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sequencing the rnA in a biological sample can unlock a wealth 
of information, including the identity of bacteria and viruses, 
the nuances of alternative splicing or the transcriptional state 
of organisms. however, current methods have limitations due 
to short read lengths and reverse transcription or amplification 
biases. here we demonstrate nanopore direct rnA-seq, a highly 
parallel, real-time, single-molecule method that circumvents 
reverse transcription or amplification steps. this method yields 
full-length, strand-specific rnA sequences and enables the 
direct detection of nucleotide analogs in rnA.

A cell’s transcriptome contains rich information, including the 
structure of genes (such as splice variants and fusion genes), differ-
ent expression levels of transcripts, and antisense transcription1.

A method to best capture this information is one that is accu-
rate, strand specific, quantitative across a wide dynamic range, 
does not need prior knowledge of sequence, is capable of reveal-
ing the presence and identity of modified bases, and can detect 
antisense transcripts without a concern that these are artifacts 
of library preparation2. Ideally, the method would also generate 
continuous sequence reads that span any splice junctions. Current 
sequencing-based transcriptomic analyses (RNA-seq), based on 
the high-throughput sequencing of complementary DNA (cDNA), 
have enabled us to build a more accurate picture of the active tran-
scriptional patterns within organisms1. The most commonly used 
RNA-seq strategy involves either polydeoxythymidine (poly(dT)) 
priming or RNA fragmentation and random hexamer priming, 
followed by cDNA synthesis. These cDNA strands are amplified 
by PCR, which can introduce bias3 such as reduced complexity 
of the resulting cDNA library, distortion of relative cDNA abun-
dances and dropout of some RNA species. An amplification-free 
library prep would sidestep these issues4. Additionally, during 
PCR amplification, any modifications on the RNA are lost.

Two current methods do not require PCR amplification for 
RNA-seq library preparation, FRT-seq5 and the DRS technique 
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on the Helicos platform6, but both of these approaches generate 
short sequence reads, which can make it difficult to correctly iden-
tify alternative splicing in eukaryotes7,8. This problem should be 
addressable by combining a long-read sequencing technology with 
a library preparation method that maintains the integrity of the 
RNA being analyzed9.

All previous RNA-seq methods detect the products of a syn-
thesis reaction rather than directly detecting the RNA molecule. 
Thus, sequences generated with these methods are subject to the 
processivity and error-rate limitations of reverse transcription 
and either cannot detect base modifications or cannot distin-
guish homopolymers10.

Oxford Nanopore Technologies’ nanopore-based platform 
detects single molecules of DNA, proteins and small molecules as 
they traverse through a nanopore, without the need for an enzy-
matic synthesis reaction. The platform consists of single nanop-
ores embedded in an array of thousands of individual synthetic 
polymer membranes on a single flowcell. An electric potential 
drives DNA toward and into the nanopores11. When a single DNA 
molecule is captured in a pore and ratcheted through the pore at 
a consistent rate by an engineered motor protein, it creates per-
turbations of the nanopore current12 which a recurrent neural 
network (RNN) converts into base sequences.

Here we assess an amplification-free method for sequencing 
RNA and detecting RNA modifications using the nanopore plat-
form. To our knowledge, this is the first parallel, truly direct, RNA-
seq method.

results
direct rnA sequencing of yeast transcripts
To assess the performance of the direct RNA-seq method, we 
sequenced a direct RNA library (Fig. 1a) from yeast poly(A)+ 
RNA on a MinION MkIb with R9.4 flowcells. Using the 
MinKNOW instrument software, we recorded the nanopore 
current as each strand of RNA translocated through a nanopore  
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(Fig. 1b). As an adaptor-ligated yeast RNA enters the pore, the 
adaptor oligo is detected first, followed by the poly(A) tail, then 
the body of the transcript. The nanopore current returns to a high 
open-pore level as the transcript exits the pore on the opposite 
side of the membrane.

