
L3.2 – Transcriptomes
RNA-seq



AGENDA

1. Pre-NGS Transcripts Annotation

2. RNA-seq protocol and basic variations

3. Mapping of RNAseq data for transcripts annotation (Qualitative)

4. Gene expression studies by RNAseq (Quantitative)

5. Extra material on NGS sequencing platforms



pre-NGS:

• Tiling microarrays
• SAGE
• CAGE

UNBIASED Transcriptome Analysis

NGS:

• CAGE
• RNA-Seq (all flavors)
• Strand-specific RNA-seq
• GRO-seq (genomic run-on-seq)
• …



Tiling microarrays ( 2002-2007 )

A tiling microarray is composed of probes that cover (nonrepetitive) genome 
sequences, irrespective of gene prediction

Millions probes required ! Human Genome: 3.2*10E9  à 1.5 nonrepetitive
You would need 50 millions  30-mer probes !

Qualitative

Box 1. Tiling microarray experiments
Tiling microarrays are designed to assay transcription at regular intervals of the genome using regularly spaced probes (horizontal red lines) that can be overlapping
(Figure I) or separated. The distance between the centers of successive probes is the ‘step’ size and probes can be selected to be complementary to one strand (as
shown) or both strands. Probes can be synthesized directly onto or spotted onto glass slides, and can be synthesized oligonucleotides or PCR products. They are 
hybridized with fluorescently labeled cRNA or cDNA prepared from cell samples. Regions of greater fluorescent intensity (green peaks in lower panel) can reveal
transcription within a large genomic region. In addition, the correlation of probe intensities in several different tissues (co-expression analysis) can be used to identify
probes that are detecting exons of the same transcript. The lower panel shows the extent of a hypothetical transcript within the genome. The middle panel is a 
schematic, magnified view of the hybridization of a genomic region containing an exon.

Map single probe 
fluorescence on 
genome map



cDNA library The basic idea behind SAGE and CAGE was that 
in order to identify transcripts, there is no need 
to sequence mRNAs for their entire lenght. 

Short sequence “tags” 

get the tags from 
each cDNA

concatamerize

plasmid library

Sanger
Sequence

concatamer
library

SAGE, CAGE 1.0 (1995-2005) SAGE Serial Analysis of Gene Expression
CAGE Cap Analysis of Gene Expression. 



How library preparation for SAGE worksSAGE

• SAGE tags are short sequences from 
the 3’ end 

• The number of times each tag is 
present is proportional to the 
amount of mRNA present 
(Quantitative Information)

• Lots of SAGE data present in NCBI
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RNase
ss-specific
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cDNA not fully extended leave some ssRNA
CAP is cleaved

Streptavidin-sepharose selection

RNA removed

How library preparation for CAGE works

cDNA completed by linker ligation  - extension

CAGE

Capping of mRNA

• CAGE utilizes a “cap-trapping” technology 
based on the biotinylation of the 7-
methylguanosine cap of Pol II transcripts, to 
pull down the 5’-complete cDNAs reversely 
transcribed from the captured transcripts.

• CAGE ha been instrumental for identifying 
TSSes and promoters 

• CAGE 2.0 – combination with deep 
sequencing (used in FANTOM and ENCODE 
projects)



Schematic representation of different methods for preparing full-length cDNA libraries. 

Piero Carninci J Exp Biol 2007;210:1497-1506

© The Company of Biologists Limited 2007



The Riken FANTOM project analyzed approximately 1000 kinds of samples using the CAGE method. 
With those results, the activity of approximately 185,000 promoter sites and 44,000 enhancer sites 
were identified. Half of the identified promoters were discovered for the first time. This suggest that 
there are at least 3 alternative promoters for each gene on average. 

