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One of the most remarkable properties of complex genomes is 
their capacity to generate a range of different cell types in a highly 
ordered and reproducible manner. How this happens has intrigued 
geneticists and developmental biologists alike and has helped spur 
recent advances in epigenetics. Whereas ‘epigenomes’ of humans1,2 
and of other species have been sampled, we still know relatively 
little about how different gene expression patterns initially segre-
gate in the developing embryo or how these are stably transmitted 
through cell division. In particular, the molecular details of the tem-
plating mechanisms that duplicate epigenetic marks through DNA 
replication remain uncertain3–6. Several different types of epige-
netic modifications are thought to contribute to mitotic memory, 
including those that alter chromatin structure, modify DNA and 
histones, remodel nucleosomes and incorporate variant histones7. 
Collectively, these are thought to stabilize gene expression patterns 
in specialized cell types so that cellular identity and lineage fidel-
ity is preserved. However, in at least two phases of the life cycle of 
mammals, epigenetic stability is globally perturbed: when gametes 
fuse to form the zygote and when gamete precursors (primordial 
germ cells; PGCs) develop and migrate in the embryo (Fig. 1). This 
in vivo ‘reprogramming’ of the epigenetic landscape signals the reac-
quisition of totipotency in the zygote and the formation of the next 
generation through PGCs.

Epigenetic reprogramming can also be achieved in vitro using sev-
eral different approaches in which somatic cells are induced to regain 
pluripotency. Studies of the factors and dynamics of in vivo and in vitro 
reprogramming have begun to uncover how epigenetic information 
can be erased or maintained. Here we summarize some recent reports 
describing chromatin-based and DNA-based changes that are associ-
ated with reprogramming and the reacquisition of pluripotency in 
the mouse.

Epigenetic	reprogramming	in	the	preimplantation	embryo
Chromatin dynamics. At fertilization, two specialized cell types 
(gametes) fuse to generate the first cell of the developing embryo, 
the zygote. Initially, the gamete genomes remain physically sepa-
rate in the zygote, where they undergo different chromatin changes  
while under the influence of a common set of maternally inherited 
factors (Fig. 2a).

Soon after fertilization, the paternal genome exchanges protamines 
(arginine-rich nuclear proteins that replace histones during sperm-
atogenesis8) with maternally inherited histones9. Upon histone 
incorporation acetylation is detected9,10, most likely because newly 
synthesized histones carry the evolutionary conserved acetylation of 
Lys5 and Lys12 on histone H4 (ref. 11). Methylation of histones is 
detected later, and the onset of mono-, di- and trimethylation exhibits 
a timing that is specific for each progressive modification10. In the 
early zygote, the acquisition of a hyperacetylated and hypomethyl-
ated chromatin state may increase the accessibility of the paternal 
genome and allow additional remodeling to occur. Conversely, the 
maternal genome maintains the histone modifications that were 
acquired during oocyte growth (such as methylation on Lys9 and 
Lys27 of histone H3; refs. 12,13) in both the zygote10,14 and during 
subsequent cell divisions13,15. This creates an asymmetry between 
the male and female genomes that is detected, for example, on the 
basis of H3K9me3 abundance, up to the 4-cell stage13,14, whereas 
other chromatin marks such as H4K20me3 (ref. 16), H3K64me3  
(ref. 17) and H3K4me3 (refs. 18,19) are equalized by the two-cell 
stage. Asymmetry is also apparent at the level of DNA methylation, 
which is globally lost in the paternal pronucleus of the zygote but  
is retained in the maternal genome (Fig. 2a), as shown by micro-
scopy20–22 and molecular analyses23.

