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Feature Review
The human transcriptome comprises >80 000 protein-
coding transcripts and the estimated number of proteins
synthesized from these transcripts is in the range of
250 000 to 1 million. These transcripts and proteins are
encoded by less than 20 000 genes, suggesting extensive
regulation at the transcriptional, post-transcriptional,
and translational level. Here we review how RNA se-
quencing (RNA-seq) technologies have increased our
understanding of the mechanisms that give rise to alter-
native transcripts and their alternative translation. We
highlight four different regulatory processes: alternative
transcription initiation, alternative splicing, alternative
polyadenylation, and alternative translation initiation.
We discuss their transcriptome-wide distribution, their
impact on protein expression, their biological relevance,
and the possible molecular mechanisms leading to their
alternative regulation. We conclude with a discussion
of the coordination and the interdependence of these
four regulatory layers.

Regulatory layers defining gene expression
The diversification of cellular and organismal functions
observed in higher eukaryotes cannot be explained by the
sheer number of genes but is mostly due to the expression
of different transcripts and proteins from the same genes.
Variation in the expression of coding genes is controlled at
multiple levels, from transcription to RNA processing and
translation. Alternative transcripts and proteins may arise
from alternative transcription initiation, alternative splic-
ing, alternative polyadenylation (APA), and alternative
translation initiation. These co- and post-transcriptional
regulatory mechanisms expand the genome’s coding capa-
city modifying protein function, stability, localization, and
expression levels. In this review, we discuss how high-
throughput RNA-seq has helped us to understand these four
regulatory processes. We describe their transcriptome-wide
abundance in mammalian cells, their impact on protein
expression, their biological relevance, and the molecular
mechanisms underlying these processes. Finally, we high-
light how the interdependence between transcription, RNA
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processing, and translation restricts the number of combi-
nations of possible alternative transcripts and proteins.

Initiation of transcription: alternative promoters
During the biogenesis of mRNAs, regulation of transcrip-
tion initiation represents the first layer in the control of
gene expression [1–4]. Alternative transcription initiation
leads to the formation of transcripts differing in their first
exon or in the length of the 50 untranslated region (50-UTR).
The use of alternative first exons leads to transcripts with
different open reading frames (ORFs) and diversifies the
repertoire of encoded proteins giving rise to protein iso-
forms with alternative N termini [5] (Figure 1A). Alterna-
tively, transcripts sharing the same coding region but a
different 50-UTR can be subject to differential translational
regulation (Figure 1B) [6] through short upstream ORFs
(uORFs) involved in translational control [7–9] or in the
production of biologically relevant peptides [10–12].

The use of alternative promoters and transcription start
sites (TSSs) in protein coding transcripts was established
before the development of transcriptome-wide approaches,
through studies based on a method called cap analysis of
gene expression (CAGE) [13]. CAGE still represents the basic
technology for the detection of TSSs. Recently, several high-
throughput CAGE methods, such as DeepCAGE, have been
developed [14]. These transcriptome-wide studies suggest
that TSS use is highly tissue specific [4,15–18] and that the
number of alternative TSSs differs by tissue type, with the
hippocampus accounting for a larger number of TSSs than
any other tissue [18,19]. To what extent alternative TSSs
lead to alternative 50 noncoding regions or translate into
novel protein isoforms is virtually impossible to determine
from DeepCAGE reads, which consist of 25 or 26 nucleotides.
To assess the potential for novel ORFs arising from the use
of alternative TSSs, it is essential to integrate DeepCAGE
data with RNA-seq, ribosome profiling, and proteomics.

The FANTOM Consortium is leading most of the re-
search in the field of promoters and TSSs. In their most
recent TSS survey [4], which includes approximately
200 human primary cell types, 150 human tissues, and
250 human cancer cell lines, it was shown that on average
there are four TSSs per gene, but the number of TSSs
reported strictly relies on the filtering method used. An
estimate of the transcriptome-wide distribution of alterna-
tive TSSs can indeed be complicated by the presence of
CAGE peaks marking enhancer regions [4], 30-UTRs
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Figure 1. Alternative transcription initiation. (A) Data from a deep cap analysis of gene expression (DeepCAGE) experiment showing alternative transcription start sites

(TSSs) used during muscle differentiation in proliferating myoblasts and differentiated myotubes [16]. In the Tpm3 gene, different promoters lead to the formation of

transcripts with different first exons. One alternative TSS (TSS3) is specifically used in differentiated cells. (B) In the Cryab gene, proliferating cells make use of an alternative

TSS to extend their 50 untranslated region (50-UTR). The sequence of the 50-UTR is shown below the reference track. The extension on the 50-UTR leads to the transcription of

a potential upstream open reading frame (uORF) starting at a canonical AUG codon and ending before the start codon of the primary ORF (pORF). (C) An illustrative

example of cell- and tissue-specific alternative TSSs regulated by the binding of transcription factors (TFs) to promoters and enhancer regions. While TF1 and TF2 bind to

promoters (P1, P2) surrounding the TSS, TF3 binds to a distal upstream sequence corresponding to an enhancer region (E), which enhances transcription from a third TSS

