
From bacteria to humans, the diverse and adaptable 
nature of foreign threats has driven the evolution of a 
powerful and flexible defence response. To maintain its 
effectiveness, this so‑called immune system has pro‑
duced highly specialized (pathogen‑specific) cell types 
that work together to prevent, retain a memory of and 
eliminate disease1–4.

Single‑cell resolution is therefore essential to 
understanding how the immune system gives rise  
to such a breadth of potential responses against many 
different pathogens5. Recently, new technologies have 
been developed that enable the profiling of single 
cells using next‑generation sequencing, which offers 
an unbiased approach to studying immune cell diver‑
sity. In this Review, we present an overview of existing 
single‑cell technologies and discuss their strengths 
and limitations (BOX 1). We also explore ways in which 
these approaches can deepen our understanding of 
immunological responses and disease, and we examine 
cutting‑edge trends and potential future innovations 
in the field.

‘Targeted’ single-cell profiling technologies
A large number of techniques have leveraged advances 
in microscopy, cytometry, molecular biology and, most 
recently, next‑generation sequencing to profile single 
cells. Many of these approaches have been developed 
and optimized to be used in studies that aim to decon‑
volve immune cell heterogeneity, but they can differ by 
orders of magnitude in terms of the number of cells that 
can be analysed per experiment (the breadth of cellular 
profiling) and the number of genes per cell that can be 
detected (the depth of cellular profiling).

‘Targeted’ technologies can assess a pre‑selected set 
of molecular dimensions (pre‑selected genes for mRNA 
expression studies and protein‑level detection) across 
hundreds to millions of cells using known molecular 
baits — such as fluorescently labelled oligonucleotide 
probes, fluorescent or metal‑conjugated antibodies, 
or PCR primers — to profile genes or proteins with 
single‑ cell resolution. For example, recent advances in  
flow cytometry6 have allowed for the routine and simul‑
taneous profiling of up to 17 proteins per cell using 
fluorescent antibodies. By using metal‑conjugated anti‑
bodies to overcome the spectral limits of fluorescent 
proteins, mass cytometry7 can further extend profiling to 
the simultaneous detection of about 40 proteins per cell, 
with an order of magnitude increase in the number of 
cells that can be studied at one time8,9. These technol‑
ogies have led to the discovery and characterization of 
major and minor cell types in the mammalian immune 
system10. However, their application is limited to a small 
number of parameters that are selected based on prior 
knowledge or guesswork (such as genes or surface pro‑
teins), and the profiling of these parameters depends on 
the availability of gene sequences for primer design or 
protein‑specific antibodies.

As an alternative to cytometry, gene‑specific primers 
can be used to carry out quantitative PCR (qPCR) on single 
cells11, which allows for the fluorescent quantification of 
single‑cell mRNA levels12,13. Single‑cell qPCR (sc‑qPCR) 
does not require sample library preparation or deep 
sequencing, and it therefore offers a rapid and highly 
quantitative assay for single‑cell gene expression, particu‑
larly in the absence of specific antibodies. Commercial 
microfluidic approaches have been used to multiplex up to 
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Flow cytometry
Laser-based technology that 
allows for simultaneous 
quantification of the 
abundance of up to 17 cell 
surface proteins using 
fluorescently labelled 
antibodies.

Mass cytometry
(commercial name CyTOF). 
Mass spectrometry technique 
used as an alternative to flow 
cytometry that allows for the 
quantification of cellular 
protein levels by using isotopes 
that overcome problems 
associated with the spectral 
overlap of fluorophores.
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Abstract | Advances in single-cell RNA sequencing (scRNA-seq) have allowed for 
comprehensive analysis of the immune system. In this Review, we briefly describe the available 
scRNA-seq technologies together with their corresponding strengths and weaknesses.  
We discuss in depth how scRNA-seq can be used to deconvolve immune system heterogeneity 
by identifying novel distinct immune cell subsets in health and disease, characterizing 
stochastic heterogeneity within a cell population and building developmental ‘trajectories’  
for immune cells. Finally, we discuss future directions of the field and present integrated 
approaches to complement molecular information from a single cell with studies of the 
environment, epigenetic state and cell lineage.
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Quantitative PCR
(qPCR). Polymerase chain 
reaction used to quantify gene 
expression levels using 
fluorescently labelled 
nucleotides and by tracking 
fluorescence levels during 
amplification cycles.

Microfluidic approaches
Single-cell RNA-sequencing 
techniques that use 
microfluidic devices for 
single-cell isolation.

Microarrays
Technique used to detect gene 
expression levels of many 
genes simultaneously. 
Microarrays use gene-specific 
probes that can be hybridized 
to complementary 
fluorescently labelled cDNA 
molecules. The fluorescence 
intensity is used to quantify 
gene expression.

96 primer pairs together in a single assay, and indeed, 
these approaches were shown to be extremely promis‑
ing in deconvolving the molecular heterogeneity of the 
developing immune system14,15. However, similarly to 
cytometry‑based approaches, qPCR assays also require 
measurement of a preselected pool of genes, which intro‑
duces bias and limits the potential for discovery of new 
genes and proteins of interest.

As a result, there has been substantial interest around 
new methods that are capable of unbiased molecular 
profiling of single cells by leveraging new techniques 
based on next‑generation sequencing. The development 
of single‑cell RNA sequencing (scRNA‑seq) approaches 
has allowed for unbiased single‑cell transcriptome pro‑
filing to enable the discovery of new cellular states, the 
profiling of genetic heterogeneity ranging from single 
nucleotide polymorphisms to diverse immunoglobu‑
lin sequences, and the study of the transcriptomes of  
non‑model organisms.

