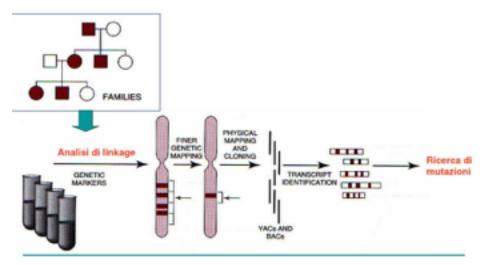
Positional cloning: statistical approaches to gene mapping, i.e. locating genes on the genome

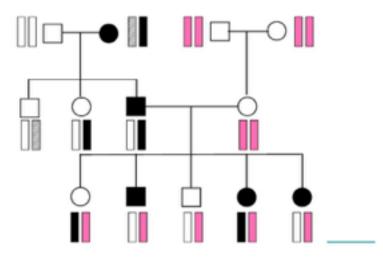
- Linkage analysis
- Association studies (Linkage disequilibrium)

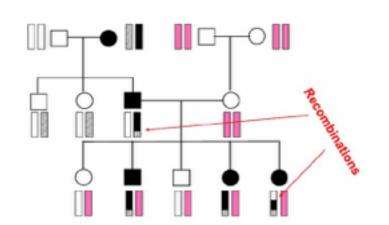

Linkage analysis

- Uses a genetic marker map (a <u>map of polymorphic loci</u>)
- Looks for co-segregation with a marker (polymorphic locus)
- Simple Idea:
 - To determine if marker allele at a <u>known location</u> <u>travels with the disease</u> in a family

Linkage Analysis

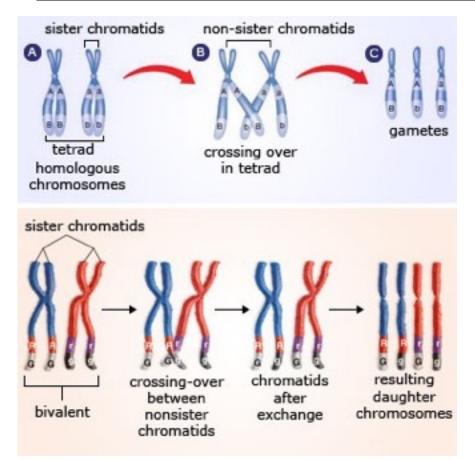
Positional Cloning


To identify the chromosomal region in which the **disease-gene** is located without knowing its function


• If in a family a disease D is <u>transmitted associated with</u> specific markers M, then the disease -gene mapped near these markers and <u>D and M segregate together</u>

Main aim of linkage analysis:

To evaluate the distance between D and M


Chromosomal region <u>non in-linkage</u> with the disease

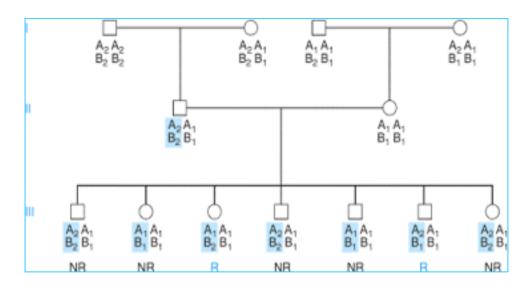
Chromosomal region <u>in-linkage</u> with the disease

Meiotic recombination is exploited to define <u>the small region</u> <u>in-linkage</u> with the disease

Linkage Analysis is based on **RECOMBINATION**

Genetic mapping

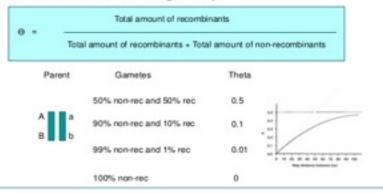
the aim is to discover <u>how often two</u> <u>loci are separated</u> by meiotic <u>recombination</u>


If two loci are <u>on different</u> <u>chromosome</u> they will segregate <u>independently</u>

Children will have 50% chance to receive each of these loci. Recombination fraction is $\theta = 0.5$

If loci are on the <u>same chromosome</u> they are expected to <u>segregate together</u> (θ = 0) but due to <u>meiotic recombination this does not always happen</u> (0 < θ < 0.5) The further two loci are on the chromosome the more they recombinate The θ is a <u>measure of the distance</u> between two loci Recombination will rarely separate loci which lie very close (θ =0)

Alleles on the same small chromosome segment tend to be transmitted as a block through a pedigree called **haplotype** -that can be tracked in families and populations

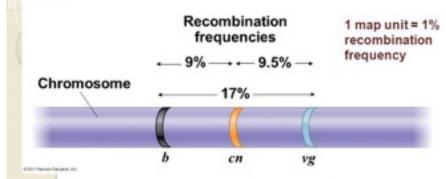

Recombination fraction defines genetic distance

How can we calculate the θ ?

