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Using natural genetic variation to discover regulatory networks
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Using natural genetic variation to discover regulatory networks

Different macrophage populations exhibited common and specific
enhancers

@ Cell-type specific enhancers depend on constant environmental
regulation, es tissues context

® SNPs, in proximity of LDTF, could indicate that a mutation in the
recognition motif for a collaborative transcription factor



What is the techinque that you can use
to identify cell-type specific enhancers?



OPINION

Making the case for chromatin
profiling: a new tool to investigate
the iImmune-regulatory landscape

Deborah R. Winter, Steffen Jung and Ido Amit

Abstract | Recent technological advances have enabled researchers to accurately
and efficiently assay the chromatin dynamics of scarce cell populations. In this
Opinion article, we advocate the application of these technologies to central
questionsin immunology. Unlike changes to other molecular structures in the cell,
chromatin features can reveal the past (developmental history), present (current
activity) and future (potential response to challenges) of a given immune cell type;
chromatin profiling is therefore an important new tool for studying the
immune-regulatory networks of health and disease.
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Methods for identification of genomic regulatory regions

a Experimental protocol

Cell sorting

o4
S0 .

@ {;} laser

Macrophage

I

‘Chromatin protocol |

Histone modification

@

DNA break

Specific
antibody

@L@

Open chromatin

Sequencing Open
adaptor chromatin
Bisulfite
. sequencing —[CC—
CG| =
Methylation

of DNA

Library of DNA
fragments

l

Sequencing

and alignment




From reads to DNA elements function
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Cell-type-specific enhancers to regulate same genes

a Cell-type-specific enhancers
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¢ Effect of the tissue environment
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Association of human chromatin data and susceptibility to immune disease
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SNPs in the genomic regulatory regions may change the TF binding to
DNA and enhancer, associated with monocytes derived from healthy
donor, become inactive in monocyted derived from patients



SNPs in the genomic regulatory regions may affect:

® Enhancer Activation: loss of TFs interaction or TFs recruitment.

® Enhancer Selection: loss or association of LTDF

@ Alteration of timing or specific tissues activation

® Long range interaction between genomic regulatory regions



Genome-wide characterizations of regulatory regions.

Cooperating TFs

@ H3K4me1 o Minireview topic

@ H3K4me3 < |nteraction regions or
@ H3K9Ac or K27Ac © gNP '

Peggy J. Farnham J. Biol. Chem. 2012;287:30885-30887
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How are SNPs studying in genome-wide manner?



Super-Enhancers in the Control
of Cell Identity and Disease
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SUMMARY

Super-enhancers are large clusters of transcriptional
enhancers that drive expression of genes that define
cell identity. Improved understanding of the roles
that super-enhancers play in biology would be
afforded by knowing the constellation of factors
that constitute these domains and by identifying
super-enhancers across the spectrum of human
cell types. We describe here the population of tran-
scription factors, cofactors, chromatin regulators,
and transcription apparatus occupying super-en-
hancers in embryonic stem cells and evidence that
super-enhancers are highly transcribed. We produce
a catalog of super-enhancers in a broad range of hu-
man cell types and find that super-enhancers asso-
ciate with genes that control and define the biology
of these cells. Interestingly, disease-associated vari-
ation is especially enriched in the super-enhancers of
disease-relevant cell types. Furthermore, we find that
cancer cells generate super-enhancers at onco-
genes and other genes important in tumor pathogen-
esis. Thus, super-enhancers play key roles in human
cell identity in health and in disease.
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2) SE cell type-specific

| 1) Protein complexes

3) SNPs linked to disease
in SE

CONCLUSION
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Mediator Coactivator Complexes and Master TFs are bound at Super-enhancers

Transcription Factors in ESCs
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Super-enhancers are clusters of enhancers—formed by binding
of high levels of master transcription factors and Mediator coac-
tivator—that drive high-level expression of genes encoding key
regulators of cell identity (Figure 1A) (Whyte et al., 2013). Five
ESC transcription factors were previously shown to occupy
super-enhancers (Octd, Sox2, Nanog, Kif4, and Esrrb) (Whyte
et al., 2013), but there are many additional transcription factors
that contribute to the control of ESCs (Ng and Surani, 2011; Orkin
and Hochedlinger, 2011; Young, 2011). We compiled ChiP-seq
data for 15 additional transcription factors in ESCs, for which
high-quality ChlP-seq data were available, and investigated
whether they occupy enhancers defined by Oct4, Sox2, and
Nanog (OSN) co-occupancy (Whyte et al., 2013) (Table S1 avail-

(A) Distribution of Med1 ChIP-seq signal at enhancers reveals two classes of enhancers in ESCs. Enhancer regions are plotted in an increasing order based on
their input-normalized Med1 ChlP-seq signal. Super-enhancers are defined as the population of enhancers above the inflection point of the curve. Example
super-enhancers are highlighted along with their respective ranks and their associated genes.



