Activation and signal transduction of neurotransmitter receptors

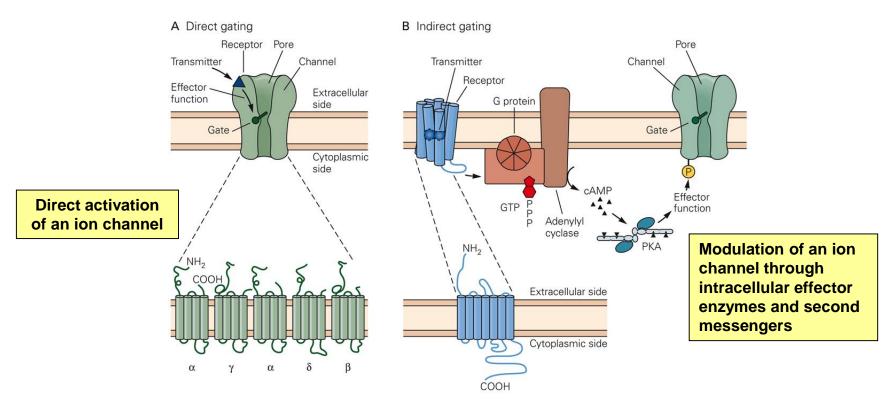


Figure 8–9 Neurotransmitters open postsynaptic ion channels either directly or indirectly.

A. A receptor that directly opens ion channels is an integral part of the macromolecule that also forms the channel. Many such ligand-gated channels are composed of five subunits, each of which is thought to contain four membrane-spanning α -helical regions.

B. A receptor that indirectly opens an ion channel is a distinct macromolecule separate from the channel it regulates. In one large family of such receptors, the receptors are composed of a

single subunit with seven membrane-spanning α -helical regions that bind the ligand within the plane of the membrane. These receptors activate a guanosine triphosphate (GTP)–binding protein (G protein), which in turn activates a second-messenger cascade that modulates channel activity. In the cascade illustrated here the G protein stimulates adenylyl cyclase, which converts adenosine triphosphate (ATP) to cAMP. The cAMP activates the cAMP-dependent protein kinase (PKA), which phosphorylates the channel (P), leading to a change in function.

The general architecture of ligand-gated ion channels

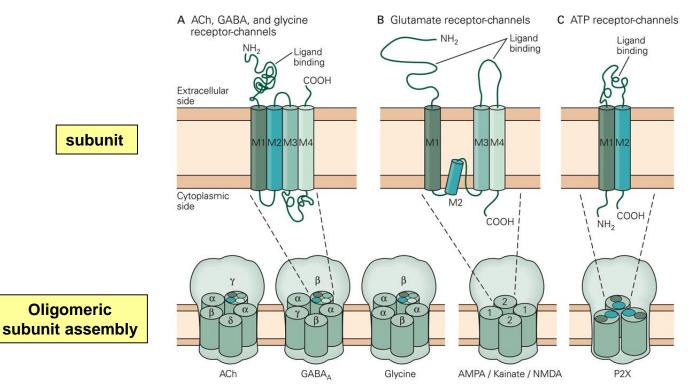
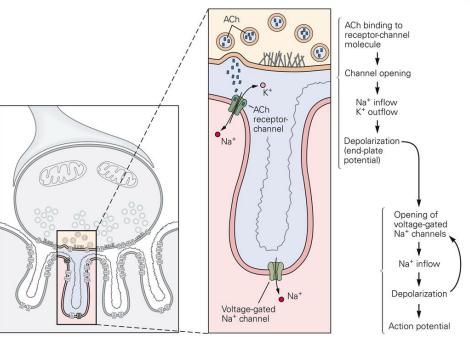
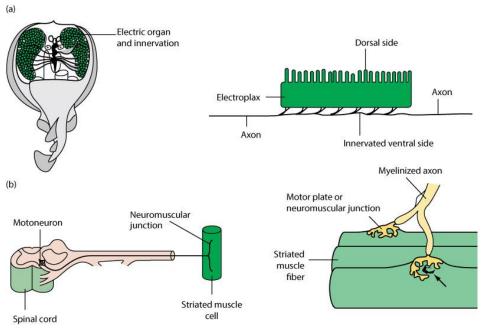


Figure 10-7 The three families of ligand-gated channels.

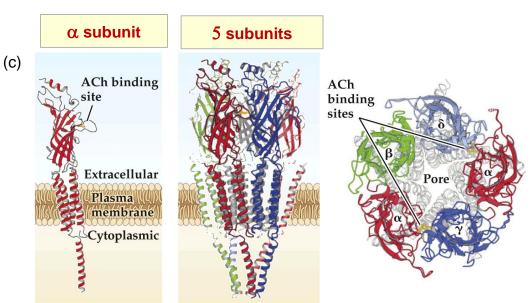
A. The nicotinic ACh, GABA_A, and glycine receptor-channels are all pentamers composed of several types of related subunits. As shown here, the ligand-binding domain is formed by the extracellular amino-terminal region of the protein. Each subunit has a membrane domain with four membrane-spanning α -helixes (M1–M4) and a short extracellular carboxyl terminus. The M2 helix lines the channel pore.