The proportion of children who are recombinant is the <u>recombination fraction</u> between the two loci A and B during meiosis

Recombination frequency

Two loci which show 1% of recombination are defined as 1 centimorgan distance (cM)

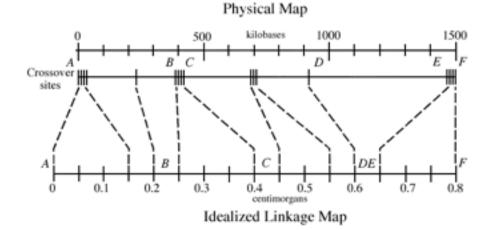

The mathematical relationship between

<u>recombination fraction</u> and <u>genetic map distance</u> is described by the mapping function Haldane function $d= 0.5 \ln (1-2\theta)$

However there is interference during crossing-over since one chiasma can inhibit another... Kosambi function $d=0.25ln[(1+2\theta)/(1-2\theta)]$

Recombination map

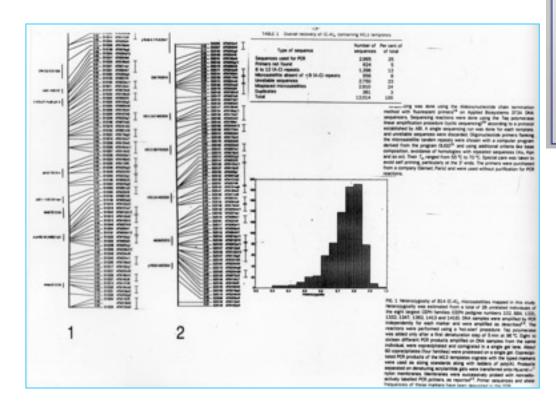
Physical map

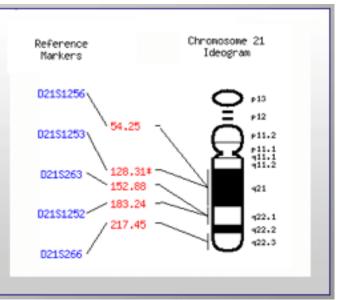

Mapping Distance Between Genes Using Recombination Data

A linkage map is a genetic map of a chromosome based on recombination frequencies

The farther apart two genes are, the higher the probability crossover will occur and therefore the higher the recombination frequency

Distances between genes can be expressed as map units.


1 male cM = 0.9 Mb 1 female cM = 0.7 Mb


To perform linkage analysis you need genetic markers...

Characteristics:

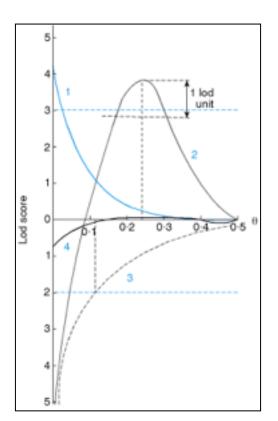
- highly polymorphic
- \cdot the rarest allele with a frequency of at least 1%
- \cdot feasible and stable in the pedigree
- \cdot well-known position in the genome
- genetic map of markers

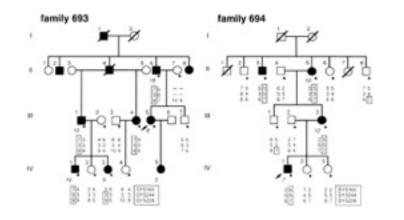
Genetic map of markers in 1980...

Human complete genetic map of microsatellite markers in 1992 by Cohen and colleagues

Genetic linkage and disease

• Suitable large families are collected and <u>segregation of the disease is compared</u> with the segregation of the markers

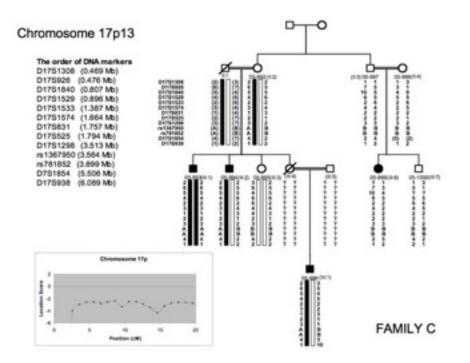

•By using statistics it is tested the <u>probability</u> that the two loci (markers) <u>are not in</u> <u>linkage</u> (null hypothesis; threshold is p=0.05) in one family (LOD SCORE)

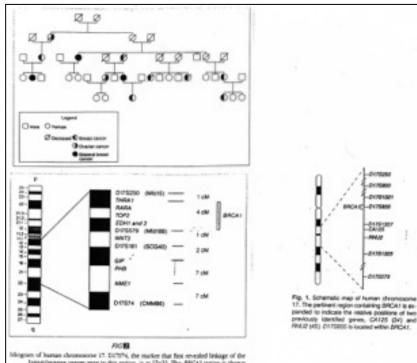

Data from different families are collected and combined

LOD SCORE = is the logarithm of the odds that the <u>loci are linked rather than unliked</u>

$LOD = Z = \log 10 \frac{\text{probability of birth sequence with a given linkage value}{\text{probability of birth sequence with no linkage value}}$
probability of birth sequence with no linkage
$= \log 10 \frac{(1-\theta)^{NR} \times \theta^R}{0.5(NR+R)}$
$-\log 10 - 0.5^{(NR+R)}$

- It is a function of recombination fraction and is the product of the probabilities in each individual family
- When θ is 0.5, lod score is 0
- Z = 3 is the threshold to accept linkage




The <u>overall probability</u> of linkage in a set of families is the addition of LOD scores in each family

Linkage analysis can be more efficient if data for <u>more than two loci</u>are analyzed <u>simultaneously</u>

Multipoint mapping

Linkage analysis and positional cloning: BRCA1

"The existence of BRCA1 was proven in 1990 by mapping predisposition to youngonset breast cancer in families to chromosome 17q21. Knowing that such a gene existed and approximately where it lays triggered efforts by public and private groups to clone and sequence it....BRCA1 was positionally cloned in September 1994..." Mary Claire King