(TSS3). Some TFs are present in multiple tissues (TF1) whereas others are tissue specific (TF2, TF3), and their transcription can also be regulated during cell differentiation

(TF1 regulates transcription in undifferentiated cells and TF2 in differentiated cells). (D) Long-range transcriptional control mediated by enhancers. Transcriptional

regulation of the Shh gene is tightly controlled during development by enhancer regions located up to 850 kb from the gene. Whereas some enhancers are located within

the coding region of Shh, others are located in intergenic regions or within intronic regions of the Lmbr1 and Rnf32 genes. Genes are depicted as gray boxes. Known

enhancer regions in the mouse are marked in different colors according to their tissue specificity.
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[4,20,21], coding regions (a phenomenon called exon paint-
ing [16,22,23]), and promoter-associated short RNAs
(PASRs) [20]. Whereas exon painting may arise as a con-
sequence of recapping of degradation products, many other
CAGE peaks represent short capped transcripts whose
functions remain largely unknown. A striking recent find-
ing from this large TSS survey [4] is that most genes are
regulated in a tissue-specific manner and only a small
percentage can be considered to be truly housekeeping.
The use of alternative tissue-specific TSSs seems to be
regulated by the presence of enhancer regions more than
by alternative core promoters. Half of all detected CpG
island promoters and more than 90% of all promoters
lacking both CpG islands and a TATA box exhibit cell
type-restricted expression due to the presence of proximal
enhancers [4].

The molecular mechanisms responsible for the choice of
alternative promoters and TSSs can be divided into two
categories: alteration of the chromatin state and regulation
mediated by cell- and tissue-specific transcription factors
(Figure 1C). Understanding the biological importance of
alternative and tissue-specific TSSs requires learning how
the choice of a specific TSS is made and which transcription
factor and regulatory networks are involved. This can be
achieved by making inferences on transcriptional net-
works. In a DeepCAGE time-course study on the differen-
tiation of human monocytic leukemia cells [17], the authors
predicted transcription factor binding sites around the
129
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TSSs identified in each condition and subsequently built a
network model of gene expression using motif activity
response analysis. This provided important insights into
the key regulators active in transcriptional control in
distinct phases of differentiation. Similarly, another study
[24] inferred transcriptional regulatory networks after the
perturbation of specific transcription factors (PU.1, IRF8,
MYB and SP1) in the same cells. This led to the discovery
of target genes for each transcription factor and led to the
identification of de novo binding site motifs.

Many studies focusing on single genes have shown that
the choice of a specific TSS has critical roles during devel-
opment [25–27] and cell differentiation [28] and aberra-
tions in alternative promoter and TSS use lead to various
diseases including cancer [29,30], neuropsychiatric disor-
ders [31], and developmental disorders [32]. Whereas
some disorders are caused by epigenetic changes or genetic
aberrations in the promoter region, others are caused by
genetic changes in distal elements affecting long-range
transcriptional regulation. The ENCODE project has
shown the presence of more than 1000 long-range inter-
actions between TSSs and distal elements within a range
of 120 kb [3]. An example of such a long-range interaction is
Shh [32] (Figure 1D), a gene that is spatially and tempo-
rally regulated during development. To date, ten Shh
enhancers have been identified, located within a region
of 1 Mb in humans and 850 kb in mice (Figure 1D). These
enhancers play a key role during development, as indicated
by mutations in the limb-specific enhancer that lead to
various skeletal limb abnormalities.

Splicing: alternative exons
During and after transcription, almost all mRNAs are
spliced. Alternatively spliced transcripts result from the
differential inclusion of subsets of exons (Figure 1A and
Box 1). Of the regulatory mechanisms discussed in this
review, alternative splicing is the most prevalent event,
affecting approximately 95% of mammalian genes
[33]. RNA-seq has the potential to elucidate the number,
structure, and abundance of alternative transcripts and
the molecular mechanisms responsible for their formation.
Box 1. Alternative splicing events

Five major alternative splicing events are distinguished: exon

skipping (also called cassette exon), use of alternative acceptor

and/or donor sites, intron retention, and mutually exclusive exons.