Towards unbiased single-cell profiling
The first protocols for bulk RNA‑seq offered an 
unbiased alternative to microarrays16–18 but required 
millions of cells (~1 μg of total mRNA transcripts)19. 
Whereas some of the first immunological studies used 
abundant leukocyte cell populations20,21, the need 
to study rare cell populations and to discover new 

cellular states necessitated the development of RNA‑
seq protocols with a lower cell input22,23. Particularly 
in the field of immunology, these new RNA‑seq  
proto cols, in combination with microarray data, 
allowed for the profiling of various rare cell popula‑
tions with the use of only 1 ng of RNA isolated from 
100–1,000 immune cells. This led to the generation of 
large collaborative databases, including the Illumina 
Body Map Expression Atlas24; the Differentiation Map 
(DMAP) project25, which profiled 39 distinct human 
immune cell types; and the Immunological Genome 
Project, which profiled murine immune cell subsets. 
These databases are powerful community resources to 
identify modules of co‑regulated genes across many 
cell types and conditions for cellular subsets with 
well‑defined markers.

The development of low‑input RNA‑seq protocols 
paved the way for further optimization down to the 
single‑ cell level, culminating in an explosion of new  
scRNA‑seq platforms. With the large number of meth‑
ods available, each with distinct strengths and weak‑
nesses, it is often unclear which option is most suitable 
for addressing a specific research question. Here, we 
review many of the available options and discuss how 
they differ in terms of workflow (FIG. 1), sensitivity and 
data quality, in addition to outlining their ideally suited 
biological applications (BOX 1).

FACS CyTOF qPCR Plate-based 
protocols (STRT-
seq, SMART-seq, 
SMART-seq2)

Fluidigm C1 Pooled 
approaches 
(CEL-seq, MARS-
seq, SCRB-seq, 
CEL-seq2)

Massively 
parallel 
approaches 
(Drop-seq, 
InDrop)

Cell capture 
method

Laser Mass 
cytometry

Micropipettes FACS Microfluidics FACS Microdroplets

Number of cells 
per experiment

Millions Millions 300–1,000 50–500 48–96 500–2,000 5,000–10,000

Cost $0.05 
per cell

$35 per cell $1 per cell $3–6 per well $35 per cell $3–6 per well $0.05 per cell

Sensitivity Up to 17 
markers

Up to 40 
markers

10–30 genes 
per cell

7,000–10,000 genes 
per cell for cell 
lines; 2,000–6,000 
genes per cell for 
primary cells

6,000–9,00 genes 
per cell for cell 
lines; 1,000–5,000 
genes per cell for 
primary cells

7,000–10,000 genes 
per cell for cell 
lines; 2,000–6,000 
genes per cell for 
primary cells

5,000 genes per 
cell for cell lines; 
1,000–3,000 
genes per cell for 
primary cells

CEL-seq, cell expression by linear amplification and sequencing; CyTOF, cytometry by time of flight (mass cytometry); FACS, fluorescence-activated cell sorting; 
InDrop, indexing droplets sequencing; MARS-seq, massively parallel single-cell RNA sequencing; qPCR, quantitative PCR; SCRB-seq, single-cell RNA barcoding 
and sequencing; STRT-seq, single-cell tagged reverse transcription sequencing.

Box 1 | Summary of current single-cell profiling technologies

The available technologies for single-cell RNA sequencing (scRNA-seq) 
have unique strengths and weaknesses (see table). Before choosing which 
technology to use for a particular study, it is important to consider the 
scale of the experiment, the cost and sensitivity of each method and the 
biological question to be answered. Advances in droplet microfluidics33–35 
now enable routine profiling of thousands of cells in a single experiment.  
These methods are ideally suited for discovering rare cell types or 
deconvolving highly heterogeneous populations such as whole tissue or 
organ samples. However, these technologies have reduced sensitivity per 
cell, and they may not be able to identify subtle transcriptional differences 
between cells. Alternative technologies, such as plate-based protocols29–32 
or commercial microfluidics solutions (Fluidigm C1), are capable of deep 

profiling of single cells but at a substantially increased cost. These 
technologies are better suited to study stochastic variability between 
single cells or to deconvolve subtle transcriptomic differences in 
‘homogeneous’ populations. In addition, plate-based methods that use 
index-sorting for cell isolation enable the recording of cellular 
immunophenotypes alongside the transcriptome, and the Fluidigm C1 
allows for cells to be individually imaged before sequencing.  
As these technologies mature, they suggest a powerful complementary 
approach, whereby complex tissues are first ‘atlased’ using high-breadth 
droplet-based technologies to identify new populations of interest and 
associated markers. Subsequently, these markers can be used for enrichment 
and deep sequencing using high-depth, plate-based approaches.
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Reverse transcription
Conversion of a mRNA 
molecule to complementary 
DNA (cDNA) using reverse 
transcriptase enzymes isolated 
from RNA viruses.

Plate-based protocols. Most 96‑well protocols, such as 
single‑cell tagged reverse transcription (STRT) sequenc‑
ing (STRT‑seq), SMART‑seq and SMART‑seq2  
(REFS 23,26–28), use micropipettes or fluorescence‑ 
activated cell sorting (FACS) to place individual cells 
into wells containing lysis buffer. These platforms offer 
a fast and efficient way to analyse 50 to 500 single cells 
in one experiment. Single cells can be stored in plates 
long‑term before analysis, allowing for a flexible exper‑
imental set‑up with optional pause points when time is 
limited. However, reverse transcription is carried out 
on individual wells, which requires additional pipet‑
ting steps that can slow down the process and introduce 
technical noise in the samples. In addition, the early 
versions of these platforms had low sensitivity and were 
quite costly. Subsequent studies optimized this platform 
to increase accuracy, sensitivity and throughput, as well 
as to decrease processing time. Moreover, these proto‑
cols are amenable to automation with liquid‑handling 

robotics. These methods are generalizable, as they offer 
the opportunity to profile any cell, independent of size 
and type, that can pass through a micropipette or FACS 
sorter machine. Overall, they have high sensitivity and 
can measure 5,000–10,000 genes per single cell.