We used Albacore 1.2.1 (Oxford Nanopore Technologies 
Ltd.) to call the bases, and we aligned the resulting reads to the 
Saccharomyces cerevisiae transcriptome. We also sequenced the 
same yeast mRNA sample on a MinION cDNA run and an Illumina 
100-nucleotide paired-end run. The number of reads that mapped 
to the yeast transcriptome was 2,777,523 (79.29% of reads) for the 
direct RNA data set; 5,735,508 (90.36%) for the cDNA data set; and 
572,206,890 (79.32%) for the Illumina data set. The read-length 
distributions for the direct RNA and nanopore cDNA data sets were 
similar (Supplementary Fig. 1). The modal accuracy of basecalled 
direct RNA reads is currently >90% (Supplementary Fig. 2).

We calculated read-count correlations between the three data sets 
as described, and we obtained good agreement. The direct RNA and 
cDNA nanopore data sets gave the highest correlation (Spearman’s 
rho = 0.89), and both nanopore data sets gave similar correlation 
values to those of the Illumina data set (Spearman’s rho = 0.81 for 
direct RNA and 0.79 for cDNA; Fig. 2a). Five technical replicates of 
different direct RNA yeast libraries correlated very well (Spearman’s 
rho = 0.94–0.96; n = 6,713 transcripts), showing that the library 
prep and sequencing is reproducible (Supplementary Fig. 3).

We calculated the log fold change in coverage between the 
direct RNA and Illumina data sets. The number of direct RNA 
reads mapped to the yeast genome using GMAP13 was 2,045,748 
(63.43%)l; while the number of Illumina RNA-seq reads mapped 
by GSNAP was 708,592,030 (98.22%, Fig. 2b,c). Direct RNA gene 
coverage corresponds well with the Illumina results (Spearman’s 
rho = 0.73).

Two of the yeast transcripts identified by direct RNA-seq mapped 
to isozymes of GAPDH, forms of the same enzyme that are encoded 
by similar genes at different loci. The sequences of the two genes 
are 95.8% identical, differing at 42 positions dispersed throughout 
the genes (data not shown). Even though the single-read accuracy 
of the direct RNA data is currently below the ~96% identity of the 
two genes, analysis of the reads mapping to each isozyme imply cor-
rect placement—first, multimapping (and hence randomly placed) 
reads are in the minority; and second, because each nanopore read 
covers the majority of the 42 divergent bases, a few incorrectly 
called bases cannot shift the mapping to the other gene (Fig. 2d).

direct measurement of rnA with low bias
To assess the bias introduced by increasing numbers of PCR cycles, 
we prepared Nanopore cDNA libraries using the ERCC RNA spike-
in mix with 5–40 PCR cycles (Supplementary Fig. 4). The results 
indicate that a major component of the bias comes from a decrease 
in the proportion of full-length reads, rather than a decrease in 
correlation between expected and observed read counts.

Next, we generated ~60,000 direct RNA reads from the same 
ERCC panel and calculated abundance as described in the Online 
Methods (Fig. 3a). The correlation between read counts and 
expected values (Spearman’s rho = 0.93, P = 1.9−40; the correla-
tion coefficient and the corresponding two-sided P value were 
calculated using the stats.spearmanr function from the scipy 
Python package.) indicates low bias, regardless of the fragment 
length. The protocol gives good coverage of entire transcripts; a 
histogram of alignment coverage values shows the majority of 
values being close to 1, which indicates that alignments tend to 
cover full transcripts (Fig. 3b,c). Additionally, because the RNA 
strand is sequenced directly, the reads necessarily map back to the 
reference in a strand-specific manner (Fig. 3c).
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Figure 1 | Direct RNA-seq. (a) Library preparation method for direct RNA-seq. (b) Representative raw data ‘squiggle’ resulting from translocation of a 
single transcript through a pore in the MinION array. (c) Alignment of a typical Saccharomyces cerevisiae S228C read to the reference transcriptome.
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We investigated biases in read count correlated to transcript 
length or GC content for both direct RNA and Illumina yeast 
data sets (Supplementary Fig. 5). Transcript length has less of 
an effect on read count in direct RNA than Illumina (Pearson’s  
r = 0.13, P = 5.4 × 10−29 and Pearson’s r = 0.3, P = 7 × 10−141, 
respectively; Supplementary Fig. 5a,b). GC content appears to 
have a negligible influence (Pearson r = 0.013, P = 0.29) on read 
count in the direct RNA data set, substantially less than for the 
Illumina data set (Pearson r = 0.19, P = 1.6 × 10−58; Supplementary  
Fig. 5c,d), and the mean quality of aligned portions of the direct 