Exon skipping appears to be the most common, occurring in �38%

of mouse and human genes, whereas intron retention is less

common (�3%) [135]. How the spliceosome recognizes alternative

exons and decides which exons to include remains not fully

understood. Before the advent of RNA-seq, studies revealed some

general characteristics in conserved alternative cassette exons: they

tend to be smaller in size compared with constitutive exons [136]

and their length is divisible by three, thus maintaining the same

reading frame when the alternative exon is skipped or included

[137]. Non-conserved cassette exons do not show these character-

istics. In addition, alternative exons seem to contain weaker splice

sites (the exon–intron junctions at the 50 and 30 ends of introns; i.e.,

donor and acceptor sites), although the other primary cis-acting

elements used to define the intron (the branch site and the

polypyrimidine tract located upstream of the acceptor site) are

generally similar to those found in constitutive exons [138].
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From analysis of the transcriptomes of 15 different
human cell lines [1], it appears that up to 25 different
transcripts can be produced from a single gene and that up
to 12 alternative transcripts may be expressed in a partic-
ular cell. Alternative transcripts are not expressed at the
same level, but one transcript is usually dominant
[34]. According to the latest GENCODE release [version
20 (http://www.gencodegenes.org/stats.html)], there are
almost 80 000 transcript variants encoded by about
20 000 protein-coding genes in humans – an average of
four transcripts per gene. A previous GENCODE release
(version 7) reported an average of six transcripts per gene,
while RefSeq, the University of California, Santa Cruz
(UCSC), and the Collaborative Consensus Coding Se-
quence (CCDS) project [35] report a much lower average.
These discordances suggest that variations in the number
of transcripts per gene reported are due to the different
methods used to annotate RNA sequences, highlighting
the current limitations in fully characterizing transcrip-
tomes.

It remains challenging to predict which transcripts are
present in a specific cell type. Splice site selection depends
on multiple parameters including the presence of splicing
regulators, the strength of splice sites, the structure of
exon–intron junctions, and the process of transcription. So
far, various molecular mechanisms have been shown to
regulate alternative splicing.

Next to conserved cis elements such as the splice donor
and acceptor sites, branch sites, polypyrimidine tracts, and
a range of other sequence motifs are recognized by various
auxiliary splicing factors. These auxiliary RNA-binding
proteins (RBPs) are not part of the spliceosomal machinery
but can enhance or suppress alternative splicing by inter-
fering with it [36–39]. Various crosslinking and RNA
immunoprecipitation techniques, followed by next-genera-
tion sequencing, have been developed to map RNA–protein
interactions in vivo [14]. An early goal of these studies was
the identification of RNA-binding sites. Many of these
studies have shown that RBPs recognize short (�3–7 nt)
degenerate motifs, have multiple RNA-binding domains,
and display variable efficiency when multiple motifs clus-
ter together [40,41]. Moreover, many RBPs regulate the
expression of other auxiliary factors. The differing cellular
and temporal localization of RBPs [42,43] may explain the
different dynamics regulating alternative and constitutive
splicing: whereas constitutive splicing mainly occurs
cotranscriptionally, alternative splicing mainly occurs
post-transcriptionally [44]. For recent mechanistic models
of splicing regulation through RBPs, see [45]. Alternative
splicing can also be regulated in a manner totally indepen-
dent of auxiliary splicing factors [46]. Splicing silencer
sequences regulate alternative splicing when competing
50 splice sites are present in the same RNA molecule
(Figure 2B). The competing 50 splice sites are equally well
recognized by the U1 small nuclear ribonucleoprotein
(snRNP), but silencer sequences alter the configuration
in which U1 binds to the 50 splice sites, leading to silencing
of the 50 splice site. This can change the efficiency of a splice
site: weak 50 splice sites can be recognized and used instead
of stronger 50 splice sites. RNA-seq datasets can be used
to computationally identify common and tissue-specific

http://www.gencodegenes.org/stats.html
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Figure 2. Alternative splicing. (A) Data from an RNA sequencing (RNA-seq)

experiment showing tissue-specific alternative splicing [139]. The SLC25A3 gene

is differentially spliced in brain and muscle tissues through exon skipping. (B)

Alternative splicing regulated by silencer sequences. In (I) the U1 small nuclear

ribonucleoprotein (snRNP) splicing factor recognizes both strong and weak 50

splice sites (50ss) but splicing occurs only at the strong 50ss. In (II) a splicing

silencer sequence (sss) is located downstream of the strong 50ss. U1 binds both

the weak and the strong 50ss, but the conformation in which it binds the strong

50ss is suboptimal for splicing; therefore, only the weak 50ss is used for splicing. In

(III) the sss is located downstream of both the weak and the strong 50ss. U1 binds

both with suboptimal conformation, but only the strong 50ss is used for splicing.

(C) Alternative splicing regulated by RNA secondary structures. Example of short-

and long-range RNA secondary structures. (I) The short-range RNA secondary

structure masks a strong 50ss, leading to the recognition of a weaker 50ss located
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splicing regulatory sequences. These studies have shown
that the same sequence can act as an enhancer or a silencer
in different tissues, but experimental validations of these
predicted regulatory sequences are needed to confirm these
observations [47].

