## HOW TO MAKE A HIPPOCAMPAL GRANULE NEURON: FROM EMBRYONIC DEVELOPMENT INTO ADULTHOOD

#### Sara Bonzano, PhD

Adult Neurogenesis team at NICO - Unito (Orbassano, TO)

Turin, May 21<sup>st</sup> 2019

# The hippocampus



#### Adult hippocampal neurogenesis



- ✓ Memory (spatial, short term)
- "Pattern separation" (discrimination)
- ✓ Emotions (anxiety, depression)



Bond et al., Cell Stem Cell 2015; Gonçalvez et al., Cell 2016



#### What's the origin of adult hippocampal NSCs?



- Dentate progenitors exhibit constant lineage specification across development
- Precursors to adult DG NSCs are not "set aside" in quescence during embryonic development (as SVZ), but they transit to a quiescent state during early PN period (P3-P7)
- Developmental and adult dentate neurogenesis are likely one continuous process

Berg et al., Cell 2019

#### What's the origin of adult hippocampal NSCs?



 The Hopx-CreERT2 line can label an embryonic origin (from E10.5-11) of adult dentate neural progenitors

Berg et al., Cell 2019

## **Embryonic origin of the hippocampus**

The hippocampus arises from the **caudomedial edge** of the **dorsal telencephalic neuroepithelium** adjacent to the cortical hem (CH, a transient structure acting as the "embryonic organizer" for the hippocampus)





#### Dentate gyrus ontogenesis during development

From a developmental point of view, the generation of the DG is **unique** 

The formation of the DG involves **the** <u>generation of a dedicated progenitor</u> <u>cell source</u> away from the ventricular zone (VZ)

This **additional proliferative zone** remains **active during postnatal stages** and eventually becomes **the subgranular zone (SGZ)**, where adult hippocampal neural stem cells (NSCs) are located



#### Dentate gyrus ontogenesis during development



Modified from: Yu, Marchetto and Gage, Development 2014





#### **NEUROGENESIS**



 $\checkmark$  Leaning and memory





#### Heterogeneity of adult hippocampal NSCs



Stem Cell 2016; Berg et al., Cell 2019

#### **Physiological conditions**



Pathological conditions disrupt the proper balance between DG neurogenesis and astrogliogenesis





#### The transcription factor COUP-TFI/Nr2f1

- ✓ orfan nuclear receptor of the steroid/thyroid hormone receptor family
- ✓ acts as an activator and/or repressor for target genes transcription
- ✓ plays pleiotropic functions during brain development
- ✓ emerging player in **adult brain plasticity**
- ✓ its haploinsufficiency causes the BBSOAS (OMIN#615722)



#### COUP-TFI is expressed in a subset of hippocampal NSCs and upregulated during neuronal lineage progression









#### COUP-TFI loss- and gain-of-function in the DG niche through Cre/loxP technology coupled to genetic fate mapping



## Cre/loxP dependent genetic fate mapping



## Cre/loxP dependent genetic fate mapping



### Cre/loxP dependent genetic fate mapping



# COUP-TFI loss- and gain-of-function in the DG niche through Cre/loxP technology coupled to genetic fate mapping



#### Efficient COUP-TFI deletion in the Glast lineage



Bonzano et al., Cell Reports 2018

#### Short-term COUP-TFI loss of function does not alter radial NSC pool and progenitor cell proliferation



#### Short-term COUP-TFI loss of function reduces neuronal-committed progenitors and neuroblasts















#### Adult COUP-TFI-depleted NSCs/progenitors increase the expression of the pro-astrogliogenic factor NFIA



→ Switch of COUP-TFI deficient NSC/progenitor commitment towards an astroglial fate

#### Enhanced astrogliogenesis in COUP-TFI-icKO<sup>Glast</sup> DG



#### COUP-TFI-KO Ascl1+ active NSCs/neurogenic progenitors increase astrogliogenesis and decrease neurogenesis



#### COUP-TFI restricts adult DG proliferating progenitor potential towards neurogenesis



- 1. Ctrl<sup>RV-Cre</sup> (R26-floxed stop-YFP)
- 2. COUP-TFI-icKO<sup>RV-Cre</sup> (R26-floxed-stop-YFP;COUP-TFIfl/fl)





#### COUP-TFI deletion in RGL and neurogenic progenitors promotes astrogliogenesis at the expense of neurogenesis



→ COUP-TFI sustains neurogenesis all along the neurogenic lineage by exerting an anti-astrogliogenic action on adult mouse hippocampal NSCs/progenitors

#### COUP-TFI overexpression (O/E) in the adult NSC lineage blocks hippocampal astrogliogenesis





COUP-TFI is necessary to promote neurogenesis from adult NSCs and neuronal committed progenitors by repressing their commitment towards an astroglial fate

#### Neuroinflammation model: E.coli lipopolysaccharide (LPS)

1. RT-qPCR:

2. IFL:



# Forcing COUP-TFI expression rescues neuron-to-astrocyte generation shift upon neuroinflammation





- 1. Ctrl<sup>RV-Cre</sup> + Saline
- 2. Ctrl<sup>RV-Cre</sup> + LPS
- 3. COUP-TFI-O/E<sup>RV-Cre</sup> + LPS





#### To sum up...

- ✓ COUP-TFI loss increases DG astrocytes by fostering astrogliogenesis from adult NSCs and unlocking a gliogenic potential in neuronal progenitors
- ✓ Forced COUP-TFI expression inhibit astrogliogenesis from adult hippocampal NSCs
- ✓ COUP-TFI is necessary and sufficient to restrict the entire adult DG neurogenic lineage towards neurogenesis
- ✓ Neurogenesis-to-astrogliogenesis switch is reverted by COUP-TFI gain-of-function upon neuroinflammation, suggesting that it may protect the DG niche from inflammatory insults