Bioinformatic analysis for the definition of SE:
- Signal in proximity of the gene
- signal extended in the genomic regions that identify SE

- increased numbers of reads into SE respect to costituent, single
enhancer in the SE

- increased signal into SE respect to typical enhancer
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Super-enhancers.

d
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Mediator Coactivator Complexes and Master TFs are bound at Super-enhancers

Chromatin Immunoprepitation Binding Profiles at target genes
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(B) ChlP-seq binding profiles for the indicated transcription factors at the POLE4 and miR-290-295 loci in ESCs. Red dots indicate the median enrichment of all
bound regions in the respective ChlP-seq data sets and are positioned at maximum 20% of the axis height. rpm/bp, reads per million per base pair.



ChIP-seq signal across SE domains
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(C) Metagene representations of the mean ChlP-seq signal for the indicated transcription factors across typical enhancers and super-enhancer domains.
Metagenes are centered on the enhancer region, and the length of the enhancer reflects the difference in median lengths (703 bp for typical enhancers, 8,667 bp
for super-enhancers). Additional 3 kb surrounding each enhancer region is also shown.



Reads distribution in regions and constituents
(single enhancers into SE) (rpm/bp)
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(D) Fold difference values of ChlP-seq signal between typical enhancers and super-enhancers for the indicated transcription factors. Total signal indicates the
mean ChlP-seq signal (total reads) at typical enhancers and super-enhancers normalized to the mean value at typical enhancers. Density indicates the mean
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ChIP-Seq density on TFs binding sites
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super-enhancers. Each metagene is centered on enhancer constituents. Additional 2.5 kb surrounding the constituent enhancer regions is also shown.



TFs motif enrichment are used to associate gene target
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Core Transcriptional Regulatory Circuit of ESCs
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(G) Revised model of the core transcriptional regulatory circuitry of ESCs. The model contains an interconnected autoregulatory loop consisting of transcription
factors that meet three criteria: (1) their genes are driven by super-enhancers, (2) they co-occupy their own super-enhancers as well as those of the other
transcription factor genes in the circuit, and (3) they play essential roles in regulation of ESC state and iPSC reprogramming. The layout of the circuit model was
adapted from Whyte et al. (2013).



Super-enhancers are occupied by a large portion of
the enhancer-associated RNA polymerase I
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A large fraction of these enhancer cofactors
are associated with super-enhancers
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Model showing RNAPII, transcriptional cofactors, and chromatin
regulators that are found in ESC super-enhancers. The indicated proteins
are responsible for diverse enhancer-related functions, such as enhancer
looping, gene activation, nucleosome remodeling, and histone modification.
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Incars

SUPERENHANCER SHARED BETWEEN SEVERAL CELL TYPES

H3K27ac ChIP-seq data are used to create a catalog of superenhancers for 86
human cell and tissue samples. A substantial portion of these super-
enhancers and their associated genes are cell type specific.
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SUPERENHANCER SHARED BETWEEN SEVERAL CELL TYPES
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GENE ASSOCIATED TO SUPERENHANCER IN SEVERAL CELL TYPES:

GENE ONTOLOGY
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MASTER TRANSCRIPTION FACTORS IN SIX CELL TYPES
are regulated by SE

The transcriptional regulatory circuitry is formed with transcription factors that control cell
states, therefore acting as Master Transcription Factor. For each cell types are found master
TFs regulated by SE.

c Skelatal Adipose

2rain Heart muscle Lung tissue B cell

MNEX2-2 TBX20 MY NFIE PPARS kL3
OLIG1 TBXS PITX2 TBXS CEBPB PAXS

BRNzZ MEF2A Sl CEBPA CEBPD BaCHz

SCX10 NFE2-5 TEAD4 TEXZ CHEE1 ]

SOX2 GATad TEX3 IK.ZF1
IRFa

(C) Candidate master transcrption factors identified in six cell types. All of these transcription factors were previously demonstrated to play key rolkes in the
biclogy of the respective cell type or fadlitate reprogramming to the respective cell type.