RNA reads does not appear to be strongly influenced by GC 
content (Pearson’s r = −0.082; Supplementary Fig. 5e; P = 0,  
n = 2,777,523 alignments. The correlation coefficient and the 
corresponding two-sided P value were calculated using the stats.
spearmanr function from the scipy Python package.).

splice variation
We evaluated the unambiguous detection of splice variants using 
Lexogen’s Spike-in RNA Variant Control Mixes (SIRVs). When 
quantifying isoform levels in the E2 SIRV data set using the  
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Figure 2 | Analysis of the Saccharomyces cerevisiae S228C transcriptome by direct RNA-seq. (a) Correlation between read counts after transcriptome 
mapping for direct RNA, cDNA and Illumina data sets calculated from n = 6,531 transcripts (each transcript appeared in at least one of the data sets). 
(b) Circos plot of reads aligned to the reference genome. The outer track shows the reference genome. Immediately inside this track are log gene 
coverage of direct RNA reads. The innermost track shows log gene coverage of cDNA reads. Between the two tracks is the log2 fold change of relative 
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transcriptome-alignment-based strategy, we found strong correla-
tion with the known mix concentrations (Spearman’s rho = 0.8,  
P = 3 × 10−16; Fig. 4a). On the gene level the rank correlation was 
perfect (Spearman’s rho = 1.0, P = 0; Fig. 4b), which suggests that 
discriminating between similar isoforms by transcriptome map-
ping is the factor limiting the correlation on transcript level.

With the spliced-alignment-based quantification strategy, we 
found a quantitatively lower, but still strong, correlation with 
the known E2 isoform concentrations (Spearman’s rho = 0.62; 
Supplementary Fig. 6). The lower correlation suggests that, 
while this strategy is viable, the additional complexity of spliced 
mapping and the downstream quantification approach might 
introduce additional biases. These can hopefully be alleviated by 
optimizing the analysis tools further for use with long reads.

When we evaluated the coverage of individual exons in the E0 
SIRV data set, we did not find any trends, such as missing first or 
last exons (Supplementary Fig. 7). Indeed, all exons had consider-
able coverage, with the exceptions of most exons in SIRV502, the 

two first exons of SIRV505 and the last exon of SIRV704. Hence, 
we conclude that there are reads supporting the existence of all 
but a few transcripts in the correct annotation. Guided assembly 
of the E0 SIRV data set achieved a transcript-level sensitivity of 
100% (all 69 transcripts recovered) and specificity of 95.8% (three 
false-positive transcripts reported). No exons were missed or novel 
exons reported. These results reinforce our conclusion that our data 
set contains reads supporting all correct transcripts. The unguided 
assembly, however, recovered only 14 correct transcripts (sensitivity, 
20.3%; precision, 43.8%). It is possible that further optimization of 
StringTie14 will improve its performance with direct RNA reads.

detection of modified bases
Modifications on RNA cause a characteristic current blockade 
within the nanopore that can be measured by direct RNA-seq. 
To determine the effect of two common RNA modifications,  
N6-methyladenosine (m6A) and 5-methylcytosine (5-mC), on the 
current blockade, we sequenced the FLuc transcript in which the 
relevant nucleoside was either modified in every position, or was 
unmodified (Trilink Biotechnologies Inc.). We constructed an 
HMM to independently describe each position in the sequence. 
After training, the resulting models can be considered consensus 
squiggles—they encode the average current observed for each 
position along the sequence. We compared the mean current lev-
els for unmodified (red line) versus m6A modification (blue line, 
Fig. 5a) or 5-mC modification (blue line, Fig. 5b). The current 
level is perturbed locally near nucleoside modifications, but is 
otherwise similar.