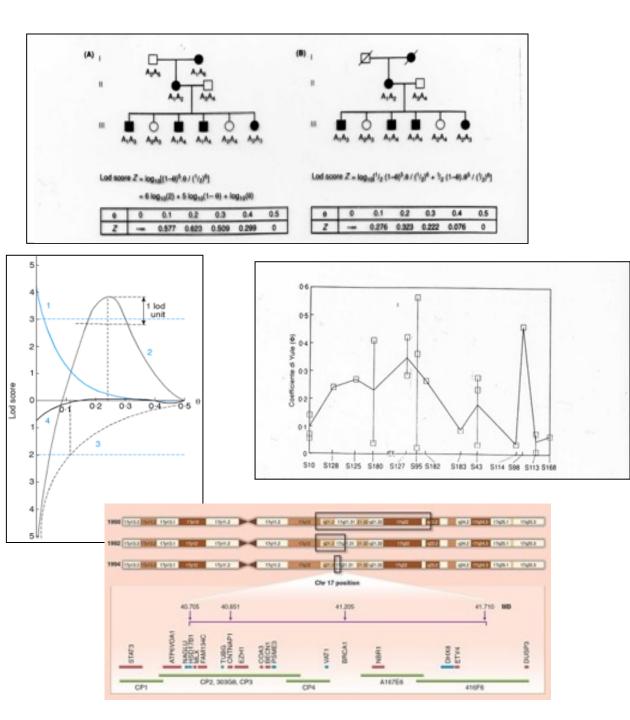
identification of the more informative families

 identification of the locus for the susceptibility

Hogens of human chromosome 15, 1075%, the marker that first severaled linkage of the britist/invarian curver prote in this argion, is at 17421. The BACM region is shown having by the markers TRBM and D270579 (bits (1-5). The locations of BBCM) considere greens are indicated, topethor with the polynosophic markers used in deletating the ABCAI region. Gener absentations. IDBNI and 2: 1250-constable deletating areas 1 and 1; ABCAI region. Gener absentations. IDBNI and 2: 1250-constable deletating areas add receptor or 2003.1 (round humane morphics. TOPS, topocorrestar 2, 10:32), human homologues of the mouse Var lending users. Tor 5.

Fable 1. Kndred descriptions and associated it	of scores (SC), B	k, breast cancer;	8/ <50.1	Instant carrow
flagnosed under age 50; Ox, overlan sancer.			-	

Kinshed Total		Cases (r)		forwards		
	Total Br	8r <50	Ov	County P0	acore -	Matters
2082 2099	31	20	22	7	. 9.49	01757387
	22	54	5.	0	2.96	D175800 and D175860 and
2035	10		1-	0	2.25	01701307
1901	10	. 7	1-	0	1.50	0175865
1925		3	0	0	0.55	0170579
1980	8	4	0	0	0.96	0175579 and 01752508
1911			0	1	-0.20	0175250
1907	5		0		-0.44	0175250


Norden contains one indextal who had not how one and whom its indextals is summariant as both a branc Norden case and a lan indext indext contains. The contains of anomal with branc saves disponsed norder any 130 or norden contains disponsed in any application on once the DPCH transitions. Biblio markets ware used to Scholars welgened by a low

Linkage analysis and positional cloning: BRCA1

•Families were analyzed with <u>microsatellites</u> spanning the region

 <u>lod scores were</u>
 <u>calculated</u> for each family and add up for all the families

characterization of <u>an</u>
 <u>open reading frame</u>

Parametric Linkage Analysis

Parametric linkage analysis can be applied when there is a probability that <u>a gene important for a disease is linked to a genetic marke</u>r

It is studied using the LOD score, which assesses the probability that the disease and the marker are <u>cosegregating</u>.

It can be used when we have a pedigree with a <u>clear_type of inheritance</u> and <u>genotype-phenotype correlation</u>

Non- Parametric Linkage Analysis

Non-parametric linkage analysis studies the probability of an allele being <u>identical by descent</u> with itself

It is used when the type of inheritance is not known

Less powerful, but you can apply it to a lot of families

Linkage analysis

- Great success in identifying genes for simple Mendelian diseases
- Few success in identifying genes contributing to complex disease
- Unsuccessful in identifying genes contributing to common complex disease

Linkage disequilibrium (LD)

- The nonrandom association of alleles <u>in the</u> <u>population</u>
- Alleles at neighboring loci tend to cosegregate
- Linkage disequilibrium implies <u>population</u>
 <u>allelic association</u>

Linkage Disequilibrium Mapping

- Population based
- Look for <u>variant allele</u> in LD with disease
- If most affected individuals in a population <u>share the</u> <u>same mutant allele</u>, then LD can be used to locate the chromosomal region harboring the disease

Association studies: which allele of which gene is associated with the disease?

Case-Control Studies

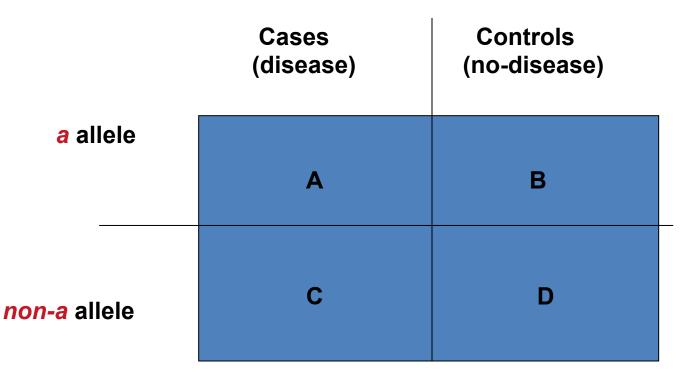
- Common method in epidemiology
- Cases
- Controls from the same population
 - this implies that cases and controls should have similar genetic backgrounds

Linkage and association are different phenomena

- Association is a statistical statement about the co-occurrence of alleles or phenotypes (e.i. allele A is associated with disease D if people who have D also have more A). The association can have many possible causes (not all genetics).