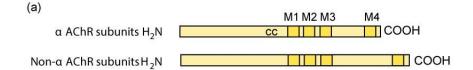

B. The glutamate receptor-channels are tetramers, often composed of two different types of closely related subunits (here denoted 1 and 2). The subunits have a large extracellular amino terminus, a membrane domain with three membrane-

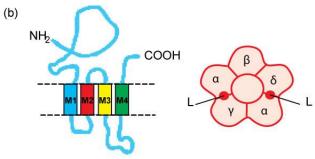

spanning α -helixes (M1, M3, and M4), a large extracellular loop connecting the M3 and M4 helixes, and an intracellular carboxyl terminus. The M2 segment forms a loop that dips into and out of the cytoplasmic side of the membrane, contributing to the selectivity filter of the channel. The glutamate binding site is formed by residues in the extracellular amino terminus and in the M3-M4 extracellular loop.

C. The ATP receptor-channels (or purinergic P2X receptors) are trimers. Each subunit possesses two membrane-spanning α -helixes (M1 and M2) and a large extracellular loop that binds ATP. The M2 helix lines the pore.

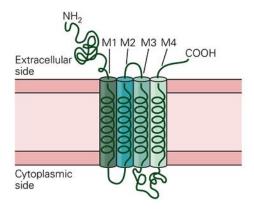
The nicotinic Acetylcholine receptor (nAChR) is the best-studied of ionotropic receptors

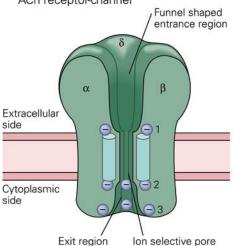

nAChR is a cationic channel permeable to Na⁺ e K⁺



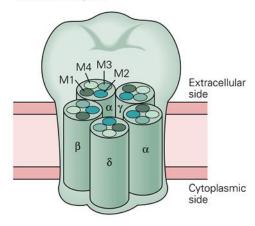

The electric organ of the electric ray is an example of preparation in which nicotinic receptors have been extensively studied. On a dissected *Torpedo* (left) we can see the electric organs and their innervation. These organs constitute electroplax membranes (right) which are modified muscle cells that do not contract. Nicotinic receptors are present on the ventral side of the postsynaptic membrane of the electroplax. The electroplax are simultaneously activated and the summation of their electric discharges can be of the order of 500 V.

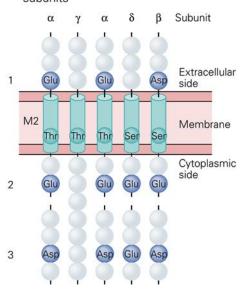
The **nAChR** of the neuromuscular junction is a cationic channel made of 5 subunits: (2) α , β , γ , δ


NEUROSCIENCE 5e, Figure 6.3 (Part 1)
© 2012 Sinauer Associates, Inc.



- (a) Schematic representation of the primary sequence of the α $(\alpha_1 \alpha_9)$ and non- α $(\beta_1 \beta_4, \gamma, \epsilon, and \delta)$ subunits of the nAChR. M1–M4, transmembrane domains; CC, Cys-Cys pair found in the α -subunits from both muscleand neuronal-type nAChRs.
- (b) Diagram of the tertiary organization of nAChRs. (Left) Schematic representation of the transmembrane organization of a single subunit. (Right) Schematic representation of the oligomeric organization of muscle-type nAChR. The pentameric nAChR is formed by two α-subunits and three non-α-subunits. The two ligand binding sites (L) are located at the interfaces of one α-subunit and one non-α-subunit.
- (c) Architecture of the extracellular and transmembrane domains of the nAChR from electron micrographs at 4 Å (0.4 nm) resolution. Individual subunits are in different colours (α, red; β, green; γ, blue; δ, light blue). The extracellular domains are β-sandwiches formed from two anti-parallel β-sheets perpendicular to the membrane topped by an α-helix. The transmembrane domains of each subunit contain four α-helices. (Right) Plan view from the synaptic cleft. The five subunits form a ring. A water filled vestibule runs through the extracellular domains down to the channel and through the membrane. The four M2 domains (in bright colors) of the four subunits line the channel.


A A single subunit in the ACh receptor-channel

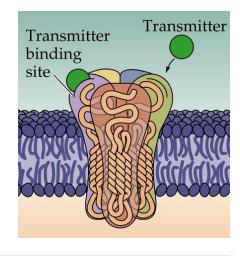

C Functional model of ACh receptor-channel

B Arrangement of subunits surrounding the channel pore

D Amino acid sequence of channel subunits

Molecular bases of the selective ion permeability of nAChR

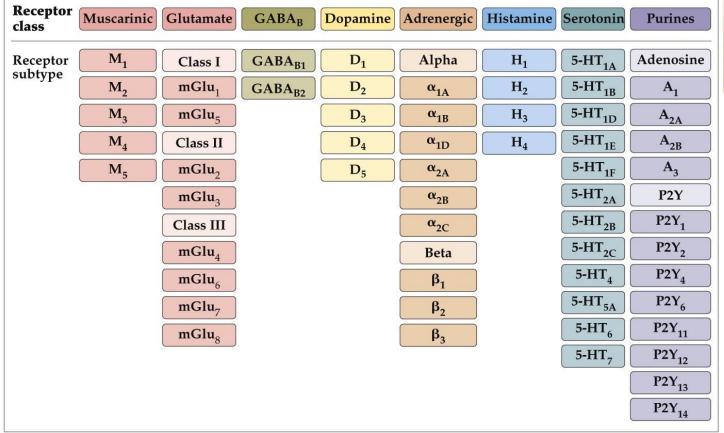
Figure 9–14 The ACh receptor subunits are homologous membrane-spanning proteins.