discussion
The direct RNA-seq method here described has many potential 
advantages over other RNA-seq strategies; namely, (i) it is ampli-
fication free so does not suffer from PCR bias3 or RT bias; (ii) it 
is compatible with very long reads, which are particularly useful, 
for example, in the study of splice variants; (iii) it measures the 
RNA directly so it can detect nucleotide analogs; and (iv) it is 
strand specific.

There are several areas where we are currently working to 
improve the direct RNA-seq method. First, the current basecalling 
model appears to be slightly overfitted to yeast (data not shown); 
and although the effect is not substantial, yeast data sets will be 
called with higher accuracy than others. Training the basecaller 
on a wider range of data sets will be required to remove this effect, 
and this will increase overall accuracy. Although slight read-length 
effects can be seen in the yeast transcriptome data, these are lower 
than for the Illumina data set. In the absence of an unambiguously 
correct answer for the expression levels of this particular yeast 
sample, we cannot rule out the possibility that expression level in 
this sample is genuinely correlated with transcript length, though 
this seems unlikely.

Degraded RNA can hinder proper detection of splice variants, 
because the sample RNA is no longer full length. This issue can 
be addressed with a method for isolating intact transcripts; for 
instance, by targeting the eukaryotic 5′ cap. Including such a step 
in the library preparation should further improve the read-length 
distribution of direct RNA reads.

Many of the software tools we used for these analyses were 
not optimized for nanopore direct RNA data. Without this  
optimization, the fraction of reads mapping to the yeast  
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transcriptome (~0.63) is lower than that of both the Illumina 
data set (~0.79) and the nanopore cDNA data set (~0.90). This 
lower mapping rate may be explained by the direct RNA reads 
having higher error than either of the cDNA data sets. However, 
in many applications the greater length of the direct RNA reads 
versus the Illumina reads may compensate for the lower accuracy. 
Results of our spliced mapping analysis suggest that the fraction 
of mapped direct RNA reads will increase with optimization of 
the alignment tools.

Although the data presented here on the detection of modified 
bases are preliminary, they reveal a clear and systematic differ-
ence between groups of molecules that differ only in the presence 
or absence of modified nucleotides in the sequence contexts ana-
lyzed. Others have also made this observation15, and such analyses 
indicate that it may be possible to detect base modifications at a 
single-molecule level with single-nucleotide resolution on a tran-
scriptome-wide scale. Although the computational cost will grow 
with the number of base modifications included in the basecaller, 
many cases of practical relevance target limited choices of base 
analogs at specific loci in a reference sequence—analyses which can 
be performed by less computationally expensive algorithms.

In some cases, synthesis of a cDNA strand opposite the RNA 
template before sequencing improves throughput, possibly 
by reducing intramolecular secondary structure of the RNA. 
Analogous to the 1D2 method of DNA sequencing, it is possible 
to create an RNA–cDNA hybrid in such a way that the cDNA 
strand is sequenced immediately after its parent RNA strand. The 
data from both strands could then be combined into a single, 
higher accuracy read. Such an approach could also be used for de 
novo identification of modified bases, since the synthetic strand 
provides a built-in reference sequence.

In this paper, the RNA adaptor is ligated onto the 3′ poly(A) 
tail of RNA. The approach lends itself readily to the sequencing of 
eukaryotic mRNAs, but it is necessary to add a tail to other types 
of RNA. We have found enzymatic addition of a 3′ poly(A) tail 
to be efficient. In addition, the direct RNA adaptors are modu-
lar, so the poly(T) splint can be replaced with a user-provided, 

sequence-specific splint for targeting specific non-poly(A) 3′ 
sequences such as ribosomal RNAs.