- Linkage is a relationship between loci and does not of itself produce any association in the general population.

Linkage creates association within families, but not among unrelated people.


However, if two supposedly unrelated people with disease D have inherited it from a distant common ancestor, they may well also tend to share particular ancestral alleles at loci closely linked to D (Linkage disequilibrium)

Statistical association can develop for different reason:

- direct cause-effect
- natural selection
- Stratification of the population
- linkage disequilibrium

Association studies are based on the use of haplotypes

Case-control study: OR

Odds ratio = odds allele *a* in cases / odds allele *a* in controls Odds ratio= <u>A/B</u> = A/B x D/C= AD/BC B/C OR= 1 (no association); OR>1 the allele contributes to the disease

International HapMap Project

Home I About the Project I Data I Publications I Tutorial

http://www.hapmap.org/index.html

HapMap and location of genes involved in medically important traits

About 10 million SNPs exist in human populations, where the rarer SNP allele has a frequency of at least 1%.

Researchers trying to discover the genes that affect a disease, such as diabetes, will compare a group of people with the disease to a group of people without the disease.

Chromosome regions where the two groups differ in their haplotype frequencies might contain genes affecting the disease.

Theoretically, researchers could look for these regions by genotyping 10 million SNPs. However, the methods to do this are currently too expensive.

The HapMap identifies which **200,000 to 1** million tag SNPs provide almost as much mapping information as the **10 million** SNPs.

This substantial cost reduction makes such studies feasible to do.

"Sporadic" CRC

- is a multifactorial (complex) condition
 - environmental factors
 - genetic factors

•study of twins: 35% of all CRC cases have a genetic component
•first-degree relatives of CRC patients are well- recognized to have a 2- to 4-fold increased risk of developing the disease

-recessive genes?

-pathogenic mutations of low penetrance

-complex gene-gene and gene-environment interactions

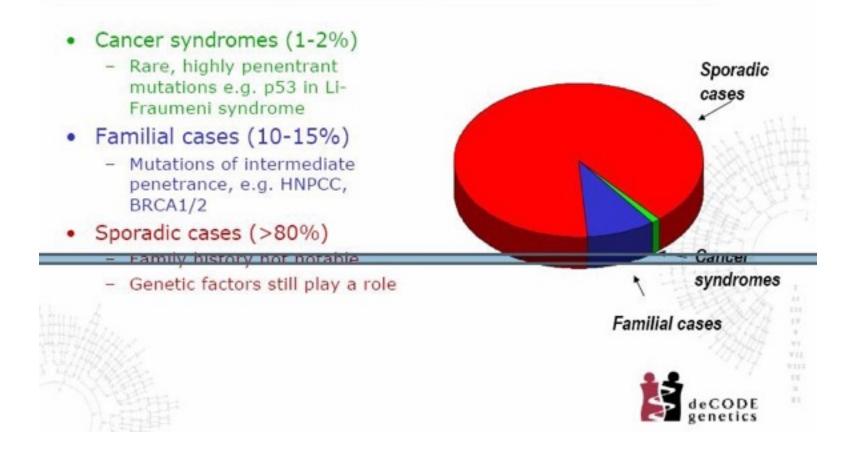
Tomlinson et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3 Nature Genetics 40, 623 - 630 (2008)

Tenesa et al. **Genome-wide association scan identifies a colorectal cancer** susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21 Nature Genetics 40, 631 - 637 (2008) In a genome-wide association study to identify loci associated with colorectal cancer (CRC) risk, we genotyped 555,510 SNPs in 1,012 early-onset Scottish CRC cases and 1,012 controls (phase 1). In phase 2, we genotyped the 15,008 highest-ranked SNPs in 2,057 Scottish cases and 2,111 controls. We then genotyped the five highest-ranked SNPs from the joint phase 1 and 2 analysis in 14,500 cases and 13,294 controls from seven populations, and identified a previously unreported association, rs3802842 on 11q23 (OR = 1.1; P = 5.8 times 10- 10), showing population differences in risk. We also replicated and fine-mapped associations at 8q24 (rs7014346; OR = 1.19; P = 8.6 times 10- 26) and 18q21 (rs4939827; OR = 1.2; P = 7.8 times 10- 28).

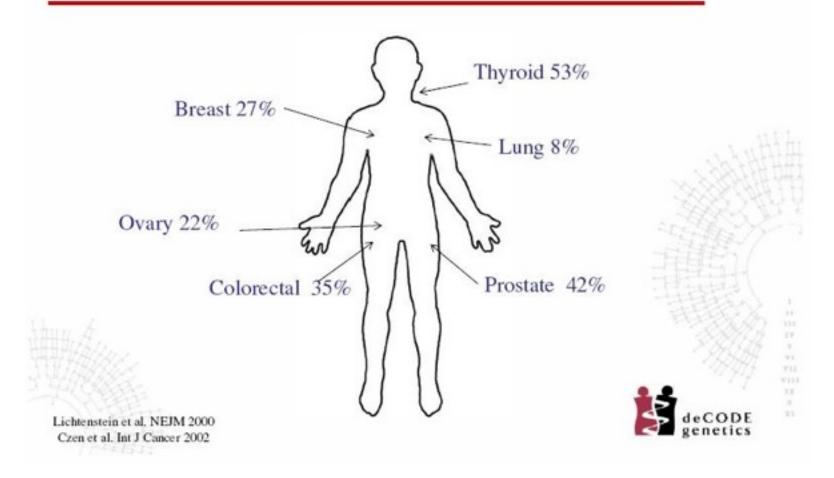
Carrying all six possible risk alleles yielded OR = 2.6 (95% CI = 1.75-3.89) for CRC.These findings extend our understanding of the role of common genetic variation in CRC etiology.