This asymmetric program in the zygote is probably a consequence of 
inheriting gametes from the previous generation that had widely dif-
ferent epigenetic profiles. However, its functional importance remains 
unclear. It has been hypothesized that chromatin modifications estab-
lished in the gametes may be part of a transgenerational program 
that is required for proper embryonic development24. Notably, the 
time of activation of embryonic gene expression parallels epigenetic 
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Cell	identity	is	determined	by	specific	gene	expression	patterns	that	are	conveyed	by	interactions	between	transcription	factors	
and	DNA	in	the	context	of	chromatin.	In	development,	epigenetic	modifiers	are	thought	to	stabilize	gene	expression	and	ensure	
that	patterns	of	DNA	methylation	and	histone	modification	are	reinstated	in	cells	as	they	divide.	Global	erasure	of	epigenetic	
marks	occurs	naturally	at	two	stages	in	the	mammalian	life	cycle,	but	it	can	also	be	artificially	engineered	using	a	variety	of	
reprogramming	strategies.	Here	we	review	some	of	the	recent	advances	in	understanding	how	epigenetic	remodeling	contributes	
to	conversion	of	cell	fate	in vivo	and	in vitro.	We	summarize	current	models	of	epigenetic	erasure	and	discuss	the	various	
enzymes	and	mechanisms	that	may	operate	in	cellular	reprogramming.
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reprogramming, with the male genome being more permissive to 
transcription from the late zygote stage25–27, whereas transcription 
increases in both genomes thereafter at the 2-cell and 4-cell stages 
(reviewed in ref. 28). Recent evidence has shown that loss of early 
zygotic demethylation in the male genome perturbs the activation 
kinetics of paternal alleles of several pluripotency-associated genes 
and impairs development29. This suggests that distinct epigenetic 
programs may be required to tune expression of key genes during 
the sequential activation of the two parental genomes. Understanding 
which genes are sensitive to this remodeling and documenting the 
differential activation kinetics of male and female alleles may give us 
some insight into the role of epigenetic asymmetries in development 
of the early embryo.

Global DNA demethylation. The 5-methylcytosine (5mC) modifi-
cation at CpG dinucleotides is a widespread DNA modification that 
is associated with gene silencing. Inheritance of this modification 
through cell division is achieved via the maintenance DNA methyl-
transferase Dnmt1, which copies this modification onto the newly 
synthesized DNA strand. In the absence of Dnmt1 activity, replication 
of DNA can lead to reduced overall 5mC levels (so-called ‘passive’ 
demethylation of the genome), and this has been hypothesized to 
occur in the maternal genome during cleavage divisions in the preim-
plantation embryo20–22. Conversely, the paternal genome is thought 
to be demethylated in the zygote in a manner that is independent of 
DNA replication (so-called ‘active’ DNA demethylation)20,21,23,30,31.

How active DNA demethylation is accomplished is the subject of 
intense study. Recent studies have shown that 5mC can be sequentially 
oxidized to 5-hydroxymethylcytosine (5hmC)32, 5-formylcytosine 

(5fC) and 5-carboxymethylcytosine (5caC)33,34 by the Tet dioxyge-
nases (Tet1–3). A member of this family of proteins, Tet3, is highly 
expressed in oocytes and zygotes but is downregulated in 2-cell-stage 
embryos. Microscopy studies have shown that 5hmC progressively 
accumulates at the paternal genome while 5mC levels decrease35,36 
(Fig. 2a). This presumed conversion of 5mC to 5hmC is impaired 
upon silencing36 or knockout29 of maternal Tet3, leading to a delayed 
activation of key pluripotency factors in the paternal genome and 
partial embryonic lethality. These data suggest that loss of 5mC in 
the paternal genome is at least in part due to Tet3-mediated oxida-
tion. The molecular mechanisms by which 5hmC is resolved to yield 
unmodified cytosine are, however, still hotly debated.

High-resolution analyses of metaphase cells in the preimplanta-
tion embryo have shown that 5hmC—and its oxidative products 
5fC and 5caC—marks both paternal sister chromatids at the first 
zygotic metaphase but only one set of chromatids at the second, 
with a progressive reduction at subsequent cell divisions22,37. These 
studies have suggested that 5hmC may be lost through a ‘passive’ or  
‘replication-dependent’ mechanism. However, as these results have 
relied on antibody staining to assess the genome-wide distribution of 
different modifications, they should be viewed cautiously. A recent 
genome-wide study that characterized the global methylation profile 
of gametes and embryos at sequential stages of preimplantation devel-
opment using reduced-resolution bisulfite sequencing showed a drop 
in 5mC modification from the sperm to the zygote but no additional 
changes subsequently23. Although bisulphite treatment cannot be 
used to distinguish between 5mC and 5hmC or 5caC and cytosine, 
this analysis challenges previous data and their interpretation.

On the basis of studies in plants and zebrafish, enzymatic pathways 
that can trigger base (or nucleotide) excision and thereby replace 
5mC and/or 5hmC for unmodified cytosine (reviewed in ref. 38), 
have been implicated in embryogenesis. In the zygote there is some 
evidence that the base excision repair (BER) pathway may participate 
in DNA demethylation. This is based on chromatin binding of BER 
components (that is, Parp1 and Xrcc1) at single-stranded DNA breaks 
in the paternal pronucleus36,39 and the observation that inhibition of 
BER results in increased DNA methylation39. However, an enzymatic 
activity that can efficiently target 5mC and recruit BER machinery 
has yet to be identified, and mammalian thymidine glycosylases that 
could act downstream of 5mC and/or 5hmC deamination have not 
been detected in the zygote39.