For the work presented here, we operated the motor protein at 
a speed around 85 nucleotides per s. Refinements to our DNA-
sequencing process have allowed us to increase the DNA motor 
speed approximately ten-fold, with scope to increase this further. 
Screening a wider range of motor protein mutants will allow us 
to find enzymes with the best combination of steady movement, 
good processivity and high processing speed, which will increase 
throughput and data quality.

We are currently using the same Escherichia coli CsgG-derived 
nanopore for both direct RNA and DNA sequencing16, and this 
allows both DNA and RNA strands to be sequenced together on 
the same flowcell, but we continue to engineer this pore as well as 
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search for a better pore. Pore mutations can improve the signal-
to-noise ratio and RNA-capture efficiency, which would allow 
higher accuracy basecalls from less input RNA.

methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Screening motor proteins. We expressed and tested a large 
number of helicases and polymerases from an internal library 
of candidate enzymes, and from published literature, for suitable 
strand movement properties—in particular, processive, single-
base, unidirectional movement on RNA with a speed of 80 to 
1,000 bases per second. Consistent with published literature, we 
found that many DNA translocases lack efficient binding activity 
or processivity on RNA. However, our enzyme screen identified 
a candidate translocase that exhibited movement on RNA in the 
3′ to 5′ direction.

In addition to using fluorescence assays to measure displace-
ment proficiency of candidate RNA translocases, we analyzed 
translocase movement properties on the in vitro RNA transcripts 
eGFP, FLuc, and β-galactosidase (Trilink Biotech) on a MinION 
using R9.4 flowcells. Briefly, we used in-house scripts to create 
a consensus of current levels generated by different reads of the 
same sequence. The consensus data provided a rough measure of 
the consistency of the signal generated each time an RNA strand 
was ratcheted through the pore by the translocase.

We used these limited data sets to train Hidden Markov Models 
(HMMs) to predict the sequence that generated a given nanopore 
signal. Once we could use an HMM to map a nanopore signal to 
an RNA sequence, we used more diverse training sets, such as the 
transcriptome from yeast strain S228C, to improve the model. 
We used an HMM to align the nanopore signal to the reference 
nucleotide sequence resulting in the input data for training a 
Recurrent Neural Network (RNN) basecaller. The RNN training 
process can overcome deficiencies in the HMM labeling of the 
training data to yield an improved basecaller. In summary, we 
found that a properly trained basecalling model allowed us to gen-
erate high-quality basecalls using the single-molecule RNA data 
generated using this translocase. We engineered this translocase 
further to increase stability, binding, movement and speed. We 
also engineered a closed-complex version to topologically lock 
the enzyme around the polynucleotide substrate, enabling both 
essentially unlimited processivity and the ability to prepare stable 
enzyme-preloaded adapters.

Adaptor design. We designed a sequencing adaptor to attach to 
the 3′ end of the RNA template strands. This adaptor has a 3′ 
terminus that is low in secondary structure, allowing the 3′ end 
of the adaptor to be captured by a nanopore. The motor protein 
is prebound to the adaptor, which contains a short section of 
nonpolynucleotide linker designed to prevent the protein from 
processing through the RNA strand until captured on the pore. 
The adaptor also contains a hydrophobic portion that encourages 
the library strands to associate with the membrane in which the 
nanopores are embedded.

Library preparation and sequencing. We prepared direct RNA 
libraries using the protocol depicted in Figure 1. Briefly, 100–500 ng  
of poly(A)+ RNA was ligated to a poly(T) adaptor using T4 DNA 
ligase. This ligase was found empirically to give a higher yield of 
ligated products than RNA ligases 1 and 2 (approximately 80% 
compared to 40% for RNA ligases) and to reach its maximum 
yield in a shorter amount of time. Following adaptor ligation, the 
products were purified by adding a 1.8-fold excess of Agencourt 
RNAClean XP beads and following the Agencourt purification 