Tenesa et al. Nat. Genet., 2008

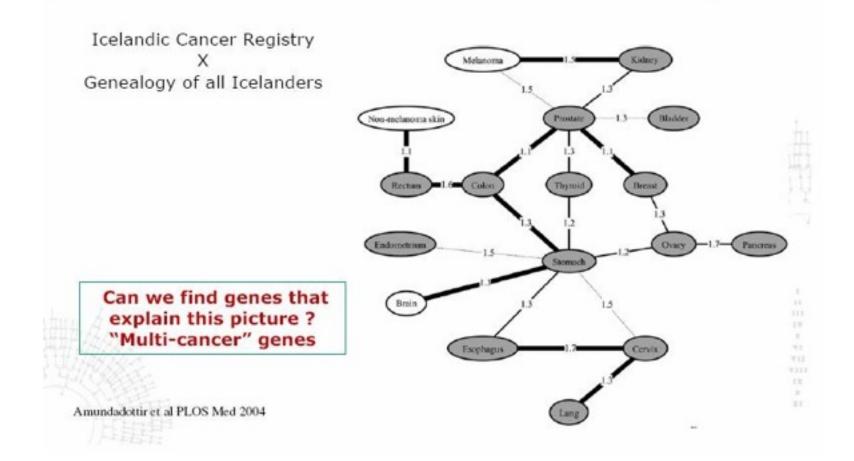
Genetic factors play a role in cancer

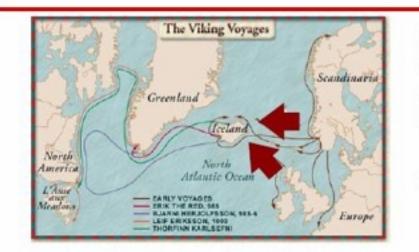

 Epidemiology studies show that relatives of cancer patients have a higher risk of developing the disease

Cancer site	Relative risk (RR)				
	1° relatives	2° relatives	3° relatives		
Thyroid	3.02	1.64	1.13		
Kidney	2.3	1.31	1.32		
Breast	2.02	1.36	1.21		
Lung	2	1.39	1.1		
Prostate	1.89	1.36	1.19		

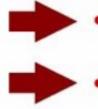


Amundadottir et al PLOS Med 2004


Only a fraction of cancer cases have family history of the disease



Cross-risk of cancer in relatives


Icelandic history

Iceland founded in 9th century by settlers of mixed Northern European descent

Current Pop. 300,000

- N-European descent
- Isolation for 11 centuries

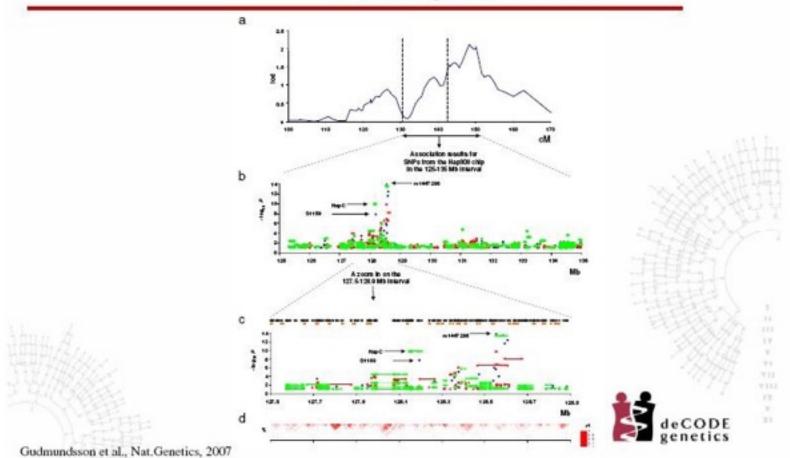
Same genetic background Smaller number of mutations

First major cancer project - prostate cancer

- A major public health problem
 - The most common cancer in males in the US
 - Lifetime risk 10% in EU 16% USA
 - The second leading cause of cancer related deaths in men
- A genetic enigma
 - Genetic component one of the largest of all cancers
 - No highly-penetrant cancer genes isolated that can explain the familiality
 - Common polymorphisms in numerous genes reported to be associated with risk – hard to replicate

Results on 8q24 replicated

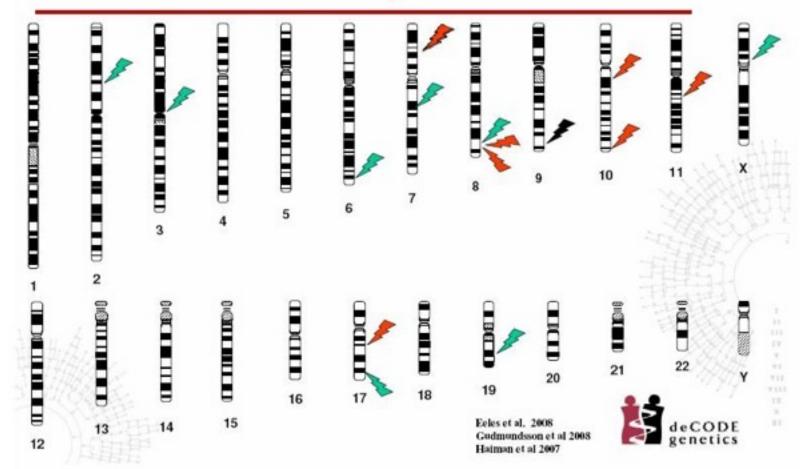
Study population						
(N cases/N controls)	Marker	Allele	Cases	Controls	OR	P value
Iceland						
(1291/997)	DG8S737	-8	0.131	0.078	1.77	2.3x10 ⁻⁸
	rs1447295	Α	0.169	0.106	1.72	1.7x10 ⁹
Sweden						
(1435/779)	DG8S737	-8	0.101	0.079	1.38	4.3x10 ⁻³
	rs1447295	А	0.164	0.133	1.29	4.5x10 ⁻³
European Americans						
Chicago						
(458/247)	DG8S737	-8	0.082	0.041	2.10	2.9x10 ⁻³
	rs1447295	А	0.127	0,081	1.66	6.7x10 ⁻³
African Americans						
Michigan						
(246/352)	DG8S737	-8	0.234	0.161	1.60	2.2x10 ⁻³
19682.	rs1447295	A	0.344	0.313	1.15	0.29