Fluidigm C1. In 2012, Fluidigm introduced the C1, an 
automated microfluidic platform for scRNA‑seq that can 
individually capture up to 96 cells at a time on a single 
microfluidic chip. Downstream molecular steps are auto‑
mated and parallelized in nanolitre‑sized volumes. In 
addition, this platform offers the option to evaluate the 
captured cells under the microscope before the reverse 
transcription and amplification steps of the protocol.  
At least 10,000 cells are required as input, which suggests 
that this platform is not ideal for rare cell populations. 
To avoid introducing selection bias, it is required that 
cells be of similar size and shape. The sensitivity of the 
Fluidigm C1 is similar to that of plate‑based protocols, 

Figure 1 | Overview of scRNA-seq technologies. Single-cell RNA sequencing (scRNA-seq) technologies use many 
different methods for cell isolation and transcript amplification. Whereas some technologies capture cells using 
microfluidic devices that trap cells inside hydrogel droplets, other technologies rely on methods (such as fluorescence- 
activated cell sorting (FACS) into 96-well plates and the microfluidic chips used by Fluidigm C1) that physically separate one 
cell from another in wells. Once cells are lysed, reverse transcription and PCR amplification are carried out. Droplet-based 
approaches, and some plate-based approaches, allow for pooled PCR amplification using cellular barcoding techniques, 
which decreases the cost as only one PCR reaction is required per experiment or plate. In other plate-based approaches 
and for Fluidigm C1, the number of PCR amplification reactions is equal to the number of cells that are being profiled,  
which makes these approaches expensive. PCR products are further processed to prepare samples for sequencing.  
Some approaches that use sequencing of the 3ʹ end of each transcript allow for quantification of expression of each gene 
within a cell. Other approaches, however, can sequence full-length transcripts, which allows not only for detection of gene 
expression but also for analysis of splicing variants and B cell receptor (BCR) or T cell receptor (TCR) repertoire diversity. 
InDrop, indexing droplets sequencing; MARS-seq, massively parallel single-cell RNA sequencing.
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Barcode
A 12–20 nucleotide sequence 
that is uniquely assigned to a 
cell during reverse transcription 
and is used to trace mRNA 
transcripts back to their 
cellular origins.

Reverse emulsions devices
Devices that create oil-in-water 
emulsions, producing droplets 
that can encapsulate single cells.

and this method works well with homogeneous cell pop‑
ulations. Although the microfluidic platform enables 
savings in molecular reagents and labour, the cost of the 
microfluidic chips is substantial and limits the feasibility 
of large‑scale experiments.

Pooled approaches. The approaches described above 
leverage either automation or microfluidics to reduce 
costs and improve throughput. However, the even sim‑
pler idea of applying a barcode to cells at early stages 
and then carrying out downstream molecular steps in 
parallel was first introduced in the cell expression by 
linear amplification and sequencing29 (CEL‑seq) pro‑
tocol. This approach markedly decreased reagent and 
labour costs while simultaneously increasing the scale 
of each experiment (500–2,000 cells per run). In the 
CEL‑seq protocol, a unique primer (containing a poly 
T tract, a cell barcode, a 5ʹ Illumina sequencing adaptor 
and a T7 promoter) is introduced into each cell during 
reverse transcription. By introducing these unique cell 
barcodes, all cDNAs can be pooled together after reverse 
transcription, and a single amplification reaction can be 
carried out. In a protocol known as massively parallel 
scRNA‑seq (MARS‑seq),30 this idea has been extended 
by combining single‑cell barcoding with 384‑well‑plate 
FACS sorting to increase the scale and lower the asso‑
ciated costs. Combining FACS sorting with single‑cell 
barcoding ensures successful physical separation of sin‑
gle cells into wells (FACS sorting) while lowering costs 
by allowing reactions to be pooled and processed as one 
sample in later steps of the protocol. This strategy was 
quickly adopted by many early forms of plate‑based 
approaches and resulted in further optimized versions 
with higher sensitivity and lower costs (single‑cell RNA 
barcoding and sequencing (SCRB‑seq)31 and CEL‑seq2 
(REF. 32)). In summary, these single‑cell barcoding strat‑
egies offer an unbiased method for isolating various cell 
types, improving throughput and lowering the costs of 
experiments.

Massively parallel approaches. The development of 
microfluidics and reverse emulsions devices allowed 
for isolation of single cells into droplets containing 
lysis buffer and cellular barcodes. These methods not 
only allowed for unbiased cell capture, as with FACS‑
sorted plate‑based approaches, but also used massive  
parallelization to increase the number of cells that 
could be profiled in one run to tens of thousands. This  
pioneering approach was first exemplified by two aca‑
demically developed technologies, known as Drop‑seq33 
and inDrop (indexing droplets sequencing)34, and has 
been further developed into commercially available plat‑
forms as well35. However, the increased breadth of these 
experiments comes with reduced sensitivity. In contrast 
to other existing methods, droplet‑based methods typi‑
cally have reduced transcript recovery (3–10% compared 
with 10–20% for other methods). We anticipate that the 
sensitivity of Drop‑seq and similar methods will increase 
as protocols continue to be optimized and sequenc‑
ing costs continue to decrease36, which will enable an 
increase in sequencing depth.