protocol. Sequencing adaptors preloaded with motor protein 
(200 mM annealed, preloaded adaptor, 200 mM NaCl, 50 mM 
Tris–HCl pH 7.5, 5% (w/v) glycerol, 0.1% (w/v) β-OTG, 0.1 mM 
EDTA) were then ligated onto the overhang of the previous adap-
tor using T4 DNA ligase (Fig. 1a). Excess buffer was removed 
using Agencourt RNAClean XP beads with a modified purification 
protocol described in the Direct RNA Sequencing kit documenta-
tion17. The RNA library was eluted from the RNAClean beads in 
21 µl of elution buffer (50 mM Tris–HCl pH 8.0, 20 mM NaCl, 
200 mM oligonucleotide with hydrophobic portion). 1 µl of the 
RNA library was quantified using a Qubit fluorometer using the 
manufacturer’s RNA assay. Immediately before sequencing, the 
remaining 20 µl of RNA library was mixed with 17.5 µl of nucle-
ase-free water and 37.5 µl of undiluted 2× running buffer (940 mM 
KCl, 50 mM HEPES pH 7.0, 20 mM MgCl2, 22 mM ATP), making 
75 µl of the final RNA library. The final RNA libraries were added 
to FLO-MIN106 flowcells and run on an MkIb MinION.

Library preparation and 100 nucleotide, paired-end Illumina 
sequencing of the yeast RNA sample was performed by the 
sequencing service at the Wellcome Trust Centre for Human 
Genetics, Oxford, UK.

Data analysis. 1. Basecalling: sequencing runs were performed 
using MinKNOW version 1.5.5 or 1.5.15 software (Oxford 
Nanopore Technologies Ltd.) by executing the EXPERIMENT_
RNA_Baseline_Sequencing.py script. MinKNOW is the instru-
ment control software that runs on the host computer to which 
the MinION is connected. MinKNOW carries out several core 
tasks: data acquisition; real-time analysis and feedback of experi-
mental progression; data streaming while providing device con-
trol, including selecting the run parameters and ensuring that the 
platform chemistry is performing correctly to run the samples. 
The data output from MinKNOW consists of a single file per 
sequence read, in an HDF5 format18 called FAST5.

FAST5 files were basecalled using Albacore 1.2.1 (Oxford 
Nanopore Technologies Ltd.), a proprietary recurrent neural 
network basecaller, with the following parameters: read_fast5_
basecaller.py -i <input_dir> -t 10 -c r94_70bps_rna_linear.cfg -s 
<output_dir> -o fastq,fast5

2. Yeast transcriptome analysis: for the yeast analyses, we have 
used Ensembl release 89 genome, annotation and cDNA collec-
tion. For mapping the nanopore and Illumina reads to the tran-
scriptome we used bwa mem (0.7.15-r1140) with parameters -x 
ont2d and bwa aln/sampe, respectively. Reads mapping to the 
different transcripts were counted by the bam_count_reads.py 
script from the wub package (https://github.com/nanoporetech/
wub), with a minimum required mapping quality parameter of 
5. The RPKM values for the Illumina data set were calculated 
by performing length normalization using the length_normal-
ise_counts.py script from the wub package. The correlation of 
counts from different runs and experiments was calculated using 
the correlate_counts.py script from the wub package.

To assess the biases in the ssRNA, cDNA and Illumina data, 
we first generated read count files from the reads aligned to the 
transcriptome using the bam_count_reads.py script from the 
wub package with the -z argument specified and with a minimum 
required mapping quality of 5. We then used the bias_explorer.py 
script from wub to calculate correlation of transcript counts with 
the length and GC content of originating transcripts.

https://github.com/nanoporetech/wub
https://github.com/nanoporetech/wub
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Mapping of the nanopore reads to the yeast genome was per-
formed by GMAP (version 2017-05-08)13 with parameters –n 
1–cross-species -f samse. The Illumina reads were mapped to the 
genome using gnsap (version 2017-05-08)13 with parameters -N 
1 -n 1. The gene coverage was generated from the genomic align-
ments using the annotation and bedtools coverage (v2.25.0)19 and 
visualized using circos (v0.69-5)20. When calculating the log2-
fold ratios for the middle track of the Circos plot, we added a 
pseudocount of 10−7 to avoid division by zero when a gene is not 
covered. The pairwise alignment used for the isozyme figure was 
generated using Clustal W (version 2.1)21.