#### **Ongoing analysis and future directions**

#### Aging of the DG neurogenic niche: a role for COUP-TFI ?







**Ongoing analysis and future directions** 

MitoCOUP Project

# "COUP-TFI, mitochondria and adult NSCs: allies for brain plasticity"



#### Aging and mitochondria in adult hippocampal NSCs



#### **COUP-TFI/Nr2f1** and mitochondria

#### COUP-TFI/Nr2f1 haploinsufficiency leads to impaired mitochondrial ETC functioning in a patient with BBSOAS

Journal of Human Genetics https://doi.org/10.1038/s10038-017-0398-3

BRIEF COMMUNICATION

2018

Mitochondrial involvement in a Bosch-Boonstra-Schaaf optic atrophy syndrome patient with a novel de novo *NR2F1* gene mutation

Elena Martín-Hernández<sup>1,2</sup> · María Elena Rodríguez-García<sup>3</sup> · Chun-An Chen<sup>4,5</sup> · Francisco Javier Cotrina-Vinagre<sup>3</sup> · Patricia Carnicero-Rodríguez<sup>3</sup> · Marcello Bellusci<sup>1</sup> · Christian P. Schaaf<sup>0,4,5</sup> · Francisco Martínez-Azorín<sup>0,3,6</sup>

COUP-TFI/Nr2f1 Loss of function

# Several mitochondria-related genes are likely direct target genes for COUP-TFI



| Enrichment Score: 15.17        |    |          | Count  | P_Value | Benjamini |
|--------------------------------|----|----------|--------|---------|-----------|
| mitochondrion 🔀                | RT | -        | 188    | 1.5E-23 | 7.1E-21   |
| mitochondrion 🔨                | RT | =        | 133    | 9.8E-20 | 2.1E-17   |
| transit peptide                | RT | =        | 81     | 2.5E-13 | 2.7E-11   |
| mitochondrial part 샀           | RT | <b>=</b> | 82     | 2.9E-12 | 6.6E-10   |
| transit peptide:Mitochondrion  | RT | <b>=</b> | 79     | 1.4E-10 | 3.9E-7    |
| Enrichment Score: 10.1         | G  |          | Count  | P_Value | Benjamini |
| mitochondrion 🔀                | RT | =        | 133    | 9.8E-20 | 2.1E-17   |
| mitochondrial part 📈           | RT | =        | 82     | 2.9E-12 | 6.6E-10   |
| organelle membrane             | RT | =        | 109    | 8.6E-12 | 1.3E-9    |
| mitochondrial envelope 🕂       | RT | <b>=</b> | 63     | 4.1E-10 | 4.8E-8    |
| organelle envelope             | RT | =        | 78     | 5.4E-10 | 4.9E-8    |
| envelope                       | RT | =        | 78     | 6.4E-10 | 4.9E-8    |
| mitochondrial membrane 🛠       | RT | <b>=</b> | 59     | 2.0E-9  | 1.1E-7    |
| organelle inner membrane       | RT | <b>=</b> | 52     | 5.5E-9  | 2.8E-7    |
| mitochondrion inner membrane 🕁 | RT | 2        | 37     | 4.8E-8  | 2.9E-6    |
| mitochondrial inner membrane 🛠 | RT | <b>=</b> | 48     | 5.5E-8  | 2.1E-6    |
|                                |    |          | D /* . | •       |           |

Preliminary data

#### **Project workflow**

#### **TASK1)** EVALUATE MITOCHONDRIA MARKER EXPRESSION IN COUP-TFI-icKO HIPPOCAMPAL TISSUES vs CTRLs

**TASK2)** FUNCTIONAL IMAGING OF MITOCHONDRIA IN COUP-TFI-icKO DG NEUROGENIC NICHE **TASK3)** IDENTIFY COUP-TFI TARGETS IN ADULT NSCs AND THEIR POSSIBLE IMPLICATIONS DURING AGING







#### TASK1) EVALUATE MITOCHONDRIA MARKER EXPRESSION IN COUP-TFI-icKO HIPPOCAMPAL TISSUES vs CTRLs





YFP+DCX+=newborn neurons - OXPHOS mix=mitocondrial ETC - DAPI= nucleus



Enriched environment and running represent important non-invasive strategies to increase brain plasticity and to favor key cognitive functions (such as memory, learning, pattern separation)



Enriched environment and running represent important non-invasive strategies to increase brain plasticity and to favor key cognitive functions (such as memory, learning, pattern separation)







✓ Test whether COUP-TFI activity is modulated by experience

✓ Evaluate whether COUP-TFI is directly involved in activitydependent regulation of adult DG neurogenesis

#### Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin

Silvia De Marchis Isabella Crisci Alessia Miccinesi Filippo Michelon Daniele Stajano

Paolo Peretto Luca Bonfanti Federico Luzzati Serena Bovetti Giulia Nato Chiara La Rosa Marco Fogli

#### Collaborations

M. Studer, PhD (iBV, CNRS, Inserm, Univ. Nice) R. Beckervordersandforth (FAU, Univ.Erlangen-Nürnberg) W. Krezel, PhD (IGBMC- Illkirch, Univ. Strasbourg) C. Rolando, PhD (Dept. Biomedicine, Univ. Basel)