Although there is still much to learn about these enzymatic path-
ways, current evidence suggests that both ‘passive’ and ‘active’ mech-
anisms may contribute to the DNA demethylation of the paternal 
genome. Loci that are demethylated in the zygote23 and in cloned 
embryos40 resemble genomic features and promoter classes enriched 
for 5hmC in embryonic stem cells (ESCs), namely repetitive elements 
of some LINE (long interspersed nucleotide elements) L1 family and 
germline-associated gene promoters41,42. This supports the idea that 
at least some genomic regions may be targeted for demethylation by 
a 5hmC-dependent mechanism. For the maternal genome, in which 
conversion of 5mC to 5hmC is less evident, demethylation has been 
assumed to occur via replication-dependent dilution of the 5mC 
marks. However, as Dnmt1 is present throughout and is sufficient to 
maintain methylation at imprinted regions43,44, the basis of the loss 
of 5mC as cells divide still awaits a mechanistic explanation.

Chromatin-based protection of DNA methylation. In the zygote, 
methylation of the maternal genome is protected from Tet3 oxidation 
via Dppa3 (also called PGC7 or Stella), a protein that is essential for 
development during preimplantation45. Zygotes lacking Dppa3 lose 
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Figure 1 Epigenetic programming and reprogramming during the mouse 
life cycle. Epigenetic modifications are important for ‘programming’ 
lineage determination and cellular identity during development. 
Global ‘reprogramming’ of the epigenetic landscape instead marks the 
conversion of differentiated cells to totipotent or pluripotent states, upon 
fusion of the gametes (sperm and oocyte) in the zygote and in the PGCs 
after their specification from the somatic epiblast of the postimplantation 
embryo. It is notable that two populations of pluripotent cells can be 
established ex vivo within the time window in which extensive epigenetic 
reprogramming takes place. These cells are ESCs and embryonic germ 
cells (EGCs) that are derived from the inner cell mass of the blastocyst 
and from the PGCs at E8.5–E13.5, respectively. Major remodeling events 
(for example, DNA demethylation and X-chromosome reactivation) are 
highlighted in the figure by colored arrows. TE, trophoectoderm;  
PE primitive endoderm. 
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asymmetric DNA methylation and exhibit a global loss of 5mC and 
acquisition of 5hmC in both paternal and maternal pronuclei36,46. 
Recent evidence has shown that Dppa3 binds H3K9me2 in the mater-
nal genome (Fig. 2a) and prevents Tet3 access47. Loss of maternal 
Dppa3 or Tet3 alters the kinetics of DNA demethylation in female 
and male genomes, respectively. In both cases, embryonic lethality 
occurs, emphasizing the potential importance of epigenetic asym-
metry during early preimplantation development.

Although loss of 5mC appears to be a global phenomenon as 
observed by immunostaining, some genomic sequences (for exam-
ple, Iap retrotransposon, centromeric heterochromatin and imprinted 
loci) escape demethylation during preimplantation development48–50. 
Maintenance of DNA methylation at these regions is thought to be 
essential for proper development by preventing the activation of retro-
transposons and maintaining imprints and chromosomal stability. 
Recent evidence suggests that histone modifications, DNA methyla-
tion and maternally inherited trans factors cross-talk to protect these 
sequences from the global demethylation events that take place during 
preimplantation development. The protective effect of Dppa3 is in 
fact not restricted to the maternal genome but also involves imprinted 
regions of both maternal and paternal origin46. It has been shown that 
in mature sperm, some imprinted regions are enriched for H3K9me2 
(for example, H19 and Rasgrf1), relative to other paternal imprints 
that are maintained independently of Dppa3 (for example, Dlk1-
Gtl2)47, thus opening the interesting perspective that the protection 
of DNA methylation at some imprints may rely on the inheritance of 
histone modifications from the gametes to the next generation. This 
scenario is supported by the findings that histones are retained in the 
sperm at nonrandom genomic locations51,52 and can be inherited in 
the zygote53.