General considerations and ongoing limitations. The 
methods for RNA‑seq described here differ widely in 
associated costs, experimental scale, single‑cell isolation 
methods, and data quality and sensitivity (BOX 1). It is 
advisable to consider each of these parameters carefully 
before choosing the appropriate method to use. For 
example, is it more powerful to sequence a large number 
of cells (high breadth) at low coverage or to sequence 
a smaller number of cells very deeply (increase the 
number of genes recovered per cell)? Studies aiming to 
identify cell clusters that can be defined by many genes, 
with an emphasis on finding rare cell populations, 
should prioritize a breadth‑based approach, whereas 
studies aiming to distinguish stochastic variation in 
individual genes require a high depth of sequencing. 
Furthermore, potential phenotypic differences between 
cells may also drive the choice of technology. For cells 
with substantial differences in size and shape, FACS 
sorting or droplet‑based methods can be used for cellu‑
lar profiling owing to the equal probability for collecting 
different populations, whereas commercial micro fluidic 
approaches such as the Fluidigm C1 may bias the  
population examined.

Despite improvements in terms of cost and scale for 
traditional scRNA‑seq, molecular limitations remain. 
The above methods fail to capture non‑polyadenylated 
RNA transcripts, because non‑coding RNAs (such 
as microRNAs, long non‑coding RNAs and circular 
RNAs)37 and bacterial RNAs38 are discarded during 
traditional poly T priming of reverse transcription. In 
addition, whereas protocols with an individual amplifi‑
cation strategy (FIG. 1) enable sequencing of the full tran‑
scripts, high‑throughput multiplexed methods sequence 
only the 3ʹ end and cannot recover splicing patterns or 
sequence variants. Moreover, even the most sensitive 
methods will struggle to detect low‑abundance tran‑
scripts, which is a limiting factor when exploring more 
subtle differences between cell subsets39. Finally, tran‑
scriptomic measurements between cells cannot capture 
the proteomic or epigenetic heterogeneity that may drive 
cellular behaviour, and thus, scRNA‑seq results describe 
only a subset of the molecular phenotype of a cell. 
Although these limitations pose challenges for molecular 
technology and nanotechnology, rapid developments in 
the field are beginning to address these concerns, yield‑
ing sensitive, global and integrated technologies for  
single‑cell profiling (discussed later).

Applications of scRNA-seq
Before the development of scRNA‑seq technologies, the 
discovery of new cell subsets involved using cell surface 
markers. Although these approaches were powerful, 
they required prior guesswork or knowledge in order 
to discover various immune cell types. The develop‑
ment of high‑dimensional, single‑cell technologies 
enabled an unbiased, alternative workflow that allowed 
sequencing of cells without prior knowledge of genes 
and proteins of interest and grouping of cells based on 
their transcriptional signatures. In this section, we pres‑
ent studies that have used scRNA‑seq to characterize  
homogeneous immune cell populations in health 
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uses crosslinking of protein–
DNA interactions and 
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protein-binding patterns and 
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and disease, discover the variation in stochastic gene  
expression that drives immunological responses and 
reconstruct developmental trajectories for immune cells.

Characterizing distinct cell subsets. The technologies 
described above provide powerful approaches for decon‑
volving heterogeneity in the immune system, enabling 
the discovery of pathogenic immune cell populations. 
Although many exciting studies have emerged recently, 
here, we discuss in depth three pioneering examples that 
highlight how the unbiased potential of scRNA‑seq can 
be used for the discovery of cellular states in health and 
disease across diverse systems.

In 2014, Jaitin et al.30 developed MARS‑seq to dissect 
mouse splenic cellular diversity (FIG. 2a). Using hierarchical 
clustering and the probabilistic mixture model, they clas‑
sified splenic cells into transcriptionally distinct groups. 
They validated these in silico predictions by comparing 
these groups to existing transcriptional profiles of classical 
haematopoietic cell populations, and found their groups 
to be transcriptionally similar to B cell, natural killer (NK) 
cell, macrophage, monocyte and plasmacytoid dendritic 
cell populations. Using lipopolysaccharide (LPS) stim‑
ulation to mimic infection, they studied the immediate 
responses of various splenic subpopulations. Analysis 
of their transcriptional profiles revealed groups of cell 
type‑specific response genes, as well as many type I inter‑
feron (IFN) response genes that were highly expressed 

in all subpopulations. Furthermore, they identified den‑
dritic cell (DC) subpopulations with distinct transcrip‑
tional profiles, which supports the idea of cellular state 
diversity within a cell population. Finally, they proposed 
that, in response to LPS stimulation, many immune cell 
types can preserve their identity and respond to infection 
by activating cell type‑specific, as well as more generic, 
transcriptional programmes. Overall, these findings 
provided an exciting vision of how we can discover and 
re‑annotate cell types without any prior knowledge using 
high‑throughput single‑cell sequencing.

Additional studies have continued to uncover pre‑
viously unknown heterogeneity of CD127+ innate lym‑
phoid cells (ILCs) in human tonsil and small intestine40 
(FIG. 2b). Using scRNA‑seq, Bjorklund et al. found four 
distinct ILC clusters with transcriptional profiles cor‑
responding to previously characterized ILC1, ILC2, 
ILC3 and NK cell populations (based on surface marker 
expression)40. More importantly, they identified pre‑
viously hidden transcriptional signatures within these 
populations, which suggests the existence of functionally 
distinct subpopulations of cells. Whereas Bjorklund et al. 
focused on tonsil‑derived ILCs, Gury‑BenAri et al.41 
focused on helper‑like ILCs in the mouse small intestine 
and tried to assess their heterogeneity using scRNA‑seq 
together with chromatin immunoprecipitation- sequencing 
(CHIP‑seq) and assay for transposase‑ accessible 
chromatin‑ sequencing (ATAC‑seq). Transcriptomic 