SINGLE NUCLEOTIDE MUTATIONS LINKED TO DISEASE (GWAS)
ASSOCIATED TO SUPERENHANCERS
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SINGLE NUCLEOTIDE MUTATIONS LINKED TO DISEASE (GWAS)
ASSOCIATED TO SUPERENHANCERS
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Super-enhancers in Cancer
Genes associated with SE and involved in cancer progression
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The super-enhancers formed in the MYC locus were tumor type specific
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Super-enhancers are associated with genes
that act as hallmarks in colonrectal cancer

Colorectal cancer
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IDENTIFICATION AND CHARCTERIZATION

¥

lead SNP

GENOMIC REGULATORY REGIONS

l

GENE EXPRESSION REGULATION
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Methods to study Superenhancers:
From prediction of SE by ChiIP-Seq to experimental validation



Convergence of Developmental
and Oncogenic Signaling Pathways
at Transcriptional Super-Enhancers

Denes Hnisz,'* Jurian Schuijers,’* Charles Y. Lin,”? Abraham S. Weintraub,'-* Brian J. Abraham,” Tong lhn Lee,’
James E. Bradner,? and Richard A. Young'-3~

"Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA

?Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA

#Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

SUMMARY

Super-enhancers and stretch enhancers (SEs) drive

expression of genes that play prominent roles in BACKGROUND
normal and disease cells, but the functional impor-

tance of these clustered enhancer elements is poorly AlM

understood, so it is not clear why genes key to cell
identity have evolved regulation by such elements.
Here, we show that SEs consist of functional constit-
uent units that concentrate multiple developmental
signaling pathways at key pluripotency genes in em-
bryonic stem cells and confer enhanced responsive-
ness to signaling of their associated genes. Cancer
cells frequently acquire SEs at genes that promote
tumorigenesis, and we show that these genes are
especially sensitive to perturbation of oncogenic
signaling pathways. Super-enhancers thus provide
a platform for signaling pathways to regulate genes I
that control cell identity during development and
tumorigenesis.

Super-enhancers (SE)
Functional costituent units

Cancer cells SE target
for oncogenic signalling

CONCLUSION



Graphical Abstract
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Highlights

Super-enhancers (SEs) consist of clusters of active
enhancers

SEs are frequently bound by terminal transcription factors of
signaling pathways

SE-driven genes are especially responsive to signaling input

SEs acquired in cancer cells are responsive to oncogenic
signaling



ACTIVITY OF SUPER-ENHANCER CONSTITUENTS
IN SEVERAL GENOMIC LOCI
B
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ACTIVITY OF SUPER-ENHANCER CONSTITUENTS
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Mormalized luciferase activity

ENHANCER ACTIVITY OF SE CONSTITUENTS

IS SPECIFIC FOR ESC, COMPARED TO MYOBLAST
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QUESTION: DO “SE CONSTITUENTS” ACT ADDITIVELY,
SINERGISTICALLY OR EXERT A COMPLEX INFLUENCE?

E2 has high activity, E1 and E3 influence E2 activity
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CONTRIBUTIONS OF SUPER-ENHANCER COSTITUENTS
TO GENE EXPRESSION IN VIVO

A - Pri-miR-290-295
Super- 25 kb 5kb S {3 1257
enhancer: - A @
7= OCT4/50X2/ g o 10045
o I h I l II I NANOG x* &
= 5 75+
E41- D =
a | I | MED1 S =
& 2 50+
M N e
Deletions: o0 W R e ]
le7 ./ mi EQ
E1  E2E3E4E5lE7/ miR-290-205 £ 2 i'l
Cas9 E6 E8 T2 U
uide B
E{Nﬂ & Super-enhancer -constituent deletions b-c‘.qg{, %ﬁg’%@
g
B Prdmi14 mRNA
Super- 45 kb 10kb 5 125
enhancer: M — —— S—— 35
107 OCT4/S0OX2/ c 210045
ANOG 2
=
£11- a g
e | l | I MED1 52 501
'ﬁ
Deletions: 1 1 | 1 teit] I § 25 -
Casg E1 E2 E3 E4 E5 Prdmi4 E = U
as
guide eﬁ’ Gx:%’*'&‘&&

RNA % Super-enhancer -constituent deletions



QUESTION: HOW DOES SUPER-ENHANCER COSTITUENTS
REGULATE GENE EXPRESSION IN VIVO?

A
super- 25 kb 5kb
enhancer:
7= OCT4/SOX2/
a l i || Il I NANOG
£
41~
= | I | MED1
il
Deletions: o n o ma Wy
E1  E2E3E4 E5|E7/ miR-290-295
Cas9 E6 E8
guide . .
RNA Super-enhancer -constituent deletions

ChiP-Seq DATA used to design
STUDY ON COSTITUENTS
ENHANCERS
FUNCTION