Alternative splicing can also be regulated by RNA sec-
ondary structures (Figure 2C). Short-range RNA second-
ary structures can mask primary cis elements such as the
acceptor and donor sites or the polypyrimidine tract
[48,49]. They have been associated with alternative splic-
ing at alternative 50 splice sites. For example, the RBP
MBNL1 forms a secondary structure upstream of exon 5 of
human TNNT2 and upstream of the fetal exon of mouse
Tnnt3, blocking U2AF65 binding to the polypyrimidine
tract [50,51]. Long-range secondary structures bring dis-
tant splice sites into closer proximity, facilitating alterna-
tive splicing, and are associated with weak alternative 30

splice sites [49]. Computational studies based on RNA-seq
datasets suggest that the splicing of thousands of mam-
malian genes is dependent on RNA structures, both short
and long range [49]. Recently developed high-throughput
techniques combine nuclease digestion [52] or chemical
probing [53] with next-generation sequencing to provide
transcriptome-wide RNA structural information. Two
studies have recently shown a transcriptome-wide rela-
tionship between secondary structures and alternative
splicing [54,55], by reporting the presence of strong sec-
ondary structures at 50 splice sites that correlate with
unspliced exons. The question that remains unsolved by
RNA-seq studies is whether the plethora of transcript
variants produced affect protein expression. This question
has been recently addressed by studies using ribosome
profiling, discussed further below. A general observation
from transcriptome-wide studies is that alternative splic-
ing is essential for development [56,57] and cell, tissue [58],
and species specificity [59]. A plausible explanation of how
alternative exons can confer such specificity is the inclu-
sion or exclusion of binding motifs and post-translational
modification sites, as shown in a study where the authors
investigated the structural and functional properties of
alternative exons [60].

Due to the widespread role of alternative splicing, it is
unsurprising that errors in this process lead to various
diseases, from neurodegenerative disorders to muscle
dystrophies and cancer; we refer the reader to recent
detailed reviews [61,62].

30 End maturation: APA
Another step in mRNA processing is the process of poly-
adenylation [63]. The use of APA sites represents an extra
regulatory layer during gene expression that results in the
formation of transcripts differing in their 30 ends. Tran-
scripts arising from APA may differ in their coding region
(if APA sites are located in a different exon or intron)
(Figure 3A) or in the length of their 30-UTRs [tandem
polyadenylation sites (PASs)] (Figure 3B). The impact of
APA on the regulation of gene expression can be extended
upstream. (II) The long-range RNA secondary structure brings together a strong

50ss and a weak 30ss, causing the loss of a complete exon (in green) and a region

of the last exon (in purple).
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Figure 3. Alternative polyadenylation (APA). (A) Data from a poly(A)-sequencing experiment showing APA in the intron of the Luc7l2 gene [71], leading to an intronic

proximal polyadenylation site (PAS) located in a different terminal exon giving rise to transcript variants with different open reading frames (ORFs). (B) Two examples of

tandem APA in muscle tissue from a mouse model for oculopharyngeal muscle dystrophy (OPMD) [71]. In the Arih2 gene (I), both the distal and the proximal PASs can be

used in the disease state. Recognition of a proximal PAS leads to shortening of the 30 untranslated region (30-UTR) and loss of a miRNA binding site, causing an increase in

transcript levels. In the Ccnd1 gene (II), shortening of the 30-UTR leads to the loss of many recognition sites for RNA-binding proteins (RBPs) that stabilize the transcript. Loss

of stability leads to a decrease in transcript level. (C) Model mechanisms regulating tandem APA. Common sequences in the 30-UTR that regulate polyadenylation are the

upstream sequence element (USE), the UGUU sequence recognized by cleavage factor I (CFIm), the polyadenylation (PA) signal recognized by cleavage and

polyadenylation specific factor (CPSF), and the downstream sequence element (DSE) recognized by cleavage stimulation factor (CstF). CPSF and CstF are brought to the

RNA by RNA polymerase II (Pol II), together with poly(A)-binding protein nuclear 1 (PABPN1), through its C-terminal domain (CTD). Generally, CPSF recognizes the

canonical PA signal and cuts at a distal PAS, at a CA dinucleotide (I). If PABPN1 or CFIm is present at a lower concentration, the CPSF recognizes noncanonical (weaker) PA

signals (II) and cuts at proximal PASs, leading to the formation of transcripts with truncated 30-UTRs.
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through effects on transcript localization [64], stability, and
translation efficiency [65] and on the nature of the encoded
protein. Numerous RNA-seq methods have contributed to
our understanding of APA, ranging from RNA-seq
132
studies able to detect overall changes in polyadenylation,
to serial analysis of gene expression (SAGE)-based methods
able to specifically quantify and characterize the 30 ends
of transcripts, to a series of dedicated protocols for the



Box 2. The biological relevance of APA

A study based on expressed sequence tags comprising 42 human

tissues [140] showed that certain tissues preferentially produce

mRNAs of a certain length. Brain, pancreatic islet, ear, bone marrow,

and uterus showed a preference for distal PASs, leading to longer

30-UTRs. Retina, placenta, ovary, and blood showed a preference for

proximal PASs. This classification might change when considering

the levels at which these mRNAs are expressed. Although most

of the transcripts detected in the brain contain distal PASs, the

transcripts that are highly abundant generally show a preference for

proximal PASs and have short 30-UTRs [72]. Other studies showed

that the choice between a distal and a proximal PAS was modulated

during differentiation and development. Progressive lengthening of

30-UTRs was shown for most of the transcripts during cell

differentiation and during embryonic development [141]. By con-

trast, shortening was observed during proliferation [142] and during

reprogramming of somatic cells [143].

