RNAseq applications — Fusion genes

* RNA-seq has the potential to discover genes created by complex chromosomal

rearrangements:

* 'Fusion' genes formed by the breakage and re-joining of two different chromosomes have
repeatedly been implicated in the development of cancer.
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Trends in fusion functionality
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Figure 2. Trends in fusion functionality. (A) Recent surveys have uncovered the diverse gene fusion landscapes present in a variety of cancers. (B) The
frequency of gene fusions varies by cancer type and appears to anti-correlate with frequencies of other somatic mutations at the level of both cancer types
and individual tumor samples. (C) Gene fusions tend to involve genes with kinase, DNA-binding and chromatin modifying activity. (D) Network studies
of fusions have identified global and cancer-type-specific patterns in gene partnerships, such as the trend toward most fusion genes only fusing with only

one other partner.
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Algorithms

* Whole paired-end

— tools align the full-length paired-end reads on a
reference and use discordant alignments to
generate a set of putative fusion events which are
finally selected using several additional pieces of
information or filtering steps.

— DeFuse and FusionHunter



Algorithms

* Paired-end + fragmentation

— the full-length paired-end reads are alighed on a
reference and the discordant alignments are used

to generate new pseudo-reference.

— reads unaligned in the first step are fragmented
and re-aligned on the pseudo-reference to
identify junction-spanning reads. Only the
putative fusion events associated with junction-
spanning reads are selected as input to the
filtering step.

— TopHat-Fusion, ChimeraScan and Bellerophontes



Algorithms

* Direct fragmentation
— Each read is fragmented before the first

d
d

—T

ignment. The algorithm finds fusion candidates
igning read fragments to a genomic reference.

ne putative fusion events are then selected

implementing a set of filtering steps

— MapSplice, FusionMap and FusionFinder
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Table 1 Classification of fusion-finder algorithms according to their
alignment strategies.
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BreakFusion
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deFuse
EBARDenovo
EricScript
FusionAnalyser
FusionFinder
FusionHunter
FusionMap
FusionSeq
LifeScope
MapSplice
ShortFuse
SnowShoes-FTD
SOAPFuse
TopHat-Fusion

Paired-end + Fragmentation
Whole paired-end
Statistical information exploiting
Paired-end + Fragmentation
Whole paired-end

Direct fragmentation
Whole paired-end

Whole paired-end

Direct fragmentation

Whole paired-end

Direct fragmentation

Whole paired-end
Paired-end + Fragmentation
Direct fragmentation
Whole paired-end

Whole paired-end

Whole paired-end
Paired-end + Fragmentation



Paired-End Information Filters
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Table 2 Consideration of filters implemented by each fusion-finder algorithm.
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Testing false discovery rate of
fusion detection tools (negative set)
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Testing sensitivity of fusion
detection tools

* |n this analysis of sensitivity we considered
three parameters:

— the total number of true positive fusions detected
by the different tools (called ALL)

— the number of true positive fusions detected with
the correct orientation of the two genes (called
right)

— the number of true positive fusions detected with
erroneous orientation of the two genes (called

).



N. of fusions

FM_se: synthetic, 50 fusion events
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Edgren_se: real, 27 experimentally
validated fusion genes
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synthetic datasets encompassing fusion events may not fully
catch the complexity of a RNA-seq experiment
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+ Barcodes are unique sequence identifiers added to samples during
library construction.

+ Once barcodes are added, multiple libraries can be pooled together
for emulsion PCR/cluster generation and sequencing.
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 Since miRNAs are shorter then 50 nts some of
the sequences collected are contaminated by
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« Adapter trim/Cutadapt: perl/python scripts
for removing adapters
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RNAseq applications — microRNA

* Whole genome
— Some microRNAs are duplicated

* In alignment for counting, reads mapping in multiple
genome locations are discarded

* The use of an efficient segmentation algorithm might
discriminate between miR and miR*

* miRbase precursors

— In alignment for counting, miR*, -5P, -3P miRs are
associated to its precursor
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Circular RNA (circRNAs) are abundant, and are found in Human cells
* There are between 25,000 and 100,000 circular RNA species per cell!
* They far outnumber linear RNAs

CircRNAs are transcribed from DNA but are not translated into proteins
CircRNAs explains several phenomena observed in DNA
* including non-colinear splicing, scrambling of introns, and certain non-coding antisense transcripts.