CAGE Website: 



The evolution of transcriptomics

1995 P. Brown, et. al. 
Gene expression profiling
using spotted cDNA 
microarray: expression levels 
of known genes

2002 Affymetrix, whole 
genome expression profiling 
using tiling array: identifying 
and profiling novel genes and 
splicing variants

2008 many groups, mRNA-seq: 
direct sequencing of mRNAs 
using next generation 
sequencing techniques (NGS)



Wang et al. (2009). Nat. Rev. Genet. 10:57-69

Textbook



Wang et al. (2009)

General concept: A population of RNA (total or fractionated) is converted to a library of 
cDNA fragments with adaptors attached to one or both ends. Each molecule, with or 
without amplification, is then sequenced in a high-throughput manner to obtain short 
sequences from one end (single-end sequencing) or both ends (pair-end sequencing). 
Reads can be 30–400 bp long depending on the DNA sequencing technology used. 

Sample preparation

üMapping reads
üVisualization (Gbrowser)
üDe novo assembly
üQuantification 

Next generation sequencing (NGS)

Data analysis



Sample Preparation: 
Challenges for Library Construction

• Unlike small RNAs (microRNAs (miRNAs), Piwi-interacting 
RNAs (piRNAs), short interfering RNAs (siRNAs) and many 
others), which can be directly sequenced after adaptor 
ligation, larger RNA molecules must be fragmented into 
smaller pieces (200–500 bp) to be compatible with most 
deep-sequencing technologies. 

• Common fragmentation methods include RNA 
fragmentation (RNA hydrolysis or nebulization) and cDNA 
fragmentation (DNase I treatment or sonication). 

• Each of these methods creates a different bias in the 
outcome.

Sample preparation



Fragmentation of oligo-dT
primed cDNA (blue line) is more 
biased towards the 3' end of the 
transcript. RNA fragmentation 
(red line) provides more even 
coverage along the gene body, 
but is relatively depleted for both 
the 5' and 3' ends.

A specific yeast gene, SES1 
(seryl-tRNA synthetase)

Sample preparation



Figure 1 | The data generation and analysis steps of a typical RNA-seq experiment. a | Data generation. To generate 
an RNA sequencing (RNA-seq) data set, RNA (light blue) is first extracted (stage 1), DNA contamination is removed 
using DNase (stage 2), and the remaining RNA is broken up into short fragments (stage 3). The RNA fragments are then 
reverse transcribed into cDNA (yellow, stage 4), sequencing adaptors (blue) are ligated (stage 5), and fragment size 
selection is undertaken (stage 6). Finally, the ends of the cDNAs are sequenced using next-generation sequencing 
technologies to produce many short reads (red, stage 7). If both ends of the cDNAs are sequenced, then paired-end 
reads are generated, as shown here by dashed lines between the pairs. rRNA, ribosomal RNA.   (Martin & Wang, 2011)

One end
or
Paired-ends

Sample preparation



Li et al., Nature Biotech., 2014



Li et al., Nature Biotech., 2014



Quality Control

Example of RNA quality control using Agilent Bionanalyzer; RIN: RNA Integrity Number

1- RNA quality control

2-Pre-processed raw reads

3- Aligned reads

Garbage in = Garbage out !!Bioanalyzer PDF Extra





BREAK then RNAseq DATA ANALYSIS



Data analysis for mRNA-seq: key steps

• Mapping reads to the reference genome
– Read mapping of 454 sequencers can be done by 

conventional sequence aligners (BLAST, BLAT, etc)
– Short read aligner needed for Illumina or SOLiD reads

• Prediction of novel transcripts
– Assembly of short reads: comparative vs. de novo

• Quantifying the known genes

• Quantifying splicing variants

Data analysis



Reference-based versus de novo assembly

Haas and Zody 2 , Nature Biotechnology 28, 421–423 (2010) 



Mapping

Reads alignment to the genome
– Easy(ish) for genomic sequence
– Difficult for transcripts with splice junctions

Use of specific alignment tools
(i.e. Bowtie, Tophat, MapSplice…)

Journal of Biomedicine and Biotechnology 11

Exon

Intron
Sequence read

Signal from annoted exons

Non-exonic signal

Figure 5: Mapping and quantification of the signal. RNA-seq experiments produce short reads sequenced from processed mRNAs. When a
reference genome is available the reads can be mapped on it using efficient alignment software. Classical alignment tools will accurately map
reads that fall within an exon, but they will fail to map spliced reads. To handle such problem suitable mappers, based either on junctions
library or on more sophisticated approaches, need to be considered. After the mapping step annotated features can be quantified.