A. Each subunit contains a large extracellular N-terminus, four membrane-spanning α -helixes (M1–M4), and a short extracellular C-terminus. The N-terminus contains the ACh-binding site, and the membrane helixes form the pore.

B. The five subunits are arranged such that they form a central aqueous channel, with the M2 segment of each subunit forming the lining of the pore. Note that the γ -subunit lies between the two α -subunits. (Dimensions are not to scale.)

C. According to one model, negatively charged amino acids on each subunit form three rings of negative charge around the pore. As an ion traverses the channel it encounters these rings of charge. The rings at the external (1) and internal (3) surfaces of the cell membrane may serve as prefilters that help repel anions and form divalent cation blocking sites. The central ring near the cytoplasmic side of the membrane bilayer (2) may contribute more importantly to establishing the specific cation selectivity of the selectivity filter, which is the narrowest region of the pore.

D. The amino acid sequences of the M2 and flanking regions of each of the five subunits. The horizontal series of amino acids numbered 1, 2, and 3 constitute the three rings of negative charge (part C). The aligned serine and threonine residues within M2 help form the selectivity filter.


Each ionotropic receptor subtype is made of a combination of different subunits

Receptor	AMPA	NMDA	Kainate	GABA	Glycine	nACh	Serotonin	Purines
Subunits (combination of 4 or 5 required for each receptor type)	GluA1	GluN1	GluK1	α_{1-6}	α_{1-6}	$\alpha_{1\text{-}10}$	5-HT _{3A}	P _{2X1}
	GluA2	GluN2A	GluK2	β_{1-3}	β	β_{1-4}	5-HT _{3B}	P _{2X2}
	GluA3	GluN2B	GluK3	γ ₁₋₃		γ	5-HT _{3C}	P _{2X3}
	GluA4	GluN2C	GluK4	δ		δ	5-HT _{3D}	P _{2X4}
		GluN2D	GluK5	ε		3	5-HT _{3E}	P _{2X5}
		GluN3A		ρ_{1-3}				P _{2X6}
		GluN3B		θ				P _{2X7}
				η				

Multiplicity of metabotropic receptors

(C)

At synapses metabotropic receptors have mostly a modulatory role

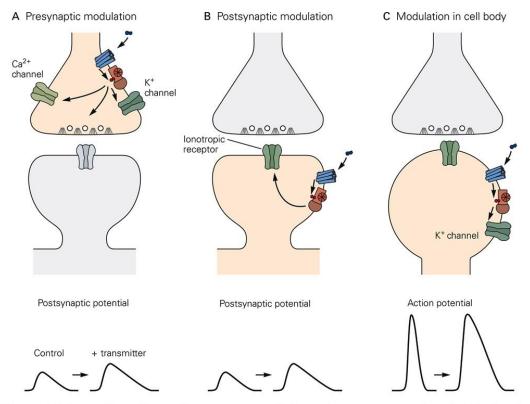


Figure 11–10 The modulatory actions of second messengers can occur at three cellular sites.

A. In the presynaptic neuron second messengers can modulate the activity of K⁺ and Ca²⁺ channels, as well as the transmitter release machinery, to regulate the efficacy of transmitter release and thus the size of the fast postsynaptic potential mediated by ionotropic receptors.

B. In the postsynaptic neuron second messengers can alter directly the amplitude of postsynaptic potentials by modulating ionotropic receptors.

C. Second messengers can also affect the function of resting and voltage-gated channels in the soma and dendrites, thus altering a variety of electrical properties of the cell, including resting potential, input resistance, length and time constants, threshold, and action potential duration (as illustrated here).

Metabotropic receptors transduction mechanisms

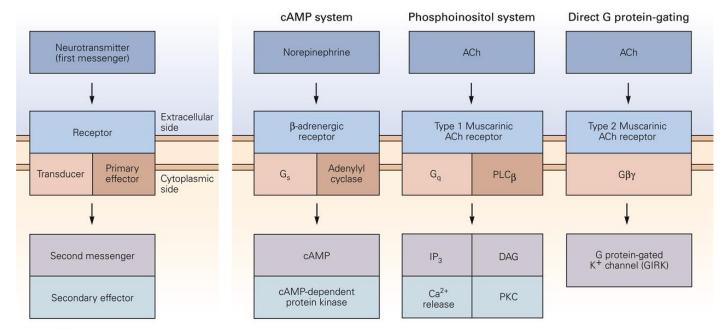


Figure 11–5 Synaptic second-messenger systems involving G protein coupling follow a common sequence. The signal transduction pathways illustrated here involve similar steps (left). Chemical transmitters arriving at receptor molecules in the plasma membrane activate a closely related family of G proteins (the transducers) that activate different enzymes or channels (the primary effectors). The activated enzymes produce a second messenger that activates a secondary effector or acts directly on a target (or regulatory) protein.

cAMP system. This pathway can be activated by a transmitter-bound β -adrenergic receptor, which acts through the G_s protein α_s -subunit to activate adenylyl cyclase. Adenylyl cyclase produces the second messenger cAMP, which activates PKA. The G protein here is termed G_s because it stimulates the cyclase. Some receptors activate a G_i protein that inhibits the cyclase.