Box 3. Alternative translation initiation

uORFs are located in the 50-UTR of a transcript. Depending on the

presence or absence of stop codons and their coding frame, a uORF

can overlap with the pORF or not. Overlapping and in-frame uORFs

lead to N-terminal extended protein isoforms [8], whereas non-

overlapping uORFs affect the translation of pORFs in various ways

[144]: they can block the translation of the pORFs, reducing protein

production; they can promote reinitiation of translation at down-

stream start codons; or they can enhance translation of the main

pORFs. aORFs are located downstream of the annotated start codon.

In-frame aORFs give rise to N-terminal truncated isoforms

[145]. uORFs and aORFs can also be out of frame with respect to

the pORFs and lead to the production of different peptides. The

sequences translated in more than one reading frame are called

dual coding regions [103]. We also note that uORFs and aORFs are

not the only events that increase the diversity of the translated

mRNAs and affect protein production. The genetic code can be read

in alternative ways, leading to frameshifting, hopping, stop codon

read-through, recoding, and codon reassignment [146,147], topics

beyond the scope of this review.
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accurate detection and quantification of PASs [14]. These
transcriptome-wide studies have deepened our understand-
ing of APA, providing information on newly discovered
PASs, elucidating the impact of APA on gene expression,
and discovering new APA regulatory mechanisms.

Although the number of alternative PASs detected dif-
fers greatly between studies [66–68], these studies contrib-
ute to the notion of the ubiquity of APA events, which
involve approximately 70% of human genes. According to
a study conducted on 15 human cell lines, there are on
average two PASs per gene [1]. APA within the same last
exon (tandem 30-UTRs) is the most abundant type of APA
[68]. Intronic APA events are reported less frequently
and thousands of intronic PASs are usually suppressed
[69]. APA is generally linked to changes in gene expression
levels and, ultimately, to protein abundance. Studies have
shown an inverse correlation between 30-UTR length and
protein expression levels [70,71]. Some human tissues
(such as brain, testis, lung, and breast) are enriched for
highly abundant transcripts with short 30-UTRs, whereas
others (such as heart and skeletal muscle) contain many
low-abundance transcripts with long 30-UTRs [72]. In-
creased expression of transcripts with shortened 30-UTRs
can be explained by loss of miRNA target sequences, loss of
UPF1-binding sites, which leads to RNA decay [73], or loss
of AU-rich elements (AREs), which leads to ARE-directed
mRNA degradation [71]. However, there are many excep-
tions to the general rule, as proteins that bind to the
30-UTR can also stabilize mRNAs [74–76].

Transcriptome-wide studies have been undertaken to
elucidate the dynamics of APA regulation. In general,
disruption of the polyadenylation machinery leads to loss
of fidelity in the choice of PAS and shortening of the 30-
UTRs. There are numerous 30 processing factors involved
in polyadenylation; nevertheless, changes in the expres-
sion levels of a single specific factor are sufficient to influ-
ence the choice of PAS. For example, decreased levels of
cleavage factor I (CFIm) 68 or poly(A)-binding protein
nuclear 1 (PABPN1) lead to transcriptome-wide shorten-
ing of 30-UTRs, corresponding to an increased preference
for noncanonical polyadenylation signals (Figure 3C)
[70,77,78].

Many recent transcriptome-wide studies have con-
firmed that distal PASs generally have a strong canonical
signal motif [A(A/U)UAAA], whereas proximal PASs di-
verge from the canonical sequence [68,79–81]. Interesting-
ly, tissue-specific regulated PASs can be depleted of the
canonical motif. For example, APA in brain seems to be
regulated by an A-rich motif starting just downstream of
the PAS [82]. A-rich sequences have also been reported
upstream of cleavage sites for transcripts lacking canonical
motifs [83].

Numerous studies based on expressed sequence tags
and microarrays have previously shown the biological
relevance of APA (Box 2) [84,85]. APA profiles are tissue
specific and appear to be tightly regulated during develop-
ment and cell differentiation. Most of the findings achieved
by recent transcriptome-wide approaches confirm at a
larger scale what was previously observed. The tissue
specificity of APA and the correlation between tissue
and 30-UTR length seem to be highly conserved between
different species and APA profiles from different species
are similar for the same tissues [80,81,86]. Modulation of
APA has also been widely observed during proliferation,
differentiation, and development [68,87–89].

Widespread alteration of APA profiles has been ob-
served in several diseases. Many studies have reported
shortening of 30-UTRs in cancer [90–92], linked to exten-
sive upregulation and activation of oncogenes. However,
shortening of 30-UTRs poorly correlates with breast, lung,
and colorectal cancer prognosis [93,94], suggesting that the
relationship between APA and cancer is not straightfor-
ward. More recently, altered APA profiles have been linked
to muscle disorders such as myotonic dystrophy [95] and
oculopharyngeal muscular dystrophy [70].