In order to derive a quantitative expression for annotated
elements (such as exons or genes) within a genome, the
simplest approach is to provide the expression as the total
number of reads mapping to the coordinates of each anno-
tated element. In the classical form, such method weights
all the reads equally, even though they map the genome
with different stringency. Alternatively, gene expression can
be calculated as the sum of the number of reads covering
each base position of the annotated element; in this way the
expression is provided in terms of base coverage. In both
cases, the results depend on the accuracy of the used gene
models and the quantitative measures are a function of the
number of mapped reads, the length of the region of interest
and the molar concentration of the specific transcript. A
straightforward solution to account for the sample size
effect is to normalize the observed counts for the length
of the element and the number of mapped reads. In [37],
the authors proposed the Reads Per Kilobase per Million of
mapped reads (RPKM) as a quantitative normalized measure
for comparing both different genes within the same sample
and differences of expression across biological conditions.
In [84], the authors considered two alternative measures
of relative expression: the fraction of transcripts and the
fraction of nucleotides of the transcriptome made up by a
given gene or isoform.

Although apparently easy to obtain, RPKM values can
have several differences between software packages, hidden
at first sight, due to the lack of a clear documentation of the
analysis algorithms used. For example ERANGE [37] uses
a union of known and new exon models to aggregate reads
and determines a value for each region that includes spliced

reads and assigned multireads too, whereas [30, 40, 81, 90]
are restricted to known or prespecified exons/gene models.
However, as noticed in [91], several experimental issues
influence the RPKM quantification, including the integrity
of the input RNA, the extent of ribosomal RNA remaining
in the sample, the size selection steps and the accuracy of the
gene models used.

In principle, RPKMs should reflect the true RNA
concentration; this is true when samples have relatively
uniform sequence coverage across the entire gene model.
The problem is that all protocols currently fall short of
providing the desired uniformity, see for example [37], where
the Kolmogorov-Smirnov statistics is used to compare the
observed reads distribution on each selected exon model
with the theoretical uniform one. Similar conclusions are
also illustrated in [57, 58], among others.

Additionally, it should be noted that RPKM measure
should not be considered as the panacea for all RNA-
Seq experiments. Despite the importance of the issue,
the expression quantification did not receive the necessary
attention from the community and in most of the cases the
choice has been done regardless of the fact that the main
question is the detection of differentially expressed elements.
Regarding this point in [92] it is illustrated the inherent bias
in transcript length that affect RNA-Seq experiments. In fact
the total number of reads for a given transcript is roughly
proportional to both the expression level and the length of
the transcript. In other words, a long transcript will have
more reads mapping to it compared to a short gene of similar
expression. Since the power of an experiment is proportional
to the sampling size, there will be more statistical power



Prediction of novel transcripts

Reads are aligned to the reference genome, or to more limited 
reference of your choice:
- known exons of protein-coding genes (exome) 
- Spliced reads
- Genes (sense and antisense)

Comparison to reference libraries of known coding and noncoding RNAs
All nonmapped reads à may define new trascripts

Limitation: Sequencing depth
i.e. many long noncoding RNAs are expressed at very low level
à very low number of reads....

Qualitative



Always remember that the molecules you have sequenced are a 
«Sample» of the total possible reads from your biological sample.

How representative this sample is will depend on the number of 
molecules you have sequenced (i.e. the sequencing depth).

Saturation is reached when an increment in the number of reads does 
not result in additional transcripts being detected or in more 
differentially expressed gene being identified when two or more 
conditions are compared.