A recent study has shown that sequence-specific DNA-binding 
factors can cooperate with the histone modification system to pro-
tect against the indiscriminate genome-wide DNA demethylation. 
The recruitment of Zfp57 and Trim28, two proteins that are essen-
tial for the maintenance of DNA methylation at different subsets of 
imprinted regions54,55, is preceded in ESCs by the trimethylation 
of H3K9 and in turn induces DNA methylation56. Zfp57 has been 

shown to bind to a hexanucleotide motif, which is present at all 
its protected imprinted genes, in a methylation-dependent man-
ner57 and through Trim28 can recruit both Dnmt proteins58 and 
histone modifiers, including the H3K9me3 methyltransferase Setdb1  
(ref. 59). Zfp57 and Trim28 therefore mediate a reinforcing feed-
back loop between DNA methylation and histone modifications, 
thus enhancing the maintenance of DNA methylation at specific 
genomic sequences. Taken together, these studies suggest that an 
elaborate temporal and spatial program of chromatin modifications 
is necessary to establish the developmental program in the zygote. 
This is probably needed to choreograph the interplay between inher-
itance and epigenetic reprogramming of gametes that will give rise 
to the totipotent zygote.

Epigenetic	landscape	during	development	and	differentiation
The global epigenetic remodeling that takes place in the early pre-
implantation embryo is thought to be required for unveiling the 
entire potential of the genome. However, totipotency is lost as cleav-
age divisions progress and positional clues start to have a role. The 
question of when in mammalian preimplantation development the 
embryonic lineages are first specified is much debated60,61. The first 
well-documented differentiation event, which discriminates between 
cells that mainly contribute to the extraembryonic lineage and oth-
ers that will give rise to the embryo proper, probably occurs at the 
8–16-cell morula stage62,63 and has been associated with the level of 
H3R26me2 in individual blastomeres of 4-cell embryos. The finding 
that perturbing the levels of H3R26me2 in blastomeres influences 
their fate suggests that histone modifications may have an instructive 
role in determining lineage fate64. However, as most of the reported 
studies are dependent on immunofluorescence assays in which 
antibodies are used to reveal modified histones, the results prob-
ably reflect a global change or redistribution of chromatin features. 
In the future, genome-wide profiling of individual blastomeres by 
chromatin immunoprecipitation will be necessary to reveal and sub-
stantiate more subtle changes, so that the relationship between gene 
expression, chromatin and cell fate decisions in the early embryo 
can be clarified.
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Figure 2 Epigenetic changes during in vivo reprogramming. (a) Schematic of global DNA and histone modifications that lead to transcriptional 
activation of the embryonic genome between the late zygote (paternal genome only) and the 2-cell stage. Gamete genomes undergo different epigenetic 
programs after fertilization with the paternal genome being mostly subject to epigenetic remodeling at the zygote stage and the maternal genome 
gradually losing repressive modifications during the subsequent cleavage divisions. (b) Global epigenetic changes during germline development from 
PGC specification (E6.5) to the mitotic/meiotic arrest at E13.5. Two major reprogramming phases can be distinguished during PGC migration toward the 
genital ridges (E7.5–E10.5) and upon their arrival into the gonads (E10.5–E12.5).
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Currently, much of our understanding of the roles of histone modi-
fications and DNA methylation during development relies on studies 
in ESCs and in vitro differentiation. These models allow access to some 
of the critical events in the differentiation of embryonic tissues derived 
from the epiblast cells of the inner cell mass. Histone modifications and 
DNA methylation are thought to be important for regulating lineage 
induction, as ESCs lacking specific histone methyltransferase and DNA 
methyltransferase activity show impaired differentiation65. Polycomb 
repressor complexes, for example, appear to be required to maintain 
key developmental regulator genes in a silent yet transcriptionally 
poised state66,67. Consistent with this idea, the regulatory regions of 
many Polycomb target genes in ESCs are marked with histone modi-
fications associated with gene activation and repression on the same 
nucleosome68 and this functional ‘bivalency’ is important for preserv-
ing the lineage flexibility of the undifferentiated state.

ESCs that lack Polycomb repressive complex 1 (PRC1) or PRC2 
components are reported to be susceptible to unscheduled or biased 
differentiation65,69. PRCs are also known to control gene expression 
during in vitro differentiation and, in this context, recent studies have 
emphasized the importance of the cross-talk between different histone 
modifications for ‘programming’ the genome upon lineage transitions. 
For example, PRC2 has been shown to be recruited to promoters of 
active genes through the interaction between one of its subunits, Phf19, 
and H3K36me2/me3, two marks associated with actively transcribed 
genes70,71. This interaction enhances PRC2 catalytic activity and 
H3K27me3 deposition while recruiting two different H3K36me2/me3 
histone demethylases (Kdm2b and NO66) that facilitate the silencing 
of transcribed genes70,71. Another H3K36me3 demethylase Kdm2a 
is recruited to unmethylated CpG islands72, which are enriched for 
Polycomb target genes73. This suggests that a generalized but intri-
cate connection between H3K36me2/me3, Polycomb silencing and 
DNA methylation could allow the continued repression of lineage-
 inappropriate genes during cell-fate transition.