From mRNA to protein: alternative translation initiation
In addition to the regulation of transcription and proces-
sing, the translation of transcripts is also tightly regulated.
Regulation of translation defines not only the abundance
of a protein but also its amino acid composition through the
use of different start codons [96], as translation may start
at uORFs or at alternative ORFs (aORFs) (Box 3 and
Figure 4).

In the past, changes in protein synthesis were measured
exclusively based on proteomic approaches or estimated
based on total mRNA levels. More recently, they have been
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Figure 4. Alternative translation initiation. Alternative translation initiation sites

(TISs) detected by ribosome profiling (http://www.ebi.ac.uk/ena/data/view/

PRJEB7207). (A) Examples of alternative TISs leading to alternative open reading

frames (aORFs) in frame (I) or out of frame (II) with the primary ORF (pORF). In the

Rps20 gene (I), a switch in TIS use occurs during cell differentiation. Proliferating

cells use two TISs, one corresponding to the annotated start codon and the other

corresponding to an aORF, the latter of which leads to a truncated protein isoform.

The alternative TIS is shown in the highlighted box. The top part (gray) shows the

three possible frames and the blue bar shows the frame of the pORF. Because

ribosome profiling peaks are usually displayed using only the 50 end of each

mapped read, the black line indicates the actual TIS location of the aORF, located

12 bp downstream of the mapped peak. In the Crip1 gene (II), only one

transcription start site (TSS) is present (top track, deep cap analysis of gene

expression (DeepCAGE) [16]) but two different TISs are used (bottom track,
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assessed via ribosome profiling [97]. Deep sequencing of
RNA fragments protected by ribosomes determines the
position of the ribosomes on the RNA molecule at nucleo-
tide resolution, allowing exact characterization of the
translation initiation site (TIS) and quantification of levels
of translation. Ribosome profiling studies in combination
with RNA-seq have assessed the extent of alternative
translation initiation, provided insights into the regulatory
mechanisms of this process, and shed light on how it
impacts gene expression.

A common finding of many recent ribosome profiling
studies is the widespread use of alternative TISs. Initiation
of translation at alternative TISs may be caused by various
forms of stress but is also observed under normal physio-
logical conditions. Between 50% and 65% of transcripts
contains more than one TIS [7,98,99]. Most of the detected
TISs are located upstream of the annotated start codons
(50–60%), leading to potential uORFs. A minority are
located downstream of the annotated start codons
(�20%) and lead to N-terminally truncated proteins or
out-of-frame ORFs. However, some ribosome profiling
peaks detected as alternative TISs may represent cases
of ribosomal stalling. To distinguish these from genuine
TISs, proteomic data are essential. These are often difficult
to obtain because the peptides are usually short and
unstable. Moreover, the study of the proteome in a high-
throughput fashion presents certain technical limitations,
especially for low-abundance proteins, which are difficult
to detect among a diverse pool of proteins [100].

Insights into the mechanisms regulating the choice of an
uORF or aORF over a primary ORF are starting to emerge.
Initiation of translation at near-cognate codons and non-
AUG codons, previously reported for a small number of
mRNAs, appears to be common, as approximately 50% of
translation is initiated at noncanonical codons [98,99].
These noncanonical start codons are enriched in uORFs.
By contrast, TISs located downstream of annotated TISs
comprise mainly AUG codons. The use of near-cognate
and non-AUG start codons has been confirmed by mass
spectrometry [101]. Interestingly, these codons are recoded
to regular methionines, as all of the produced proteins
seem to contain an N-terminal methionine.

Recent studies support the leaky scanning theory [102],
according to which the choice of a downstream TIS depends
on the strength of the Kozak consensus sequence. It was
shown on a transcriptome-wide scale that initiation at
downstream TISs usually occurs when the Kozak sequence
in the annotated start codon is suboptimal. A similar
mechanism applies for initiation at uORFs. uORFs are
translated in parallel to their downstream primary ORFs
(pORFs) if the start codon used in the uORF is a non-AUG,
ribosome profiling), one corresponding to the annotated start codon and one

located downstream of the annotated start codon, leading to an aORF. The

alternative TIS is shown in the highlighted box. The alternative TIS corresponds to

an AUG start codon that is out of frame compared with the pORF, indicating the

presence of a dual coding region. (B) Examples of alternative TISs leading to an

upstream ORF (uORF) in the Cryab gene. Proliferating cells use two TISs, one

located in the 50 untranslated region (50-UTR) and one corresponding to the

annotated start codon. The sequence of the 50-UTR incorporated by the alternative

TIS is shown below the reference track. Extension of the 50-UTR leads to the

translation of an uORF, with a canonical AUG codon and ending before the start

codon of the pORF, negatively regulating translation.
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but translation of pORFs is usually repressed if the uORFs
contain an AUG start codon and a strong Kozak sequence
[99].