Phosphoinositol system. This pathway, activated by a type 1 muscarinic acetylcholine (ACh) receptor, uses the G_{α} or G_{11} type

of G protein (with α_q - or α_{11} -subunits, respectively) to activate a primary effector, phospholipase C β (PLC $_{\beta}$). This enzyme hydrolyzes the phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP $_2$), yielding a pair of second messengers: diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP $_3$). In turn, IP $_3$ releases Ca $^{2+}$ from internal stores, whereas DAG activates protein kinase C (PKC). The drop in membrane PIP $_2$ levels can directly alter the activity of some ion channels.

Direct G protein-gating. This pathway represents the simplest synaptic mechanism for G protein-coupled receptor action. Acetylcholine (ACh) acting on type 2 muscarinic receptors activates the G_i protein, leading to functional dissociation of the α_i -subunit and $\beta\gamma$ complex. The $\beta\gamma$ complex interacts directly with a G protein-gated inward-rectifying K+channel (GIRK), leading to channel opening and membrane hyperpolarization.

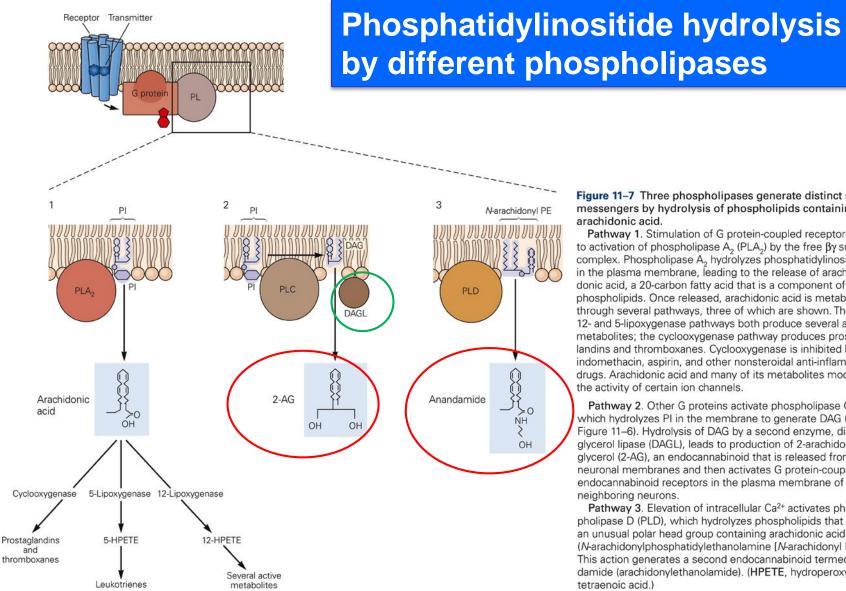
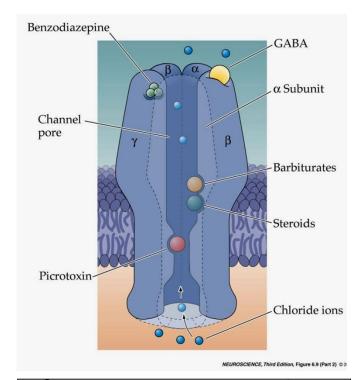


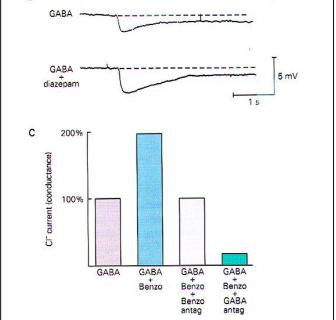
Figure 11-7 Three phospholipases generate distinct second messengers by hydrolysis of phospholipids containing arachidonic acid.

Pathway 1. Stimulation of G protein-coupled receptors leads to activation of phospholipase A2 (PLA2) by the free By subunit complex. Phospholipase A, hydrolyzes phosphatidylinositol (PI) in the plasma membrane, leading to the release of arachidonic acid, a 20-carbon fatty acid that is a component of many phospholipids. Once released, arachidonic acid is metabolized through several pathways, three of which are shown. The 12- and 5-lipoxygenase pathways both produce several active metabolites; the cyclooxygenase pathway produces prostaglandins and thromboxanes. Cyclooxygenase is inhibited by indomethacin, aspirin, and other nonsteroidal anti-inflammatory drugs. Arachidonic acid and many of its metabolites modulate the activity of certain ion channels.