Alleles for the markers DG8S737 and rs1447295 at 8q24.21 are shown and the corresponding numbers of cases and controls (N), allelic frequencies of variants in affected and control individuals, the odds-ratio (OR) and two-sided P values. deCODE

х.

11

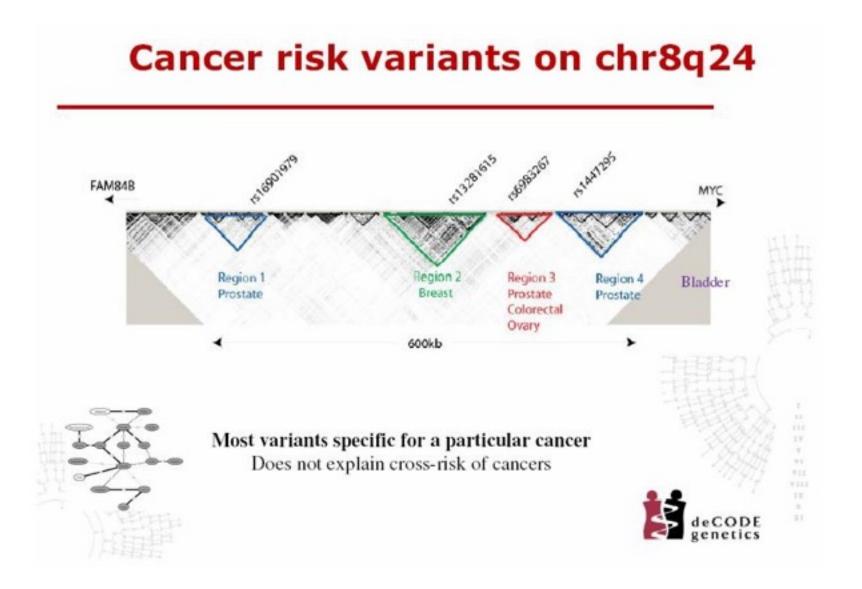
PERT

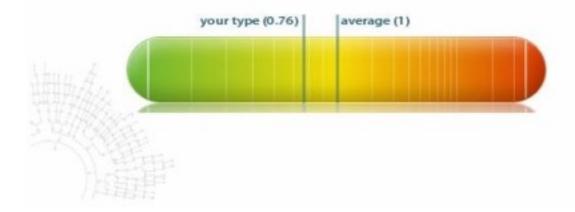

GWA identifies a second signal on 8q24

Several independent prostate cancer risk loci on chr8q24

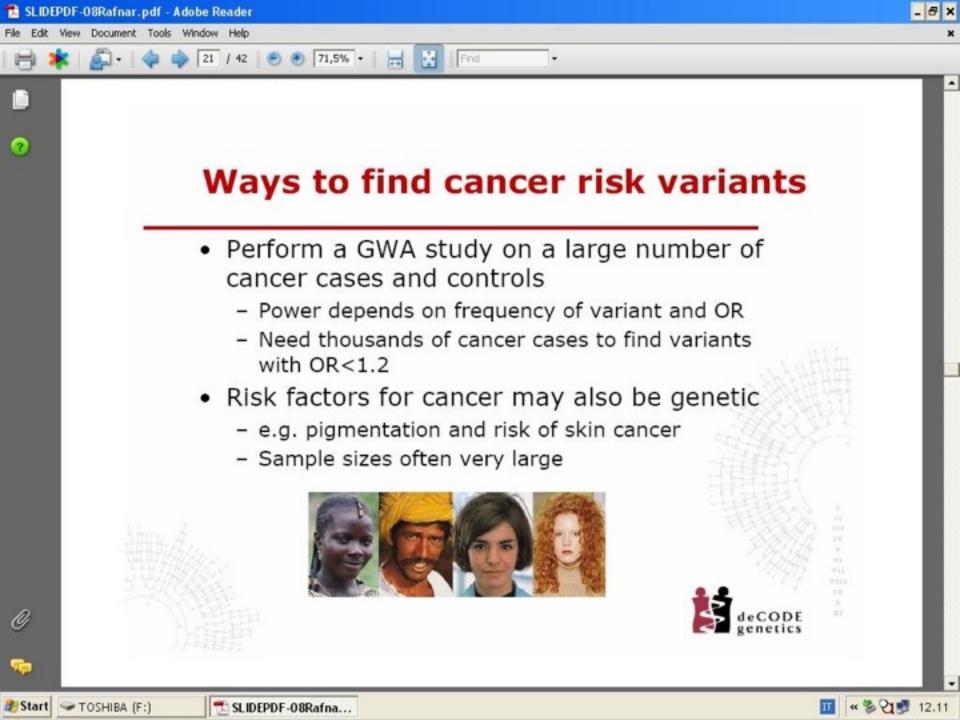
GWA studies have identified >16 loci involved in prostate cancer

16 prostate cancer variants....