Both aORFs and uORFs can give rise to ORFs with
reading frames different from the pORFs, a phenomenon
known as dual coding [103]. The triplet periodicity ob-
served in ribosome profiling data enables the detection
of dually decoded regions. Although the extent of dual
coding observed in the human genome in ribosome profil-
ing studies is only approximately 1%, it has been suggested
that this might be an underestimate due to technical and
analytical limitations (low coverage and the assumption
that the two frames must be translated at the same rate)
[103].

The extent to which mRNA levels explain differences in
protein abundance is still debated. Although some studies
have reported a poor correlation [104] – in the range of
approximately 40% of protein levels explained by mRNA
levels [105–108] or even less than 20% [109] – others claim
a much higher correlation of up to approximately 80%
[110]. Ribosome-associated RNA levels seem to be a good
proxy for protein levels, as the correlations between mRNA
and protein observed are between 60% and 90%
[109,111]. Nevertheless, a study that compared changes
at mRNA levels and ribosome-bound mRNAs showed pro-
found uncoupling between transcription and translation in
several different experiments after treatments with extra-
cellular stimuli or during cell and tissue differentiation
[112]. Therefore, it remains unclear whether regulation at
the translational level has a major influence on global
protein abundance or whether it is restricted to a subset
of genes.

Transcription, RNA processing, and translation:
interdependent processes
The molecular machineries involved in transcription and
RNA processing are spatiotemporally coupled. Several
reviews have extensively described cotranscriptional regu-
lation of capping, splicing, and polyadenylation [113,114].
RNA polymerase II (Pol II) is an important player in the
regulation of this coupling, as its C terminus recruits pro-
teins involved in capping, splicing, and polyadenylation
[115]. There is ample support of the coupling between
transcription and splicing. Splicing predominantly occurs
during transcription [1,44], as indicated by the following
three observations: many introns are already spliced in
chromatin-associated RNAs; there is enrichment of spliceo-
somal small nuclear RNAs in chromatin-associated RNAs;
and exons that are spliced are enriched for epigenetic chro-
matin marks [116]. Nevertheless, splicing events at the
30 end of a transcript might occur post-transcriptionally,
giving a general 50–30 trend in splicing completion.

Transcription and splicing are coupled not simply in
space and time but are also jointly responsible for the
formation of alternative transcripts. The interdependence
of different RNA-processing events restricts the number of
combinations of alternative TSSs, exons, and PASs. Splic-
ing and polyadenylation might be influenced not only by
the transcription elongation rate but also by transcription
initiation: a lower elongation rate is linked to slower
splicing and polyadenylation and therefore to an increased
chance of recognizing alternative exons [117] or proximal
PASs [118,119] and the choice of TSS is linked to a specific
splicing pattern [120,121] or to the use of specific PASs
[71,122,123].

In addition to links between transcription and mRNA
processing, alternative splicing and APA also appear to
be interdependent. Twenty years ago, it was shown that
splicing of the last intron requires definition of the last
exon (at least in mammals [124]) and this occurs through
the cooperation of splicing and polyadenylation factors that
interact across the last exon, leading to mutual enhance-
ment of both splicing and polyadenylation [125]. The
snRNPs U1 and U2 and the U2 auxiliary factor 65 kDa
subunit (U2AF65), all spliceosome components, are also
part of the human pre-mRNA 30 processing complex
[126]. These spliceosome components directly interact with
cleavage and polyadenylation specific factor (CPSF) and
with CFIm. Splicing factors can also play a role in prema-
ture cleavage and polyadenylation, as shown by the spli-
ceosomal factor TRAP150 [127].

Recent transcriptome-wide studies further support the
links between splicing and polyadenylation. Alteration of
the splicing factor hnRNP H has been shown to have
widespread effects on tandem APA, with increased 30-
UTR shortening in the presence of hnRNP H and length-
ening in its absence (Figure 5A, top). Changes in APA were
accompanied by changes in alternative splicing. A direct
link between hnRNP H and the choice of a specific PAS was
shown by crosslinking immunoprecipitation sequencing
(CLIP-seq) analysis, by the presence of a higher CLIP
tag density next to the proximal PAS [128]. An increase
in proximal PAS use was also observed after alteration of
Nova, a RBP involved in alternative splicing [36].

High CLIP tag density surrounding proximal PASs has
also been observed for the RBPs MBNL1 and MBNL2
(Figure 5A, bottom), which are known to regulate splicing
[38], and a direct link between MBNL proteins and APA
was recently explained by the competition of MBNL with
CFIm68, a component of the polyadenylation machinery
[95].

Whether alternative splicing is also coupled to non-
tandem APA remain unclear. A few studies have specifi-
cally investigated the interdependency between intronic
polyadenylation and splicing. Cryptic intronic PASs are
mainly located in large introns with weak 50 splice sites.
This suggests that intronic polyadenylation can be inhib-
ited if there are splicing enhancers that recognize the 50

splice site, as shown for U1 [129], or enhanced in the case of
suboptimal splicing [130]. The coupling observed in this
case represents kinetic competition between splicing and
polyadenylation [131].