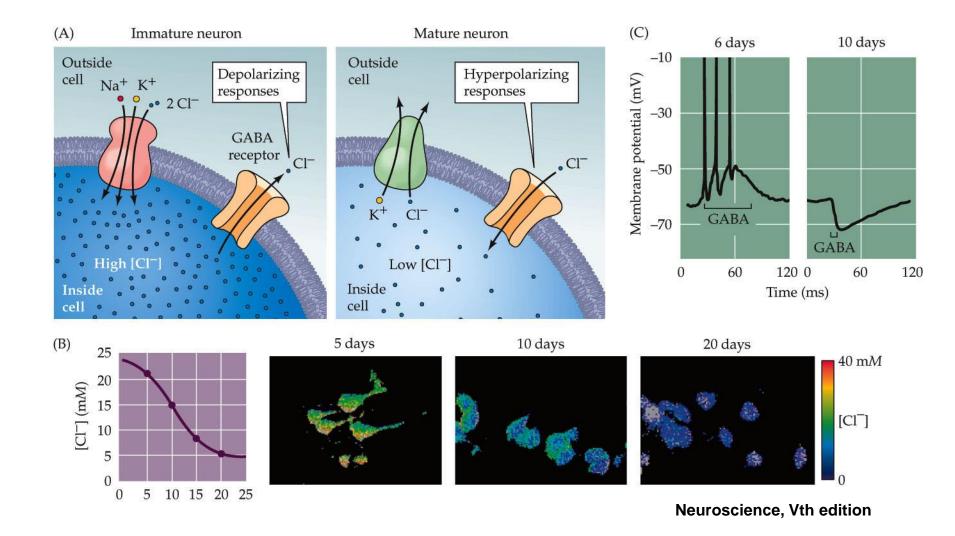
Pathway 2. Other G proteins activate phospholipase C (PLC), which hydrolyzes PI in the membrane to generate DAG (see Figure 11-6). Hydrolysis of DAG by a second enzyme, diacylglycerol lipase (DAGL), leads to production of 2-arachidonylglycerol (2-AG), an endocannabinoid that is released from neuronal membranes and then activates G protein-coupled endocannabinoid receptors in the plasma membrane of other neighboring neurons.

Pathway 3. Elevation of intracellular Ca2+ activates phospholipase D (PLD), which hydrolyzes phospholipids that have an unusual polar head group containing arachidonic acid (N-arachidonylphosphatidylethanolamine [N-arachidonyl PE]). This action generates a second endocannabinoid termed anandamide (arachidonylethanolamide). (HPETE, hydroperoxyeicosatetraenoic acid.)

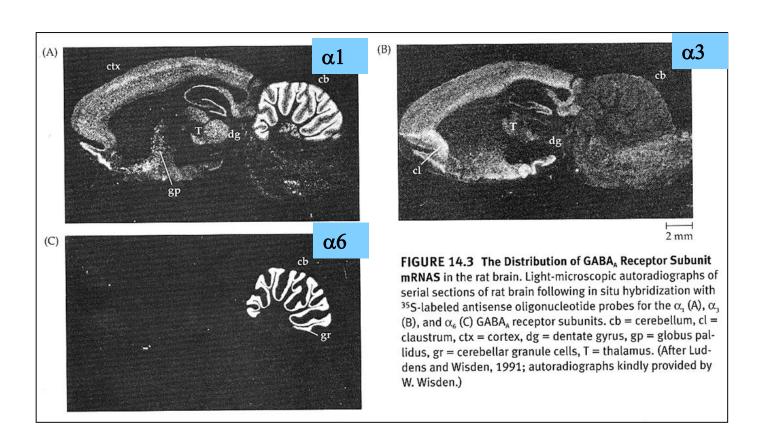

The GABA_A receptor


Receptor activity is modulated by a series of molecules (drugs such as sedatives, anxiolitics, anesthetics, ...)

Benzodiazepines positively modulates GABA_A receptors


A Structural model of the GABA_A chloride channel. The channel protein contains at least five different subunit types, of which only three are illustrated here (α , β , γ). Benzodiazepines bind to the γ subunits, GABA to the α subunit, and barbiturates to the β subunit. All the subunits contribute to forming the CI channel. When GABA binds to GABA_A receptors the CI channels open and the influx of CI hyperpolarizes the cell.

- 8. Diazepam, a benzodiazepine, is an effective drug in treating generalized anxiety disorders. The traces compare the responses of a mouse spinal cord neuron to GABA, the major inhibitory neurotransmitter in the brain, and to GABA in the presence of diazepam. Diazepam increases the affinity of the receptor for GABA and thus increases the CI⁻ conductance and the hyperpolarizing current.
- C. Benzodiazepine (Benzo) modulates CI⁻ flux through the channel by enhancing the effect of GABA, which itself enhances the influx of CI⁻ into the nerve cell. As a result, basal levels of GABA become more effective in gating the channel. Benzodiazepine antagonists prevent enhancement of GABA effects but do not reduce the basal conductance of CI⁻. GABA antagonists prevent gating of CI⁻ channels in spite of the presence of benzodiazepines.