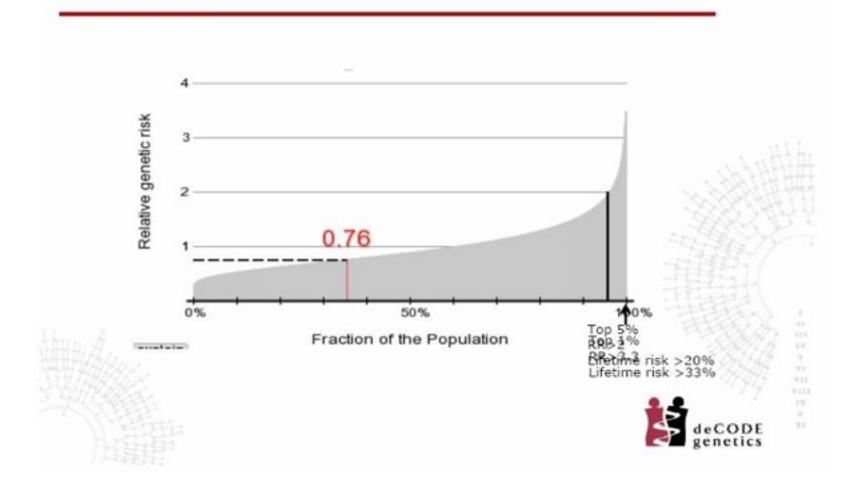

Prostate cancer					
2p15	2	rs721048	0.19	1.15	8×10^{-9}
3p12	3	rs2660753	0.11	1.18	3×10^{-8}
6q25	6	rs9364554	0.29	1.17	6×10^{-10}
7q21	7	rs6465657	0.46	1.12	10-9
JAZF1	7	rs10486567	0.77	1.12	10^{-7}
8q24	8	rs1447295, DG8S737	0.10	1.62	3×10^{-11}
8q24	8	rs6983267	0.50	1.26	9×10^{-13}
8q24	8	rs16901979, hapC	0.03	2.1	3×10^{-15}
HNF1B	17	rs4430796	0.49	1.24	10-11
HNF1B	17	rs11649743	0.80	1.28	2×10^{-9}
17q	17	rs1859962	0.46	1.25	3×10^{-10}
MSMB	10	rs10993994	0.40	1.25	9×10^{-29}
CTBP2	10	rs4962416	0.27	1.17	3×10^{-8}
11q13	11	rs7931342	0.51	1.19	2×10^{-12}
KLK2/KLK3	19	rs2735839	0.85	1.20	2×10^{-18}
Xp11	x	rs5945619	0.36	1.19	2×10^{-9}


.

1



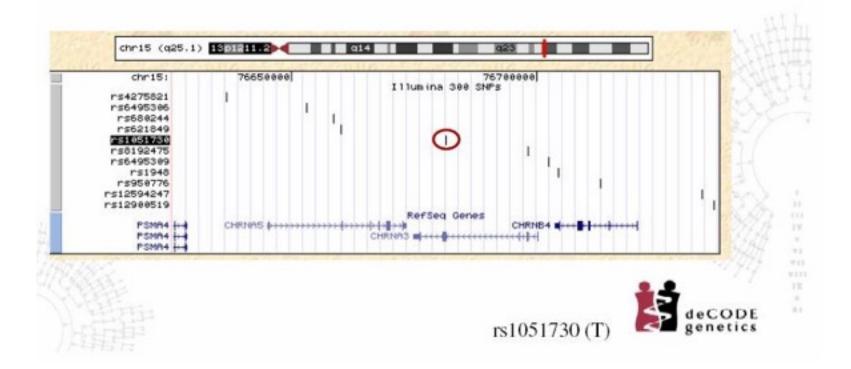
Genetic risk assessment model for prostate cancer


- Genotype 13 variants
 - Multiplicative model
 - Results presented as
 - Relative risk of developing the disease
 - Lifetime risk (average 10% in the EU)
- Does not include family history

Results from prostate cancer risk test

Smoking behavior and lung cancer

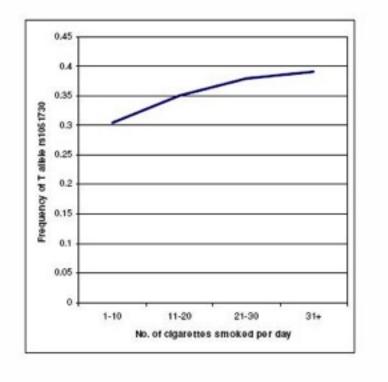
- Smoking is the major risk factor for lung cancer
 - Over 90% of cases in males and 80% of cases in females attributed to smoking
- Evidence for genetic influence on smoking behaviour and nicotine addiction
- Genetic studies on smoking....