Figure 2 | scRNA-seq uncovers distinct cell subsets in the healthy immune system. a | Mouse splenic cellular diversity was 
dissected using the massively parallel single-cell RNA sequencing (MARS-seq) protocol. B cell, monocyte, natural killer (NK) 
cell, macrophage and plasmacytoid dendritic cell (pDC) populations were identified based on single-cell transcriptional 
signatures. Further analysis of the transcriptional profiles of pDCs showed that there is heterogeneity within the population. 
Finally, stimulation with lipopolysaccharide (LPS) to mimic viral infection induced the expression of type I interferon (IFN) 
response genes in all cell types, which suggests that these splenic cell populations respond to viral infection by upregulating 
antiviral genes of the type I IFN response30. b | Human tonsil and small intestine CD127+ innate lymphoid cells (ILCs) include all 
of the previously characterized ILC subpopulations (ILC1, ILC2 and ILC3) and NK cells. Single-cell RNA sequencing 
(scRNA-seq) allowed for the detection of further heterogeneity of ILC subpopulations in human tonsil cells40 as well as for the 
identification of two new small intestine ILC subpopulations marked by high levels of expression of NKp46, retinoic acid 
receptor-related orphan receptor-γt (RORγt) and interferon-γ (IFNγ) (ex-ILC3 like cells) or IL-2 and CCL22 (REF. 41).
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analysis of CD127+ ILCs revealed heterogeneity within 
known ILC subsets (ILC1, ILC2 and ILC3) as well as 
the existence of two previously unidentified ILC subsets 
that expressed NKp46, retinoic acid receptor‑related 
orphan receptor‑γt and IFNγ (ex‑ILC3–like cells) or 
IL‑2 and CCL22. Notably, these results highlighted the 
importance of the microbiome in shaping the cellular 
diversity of ILCs in the small intestine by showing that 
all ILC subsets in the intestine of antibiotic‑treated and 
germ‑free mice acquired ILC3‑like expression profiles.

These preliminary studies in healthy tissue paved the 
way for profiling of such tissues in a disease context, which 
allowed for the identification of molecular drivers of dis‑
ease in pathogenic cell subsets. For example, Gaublomme 
et al.42 used scRNA‑seq to identify the T helper 17 (TH17) 
cell states that drive the patho genesis of experimen‑
tal autoimmune encephalomyelitis (EAE, a model for 
human multiple sclerosis) in mice42 using in vivo and 
in vitro models (FIG. 3a). They profiled TH17 cells after 
in vivo and in vitro EAE induction and discovered that 
these cells were highly heterogeneous. Comparative 
analysis of in vivo‑ and in vitro-isolated pathogenic TH17 
cells revealed wide spectrums of pathogenicity that were 
similar but not identical to each other. They identified a 
transcriptional signature that highly correlated with the 
most pathogenic TH17 cells, and further computational 
analysis revealed the candidate genes that most likely drive 
TH17 cell pathogenicity (Gpr65, Plzp, Toso and Cd5l). The 
discovery and validation of these candidate genes in vivo 
has opened a new window for the potential development 
of more effective thera peutic agents for the treatment and 
cure of multiple sclerosis.

In summary, these studies have established that sur‑
face phenotypes are not sufficient to define cellular states 
in disease and have proposed new scRNA‑seq methods 
to study innate immunological processes as well as dis‑
ease pathogenesis and progression at high resolution. 
Uncovering the key regulators of immune responses 
and pathogenicity can markedly contribute to the dis‑
covery and development of new therapeutic agents tar‑
geting immunological diseases such as multiple sclerosis.  
We anticipate that in the near future scRNA‑seq will 
be used for the discovery of novel haematopoietic pro‑
genitor cell populations, the identification of additional 
distinct immune cell subsets that drive disease and the 
development of an ‘atlas’ of immune cell types and states.

Characterizing the heterogeneity of a population. 
Stochastic patterns of gene expression among cells 
within a ‘homogeneous’ population might be at the core 
of how the immune system can produce such a breadth 
of responses to maintain homeostasis and battle infec‑
tions43,44. Evidence that stochastic heterogeneity provides 
response breadth has been previously provided by ana‑
lysing surface marker expression45. The development of 
single‑cell genomics methods raises the exciting possi‑
bility of carrying out these types of studies in a genome‑
wide manner46 to uncover unexpected and potentially 
stochastic variability within immune cell populations.

Molecular stochasticity within a cell type is particu‑
larly relevant for B and T cells, which use V(D)J recom‑
bination to generate diverse B cell receptor (BCR) and 
T cell receptor (TCR) chains that allow them to recog‑
nize a wide variety of peptide–MHC combinations 