Excitatory actions of GABA during development

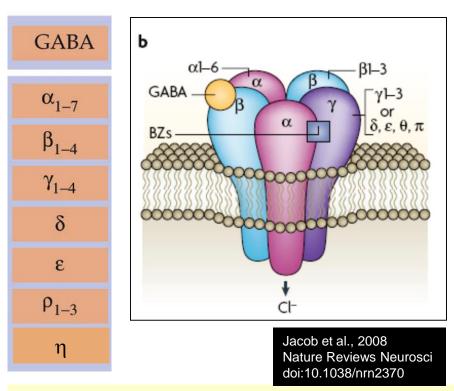
GABA_A receptor subunit distribution is spatially regulated in the brain

GABA

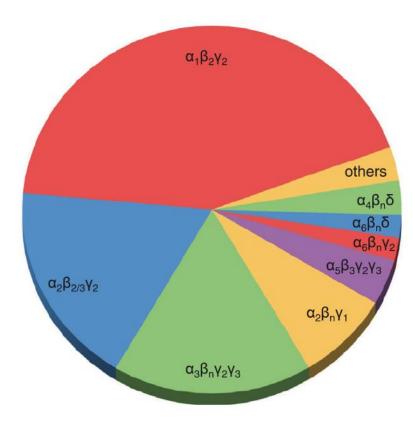
 α_{1-7}

 β_{1-4}

 γ_{1-4}

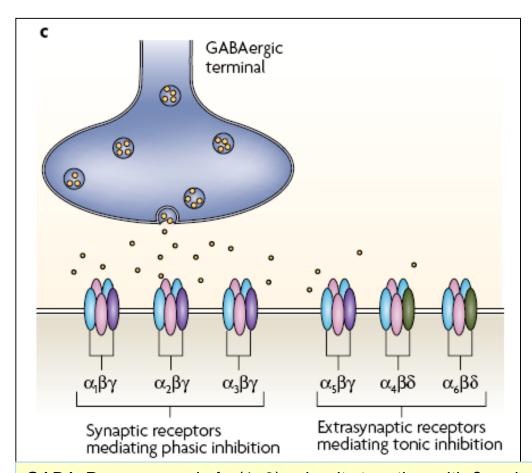

8

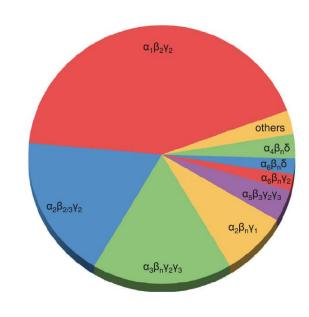
3


 ρ_{1-3}

η

GABA_ARs are made of variable combinations of at least 18 different subunits (each receptor is a heteropentameric Cl⁻ channel)

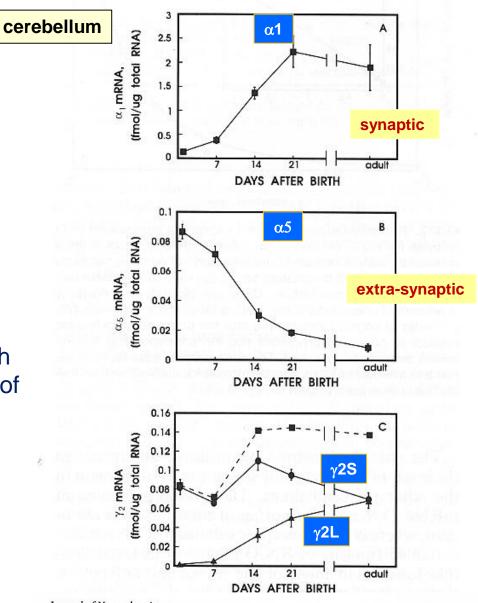

Many different subunit combinations are theoretically possible; however, only a limited number of these combinations can actually exit the ER and access the neuronal cell surface. The majority of studies agree that most GABA_ARs expressed on the surface of neurons are composed of two α subunits, two β subunits and one γ subunit



The relative expression of GABA_A receptor subunit combinations in the rodent brain.

Stephens et al., 2016Genes Brain Behav.
doi: 10.1111/gbb.123212016

GABA_AR subunit compositions at synaptic sites differ from those located at extra-synaptic sites



GABA_ARs composed of $\alpha(1-3)$ subunits together with β and γ subunits are thought to be primarily synaptically localized, whereas $\alpha 5\beta \gamma$ receptors are located largely at extrasynaptic sites. Both these types of GABA_AR are BZ sensitive. By contrast, receptors composed of $\alpha(4 \text{ or } 6)\beta \delta$ are BZ insensitive and localized at extrasynaptic sites.

Jacob et al., 2008 Nature Reviews Neurosci doi:10.1038/nrn2370 Distinct Developmental Patterns of Expression of Rat α_1 , α_5 , γ_{2S} , and γ_{2L} γ -Aminobutyric Acid_A Receptor Subunit mRNAs In Vivo and In Vitro

Expression levels of GABA_A receptor subunits are strictly regulated during development

γ2 subunit regulation involves both the transcription rate and the type of splicing occurring at different developmental stages

Journal of Neurochemistry Raven Press, Ltd., New York

© 1992 International Society for Neurochemistry

Patrizia Bovolin, *Maria-Rita Santi, Maurizio Memo, Erminio Costa, and Dennis R. Grayson

Chromosomal locations of major GABA_A receptor gene clusters

- Syntenic regions for the human clusters occur in the mouse, suggesting a highly conserved organization of these genes.
- Expression of those genes located on human chr 4 predominate in rodent embryo, but these genes are generally down regulated in the adult rat, except in particular structures (cortical areas, hippocampus, etc..) where they continue to be highly expressed
- Three of the chr 5 cluster genes encode the most frequently expressed GABA_A α1β2γ2 receptor, while the chr 4 genes encode the GABA_A receptor subunit group α2β1γ1 that is found almost exclusively in the addiction-related mesolimbic pathways encompassing ventral tegmental area (VTA) and ventral striatal regions, consistent with co-ordinated transcription within clusters