3. ERCC panel quantitative analysis: the ERCC panel 
(ThermoFisher Scientific) is a set of 92 polyadenylated RNAs, 
ranging from 250 to 2,000 nucleotides in length, which are present 
in the mixture at defined concentrations. Reads were mapped 
to the ERCC transcriptome reference using bwa mem (version 
0.7.15-r1142-dirty)22 with parameters -Y -M -L 300 -x ont2d. 
Reads mapping to the different transcripts were counted by the 
bam_count_reads.py script from the wub package. The correlation 
of read counts and known abundance was plotted using in-house 
scripts (https://github.com/nanoporetech/dRNA-paper-scripts). 
The fragment coverage plots and reference coverage histograms 
were produced from the ERCC transcriptome alignments using 
bam_frag_coverage.py from the wub package. More information 
on the study design and analysis software can be found in the Life 
Sciences Reporting Summary.

4. SIRV splice panel analyses: in order to assess the quantifi-
cation of isoforms in the E2 SIRV ssRNA data set, we used two 
strategies: one based on transcriptome alignment and another 
based on spliced alignment to the genome.

For the transcriptome-based approach, we first mapped the 
E2 reads to the SIRV transcriptome using bwa mem –x ont2d 
(version 0.7.15-r1140)22 then counted the reads mapping to each 
transcript using the bam_count_reads.py script from the wub 
package. We used the plot_sirv_correlations.py script to assess the 
correlation of counts with the known E2 mix concentrations.

For the spliced-alignment-based approach, we aligned the E2 
ssRNA reads to the SIRV ‘genome’ using GMAP (version 2017-05-
08)13 with the parameters –cross-species -n 1 -z sense_force. We 
then used StringTie (version 1.3.3)14 along with the correct anno-
tation (specified through the -G parameter) provided by Lexogen 
in order to quantify the transcripts (with the -e parameter speci-
fied). We used the scripts gtf_to_counts.py and plot_sirv_correla-
tions.py to assess the correlation of FPKMs reported by StringTie 
with the known E2 mix concentrations.

In order to quantify the detection of splicing events through 
reconstructing transcripts, we used a data set generated from 
the SIRV E0 sample, which contains all transcripts in equimolar 
amounts. The spliced mapping to the SIRV ‘genome’ was per-
formed as in the case of the E2 data set.

To evaluate the coverage of individual exons by aligned reads, 
we used StringTie in the quantification mode (-e parameter) along 
with the correct annotation, then we used the gtf_plot_exon_cov.
py script to plot the log of average base coverage of individual 
exons in all transcripts. In order to assess the recovery of tran-
scripts, we performed a StringTie transcript assembly guided by 
the correct annotation and also a completely de novo assembly 

(with additional parameters -f 0.05 -c 1.0). The gffcompare utility 
(version v0.9.8, https://github.com/gpertea/gffcompare) was used 
to evaluate the quality of annotations obtained by the assemblies 
by comparing it to the correct annotation.

5. Detection of methylated adenosine and cytosine: to show that 
direct RNA-seq can detect the presence of methylation, we trained 
Hidden Markov Models23 from distinct samples; as a reference, 
we used synthetic RNA strands that contained only canonical 
nucleotides, and we used this to compare two modified strands 
(Trilink Biotechnologies, Inc., California)—one containing, m6A, 
U, G and C; and the other containing A, U, G and 5-mC. For 
simplicity of exposition we choose to model all positions of the 
reference sequence independently; that is, the HMM comprises 
a state space containing as many states as there are bases in the 
reference sequence. Such modeling allows us to relax the assump-
tion that only five bases contribute to the observed ionic current. 
To bootstrap the training, we do however use the emission param-
eterization of a 5-mer basecalling model—we index the param-
eters µ_p and σ _p on the five bases surrounding the reference 
position p. Having trained the HMM models, the final emission 
parameter sets represent a consensus ‘squiggle’ across all reads 
in the two data sets. To compare the consensuses we performed 
least-squares regression of µ_p and µ_p(meth) at reference posi-
tions, which are not expected to be affected by the methylation 
under the 5-mer assumption.