Figure 3 | Single-cell profiling uncovers distinct cell subsets in disease. a | Mouse in vitro and in vivo models of 
experimental autoimmune encephalomyelitis (EAE) recapitulate features of the human disease multiple sclerosis. T helper 
17 (TH17) cells have an important role in EAE pathogenesis. Single-cell RNA sequencing (scRNA-seq) analysis of TH17 cells 
in EAE showed that there is a spectrum of TH17 cell pathogenicity ranging from non-pathogenic to highly pathogenic cells. 
Grpr65, Plzp, Toso and Cd5l are expressed in highly pathogenic cells, and these markers might therefore be used for 
diagnosis and to design new therapeutic approaches for multiple sclerosis42. b | scRNA-seq and T cell receptor (TCR) 
repertoire reconstruction can be used to infer changes in T cell clonality and transcriptional profiles in response to various 
infections47,49,50. tSNE, t-distributed stochastic neighbour embedding.
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on antigen‑presenting cells. Intriguingly, paired and 
full‑length TCR and BCR sequences can be read from 
full‑length scRNA‑seq data, as these genes are highly 
expressed (FIG. 3b). Stubbington et al.47 developed a 
computational method known as TRaCer to detect 
TCR heterodimeric diversity from full‑length mRNA 
scRNA‑seq data. TRaCer can be used to extract TCR‑
derived sequencing reads for individual cells and map 
them against a TCR reference pool that contains all 
possible combinations of V and J segments. Combining 
transcriptome sequencing with TCR reconstruction has 
allowed multiple groups to make associations between 
lymphocyte clonality and heterogeneous responses 
to infection. For example, Stubbington et al. used this 
approach to identify changes in T cell clones by com‑
paring samples from before, during and after infec‑
tion with Salmonella enterica subsp. enterica serovar 
Typhimurium. They found a clonotype expansion of 
CD4+ T cells during infection, with each clonotype 
carrying TCR sequences that are likely to be spe‑
cific for an S. Typhimurium antigen. Lönnberg et al.48 
used a similar approach to reconstruct the bifurca‑
tion of mouse TH1 cell versus T follicular helper cell 
fates in response to malaria, and the results demon‑
strated that individual clones populated both fates. 
Indeed, multiple computational approaches now exist  
for TCR repertoire reconstruction, including single‑cell 
TCR sequencing (scTCR‑seq)49 and the TCR reconstruc‑
tion algorithm for paired‑end single cell (TRAPeS)50, and 
similar approaches should work for BCR reconstruction 
as well. Although this strategy is currently limited to 

those profiling methods that sequence full‑length RNA 
such as SMART‑seq2 (FIG. 1), we anticipate that new  
molecular methods will soon enable paired transcrip‑
tomic and immune repertoire profiling in massively 
parallel and multiplexed assays.

Shalek et al.51 carried out scRNA‑seq analysis of bone 
marrow‑derived DCs (BMDCs) after LPS stimulation to 
study variations in gene expression and splicing patterns 
among BMDCs in response to infection (FIG. 4a). The 
results showed significant differences in mRNA abun‑
dance of LPS‑response pathway genes between cells. 
This finding is important, as it suggests that the observed 
heterogeneity has functional consequences for each cell. 
This transcriptional heterogeneity may give BMDCs the 
breadth or flexibility to respond appropriately to numer‑
ous types and levels of infection. In addition, this was 
the first report of heterogeneity in the splicing patterns 
of mRNAs between single cells. Further scRNA‑seq data 
analysis revealed a cluster of approximately 100 genes — 
including many anti‑viral genes, among which were the 
antiviral master regulator genes Irf7 and Stat2 — that 
are bimodally expressed in BMDCs in response to LPS 
stimulation. This finding suggests that LPS stimulation 
promotes variable Irf7 and Stat2 activation, which in 
turn induces bimodal expression of numerous antiviral 
genes. A follow‑up study from the same group52 showed 
that only a small subset of BMDCs expresses antiviral 
genes during the early stages of infection, whereas dur‑
ing the late stages of infection, these genes are uniformly 
expressed by all BMDCs. The ‘early responder’ BMDCs 
are responsible for sensing the infection and then 

Figure 4 | Characterizing heterogeneity within one immune cell population using scRNA-seq.  
a | Bone marrow-derived dendritic cells (BMDCs) respond to infections and help the immune system recruit other cell 
types to combat these infections and stop them from spreading. Lipopolysaccharide (LPS) stimulation is used as a 
technique to mimic infections in vivo. Single-cell RNA sequencing (scRNA-seq) analysis of LPS-stimulated BMDCs revealed 
variation in antiviral gene expression and mRNA splicing patterns of single BMDCs. Upon stimulation, BMDCs have 
bimodal expression of the antiviral master regulator genes Irf7 and Stat2, which in turn promotes the bimodal expression 
of many other antiviral genes51,52. b | Medullary thymic epithelial cells (mTECs) stochastically express tissue-specific 
self-antigens (tissue-restricted antigens, TRAs) to mediate immune system self-tolerance. Single-cell analysis of mTECs 
revealed distinct TRA expression patterns. In addition, it allowed for the identification of distinct autoimmune regulator 
(AIRE)-dependent gene expression patterns in mTEC subpopulations. This variability in AIRE-dependent genes and TRA 
expression patterns might be the mechanism by which mTECs achieve self-tolerance to multiple tissues54.
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signalling to the rest of the BMDCs to react similarly. 
Based on this result, Shalek et al. proposed that dynamic 
regulation of the activation of signalling circuits in 
response to infection (for example, transcription factors 
that activate specific antiviral genes based on the type 
of infection) is the general mechanism that the immune 
system uses to respond appropriately to multiple threats. 
Overall, these studies provide proof that single‑cell tech‑
nologies can be used to discover networks of cells that 
influence each other through intercellular circuits and 
paracrine signalling.