Epigenetic	remodeling	and	germ	cell	precursors
A second wave of global remodeling occurs during the development 
of germ cells in the embryo (Fig. 1). PGCs are specified from the 
epiblast cells of the postimplantation embryo—cells that have already 
been primed to a somatic fate74. Reprogramming must ensure that 
germ line–specific genes are primed and that an epigenetic landscape 
that is compatible with restoring totipotency to the next generation 
is established. This remodeling appears to be a multistep and coor-
dinated process that requires the timely expression of key transcrip-
tional factors as well as appropriate epigenetic modifiers. The earliest 
global chromatin change occurs as PGCs migrate and undergo a recip-
rocal loss of H3K9me2 and increase in H3K27me3 (embryonic day 
(E)7.5–E10.5)75,76 (Fig. 2b).

The switch between these two repressive chromatin marks has 
led to the suggestion that germ cells may need to use a more flex-
ible silencing mechanism at this stage. This idea stems from the 
description that Polycomb-mediated H3K27me3 in ESCs allows the 
promoters of many developmental regulator genes to be transcription-
ally silent, yet poised to be rapidly activated upon differentiation69. 
Transient increases in H3K27me3 may represent the acquisition of 
a silent but poised state that on the one hand compensates for the 
loss of H3K9me2 and on the other hand allows fast derepression. 
Consistent with this, a recent report has shown that the timely down-
regulation of H3K27me3 during PGC development is required both 
for maintaining the expression of pluripotency genes (that is, Oct4, 
Nanog, Sall4 and SSEA1) in vivo and for the derivation of embryonic 
germ cells in vitro77.

In addition, loss of H3K9me2 may be required to allow DNA 
demethylation to occur and is probably triggered by the downregu-
lation of Ehmt1 (Glp), a methyltransferase that is required for the 
deposition of this mark in complex with Ehmt2 (G9a)78. In ESCs, lack 
of the Ehmt1–Ehmt2 complex results in reduced H3K9me2. This is 
associated with reduced DNA methylation of single-copy genes and 
retrotransposable elements, even in the presence of all the three Dnmt 
proteins79,80. It is therefore possible that in PGCs the repression of 
Ehmt1 along with the downregulation of both de novo methyltrans-
ferases (Dnmt3a and Dnmt3b) and Uhrf1 (a protein that is essential 
for recruiting Dnmt1), may trigger the initiation of DNA demethyla-
tion at this early stage81,82.

Reduced 5mC levels are reported to occur co-incident with the 
loss of H3K9me2 from approximately E8.0 (ref. 76; Fig. 2b). Several 
studies have shown that at least some imprinted loci83–85, transposons 
(such as LINE L1 and Iap)48 and a subset of germline-specific genes 
that are involved in genome defense against active transposons (that 
is, Tex19.1 and Piwil2)86 are fully or partially demethylated at E10.5. 
A recent time-course analysis of both germline and somatic genes 
has shown a gradual loss of DNA methylation from E8.5 followed 
by a rapid erasure between E11.5 and E12.5 (ref. 87). On the basis of 
these kinetics data, it has been proposed that replication-dependent 
demethylation occurs during early PGC development, whereas an 
active mechanism operates at a later stage.

Extensive and rapid DNA demethylation has been detected when 
PGCs enter the gonads (E11.5–E12.5) at which time most of the cells 
are in G2 phase75. It is thought that this second phase of reprogram-
ming depends on an active process independent of DNA replica-
tion. Complete demethylation is achieved by E13.5 in gene bodies 
or intergenic regions, including imprinted domains and repeat ele-
ments that were previously protected from erasure in the zygote87,88. 
The only exceptions known are transposable elements belonging to 
intracisternal A-particle and LTR-ERV1 families and some loci that 
are located close to these elements or within subtelomeric regions87,88. 
This widespread reprogramming has been thought to be important 
for preventing the transmission of inappropriate or information to 
the next generation. Therefore, whereas sex-specific imprinted DNA 
methylation needs to be reestablished, epimutations that may be accu-
mulated during the organism’s life (and may be detrimental) require 
erasure. This global demethylation is associated with a cascade of 
chromatin-remodeling events, including the transient loss of linker 
histone H1, H3K27me3 and H3K9me3, and stable loss of H3K9ac 
and H2A/H4 R3me2 (ref. 75; Fig. 2b) and subsequently, reactivation 
of the X chromosome in females89.