Code availability. With the exception of scripts used to detect 
modified nucleotides, all custom scripts used to perform bio-
informatics analyses are available from https://github.com/
nanoporetech/wub and https://github.com/nanoporetech/dRNA-
paper-scripts.

Life Sciences Reporting Summary. Further information on 
experimental design is available in the Life Sciences Reporting 
Summary.

Data availability. All data sets presented in this paper have been 
deposited in the Sequence Read Archive under BioProject acces-
sion number is PRJNA408327 and BioSample accession num-
bers SAMN07688322, SAMN07684568, SAMN07684569 and 
SAMN07684570.
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2947–2948 (2007).

22. Li, H. & Durbin, R. Burrows–Wheeler Alignment Tool http://bio-bwa.
sourceforge.net/bwa.shtml (2012).

23. Fariselli, P., Martelli, P.L. & Casadio, R. A new decoding algorithm for 
hidden Markov models improves the prediction of the topology of all-beta 
membrane proteins. BMC Bioinformatics 6, S12 (2005).

https://github.com/nanoporetech/dRNA-paper-scripts
https://github.com/gpertea/gffcompare
https://github.com/nanoporetech/wub
https://github.com/nanoporetech/wub
https://github.com/nanoporetech/dRNA-paper-scripts
https://github.com/nanoporetech/dRNA-paper-scripts
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA408327/
https://www.ncbi.nlm.nih.gov/biosample/SAMN07688322/
https://www.ncbi.nlm.nih.gov/biosample/?term=SAMN07684568
https://www.ncbi.nlm.nih.gov/biosample/?term=SAMN07684569
https://www.ncbi.nlm.nih.gov/biosample/?term=SAMN07684570
https://community.nanoporetech.com/protocols/direct-rna-sequencing/v/drs_9026_v1_revj_15dec201
https://community.nanoporetech.com/protocols/direct-rna-sequencing/v/drs_9026_v1_revj_15dec201
https://community.nanoporetech.com/protocols/direct-rna-sequencing/v/drs_9026_v1_revj_15dec201
http://www.hdfgroup.org/HDF5/
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml


1

nature research  |  life sciences reporting sum
m

ary
June 2017

Corresponding author(s): Daniel J Turner

Initial submission Revised version Final submission

Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. Sample sizes were not considered here. The manuscript reports a new way to 
sequence RNA, and in a sense, the sample size could be considered to be the 
number of reads used in the various analyses. However, these were governed by 
the performance of the method rather than by statistical considerations.

2.   Data exclusions

Describe any data exclusions. No data were excluded.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

In our analysis of reproducibility, all results were reported and the findings were 
reliably reproduced.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Randomization was not relevant as samples in this study are commercially 
available.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not applicable, the manuscript concerns a new method of RNA sequencing, and 
the data we generate by this method is very distinctive.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The third-party software used to analyse the data in this study is bwa mem ver. 
0.7.15-r1142-dirty, GMAP ver. 2017-05-08, bedtools ver. V2.25.0., gnsap ver. 
2017-05-08, circos ver. V0.69-5, StringTie ver. 1.3.3, Clustal W ver. 2.1. and 
affcompare ver. v0.9.8. Custom tools can be found in the wub package (https://
github.com/nanoporetech/wub version string: a80af13) and scripts for this paper 
(https://github.com/nanoporetech/dRNA-paper-scripts version string c276036).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

All materials used were from standard commercial sources

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

None were used

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. The only eukaryotic cells used in this work were a commercial strain of yeast

b.  Describe the method of cell line authentication used. We authenticated the cells by genome sequencing

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

The cells were not tested for mycoplasma contamination

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

No human research participants were used
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