Stochastic expression of self‑antigens in medullary 
thymic epithelial cells (mTECs) is a strategy used by 
the immune system to achieve the broad diversity of 
antigen expression that is required to mediate self‑tol‑
erance in the thymus. Two independent groups have 
used single‑cell profiling to understand how mTECs 
regulate antigen expression to maintain immuno‑
logical self‑ tolerance. Focusing on different aspects of 
this phenomenon, they discovered that mTECs have 
distinct ectopic tissue‑restricted antigen (TRA) expres‑
sion patterns and that the transcription factor known as 
autoimmune regulator (AIRE) induces the expression 
of distinct TRA gene clusters in mTEC sub populations, 
which might account for the observed variation in 
self‑ antigen expression patterns (FIG. 4b). Specifically, 
Brennecke et al.53 used scRNA‑seq to characterize the 
transcriptomes of mTECs, and the results showed that 
these cells are highly heterogeneous and have variable 
TRA gene expression patterns. Closer analysis revealed 
the presence of distinct TRA co‑expression patterns 
in single cells and led to the hypothesis that regula‑
tion of TRA genes follows discernible patterns. Finally, 
ATAC‑seq data showed that co‑expressed genes are 
found in close proximity in the genome and that TRA‑
expression loci show increased chromatin accessibility. 
Meredith et al.54 carried out scRNA‑seq on wild‑type 
and AIRE‑deficient mice to show that AIRE regulates 
the expression of a specific set of genes. They also pre‑
sented additional evidence supporting the idea that 
AIRE‑dependent target genes are expressed at low fre‑
quencies and that AIRE‑induced TRA‑related genes are 
located in close proximity in the genome, in agreement 
with a prior report by Brennecke et al.53. Dimensional 
reduction analysis revealed that the newly discovered 
AIRE‑dependent gene clusters are expressed in distinct 
mTEC subpopulations in wild‑type mice. Moreover, by 
looking at the correlation between DNA methylation 
at CpG dinucleotides and AIRE expression, Meredith 
et al. found that wild‑type and AIRE‑deficient mice 
have highly correlated methylation patterns, suggest‑
ing that AIRE does not alter DNA methylation at CpG 
dinucleotides near the AIRE‑dependent gene clusters 
in mTECs. In summary, these two studies showed the 
existence of extremely variable TRA expression patterns 
in single mTECs and highlighted the role of AIRE in 
controlling the expression of distinct TRA‑related gene 
clusters through an unknown mechanism.

The above‑described findings highlight the  
importance of immune cell variability as a mecha‑
nism for coping with different types of infection and  

regulating immunological self‑tolerance. Further 
applications of single‑cell genomics in additional cell 
populations of the immune system will broaden our 
understanding of systemic responses to infection and 
the pathogenesis of many autoimmune diseases.

Dissecting cell fate branch points. Developmental pro‑
cesses are driven by a series of transcriptional changes 
that allow for cell differentiation and commitment to a 
specific lineage and eventual cell type. Making use of the 
ability to detect discrete cell subtypes using single‑cell 
analysis, studies have shown that developmental pro‑
cesses can be represented as a continuum of transitional 
cell states. Therefore, capturing cells in an unbiased way 
across multiple developmental stages and then recon‑
structing their developmental progression provides a 
unique methodology to study cellular decision‑making 
and differentiation. Such methodology was proposed 
even before the emergence of single‑cell genomics. For 
example, Bendall et al.55 developed an algorithm known 
as Wanderlust to reconstruct the B cell developmental 
trajectory at extremely high resolution from CyTOF 
(mass cytometry) data, which uncovered coordination 
points along this trajectory where rewiring of major 
signalling pathways and changes in the expression of 
surface proteins mark the transition from one cell state 
to the next. Similar ideas have been powerfully applied 
to sc‑qPCR data on haematopoietic stem cells (HSCs), 
enabling reconstruction of the HSC differentiation hier‑
archy, identification of the earliest HSC differentiation 
events, and detection of a distinct cellular hierarchy in 
MLL‑AF9 type acute myeloid leukaemia.

scRNA‑seq is an exciting extension of this method‑
ology, providing access to rich data on molecular pheno‑
types that extend beyond surface markers. Trapnell 
et al.56 developed Monocle, an algorithm for single‑cell 
trajectory reconstruction from RNA‑seq data, and 
showed the potential of this approach for understand‑
ing how molecular heterogeneity influences cell fate, 
in particular in relation to muscle development. Here, 
we discuss a growing field of exciting studies that apply 
scRNA‑seq to studying mammalian immune sys‑
tem development and haematopoiesis, together with  
complementary approaches.

Schlitzer et  al.57 focused on dissecting the cell 
fate decision that is made by DC progenitors when 
committing to either the cDC1 or cDC2 lineage. The 
authors profiled a total of 250 FACS‑sorted single cells 
belonging to three different DC precursor groups —  
macrophage and DC precursors, common DC precursors  
(CDPs) and pre‑DCs — then reconstructed a develop‑
mental trajectory from the transcriptomic data and 
identified a bifurcation point that corresponds with the 
emergence of transcriptomically ‘primed’ progenitors. 
They next identified a set of genes whose expression 
level changed with fate choice. In particular, Siglec‑H 
and Ly6C were identified as markers of cDC1‑primed 
(Siglec‑H−Ly6C−) and cDC2‑primed (Siglec‑H−Ly6C+) 
pre‑DC subpopulations, respectively, and these pre‑
dictions were validated with in vitro experiments. 
Indeed, individual fate decisions and developmental 
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trajectories are now routinely profiled with scRNA‑seq, 
and such studies have led to a deeper understanding of 
the regulators of early myeloid58, lymphoid59 and mega‑
karyocytic differentiation60, as well as T cell commitment 
to helper48, cytotoxic or effector states61.

Whereas the studies described above focused pri‑
marily on individual fate decisions, other studies have 
described the pioneering use of scRNA‑seq for the 
broad profiling of haematopoietic progenitors. Paul 
et al.62 applied scRNA‑seq to 2,730 bone marrow cells 
(KIT+SCA1−Lineage−). In contrast to the expected 
homogenous populations of common myeloid pro‑
genitors (CMPs), megakaryocyte–erythroid pro genitors 
(MEPs) and granulocyte–macrophage precursors, the 
transcriptome data showed 19 cell clusters that rep‑
resented either distinct or transitional cellular states; 
specifically, the data showed that individual CMPs 
are largely transcriptionally committed to a distinct 
myeloid fate. In addition, the results demonstrated 
the involvement of the transcription factors Cebpa  
and Cebpe in determining granulocyte–monocyte and 
neutrophil specification, respectively, and that pertur‑
bations of Cebpa and Cebpe lead to a haematopoietic 
block. Nestorowa et al.63 used a similar approach to pro‑
file 1,600 haematopoietic stem and progenitor cells in 
mouse bone, and identified dynamic changes in gene 
expression among single cells. This allowed the authors 
to reconstruct a map showing the differentiation trajec‑
tories of HSCs and progenitor cells. Grover et al.64 found 
that as HSCs age, they become highly biased towards 

megakaryocyte and platelet differentiation, with lim‑
ited potential to give rise to other lineages. Moreover, 
this phenotype can be rescued by deletion of the platelet 
transcription factor FOG1.