Although the mechanisms of DNA demethylation in PGCs remain 
hotly debated, both replication-dependent and replication-independent 
mechanisms probably cooperate to achieve appropriate removal of 
DNA methylation. Parallel strategies may help to confer robustness 
to the process, an aspect that is particularly relevant in the germline 
so that genetic and epigenetic information can be faithfully conveyed 
to the next generation. Different strategies may also be required to 
orchestrate the timing of demethylation and the subsequent activation 
of genes with different biological functions. For example, a specific 
demethylation pathway that operates early during PGC development 
may target pluripotency genes to allow their activation in a specific time 
widow. Similarly, it has been postulated that demethylation of germline- 
specific genes that belong to the genome defense pathway is required 
to activate gene expression in a phase that precedes the demethylation 
and potential activation of retrotransposons to safeguard the genome86. 
Different mechanisms may therefore have evolved for specifically tar-
geting different classes of genes. Supporting this hypothesis, it has been 
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recently shown that loss of Tet1 activity in PGCs leads to the retention 
of DNA methylation and the downregulation of a subset of genes that 
is crucial for meiosis and the formation of oocytes90. A comprehensive 
genome-wide analysis of 5mC and its derivatives during PGC devel-
opment, however, has not been performed and such an analysis will 
help us in the near future to understand the functional importance of 
different demethylation pathways.

It is interesting to speculate that reduced DNA methyltransferase 
activity could favor a replication-dependent loss of DNA methylation 
in the early PGC migratory phase, whereas later erasure (after E11.5) 
could be the result of active enzymatic pathways and BER repair.  
A plausible mechanism for the deamination of 5mC (or 5hmC) into 
uridine creates mismatches that could be recognized by the mam-
malian glycosylases (such as Tdg, Mbd4 or Smug1). This has been 
supported by a genome-wide study showing reduced demethylation 
in E13.5 PGCs lacking the putative deaminase Aicda88. The contribu-
tion of Aicda to this process, however, remains controversial as the 
ablation has a mild effect, and knockout mice are both viable and 
fertile. Although the mild phenotype could be due to compensation of 
other deaminases, it is worth noting that neither Aicda nor Apobec1 
are expressed at E11.5 when substantial demethylation occurs39. 
Furthermore, neither Tdg, a mammalian glycosylase that has been 
implicated in the demethylation of some imprinted loci in PGCs91, 
or Mbd4 have been detected in PGCs between E10.5 and E13.5, as 
judged by immunofluorescence analysis39. However, Tet1 and Tet2 
enzymes are expressed at E11.5 but not at earlier stages of PGC devel-
opment39, and Tet1 has been recently shown to be required for the 
demethylation (at E13.5) and the subsequent expression of meiotic 
genes during later stages of gametogenesis90. Clearly, the role of these 
enzymes in the development of PGCs awaits clarification, and studies 
of 5mC and 5hmC distribution and dynamics in normal and mutant 
embryos will be needed to resolve these mechanisms.

Lessons	from	in vitro	models	of	cell	fate	reprogramming
Several different experimental approaches have been used to repro-
gram somatic cells toward pluripotency (Box 1). In these systems, the 
somatic cell is induced to change its gene expression program through 

the action of key transcription factors. Exactly how these transcrip-
tion factors access the somatic genome to reactivate the pluripotency 
network is still largely unknown. It has been argued that the forced 
expression of a set of key transcription factors enables each individual 
cell in a target population to be reprogrammed, provided sufficient 
time is allowed92. However, as only a small proportion of the progeny 
of a single cell is successfully reprogrammed, stochastic epigenetic 
events are probably important for reprogramming, and these precede 
activation of the pluripotency network92,93.