Finally, coupling is not restricted to processes connected
in space and time. Interdependency has also been shown
between processes occurring in different subcellular com-
partments; for example, between APA and translation.
Cytoplasmic polyadenylation element-binding protein 1
(CPEB1), which shuttles between the nucleus and the
cytoplasm, has been shown to play a dual role in APA
and translation [132] (Figure 5B). Interestingly, CPEB1
can also regulate alternative splicing. CPEB1 prevents
recruitment of the splicing factor U2AF65 to the 30 splice
135



Nucleus Cytoplasm

CAAUUAAA

CPSF

Non-canonical
PA signal PAS 1

CPE CAAA UAAA

Canonical
PA signal PAS 2

CAAUUAAA

Non-canonical
PA signal PAS 1

CPSF

CPE CAAA UAAA

Canonical
PA signal PAS 2

AAAAACPE

AAAAAAAAAAAAAAAAAAAAAACPE

CPEB PAP

(A)

(B)

CPEB CPEB PAP

CAAUUAAA CAAA UAAA CAAUUAAA CAAA UAAA

CAAUUAAA CAAA UAAA

Non-canonical
PA signal PAS 1

Canonical
PA signal PAS 2

CPSF CPSF

Non-canonical
PA signal PAS 1

Canonical
PA signal PAS 2

CFIm

CFIm

UGUU

CPSF
MBNL

UGUU

Non-canonical
PA signal PAS 1

Canonical
PA signal PAS 2

hnRNP H
hnRNP H

CAAUUAAA CAAA UAAA

CFIm

UGUU

CPSF
MBNL

UGUU

Non-canonical
PA signal PAS 1

Canonical
PA signal PAS 2

(I)

(I)

(II)

(III)

(II)

(IV)

PAS 2

PAS 1

TRENDS in Genetics 

Figure 5. Coupled regulatory mechanisms. (A) Tandem alternative polyadenylation (APA) regulated by splicing factors. The RNA-binding proteins hnRNP H and MBNL

regulate APA in opposing ways. In the presence of hnRNP H (I), cleavage and polyadenylation specific factor (CPSF) binds weaker noncanonical polyadenylation (PA)

signals and cuts at the proximal polyadenylation site (PAS 1) leading to shortening of the 30 untranslated region (30-UTR), while in its absence (II) only the canonical PA

signal is recognized and cleavage occurs in the distal PAS (PAS 2). (III) MBNL masks the region upstream of weak noncanonical PA signals, blocking the binding of cleavage

factor I (CFIm). This leads to binding of CFIm to a more distal UGUU sequence, followed by binding of CPSF to the distal canonical PA signal and use of the distal PAS (PAS

2). In the absence of MBNL (IV), CFIm can bind proximal UGUU regions and bring the CPSF to weaker PA signals, causing cleavage at the proximal PAS (PAS 1) and

shortening of the 30-UTR. (B) Coupling of APA and translation. In the nucleus, in the absence of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) (I), CPSF

binds the canonical PA signal and cleaves the RNA at a distal PAS (PAS 2). In the presence of CPEB1 (II), CPEB1 binds the cytoplasmic polyadenylation element (CPE) located

upstream of weak noncanonical PA signals. CPEB1 directly interacts with CPSF, bringing it to regions proximal to the weak PA signal. This leads to their recognition by CPSF

and cleavage at the proximal PAS (PAS 1). When CBEP1 shuttles to the cytoplasm, it again binds to the CPE, but this time to promote lengthening of the poly(A) tail by

poly(A) polymerase (PAP), which results in increased translation efficiency. Lengthening of the poly(A) tails of transcripts bearing proximal PASs (PAS 1) (II) is enhanced by

the fact that the CPE, PAP, and the polyadenylation site are in close proximity, whereas this enhancement is disrupted when the distance is greater due to the 30-UTR

lengthening in transcripts bearing a distal PAS (PAS 2).
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site, but simultaneously recruits the polyadenylation ma-
chinery. The RBP CPEB1 is an example of a master
regulator that affects three layers of gene expression:
splicing, polyadenylation, and translation.

Concluding remarks
RNA-seq technologies are elucidating the mechanisms
that expand the genome’s coding capacity and are
quickly redefining the concept of gene expression regula-
tion.

Although there is a continuing increase in the number of
transcripts identified, and in the understanding of the
136
molecular mechanisms that coordinate their formation
during transcription and mRNA processing, we still face
technical limitations due to the short read length of next-
generation sequencing data and reliance on statistical and
computational approaches to reconstruct transcript struc-
ture. This represents an obstacle when trying to link
different events occurring in the same RNA molecule.
The only way to specifically determine the exact transcript
structure for each detected RNA molecule is by sequencing
full-length RNAs, an option that is currently becoming
more feasible [133,134] and that is opening a new era in
the field of RNA-seq.
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