Sequencing depth versus sensitivity



Increasing sequencing depth (higher coverage) helps identifying new transcripts



Building alternative transcript models

Problem: How can we deal with splicing ?

Junction read

Mechanims of mRNA Splicing 



En En+2En+1

attggtgtccgtactgactgcctcag gtttgggatcgatctctacttcagac gttggattggtgtccgtactgactgccttaa

attggtgtccgtactgactgcctcaggttgg

My read: 
?

En En+2En+1

?

Uncertainty in mapping



In addition to increasing coverage, difficulties in mapping reads 
can be helped by technical improvements:

• Longer reads

• Paired-end sequencing

• Strand-specific RNA-seq

Paired-end sequencing



Other annotations from mRNA-seq data:
gene fusion events

Following the alignment of the short m-RNA 
reads to a reference genome, most reads 
will fall within a single exon, and a smaller 
but still large set would be expected to map 
to known exon-exon junctions. The 
remaining unmapped short reads can then 
be further analyzed to determine whether 
they match an exon-exon junction where the 
exons come from different genes. 

Acknowledgement: Wiki – mRNA-seq



Once transcript database defined,  a common method to evaluate
expression levels is to count the reads that fall within a gene. Since the 
process of fragmenting and sequencing is stochastic, when the number
of reads mapping to one gene is above a treshold, we can assume that
the number of reads falling within the gene is proportional to the 
amount of that specific RNA present in the sample. 

- Count number of reads for each transcript in all experimental 
conditions (samples)

- Normalize

- Statistics à find DE transcripts (differentially expressed genes)

Quantitative

Can you use absolute reads number? What rpkm means?



Quantitativerpkm = reads per kilobase per million

Double normalization for sequencing depth and gene lenght:

1- Divide the read counts by the “per million” scaling factor. This 
normalizes for sequencing depth, giving you reads per million 
(RPM)

2- Divide the RPM values by the length of the gene, in kilobases. 
This gives you RPKM.

fpkm = fragments per kilobase per million
similar concept adapted for paired-end sequencing where two
reads can map to one fragment



Clusters of co-expressed genes

• Use unsupervised 
clustering to group genes 
by expression pattern

• Use gene ontology 
information to determine 
which kinds of genes are in 
each group

• Reveal novel associations 
and gene types



Clusters of co-expressed genes

Pluripotency/stem cell: Nanog, Oct4

Mesoderm/cell fate commitment: Mesp1, Eomes

Cardiac precursors: Isl1, Mef2c, Wnt2

Cardiac structure/function: Actc1, Ryr2, Tnni3



1Kb

Caution: it may be more appropriate to talk about
«Transcript» levels rather than RNA or gene levels . 

In this example, it is much likely that a splicing isoform exists that incorporates 
exons 1-2-4 (skipping Exon 3). 

Quantitative



Taken from [Graveley, 2001]

Most human genes show extensive AS and some genes present a huge 
number of isoforms (slo >500, neurexin >1000, DSCAM > 38000)

Quantification of alternative transcript usage
Quantitative



Replace the problem of finding a list of 
consensus sequences 

with Graph Reconstruction Problem:
Given an set of expressed sequence, find 
a minimal graph (splicing graph) 
representing  all transcripts as paths.

Heber, et. al. ISMB 2002 

Splicing Graph Approach





Figure 2 | Overview of the 
reference-based 
transcriptome assembly 
strategy. The steps of the 
reference-based 
transcriptome strategy are 
shown using an example of 
a maize gene 
(GRMZM2G060216). 
a | Reads (grey) are first 
splice-aligned to a 
reference genome. 
b | A connectivity or splice 
graph is then constructed 
to represent all possible 
isoforms at a locus. 
c,d | Finally, alternative 
paths through the graph 
(blue, red, yellow and 
green) are followed to join 
compatible reads together 
into isoforms. 