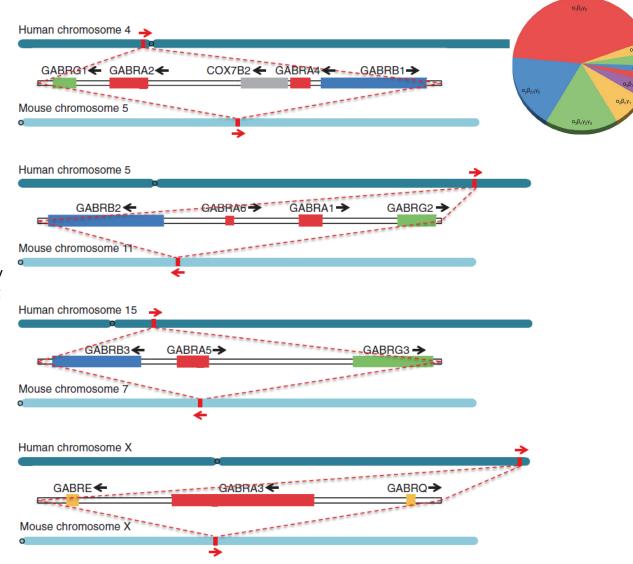
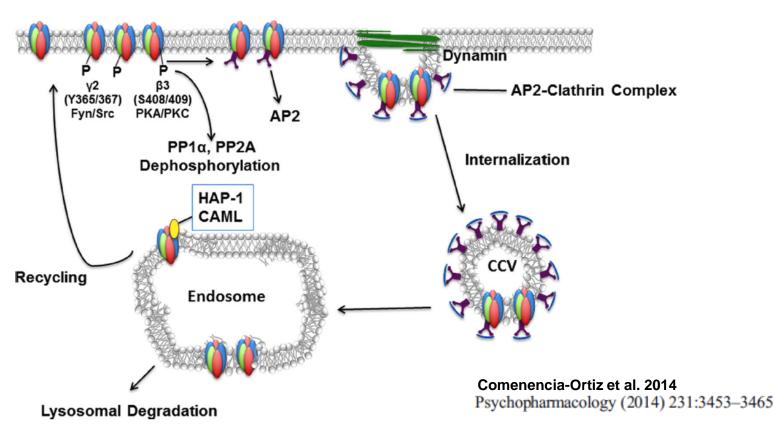



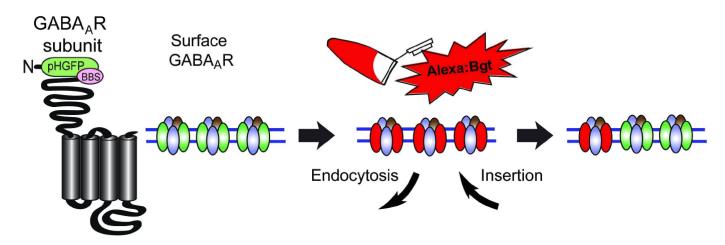
Figure 2: Chromosomal locations of major GABA_A receptor gene clusters. The genes for individual subunits are present in clusters conserved across mammalian genomes. The figure shows the four main gene clusters and their relative locations on human and mouse chromosomes (shown on human and mouse chromosomes in red). The red arrow designates orientation along the chromosome. These clusters are expanded and the arrangement of the genes within them encoding the individual subunits displayed. α subunit genes are shown in red, β subunit genes are blue, γ subunit genes are green. Other GABA_A receptor subunit families are shown in yellow. The subunits are encoded by the following genes: α 1, GABRA1; α 2, GABRA2; α 3, GABRA3; α 4 GABRA4; α 5, GABRA5; β 1, GABRB1; β 2, GABRB2; β 3, GABRB3; γ 1, GABRG1; γ 2, GABRG2, γ 3, GABRAG3; ε , GABRA9. Black arrows indicate the direction of transcription for the individual genes.

Stephens et al., 2016Genes Brain Behav.
doi: 10.1111/gbb.123212016

GABA_A receptors endocytosis and recycling

Fig. 3 GABA_AR endocytosis and recycling. GABA_AR endocytosis occurs primarily via mechanisms dependent on the formation of clathrin-coated vesicles. Clathrin- and dynamin-mediated endocytosis is regulated in a phospho-dependent manner via the interaction of specific motifs within the intracellular loop of the β and γ subunits with the μ subunit of the AP2 protein. Phosphorylation of residues within the intracellular domains of β 3 and γ 2 subunits (by kinases PKC/PKA or

Fyn/Src, respectively) interferes with this interaction and therefore stabilizes GABA_ARs in the cell membrane. When endocytosed, GABA_ARs can be ubiquitinated and degraded via lysosomal degradation. Alternatively, the receptors can interact with regulatory lysosomal proteins such as HAP1, and CAML, which promotes the transport and recycling of receptors back to the cell surface (Arancibia-Cárcamo et al. 2009)


Video Article

Using an α-Bungarotoxin Binding Site Tag to Study GABA A Receptor Membrane Localization and Trafficking

Megan L. Brady¹, Charles E. Moon¹, Tija C. Jacob¹

https://www.jove.com/video/51365/using-an-bungarotoxin-binding-site-tag-to-study-gaba-receptor

Date Published: 3/28/2014

Figure 1. Diagram of a BBS and pHGFP tagged GABAAR subunit and the endocytosis assay. Endocytosis is measured by first applying a fluorescently labeled bungarotoxin to neurons or cells, followed by a brief wash to remove unbound toxin, then fluorescence loss is monitored as receptors are internalized.