Overall, the above studies show the power of scR‑
NA‑seq in reconstructing lineage trajectories and 
branching points and identifying previously unknown 
transcription factors that control transitions from one 
cellular state to the next in immune system development 
(FIG. 5). This methodology can be easily extended from 
reconstructing developmental trajectories in haemato‑
poiesis to reconstructing developmental trajectories of 
immune cells in any organism in both healthy and dis‑
ease states, which will broaden our understanding of the 
true intermediates in blood differentiation, the lineage 
relationships between different subpopulations, and the 
developmental checkpoints and blockades that accom‑
pany disease. In addition, as these methods become more 
widely used to dissect developmental processes, we will 
start to shed light on broader biological questions about 
the nature of cell differentiation. Some researchers view 
differentiation as a series of discrete stages leading to 
lineage commitment and cell type specification, whereas 
others view this process as a continuum of cell states that 
gradually lose stem cell identity while deciding on their 
ultimate fate. The studies discussed above provide evi‑
dence for both of these ideas. For example, scRNA‑seq 
studies of HSCs have described previously uncharacter‑
ized transitional developmental cell states62–64, whereas 
other studies have identified distinct CDP, HSC, MEP 
and myeloid subpopulations with varying differentiation 
potential57–60. These findings suggest a more complex 
model whereby the continuum of cellular states functions 
as a bridge to connect discrete differentiation stages and 
ensures a smooth transition from one stage to the next.

Emerging directions for single-cell profiling
Specialized cell types allow the immune system to achieve 
a wide range of responses in health and disease. We have 
described how scRNA‑seq analysis can be used as a tool 
for unbiased discovery of unidentified cell types, cell 
states and biologically meaningful cellular heterogeneity, 
as well as for reconstructing lineage progression during 
various developmental processes of the immune system. 
Such discoveries are now not only possible but routinely 
made. We anticipate that cutting‑edge advances in sin‑
gle‑cell technologies, allowing for the integrated analysis 
of immune repertoires and molecular state, will deepen 
our understanding of lymphocyte behaviour, particu‑
larly as these approaches can be scaled to larger datasets. 
Moreover, although cell culture and mouse models have 
been extremely useful in helping us understand how 
the immune system operates, tools are now in place  
for the profiling of human tissues, which will allow for 
analysis of both the healthy human immune system as 
well as the immune response in many poorly character‑
ized autoimmune and inflammatory diseases (such as 
rheumatoid arthritis, Crohn’s disease and psoriasis).

As the field progresses, we envision important 
advances in the ability to integrate diverse phenotypic 
parameters of a cell together with its transcriptome.  

Figure 5 | scRNA-seq helps identify cell fate branch points during HSC 
differentiation. The expression of transcription factors and abundance of surface 
proteins determine cell fate specification during differentiation. As haematopoietic stem 
cells (HSCs) age, they become increasingly platelet biased; however, this phenotype can 
be rescued in vitro by deletion of the major platelet transcription factor FOG1 (REF. 64). 
Myeloid progenitor potential to generate mast cells and eosinophils or monocytes and 
macrophages relies on the presence or absence of GATA1, respectively85. In addition, 
high levels of expression of the transcription factor Cebpa direct myeloid progenitors 
towards neutrophil, monocyte and basophil lineages, whereas high levels of expression 
of Cebpe seem to be found primarily in neutrophil and eosinophil subpopulations62. 
Finally, conventional dendritic cells (cDCs) rely on Siglec-H and Ly6C abundance to 
determine whether they will become cDC type 1 (cDC1) or cDC type 2 (cDC2)57.
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For example, in the bone marrow, cellular localization 
has an important role in downstream fate choice65–68, but 
information about cellular positioning and the micro‑
environment is lost when carrying out scRNA‑seq 
analyses. To address this issue, the development of new 
computational and experimental methods will allow us 
to reconstruct the spatial organization of cells within 
an embryo or a tissue. For example, computational 
strategies69,70 can infer cellular localization in zebrafish 
embryos and annelid brains by integrating scRNA‑seq 
data with in situ RNA expression patterns. Similarly, 
fluorescent in situ sequencing (FISSEQ71) of mRNA 
isolated from different cell types and tissues allows for 
enrichment of context‑specific transcripts while preserv‑
ing tissue architecture and enabling detailed analysis of 
RNA localization. In addition, combining scRNA‑seq 

with HSC lentiviral barcoding strategies72,73 can be used 
to integrate lineage and transcriptome information from 
the same cells.

Lastly, the development of new technologies is 
extending single‑cell profiling beyond the transcrip‑
tome, with particular advances in genomic74, chro‑
matin75,76, methylation77–80 and proteomic81 assays. 
Particularly exciting are the strategies being developed 
to multiplex these measurements together, which ena‑
bles joint profiling of multiple molecular modalities 
from the same cell (for example, genome plus transcrip‑
tome82,83 or immunophenotype plus transcriptome84). 
These integrated strategies will continue to allow us 
to discover and define rich cellular phenotypes and to 
explore their function in the immune system in both 
health and disease.
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