CircRNAs may be implicated in disease processes and aging.

* |n particular, splice variants of one long circular RNA known as ANRIL located at the exact location of the 9p21.3
SNP reproduce the same phenotype as the 9p21.3 “risk allele” seen with atherosclerotic disease.

The research/genetic establishments rejected the idea of circular RNA for a long time, so a great
deal is yet to be learned about them.

CircRNAs are evolutionarily conserved
* passed on from generation to generation

CircRNAs live in to cytoplasm and are long lasting CircRNAs offer large number of docking sites for
miRNAs,

* including ones which are capable of silencing genes — they are like coat racks for siRNAs

The net impact of circRNAs on gene expression can be significant
* because their siRNA docking sites are competitive with those on genes
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e CircRNAs junction point resembles the fusion break
point in chimeras.

(1,602 inside coding transcripts)

e CircRNAs formation mainly involves coding exons.



Deep Sequencing technology - other applications

One Genome — Many Cell Types

ACCAGTTACGACGGTCA
GGGTACTGATACCCCAA
ACCGTTGACCGCATTTA
CAGACGGGGTTTGGGTT
TTGCCCCACACAGGTAC
GTTAGCTACTGGTTTAG
CAATTTACCGTTACAAC
GTTTACAGGGTTACGGT
TGGGATTTGAAAAAAAG
TTTGAGTTGGTTTTTTC
ACGGTAGAACGTACCGT
TACCAGTA

Diverse epigenetic modifications

EPIGENETIC MECHANISMS

HEALTH ENDPOINTS
* Cancer

* Autoimmune disease

* Mental disorders

* Diabetes

HISTONE TAIL

HISTONE TAIL

The binding of epigenetic factors to histone “Lails”
alters the extent 1o which DNA is wrapped around
hmb. and the availabiity of genes in the DNA
to 1

Histonas are proteins around which
DNA can wind for compaction and
gene regulation.
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Diversity of epigenetic modifications

» 100+ different histone modifications
* Histone protein > H3/H4/H2A/H2B
* AAresidue - Lysine4(K4)/K36...
» Chemical modification - Met/Pho/Ubi
* Number - Me-Me-Me(me3)
» Shorthand: H3K4me3, H2BK5ac
* In addition:
* DNA methylation primarily at CpG

modifications

Histone tails

o o
_ | ») 5 * Nucleosome positioning
S5 _él@ « DNA accessibility
21'25 » The constant struggle of gene regulation
A » TF/histone/nucleo/GFs/Chrom compete

DNA wrapped around
histone proteins 7

Ongoing epigenomic mapping projects

NIH Roadmap for Medical Research Er\JC(‘_‘)DE c
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* Mapping multiple modifications\
* In multiple cell types

* In multiple individuals

* In multiple species

* In multiple conditions

» With multiple antibodies

* Across the whole genome /

First wave published
*Lots more in pipeline
*Time for analysis!
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ChIP-chip and ChIP-Seq technology

o odification
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Image adapted from Wikipedia

Modification-specific antibodies = Chromatin Immuno-Precipitation
followed by: ChlIP-chip: array hybridization

ChIP-Seq: Massively Parallel Next-gen Sequencing

ChIP-Seq Histone Modifications: What the
raw data looks like
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* Each sequence tag is 30 base pairs long

* Tags are mapped to unigue positions in the ~3 billion
base reference genome

* Number of reads depends on sequencing depth.
Typically on the order of 10 million mapped reads.
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Introducing multi-cell activity profiles
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