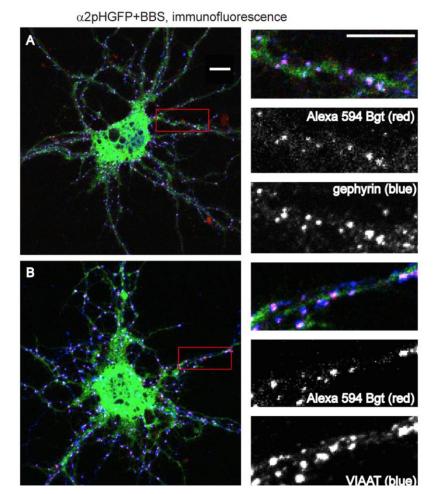


Figure 2. Confocal imaging of BBS and pHGFP tagged GABAAR showing appropriate localization with inhibitory synapse components.

Surface GABAAR in α 2pHGFP+BBS expressing neurons were labeled with α -bungarotoxin Alexa 594 (red), followed by immunostaining, enlargements of dendrites are shown to the right of each neuron. Merged panel (α -bungarotoxin Alexa 594 in red, GFP in green, gephyrin or VIAAT in blue). Surface Bgt labeled GABAAR show colocalization with **A)** the postsynaptic inhibitory scaffold protein gephyrin and **B)** apposition to the presynaptic marker VIAAT. (Scale bars, 10 µm.)

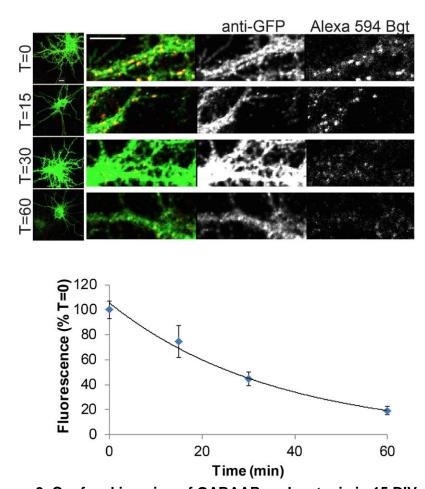


Figure 3. Confocal imaging of GABAAR endocytosis in 15 DIV hippocampal neurons. A) Surface GABAAR in α2pHGFP+BBS neurons were live-labeled with α-bungarotoxin Alexa 594 (red), and then unbound α-bungarotoxin Alexa 594 was removed by washing, followed by incubation at 37 °C. At T = 0, 15, 30, and 60 min, samples were removed and fixed. Total receptor number was assayed by permeabilization and staining with anti-GFP antibody (green). Panels are enlargements of dendrites (Scale bars, 10 μm). B) Graph represents the surface GABAAR α-bungarotoxin Alexa 594 fluorescence loss over time with endocytosis (normalized to T = 0) (10-12 neurons per time point, 4 processes analyzed per neuron; error bars represent MEAN ± SEM).

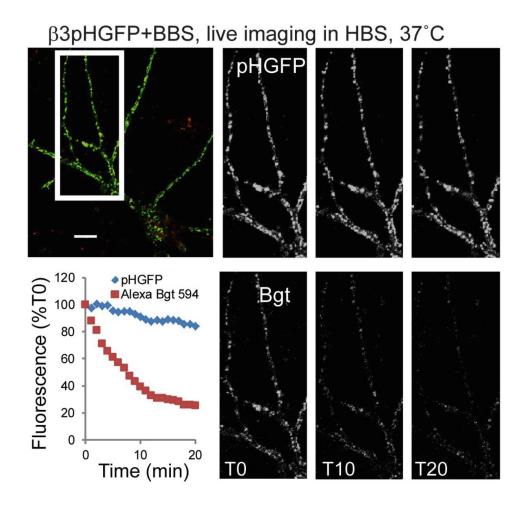


Figure 4. Live confocal imaging of GABAAR endocytosis in 15 DIV hippocampal neurons. A) B3pHGFP+BBS containing surface GABAAR in neurons were live-labeled with α -bungarotoxin Alexa 594 (red), followed by brief removal of unbound α -bungarotoxin Alexa 594 by washing. Neurons were imaged by confocal microscopy at 37 °C in HBS for 20 min at a 1 min interval (Scale bars, 10 μ m). Bgt Labeled GABAARs were localized to the cell surface at T0, as seen by colocalization with the pHGFP signal at T0. Over the time course, Bgt labeled GABA AR signal decreases, as receptors endocytose, new pHGFP expressing receptors are continually being inserted, so the pHGFP signal remains nearly constant.