRAACCCTACTT

Patient #4 GGOTCACAGAAAGACCCTTAACCCTACTT

Patient #5 GEETCACAGAAARGACCOTTAACCCTACTT

Patient #e6 GFGTCACAGARAGRACGT TTRAACCCTACTT

Patiant #7 GGOTCACAGAAAGACGGTTACCACOTTTGAAACCCTACTT

Patient #8 GGGTCACAGAARGACGC I ITARCCCTACTTCCTGG




TAL1 mRNA expression as determined by quantitative
polymerase chain reaction (PCR) and expressed as
percentage of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH).
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Mutations of the TAL1 enhancer activate through recruitment of MYB.

A Myb primary motif
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WT GACGTA
Jurkat [GACGGTTA | GGA[AACGGTA]
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Patient #4 GACCGTTA
Patient #5 GACCGTTA
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TAL1 enhancer TRANSCRIPTION ACTIVITY USING LUCIFERASE ASSAY
MYB binds the mutant TAL1 enhancer site and is a member of the TAL1 complex
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MYB binds the mutant TAL1 enhancer (MuTE) site
and is a member of the TAL1 complex
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Targeted deletion of 177 to 193 bp of the mutant (CRISPRCas9),
but not wild-type, allele in Jurkat cells abrogates expression of endogenous
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Deletion of the wild type allele had no
effect on endogenous TAL1 mRNA levels,
but deletion of the mutant
allele completely abrogated endogenous
TAL1 expression
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Targeted deletion of 177 to 193 bp of the mutant (CRISPRCas9),
but not wild-type, allele in Jurkat cells abrogates expression of endogenous

C

WT:
JUREAT :
Clone#6:
Clone#7:
Clonef#8:
Clone#9:
Clone#l0:
Clonef#ll:

TAL1

Y

GGGTCACAGAAAGACGTRACCCTACTTCC
GGGTCACAGAARGACGG TTAGGAAACGGTARCCCTAC

GGGTCACAGAAAGA-—— -~ == === CGGTAACCCTAC
GGGTCACAGAAAGACGGTTA -~~~ GGTAACCCTAC
GGGTCACAGAAAGA- -~~~ -~~~ CCCTARCCCTAC
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ChlIP-seq tracks for H3K27ac and MYB at the STIL-TAL1 locus from
selected CRISPR-Cas9 clones
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An Acquired Super-Enhancer Activates
Monoallelic TAL1 Transcription
in T-ALL ( T cell acute lymphoblastic leukemia) Cells
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Inherited cancer
risk variant

Ll

Somatic (acquired)
mutation

o

Genetics of cancer.
Both inherited variants
(top) and acquired
mutations (bottom)
can contribute to
tumorigenesis.

Our findings show that somatic mutation of noncoding
intergenic elements can lead to binding of master
transcription factors, such as MYB, which in turn
aberrantly initiate super-enhancers that mediate
overexpression of oncogenes. This raises the possibility
that acquisition of such enhancer mutations may
constitute a general mechanism of carcinogenesis
used in other types of human cancers. Mechanisms of
aberrant superenhancer formation in malignancy have
broad implications not only for molecular pathogenesis
but also for clinical management. Drugs that target key
components of the transcriptional machinery, such as
BRD4 and CDKY7, have recently been shown to
preferentially target tumor-specific super-enhancers,
which provides a novel strategy to capitalize on these
abnormalities for improved cancer therapy.



GENE REGULATION:
ROLE OF LONG RANGE INTERACTIONS
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CANCER

Activation of proto-oncogenes
by disruption of
chromosome neighborhoods

Denes Hnisz,'* Abraham S. Weintraub,”** Daniel S. Day,' Anne-Laure Valton,”

Rasmus O. Bak,* Charles H. Li,"* Johanna Goldmann,’ Bryan R. Lajoie,” Zi Peng Fan,'*
Alla A. Sigova,' Jessica Reddy,"? Diego Borges-Rivera,’? Tong Thn Lee,’

Rudolf Jaenisch,'? Matthew H. Porteus,* Job Dekker,*° Richard A. Young'*t

Oncogenes are activated through well-known chromosomal alterations such as gene fusion,
translocation, and focal amplification. In light of recent evidence that the control of key genes
depends on chromosome structures called insulated neighborhoods, we investigated whether
proto-oncogenes occur within these structures and whether oncogene activation can occur

via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated
neighborhoods in Tcell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes
contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods
containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant
cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome
neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can
occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.

SCIENCE sciencemag.org 12 DECEMBER 2014 « VOL 346 ISSUE 6215



Oncagenes are actvated through well-nown chromosomal alterations such as gene flsion, | BACKGROUND
translocation, and focal amplificaton, I ight ofrecent evidence thatthe controlofhey genes
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Mutations in oncogene activation
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Map of the three-dimensional (3D) regulatory landscape
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frequency

of a tumor cell genome
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Insulated neighborhoods:
Genomic regulatory unit
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Genes involved in tumorigeneis

are associated with
Insulated neighborhoods
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TAL1 and active super-enhancer are located
within insulated neighborhood
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LMO2 are in the silence region and are located
within insulated neighborhood
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Disruption of insulated neighborhood boundaries
is linked to proto-oncogene activation:
TAL1 can be activated in many patients with deletions
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TAL1 is silent in HEK293T cells
CTCF signals define the
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TAL1 is expressed in HEK293T using CRISPR-Cas9 system
that deletes the neighborhood boundaries
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Long range interaction in the boundaries are showed by 5C assay.
Disruption of interactions.
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Long range interaction in the boundaries are showed by 5C assay.
Disruption of interactions.
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Somatic mutations of neighborhood boundaries

OCCUr in many cancers.



COSTITUTIVE NEIGHBORHOOD at the
NOTCH1 locus
ARE SIMILAR in different cell lines
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Somantic mutations at COSTITUTIVE NEIGHBORHOOD boundary CTCF sites
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Genes in the COSTITUTIVE NEIGHBORHOOD
whose boundary is recurrently mutated in cancers
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Insulated Neighborhoods: Structural
and Functional Units of Mammalian Gene Control
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Understanding how transcriptional enhancers control over 20,000 protein-coding genes to maintain
cell-type-specific gene expression programs in all human cells is a fundamental challenge in regu-
latory biology. Recent studies suggest that gene regulatory elements and their target genes gener-
ally occur within insulated neighborhoods, which are chromosomal loop structures formed by the
interaction of two DNA sites bound by the CTCF protein and occupied by the cohesin complex.
Here, we review evidence that insulated neighborhoods provide for specific enhancer-gene inter-
actions, are essential for both normal gene activation and repression, form a chromosome scaffold
thatis largely preserved throughout development, and are perturbed by genetic and epigenetic fac-
tors in disease. Insulated neighborhoods are a powerful paradigm for gene control that provides
new insights into development and disease.
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Cell-type specific enhancers —gene interactions occur within the boundaries
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Insulated neighborhoods are a major structuring component of TADs.
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Comparation between several techniques
for identification of long range interaction
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How SNPs affect long range interactions of the chromatin

A Assigning SNP to gene based on proximity
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How SNPs affect long range interactions of the chromatin
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Insulated neighborhoods:
are structural and functional units of gene control

are used during development to control the diverse cell identities that
contribute to complex animals

form the mechanistic basis of higher-order chromosome
structures, such as topologically associating domains (TADs)

genetic and epigenetic perturbations of neighborhood boundaries
contribute to disease.