(Martin & Wang, 2011)

note



Comparing microarrays to RNA-Seq for quantitative purposes:

- Microarrays have narrow dynamic range

- RNA-Seq: no upper limit, lower limit depends on sequencing depth

- Often results difficult to compare since RNA-Seq refers to all transcripts, 
whereas microarray refers to the probed segment only.

Q

de
te

ct

Quantitative



RNA-seq and microarray agree fairly well only for 
genes with medium levels of expression 

Saccharomyces cerevisiae cells grown in nutrient-rich media. 
Correlation is very low for genes with either low or high 
expression levels. 



RNA-seq Microarray
ID novel genes, transcripts, & 
exons

Well vetted QC and analysis 
methods

Greater dynamic range Well characterized biases
Less bias due to genetic 
variation

Quick turnaround from 
established core facilities

Repeatable Currently less expensive
No species-specific
primer/probe design
More accurate relative to qPCR
Many more applications



Quantitative

Qualitative



Tomorrow RNASEQ PAPERs



The presentation is supported from the project OP EC CZ.1.07/2.3.00/30.0027
“Founding the Centre of Transgenic Technologies”

Actual Sequencing Platforms
• Roche/454 (GS FLX+/GS Junior)
• Illumina Genome Analyzer (HiSeq/MiSeq/NextSeq)
• Life Technologies (3500 Genetic Analyzer, 

Ion Torrent Proton/PGM)
• Pacific Biosciences (PACBIO RSII)
• Applied Biosystems (SOLiD, 3730xl DNA Analyzer )

The presentation is supported from the project OP EC CZ.1.07/2.3.00/30.0027
“Founding the Centre of Transgenic Technologies”

Actual Sequencing Platforms
• Roche/454 (GS FLX+/GS Junior)
• Illumina Genome Analyzer (HiSeq/MiSeq/NextSeq)
• Life Technologies (3500 Genetic Analyzer, 

Ion Torrent Proton/PGM)
• Pacific Biosciences (PACBIO RSII)
• Applied Biosystems (SOLiD, 3730xl DNA Analyzer )



The presentation is supported from the project OP EC CZ.1.07/2.3.00/30.0027
“Founding the Centre of Transgenic Technologies”

Sequencing Principles
• Sequencing by Synthesis

– Sanger/Dideoxy chain termination (Life Technologies, Applied 
Biosystems)

– Pyrosequencing (Roche/454)
– Reversible terminator (Illumina )
– Ion proton semiconductor (Life Technologies)
– Zero Mode Waveguide (Pacific Biosciences)

• Sequencing by Oligo Ligation Detection
– SOLiD (Applied Biosystems)

• Other 
– Asynchronous virtual terminator chemistry - HeliScope (Helios)



The presentation is supported from the project OP EC CZ.1.07/2.3.00/30.0027
“Founding the Centre of Transgenic Technologies”

Sanger (3500 GA, 3730xl DNA Analyzer)
Sequencing by synthesis
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Oligo Ligation Detection (SOLiD)

Sequencing 
by ligation



The presentation is supported from the project OP EC CZ.1.07/2.3.00/30.0027
“Founding the Centre of Transgenic Technologies”

Reversible Terminator (HiSeq, MiSeq, NextSeq)
Cluster generation on a flow-cell surface
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Reversible Terminator (HiSeq, MiSeq, NextSeq)
Sequencing by synthesis
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Pyrosequencing (GS FLX, GS Junior)

Sequencing by synthesis
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Pyrosequencing (GS FLX, GS Junior)
Sequencing by synthesis



The presentation is supported from the project OP EC CZ.1.07/2.3.00/30.0027

“Founding the Centre of Transgenic Technologies”

Sequencing Matrices
Sanger, 96-well, 8 capillaries

96 x 600 bp / 24 h

1400 € 

Pyrosequencing, 2 regions

1,000,000 x 600 bp / 20 h

5500 €

Revers. terminator, MiSeq

10,000,000 x 250 bp / 40 h

1150 €