Several studies have shown that by perturbing the epigenetic land-
scape of the somatic target, cellular plasticity and reprogramming 
success can be increased. For example, enhancing the levels of his-
tone modification associated with gene activation increases repro-
gramming efficiency, most likely by favoring chromatin accessibility. 
Inhibition of histone deacetylases by various drug treatments (such as 
valproic acid or sodium butyrate) also enhances reprogramming94–99. 
Similarly, the deposition of H3K4me3 (another histone modification 
associated with gene activation) facilitates the activation of pluri-
potency genes100,101, whereas downregulation of Wdr5, an effector  
of H3K4me3 and core member of mammalian Trithorax complex, 
impairs induced pluripotent stem cell (iPSC) reprogramming102. In 
contrast, preventing the deposition of repressive histone marks (or 
facilitating their removal) enhances reprogramming. For example, 
inhibition of Dnmt1 (ref. 100) or G9a103,104 (an H3K9me2-specific 
methyltransferase) improves the generation of iPSCs. Similarly, loss of 
H3K9me3 by G9a depletion, or overexpression of the H3K9 demethyl-
ase Kdm3a (Jhdm2a), has been reported to facilitate the reactivation of 
pluripotency genes upon cell fusion–mediated reprogramming105,106. 
Somatic cells that lack the H3K27me3 histone demethylase Kdm6a 
(Utx) cannot stably reactivate the pluripotency network and cannot 
generate stably reprogrammed Nanog-positive iPSCs77.

In addition to modifications at histone tails, nucleosome spac-
ing also influences chromatin accessibility and is regulated by ATP-
dependent chromatin remodeling complexes107. Components of 
two of these families of complexes (that is, SWI/SNF and CHD) are 
required to maintain pluripotency in ESC108–110 and enhance iPSC 
reprogramming108,111. Depletion of the histone variant MacroH2A, 

Fifty years ago, Sir John Gurdon showed for the first time that cell  

differentiation can be reversed. In a pioneering experiment, normal adult 

frogs were regenerated from terminally differentiated cells of the intestinal 

epithelium by transplanting their nuclei into enucleated eggs125. Since this 

finding, several techniques have been developed for reprogramming different 

somatic cell types toward a pluripotent state. In the somatic nuclear transfer 

approach (top schematic), the nucleus of a somatic cell is reprogrammed 

upon transfer into an enucleated egg or oocyte by factors present in the 

ooplasm. Although inefficient, this technique can lead to reproductive 

cloning of the entire organism, and after the first experiments with frogs, 

several species have been successfully cloned, including mouse126. Fusion 

of somatic cells with stem cells of different origin gives rise to tetraploid 

hybrids that acquire a pluripotent phenotype, as shown by the reactivation 

of pluripotency genes and the capacity to form chimeric embryos127 (middle 

schematic). Reactivation of the pluripotency network has been detected a 

few days after fusion, when the nuclei of the fused cells are still separated  

(heterokaryon), thus showing that reprogramming can be achieved through 

the action of trans-acting factors115. A more recent technique is the  

induction of pluripotent stem cells (iPSCs) by the overexpression of a 

defined set of transcription factors128 (bottom schematic). This has been used to reprogram a wide range of fully differentiated cell types of both mouse and 

human origin and has therefore a huge potential for clinical application in personalized cell-replacement therapy.

Cell fusion

Induction of pluripotency factors

Oocyte

Somatic cell

Reprogrammed cell

Reproductive cloning

Somatic cell

X

Stem cell Somatic cell Heterokaryon Reprogrammed cell
(hybrid)

Reprogrammed cell
(iPSC) 

Partially reprogrammed cell
(pre-iPSC) 

Somatic cell nuclear transfer

Box 1 Experimental approaches for in vitro reprogrammingnp
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which reduces the binding of SWI/SNF complexes and is involved in 
heterochromatin formation and gene silencing112, can enhance the 
reprogramming of fibroblasts injected into Xenopus laevis oocytes113. 
Collectively, these studies suggest that the removal of repressive chro-
matin modifications and establishment of more ‘accessible chromatin’ 
domains generally facilitates the interconversion of cell fates by allow-
ing specific transcription factors to access the genome.

Kinetic studies of reprogramming have shown that somatic cells 
regain pluripotency via a multistep process in which structural 
changes to chromatin and loss of DNA methylation precede activa-
tion of pluripotency-associated genes36,62,100,101,114–118. Silencing of 
the somatic program has been reported to occur faster than reacti-
vation of the pluripotency network in iPSCs and cell fusion–based 
systems114,115,119,120. It has been proposed that genes that are actively 
transcribed in the somatic nucleus are accessible for silencing, whereas 
pluripotency-associated genes are relatively inaccessible or ‘occluded’ 
by the stable binding of repressive complexes119. Although histone 
modifications and structural changes that are associated with a more 
open chromatin conformation can be observed very early during 
reprogramming, it is possible that stable expression of pluripotency 
genes requires more extensive chromatin remodeling.