Studies on smoking behaviour

- 11,000 smokers; divided into 4 groups based on the number of cigarettes per day (cpd)
 - 1-10
 - 11-20
 - 21-30
 - 31 or more
- Genotyped for 370.000 SNPs
 - Search for variants that are more common in heavier smokers

Variants in nicotine receptor cluster associate with more smoking

6 SNPs in the nicotinic acetylcholine receptor gene cluster on chromosome 15q Associate with more smoking and nicotine addiction



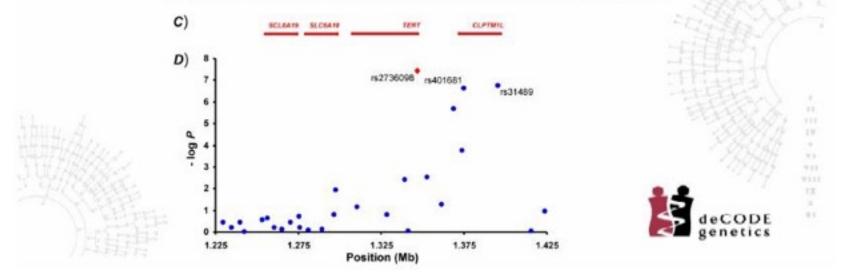
Genetics of smoking

- Results confirmed in an independent group of smokers from
 - Iceland (2950)
 - The Netherlands (1375)
 - Spain (523)
- For all groups combined, regression analysis adjusted for gender and age, P=6×10⁻²⁰.
 - Each copy of the "risk" variant increases smoking by 1 cigarette per day
- Also associated with nicotine addiction

Association between rs1051730(T)and number of cigarettes per day

rs1051730(T) associates with risk of lung cancer

Study Group	Controls		Cases				
	n	freq	n	freq	OR	(95% CI)	Р
Lung Cancer							
Iceland	28,752	0.342	665	0.398	1.27	(1.13 - 1.43)	4.1 X 10 ⁸
Spain	1,474	0.390	269	0.483	1.46	(1.22 - 1.76)	5.4 X 10 ⁶
The Netherlands	2,018	0.314	90	0.350	1.18	(0.86 - 1.61)	0.31
Foreign combined	3,492	•	369	·	1.38	(1.18 - 1.62)	6.6 X 10 ⁴
All combined	32,244		1,024		(1.31	(1.19 - 1.44)	(1.5 X 10 ⁸


Is the increase in lung cancer risk only through effect on smoking?

- Increase in cpd too small to explain the full lung cancer risk
 - Direct effect of nicotine in the lung ?
- Nicotin receptors are expressed in many tissues, including lung epithelium
 - stimulations causes proliferation and malignant transformation
- No increase in risk in non-smokers
- Variants not significantly associated with other cancer types
 - Not even bladder cancer.....

Finally, a variant that affects risk of many types of cancer !

- GWA study on basal cell carcinoma (BCC) identified several regions that associate with increased risk of skin cancer (Stacey et al 2008)
- One on chr5p near two known "cancer genes"
 - CLPTM1L (cisplatin resistance related protein) gene
 - hTERT (human telomerase reverse transcriptase) gene

TERT plays a role in the progression of most forms of cancer

- Examine if variation in this region is associated with risk of other cancer types
- Test cancer at 17 cancer sites, using 30,000 cancer cases and 45,000 controls from Iceland, Europe and USA

Study normalation	Number		Frequency		OR	95% CI	D	
Study population	Cases	Controls	Cases	Controls	UK	95% CI	P value	
Basal cell carcinoma			1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -					242
Iceland all	2,040	28,890	0.604	0.545	1.27	1.19-1.36	9.5×10 ⁻¹²	
Eastern Europe	525	515	0.616	0.575	116	0.97-1.39	0.098	
All combined	2,565	515	0.610	0.560	1.25	1.18-1.34	(3.7×10 ⁻¹²)	
Lung cancer							-	
Iceland all	1,449	28,890	0.575	0.545	1.13	1.04 1.23	3.6×10 ⁻³	
The Netherlands	529	1,832	0,610	0.570	1,18	1.02-1.35	0.021	
Spain	367	1,427	0.582	0.538	1.19	1.01-1.41	0.034	
IARC	1,920	2,517	0.617	0.586	1.16	1.06-1.27	8104	
All combined	4,265	34,666	0.596	0.560	1.15	1.10-1.22	(7.2×10-4)	
Bladder cancer							\smile	
Iceland all	780	28,890	0.583	0.545	1.16	1.051.29	4.5×10 ⁻³	
The Netherlands	1,277	1,832	0.584	0.570	1.06	0.96-1.17	0.27	
UK	707	506	0.564	0.514	1.23	1.04 1.44	0.014	
Italy-Torino	329	379	0.550	0.545	1.02	0.841.24	0.84	
Italy-Brescia	122	156	0.574	0.564	1.04	0.741.46	0.82	
Belgium	199	378	0.603	0.554	1.22	0.951.56	0,11	12990
Eastern Europe	214	515	0,619	0.575	1.20	0.96-1.51	0,12	
Sweden	346	905	0.545	0.521	1.10	0.92 1.31	0,30	
Spain	173	1,427	0.546	0.538	1.03	0.83-1.29	0.78	-11-11-4
All combined	4,147	34988	0.578	0.535	(1.12)	1.06-1.18	(5.7×10 ⁻⁵)	
Prostate cancer							-	-11-12-13
Iceland all	2,276	28,890	0.569	0.545	1.10	1.03-1.17	3.75×10	56.63
The Netherlands	994	1,832	0.576	0.570	1.02	0.93-1.14	0,67	
Chicago, US	635	693	0,581	0.568	1.06	0.90-1.23	0,49	
Spain	459	1,427	0.559	0.538	1.09	0.941.26	0,27	
CGEMS	5109	5,059	0.558	0.543	1.06	1.00-1.11	0030	
All combined	9,473	37,901	0.569	0.553	1.07	1.03-1.11	(3.6×10 ⁻⁴)	22
Cervical cancer							~	deCOI
Iceland all	369	28,890	0,611	0.545	(1.31)	1.13-1.51	(2.6×10 ⁻⁴)	geneti

17

711) 1X

1.1

rs401681 (C) associates with risk of cancer at 5 sites