Several studies in different systems have suggested that DNA methyl-
ation is a crucial barrier for reprogramming that must be removed 
for the effective reactivation of pluripotency genes100,116,117,119. 
How this occurs is still much debated. In somatic cell nuclear trans-
fer experiments, demethylation of the Oct4 (Pou5f1) promoter 
occurs independently of DNA replication31,117, and the BER and  
Tet3-mediated 5hmC pathways have been implicated36,62. A similar 
replication-independent mechanism has been suggested to account for 
demethylation of the human OCT4 (POU5F1) promoter in fibroblasts 
fused with mouse ESCs116. Silencing of Aicda was reported to prevent 
DNA demethylation and activation of OCT4 in this system. The role 
of Aicda in cell fusion–mediated reprogramming has, however, been 
called in question by a similar study in which no evidence of Aicda 
expression was found before or after hybrids between rat fibroblasts 
and mouse ESCs were generated119. This study also claimed that inhi-
bition of DNA replication abolished demethylation of OCT4.

A more recent study has shown that Tet2 and Parp1 (a multifunc-
tional protein that is involved in both DNA repair and chromatin 
remodeling) were rapidly induced in fibroblasts after iPSC induction 
and were essential for reprogramming121. However, although both pro-
teins were required for establishing accessible chromatin at the pro-
moters of key pluripotency target genes, they did not have an obvious 
role in demethylation of these targets at least at early stages, as silencing 
of Tet2 and loss of 5hmC did not lead to increased methylation at the 
promoters of pluripotency genes. Loss of Parp1 resulted instead in 
increased DNA methylation at pluripotency gene promoters, although 
demethylation of the same promoters was not normally evident at early 
stages. The authors concluded that Parp1 might act by counteracting 
the activity of de novo DNA methyltransferass (and other epigenetic 
modifiers) rather than by actively promoting DNA demethylation. 
Others have suggested that DNA demethylation is a critical step for 
the stable conversion of partially reprogrammed cells (pre-iPSCs) into 
fully pluripotent iPSCs100,122 and that this step requires, and is acceler-
ated by, cell proliferation. The observation that inhibition of Dnmt1 
accelerates the conversion adds weight to the assumption that a replica-
tion-dependent mechanism underlies this process.

Conclusions
In vivo and in vitro studies have demonstrated the intrinsic revers-
ibility and plasticity of the differentiated state. Here we have  

discussed the roles of different epigenetic modifiers that can confer 
or remove histone and DNA modifications during in vivo and  
in vitro programming and reprogramming. The emerging data sug-
gest that ‘active’ enzymatic activities can be complemented by the 
‘passive’ loss of DNA and chromatin modifications during DNA rep-
lication, and that the relative contribution of each is probably context 
dependent. In this regard a very recent paper exemplifies how the 
combination of Tet-mediated 5mC to 5hmC enzymatic conversion 
with cell divisions has a central role in the DNA demethylation dur-
ing PGC development123. DNA synthesis and mitosis constitute two 
critical phases in the cell cycle when histone and DNA modifica-
tions need to be faithfully conserved. Modulation of epigenetic ‘read-
ers’ or ‘modifiers/writers’ during these intervals could, in principle, 
precipitate the loss or dilution of chromatin-based marks. Thus, a 
replication-dependent mechanism for remodeling chromatin could 
be particularly important for reactivating genomic regions or loci 
during specific stages of development (as discussed for the zygote 
and PGC) or for allowing cell fate conversions in vitro by promoting 
early stochastic changes in rapidly dividing cells92,93. This may also 
be relevant in refining the epigenetic state during the transition from 
partially to fully reprogrammed stable states100,124. In this context, it 
will become increasingly important to describe the chromatin profiles 
of partially reprogrammed cells at successive cell divisions and to 
genetically deplete ‘candidate erasers’, to dissect the relevant players 
and mechanisms in reprogramming.

To date, most of the histone modification analyses in the preim-
plantation embryo and PGCs have been done by immunofluores-
cence, and detection of gross changes might obscure more distinct 
and perhaps important locus-specific events. In the next years, it will 
therefore be key to adapt genome-wide mapping techniques to the 
nanoscale to characterize the different combinations of histone and 
DNA modifications in small reprogramming populations or even in 
single cells.
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